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ABSTRACT

There is a growing interest in developing hardware-
efficient implementations of compression algorithms for
multispectral and hyperspectral sensors on-board flight
systems. SHyLoC, composed by a pair of configurable
and synthesizable IP cores, implements the CCSDS 121
and 123 lossless compression standards, and has been
recently added to the set of the ESA’s IP portfolio. At
the moment, this implementation does not cover the full
functionality described in the CCSDS standards. This
work presents the extensions proposed over the SHy-
LoC IP cores in order to be fully compliant with the
full CCSDS standards, while at the same time achieving
higher performance in terms of compression efficiency
and throughput. On the one hand, the unit-delay pre-
dictor defined in the CCSDS-121 standard has been in-
cluded in the hardware implementation. On the other
hand, the extension of the CCSDS-123 IP includes some
optimizations of the AHB interface in order to improve
the throughput, enabling burst transfers, as well as the
implementation of the custom initialization of weights.

Key words: Hyperspectral imaging; Compression algo-
rithms.

1. INTRODUCTION

Hyperspectral imaging has multiple applications for iden-
tification, surveillance and navigation purposes. For that
reason, the use of hyperspectral sensors in flight systems
such as drones, planes and satellites is increasing [1]. Hy-
perspectral sensors produce large amounts of data that
need to be stored and either processed or transmitted. Hy-
perspectral data processing requires a high computational
capacity that is not usually available in on-board systems
due to the limitations in terms of power consumption. On
the other hand, the limited data transmission bandwidths
with the ground stations in comparison with the size of
hyperspectral images constitute a bottleneck in this kind
of applications, which will be aggravated with the pro-
gressive increase in the resolution of hyperspectral sen-

sors. Because of this, on-board compression of hyper-
spectral data becomes mandatory.

The Consultative Committee for Space Data Systems
(CCSDS) has developed several lossless data compres-
sion standards specifically designed for space applica-
tions [2, 3]. These standards provide efficient com-
pression together with a reduced complexity, which fits
well with the limited computational resources available in
space systems. Among these standards, the CCSDS-121
constitutes a universal compressor applicable to any kind
of digital data, while the CCSDS-123 specifically tar-
gets multispectral and hyperspectral images. Both com-
pression standards make use of predictive pre-processing
stages, well suited for low complexity implementations.

The European Space Agency (ESA) provides a portfo-
lio of IP cores, which can be used by project partners
for future space missions. This IP core portfolio has re-
cently included two IP cores, which consist in hardware
implementations of the CCSDS-121 and 123 compres-
sion standards respectively, which are known together as
SHyLoC [4]. These IP cores are provided as technology
independent, configurable and synthesizable VHDL de-
signs and they are capable of working separately as well
as jointly. However, the SHyLoC IP cores do not imple-
ment the full functionality of the respective CCSDS stan-
dards. Namely, the CCSDS-121 IP does not implement
the pre-processing stage defined in the CCSDS-121 stan-
dard, while the CCSDS-123 IP lacks the custom weight
initialization option [5].

This work presents the modifications proposed over the
SHyLoC IP cores in order to implement the full func-
tionality defined in the CCSDS standards, while at the
same time achieving higher performance in terms of com-
pression efficiency and throughput. On the one hand, the
main feature of the CCSDS-121 IP extension is the inclu-
sion of the unit-delay predictor defined in the CCSDS-
121 standard, which additionally requires inserting ref-
erence samples in the compressed data. On the other
hand, the extension of the CCSDS-123 IP implements the
custom weight initialization. In addition, the throughput
the CCSDS-123 IP can reach is improved in the Band-
Interleaved (BI) architectures when an external memory
is used to store intermediate results by optimizing the
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Figure 1. Block diagram of the CCSDS-121 standard

communications between the IP and the external mem-
ory. With that goal, the use of the AHB bus is optimized
by implementing burst transfers.

The rest of the paper is structured as follows. Section 2
summarizes the CCSDS-121 and 123 compression stan-
dards. Then, section 3 introduces the SHyLoC IP cores.
Later, section 4 addresses the proposed modifications of
the SHyLoC IP cores. Next, section 5 shows the imple-
mentation results. Finally, section 6 concludes the paper.

2. CCSDS LOSSLESS COMPRESSION STAN-
DARDS

2.1. CCSDS-121 standard

The CCSDS 121.0-B-2 standard [2] constitutes a univer-
sal lossless data compressor. It consists of a preprocess-
ing stage, and an entropy coder. The preprocessor is in
charge of predicting the value of each input sample, com-
puting the prediction residuals, and mapping them into
values which are then coded by the entropy coder. The
block scheme of the full CCSDS-121 standard is shown
in Fig. 1. The maximum allowed width (i.e. dynamic
range) for the input samples is 32 bits.

The CCSDS-121 standard defines a simple unit-delay
predictor to be used as preprocessor. This kind of pre-
dictor uses just the previous sample as an estimator of the
current one. Therefore, in the case of hyperspectral im-
ages, the order in which input samples are processed will
affect the prediction residuals, and hence the compres-
sion efficiency. Reference samples must be periodically
inserted in order to be able to regenerate the input im-
age. In any case, this preprocessor is optional: it can be
omitted or replaced with another preprocessor.

The entropy coder of the CCSDS-121 is basically an
adaptive Rice coder. The incoming preprocessed sam-
ples are grouped into blocks of size J , defined by the
user. Each block is compressed with the option which
produces the shortest output, among the available ones:

• Fundamental sequence (FS). Each input sample δi is
encoded as δi zeroes followed by a one.
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Figure 2. Set of samples used for prediction

• Sample splitting. First, each input sample is split by
removing the k least significant bits. The high part
of δi is coded with the FS, while the low part is left
uncompressed.

• Second-extension. Each pair of input samples δi and
δi+1 is transformed into a new symbol γ, which is
coded using FS.

• Zero-block. This option denotes one or more con-
secutive blocks of all-zeroes. It is the only case
where a single codeword may represent more than
one compressed block.

• No compression. The input samples are left unal-
tered.

In any case, a unique identifier is attached to each com-
pressed block in order to know which compression option
has been used.

2.2. CCSDS-123 standard

On the other hand, the CCSDS 123.0-B-1 standard [3] is
a lossless data compressor specifically devised for mul-
tispectral and hyperspactral images. Similarly to the
CCSDS-121 standard, the CCSDS-123 is based on pre-
diction techniques.

The preprocessor of the CCSDS-123 predicts the value
of each input sample using a neighbourhood of samples
around the current sample in the same band as well as in
the previous bands, as it is shown in Fig. 2. In this way,
the compression efficiency is not affected by the prepro-
cessing order, as opposed to the CCSDS-121 standard.
The number of bands P used in the prediction can be
configured between 0 and 15.

The predictor processes the input image in a single pass,
independently of the chosen order. The compression al-
gorithm is represented in Fig. 3, and summarized next.
For each input sample, first a local sum for the current
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band as well as the previous P bands is computed, which
is a linear combination of the neighbour sample values.
The set of samples which are used to compute the lo-
cal sums is determined by the selected local sum type:
in the neighbour-oriented mode, all the previously pro-
cessed neighbour samples are used, while in the column-
oriented mode just the sample right on top is used. Then,
with the local sums and the neighbour sample values, the
local differences are computed. These are then grouped
in the local differences vector Uz,y,x, whose composition
depends on the chosen prediction mode. Under the re-
duced mode, just the central differences of the P pre-
vious bands are used, while in the full mode the direc-
tional differences of the current band are also included.
The inner product of the local differences vector and a
weight vector is computed, which is in turn used to com-
pute the predicted sample ŝz,y,x. The components of the
weight vector are updated with each new sample based
on the prediction residual, the local differences, and some
user-defined parameters. The predictor uses independent
weight vectors for each band. The initialization of these
weight vectors can be done either by default (the same
values for all the bands) or custom (user-specified, each
band can be initialized to specific values). Finally, the
prediction residual is mapped into an unsigned integer
δz,x,y , which is passed to the entropy coder.

On the other hand, the CCSDS-123 standard allows the
use of the entropy coder defined in the CCSDS-121 stan-
dard, here known as block-adaptive coder. Alternatively,
a sample-adaptive coder is proposed, which is a more
sophisticated version of an adaptable Rice coder. With
the sample-adaptive encoder, the samples are compressed
one by one rather than in groups. The code used for
each individual sample depends on some image statistics,
namely a counter and an accumulator, which are updated
with every new sample according to some user-defined
parameters.

As it can be seen, the standard has several options and
configurable parameters. These parameters affect the
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Figure 4. CCSDS-121 IP - Block diagram of the com-
pression core [5]

compression efficiency, and they should be set depending
on the characteristics of the image and the sensor. The
standard also defines a header, which is appended at the
beginning of each compressed image, where the selected
values for all these options are specified.

3. SHYLOC

SHyLoC is a hardware implementation of the CCSDS-
121 and 123 compression algorithms. It consists of two
IPs, implementing each one of the CCSDS standards re-
spectively. These IPs can work as independent compres-
sors, or jointly. In order to do so, the IPs have been de-
signed with compatible interfaces. In addition, both IP
cores include an AHB interface [6] for configuration pur-
poses. SHyLoC is provided as a pair of technology inde-
pendent, configurable and synthesizable VHDL designs,
and it has recently joined the portfolio of ESA IP cores
[4].

3.1. CCSDS-121 IP

The CCSDS-121 IP implements the entropy coder of the
121 standard without any preprocessor. It includes all the
necessary logic to perform the reception of the runtime
configuration values (through AHB) and the input sam-
ples (through a dedicated interface), the compression and
the flow control of the output bitstream [5].

The compression core of the CCSDS-121 IP is repre-
sented in Fig. 4. First, the int module reads the runtime
configuration values, after being adapted to the IP’s clock
frequency. It also validates the configuration, arising an
error if the configuration values are not correct. The con-
figuration values are then transmitted to the header gen
module, which generates the header values according to
the configuration and send them to the packing final mod-
ule. This module splits the output bitstream in words of
the size of the output buff out signal. Every time the out-
put buffer is full, a valid flag is generated so that the out-
put value can be captured. The rest of the modules con-
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stitute the compression engine, implementing the entropy
coder described in section 2.1.

The snd extension module is in charge of computing the
length of a block encoded with the second-extension op-
tion, and transforming each pair of input samples δi and
δi+1 into a new value γ, which is stored in an interme-
diate FIFO. On the other hand, the compute l k module
computes the length of a block encoded with the FS as
well as all the sample splitting options. The number of
options to be evaluated depends on the dynamic range of
the input samples and the user-selected configuration pa-
rameters. The option with the minimum length is stored
in a register Lk(winner), and it is compared with the
length of the second-extension and no compression by
the optioncoder module, which selects the best coding
option. The compute l k module also identifies if a block
contains all zeroes, and in that case the zero-block option
is chosen. Once the encoding option is selected, the fs-
coder module encodes the mapped or gamma values, or
the number of zero-blocks, according to the FS sequence,
along with the option identifier. Finally, the sequence en-
coded by the fscoder, as well as the uncompressed sam-
ple splits, are processed and sent to the final packer to be
outputted.

3.2. CCSDS-123 IP

On the other hand, the CCSDS-123 IP implements the
predictor as well as the sample-adaptive encoder defined
in the CCSDS-123 standard [7]. In addition, it is possible
to connect the CCSDS-121 IP core as the block-adaptive
entropy coder defined in the standard (see Fig. 5) [4]. In
such case, the CCSDS-123 IP is configured to perform
just the prediction stage, and both IPs need to be config-
ured independently.

The CCSDS-123 IP implements the necessary compo-
nents to perform the compression. It includes a config-
uration core (which is in charge of receiving the config-
uration from the AHB interface, adapting clock frequen-
cies, generating the header, validating the configuration
and disseminating it to the rest of modules), the predic-
tor, the sample-adaptive encoder, a control module and
a dispatcher (which receives the output from the com-
pression modules, packets it and sends it to the output)
[5]. The CCSDS-123 IP includes two AHB interfaces:
one for configuration purposes, and the other to connect
an external memory to store intermediate values. Only
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single transfers are allowed, which limits the compressor
performance when the external memory is used.

The predictor of the CCSDS-123 IP core is able
to compress samples in either Band-Interleaved-by-
Pixel (BIP), Band-Interleaved-by-Line (BIL) or Band-
Sequential (BSQ) orderings. In order to do so, differ-
ent predictor architectures have been designed with the
goal of optimizing the computations for each ordering.
A total of 4 architectures have been implemented: BIP,
BIP-MEM, BIL and BSQ. The ordering must be there-
fore selected at implementation time, determining which
predictor architecture is loaded. A basic block diagram
of the predictor is shown in Fig. 6, which is common to
all the architectures. The input samples are arranged in a
set of FIFOs, in such a way that the output of each FIFO
corresponds to each one of the neighbour samples in the
current band. Thus, the amount of samples stored in each
FIFO depends on the input ordering, the maximum image
dimensions and the number of bands P used for predic-
tion. The predictor performs the computation of the local
sums and local differences, the computation of the pre-
dicted sample, the mapping and the weights update. In
order to save hardware resources, the local differences
are stored to be reused in subsequent bands. In addition,
in some architectures it is necessary to store the weight
vectors when changing the current band. The storage
elements which demand the largest memories are high-
lighted in blue, and can be placed on external memories
depending on the selected architecture. Finally, regarding
the weights initialization, the CCSDS-123 IP implements
just the default initialization defined in the CCSDS-123
standard, not the custom-weight initialization.

The BIP and BIP-MEM architectures take the best advan-
tage on the parallelization possibilities of the prediction
algorithm. Provided that there are enough samples in the
spectral dimension, these architectures are able to pro-
cess one sample per clock cycle. Therefore, this is the
ordering with the highest possible throughput. In order to
do so, the weights update module must be replicated, and
the updated weight vectors are stored in a FIFO structure.
The particularity of the BIP-MEM architecture is that it
stores the contents of the top right FIFO in an external
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memory using an AHB master interface.

In the BSQ architecture, it is required to store a complete
vector of local differences per sample. All these vectors
are stored in an external memory through the AHB inter-
face, and read when required. In addition, in this architec-
ture the data dependencies impose a noticeable through-
put limitation. Therefore, the multiply and accumulate
operations as well as the weight updating are performed
in a serial manner in order to reduce resources utilization.

Finally, the BIL architecture is an hybrid of the BIP and
BSQ ones. It inherits most of the components of the BIP
architecture, but uses a specific chain of FIFOs in order
to store the local differences vectors. In addition, a spe-
cific scheduling is devised in order to achieve the highest
possible throughput, taking into account that the data de-
pendencies when compressing a line are not the same that
when changing between lines.

4. EXTENSIONS OF THE SHYLOC IP CORES

The SHyLoC implementation of the CCSDS compres-
sion algorithms lacks some of the features defined in the
standards. Namely, the CCSDS-121 IP does not imple-
ment the unit-delay predictor, while the CCSDS-123 IP
does not implement the custom initialization of weight
vectors. In addition, the implementation of the CCSDS-
123 standard does not take full advantage of the AMBA
AHB bus capabilities when external memories are used
to store intermediate results, because burst transactions
are not supported [5].

In order to address these issues, an extension of the SHy-
LoC implementation has been devised. This new version
is denoted as SHyLoC-e and was made by means of mod-
ifications of the SHyLoC VHDL source code.

The SHyLoC-e IP cores have been validated in simula-
tion against software golden references.

4.1. Extension of the CCSDS-121 IP

On the one hand, the main improvement of the CCSDS-
121 IP is the implementation of the unit-delay predictor
of the standard, described in section 2.1. It simply con-
sists in a register (holding the value of the previous sam-
ple), a subtraction and a mapper, as it is shown in the left
side of Fig. 1. The predictor can be bypassed in order
to insert reference samples, which must be periodically
performed according to the user-defined parameters. The
predictor module receives the configuration parameters
from the entropy coder.

However, the use of the unit-delay predictor forces the
inclusion of periodic reference samples, which must be
properly handled by the entropy coder. This imposes
some modifications of the entropy coder itself. First

of all, the identification of which blocks of samples in-
clude a reference sample is implemented in the finite state
machine of the entropy coder. Then, the snd extension
and compute l k modules have been modified to correctly
compute the length of the compressed block with each
compression option if the reference sample is present ac-
cording to the following rules [2]:

• Fundamental sequence. The reference sample is left
uncompressed, so its contribution to the length of the
compressed block is related to the dynamic range of
the samples rather than its value. The rest of the
samples in the block are compressed as usual.

• Sample splitting. Similar to the FS, the reference
sample is not compressed nor split.

• Second-extension. The reference sample is inde-
pendently coded without compression. In order to
compute the γ values, the first sample of the block
(which corresponds to the reference sample) is re-
placed by a zero.

• Zero-block. The reference sample is not taken into
account when checking the all-zeroes condition.

• No compression. There are no changes.

In any case, the reference sample is coded right after
the identifier of the coding option. In order to do so,
the fscoder module was properly modified. Finally, the
header gen module generates the proper preprocessor
header field if the unit-delay predictor is used.

On the other hand, the characteristics of the input data
have been modified. The maximum dynamic range of
the input samples has been extended from 16 to 32 bits,
which mainly affects the way the endianness is handled.
In addition, due to the inclusion of the predictor, the input
samples can be signed, which is properly handled by the
predictor itself.

4.2. Extension of the CCSDS-123 IP

In the case of the CCSDS-123 IP, the modifications are
focused on improving the communications through the
AHB bus. In particular, the BIP-MEM architecture uses
an external memory to store intermediate results during
the compression, which is accessed through AHB follow-
ing the scheme of Fig. 7. The input samples are passed to
the AHB master, which writes them in memory by prop-
erly setting the address and control signals, and later it
reads back the samples when they are required as the top
right neighbours of subsequent samples. A pair of cou-
pling FIFOs are used to adapt the throughputs of the AHB
master and the predictor. There is a gap between the write
and read operations in the external memory: the read op-
erations do not begin until the first row of the image with
all its bands is loaded in memory, and then the write and
read addresses always maintain a gap of one spectral row.
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The AHB master is in charge of setting the proper read
and write addresses on each transfer, and ensuring that
there are no data losses.

In the SHyLoC implementation of the CCSDS-123 stan-
dard, the AHB master supports only single transfers. This
is easy to implement, but it forces the AHB master to re-
quest the control of the bus on every transfer, which may
impact the overall performance. In the extension, the
AHB master has been modified to support incremental
burst transactions with a maximum of 16 beats per burst.
The read and write bursts are interleaved. The size of the
burst transfer is configured at compile time, although the
AHB master is able to configure shorter bursts if the exe-
cution requires it (for example, when the end of the image
is reached).

In addition, a new architecture BIL-MEM has been de-
vised. It processes input samples in BIL order as in the
BIL architecture, but uses the AHB master to store the
contents of the top right FIFO in an external memory,
exactly as in the BIP-MEM architecture. In this architec-
ture, burst transfers are also supported, like in the BIP-
MEM architecture of the CCSDS-123 extension.

Regarding the custom weight initialization, a preliminary
study has been performed about how it could be imple-
mented. The best alternative consists in reusing the mem-
ory which stores the weight vectors for loading the cus-
tom initial values, as shown in Figure 8. During the IP

Figure 8. Weight management for custom initialization

Table 1. Implementation results of the CCSDS-121 IP
Device Resources Clk. freq.

BRAM DSP48 LUT FF (MHz)
Virtex5 3 1 3657 1501 118
RTG4 11 3 5419 1347 51.4
NG-MEDIUM 11 5 9371 1639 33.1

configuration, the weight FIFOs are loaded with the cus-
tom initial values received by the configuration port. Dur-
ing compression, the weight vectors are cyclically read
from the FIFOs, updated and stored again. Alternatively,
the weight vectors of the previous compression could be
reused as custom initialization values, which can be in-
teresting in the case of image partitioning. In this case,
the weight FIFOs would not be reset between executions.
However, not all the architectures need to store the weight
vectors along the compression, in particular BSQ. For
this architecture, the custom weight initialization imposes
an extra memory overhead.

5. RESULTS

This section shows some implementation results of the
SHyLoC IP cores in different FPGA technologies. These
will serve as a reference point for comparison once the
SHyLoC-e is implemented in the same FPGA technolo-
gies.

First, the CCSDS-121 IP has been implemented in differ-
ent devices. A specific configuration of the IP has been
implemented, with block size J equals to 32, dynamic
range D 16, and a width of the output buffer of 32 bits.
The target devices were a Virtex5 XC5VFX123T from
Xilinx, a RTG4 150 from Microsemi, and the NanoX-
plore NG-MEDIUM. The implementation results of the
CCSDS-121 IP are shown in Table 1. The table shows
for each target device the resources utilization in terms of
RAM blocks, DSP units, LUTs and flip-flops, as well as
the estimated maximum clock frequency. The implemen-
tation results for the Virtex5 and RTG4 FPGAs were ob-
tained by means of Synplify software, while for the NG-
MEDIUM the NanoXmap tool version 2.8.5 was used. It
can be noticed that the Virtex5 implementation achieves
the highest clock frequency and consumes less resources
than the other two implementations. It must be taken into
account that the Virtex5 architecture uses larger logic ele-
ments. For example, the Virtex5 architecture uses 6-input
LUTs while the other two use 4-input LUTs.

With respect to the CCSDS-123 IP, several configurations
have been implemented, adapting the IP to different hy-
perspectral and multispectral sensors. The configurations
differ in the dimensions of the processed images and the
dynamic range of the input samples, whose values ap-
pear in the Table 2. The image dimensions (Nx, Ny and
Nz) are indicated in terms of pixels, while the dynamic
range is expressed as bits per pixel (bpp). The rest of the
configuration options are shared by all the configurations,
where the most relevant are:
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Table 2. Set of images used in the implementation
Image Nx Ny Nz bpp
Landsat 1024 1024 6 8
Aviris 512 680 224 16
Airs 90 135 1501 14
Runtime cfg. 512 1024 256 16

• Number of bands used for prediction, P = 3. This
value was selected because it has been observed that
the compression efficiency does not improve for val-
ues of P > 3 [7].

• Weight resolution, W = 13.

• Neighbour-oriented local sums.

• Full prediction mode.

• Sample-adaptive encoder.

• Width of the output buffer of 32 bits.

Each one of these configurations has been implemented
for each one of the four architectures of the IP (BIP, BIP-
MEM, BIL and BSQ), which makes a total of 16 imple-
mentations.

The different configurations of the CCSDS-123 IP have
been implemented in a Xilinx Virtex5 XC5VFX123T as
well as a Microsemi RTG4 150. The Synplify software
has been used to perform the logic synthesis and to obtain
the implementation results for every configuration.

Synthesis results on the Virtex5 FPGA are shown in Table
3. For each configuration-architecture pair, the resources
utilization in terms of RAM blocks, DSP units and LUTs
is indicated, as well as the estimated clock frequency and
throughput. In terms of resources utilization, the main
difference between implementations is the memory us-
age. On the one hand, the memory requirements depend
on the dimensions of the target image. On the other hand,
the architecture determines if the memory is allocated in-
ternally (BIP and BIL architectures) or externally (BSQ
and BIP-MEM) to the FPGA. In terms of performance,
the BIP architecture is clearly the winner, achieving the
highest throughput. This is because the BIP ordering is
the one which takes the most advantage of parallelization
in the compression algorithm. It can be noticed that the
use of an external memory with the BIP processing or-
der (the BIP-MEM architecture) reduces the throughput
to approximately the half, in part due to a suboptimal use
of the communication bus which is addressed in the ex-
tension of the IP. The other two architectures have even
lower performance than the BIP-MEM, being the BIL ar-
chitecture around twice faster than BSQ.

Similarly, the implementation results on the RTG4 FPGA
are shown in Table 4. The resources utilization here
is expressed in terms of multiply-and-accumulate blocks
(MACC), micro SRAM blocks (RAM64), large SRAM
blocks (RAM1K) and LUTs. The same tendencies about

the resources utilization and performance are observed
here. The main difference with respect to the Virtex5 re-
sults is that the use of the external memory in the BIP-
MEM architecture has a lower impact in the performance
with respect to BIP. In addition, it can be observed than
the estimated clock frequency and throughput are lower
than in the Virtex5 implementations.

6. CONCLUSIONS

This work presents the SHyLoC-e IP cores, an extension
of the SHyLoC modules intended to implement some of
the CCSDS standard features which the original SHyLoC
lacks, as well as improving the throughput and compres-
sion efficiency. On the one hand, the unit-delay predictor
of the CCSDS-121 standard has been implemented, and
the entropy coder of the CCSDS-121 IP has been mod-
ified in order to process periodic reference samples. On
the other hand, the use of the AHB master interface in
the CCSDS-123 IP has been optimized by enabling burst
transactions, which improves the throughput of the BIP-
MEM architecture. In addition, a new architecture BIL-
MEM has been devised, which is based in BIL but uses
an external memory to store intermediate results. The im-
plementation of the custom weight initialization has been
analysed, and it will be developed in the future.

The next step is the mapping of the SHyLoC-e IP cores
in different FPGA technologies in order to obtain imple-
mentation and performance results, similar to those ob-
tained for the SHyLoC implementation.
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