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The early life of most decapod crustaceans takes place in the water column as larvae

before they settle in benthic habitats. The spatial and temporal variability in the settling

of larval stages offers valuable insights into the potential recruitment of natural

populations. To explore this, we studied megalopa assemblages at various segments

of coastline on El Hierro and Lanzarote islands, both within and outside the Marine

Protected Areas (MPAs) of each island. The study spanned four consecutive

oceanographic periods in the Canary Islands (NW Africa), employing light traps for

sample collection. The low number of recorded species suggested that light traps

exhibit selectivity, particularly for megalopae belonging to Portunidae and Grapsidae.

El Hierro, which experienced warmer sea surface temperatures, displayed higher

megalopa abundance values than Lanzarote and distinct larval assemblages was

observed between these two islands. Similarly, we identified significant variations in

abundance and species composition between stratified and mixing seasons. These

seasonal differences were influenced by the dominance of Achelous hastatus,

Percnon gibessi, and Cronius ruber during the stratified season. In Lanzarote, C.

ruber was not recorded during the mixing season, suggesting that the colder

conditions there may constrain its reproduction. Interestingly, we observed that

species traditionally harvested from the intertidal zone for human consumption

(Plagusia depressa) or used as bait for recreational fishing (Pachygrapsus spp. and P.

gibessi) exhibitedhighermegalopaabundanceswithin theMPAs. Incontrast,wenoted

lowermegalopadensitiesof thenon-indigenous speciesC. ruberwithin theprotected

areas. These results indicate a positive effect ofMPAs controlling indigenous and non-

indigenous crab populations. Moreover, the study provides novel data, showing that

light trapsaresuitable formonitoring the temporaloccurrence,abundance,andspatial

distribution of non-indigenous and commercially exploited species. This is key for

adopting an ecosystem-based approach to manage marine resources.

KEYWORDS

megalopa, light trap, phenology, recruitment, protection, Canary Islands
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1 Introduction

Marine brachyuran crabs have a complex life-cycle consisting of

two main phases: one that occurs in the benthic environment during

the juvenile-adult period and another in the pelagic realm as larvae

(Anger, 2006). Both phases are crucial and interdependent as the

larval success depends on the maternal investment, and the

maintenance of adult populations requires a sufficient level of larval

recruitment (Oliphant & Thatje, 2021). The larval phase consists of a

series of zoea stages, which are specialized for the planktonic life and

finish with a megalopa stage. This last stage emerges after a

metamorphosis to prepare the larvae in the transition plankton-

benthos. Although these larval stages have limited size and swimming

capabilities, they have developed different morphologies and

behaviors to ensure an optimum foraging, growth, and predator

avoidance to survive (Bashevkin et al., 2020).

The interdependence of pelagic and benthic phases makes the

study of planktonic larval stages of paramount importance to

understand changes at population-level (Hjort, 1914).

Consequently, many efforts have been made to increase our

knowledge of early life stages of decapod crustaceans. These

include the analyses of the biodiversity in sensitive ecosystems

(Brandão et al., 2016), the investigation of reproductive phenology

(González-Gordillo & Rodrıǵuez, 2003; Landeira & Lozano-

Soldevilla, 2018), the identification of transport pathways and

population connectivity (Pires et al., 2020; Clavel-Henry et al.,

2021), the early detection of non-indigenous species (Torres et al.,

2012; Marco-Herrero et al., 2018), the assessment of the effectiveness

of Marine Protected Areas (MPAs) (Whomersley et al., 2018), and

the examination of the impact of climate change (Lindley et al., 2010).

Considering their significance, a comprehensive understanding of the

early life stages of decapods is a prerequisite for adopting an

ecosystem-based approach to management. This is particularly

crucial under the EU Marine Strategy Framework Directive (MSFD

- Directive 2008/56/EC), where understanding of the early life stages

serves as a descriptor for determining good environmental status and

plays a role in establishing MPAs. Additionally, it is essential for

monitoring the temporal occurrence, abundance, and spatial

distribution of non-indigenous and commercially exploited species.

The Canary Islands archipelago is an interesting region to

investigate larval dynamics of marine invertebrates. The

archipelago is located in a subtropical transition area in the NE

Atlantic and shows clear signs of tropicalization due to ongoing

warming of the waters (González et al., 2017; González-Delgado

et al., 2018). In terms of faunistic composition, it presents

high diversity of marine species, and the decapod crustaceans

are well studied comprising more than 374 species reported

(González, 2018). To preserve and restore the biodiversity, as well

as to enhance the total biomass of commercial species and therefore,

support the local artisanal fisheries, the Canary Island government

has established MPAs in the islands of Lanzarote, La Palma and El

Hierro (Sanabria-Fernandez et al., 2019). The Canary Islands

extends westward from near the NW African coast to the open

ocean, acting as a barrier to the flow of both the Canary Current and

the Trade winds inducing an intense mesoscale activity southward

the islands (Barton et al., 1998). This mesoscale activity is a major
Frontiers in Marine Science 02
driver in the distribution of decapod larvae in the open waters.

Eddies and the lee zone formed downstream of the archipelago due

to the island-mass effect (Sangrà et al., 2007) serve as retention

zones for larvae of neritic species (Landeira et al., 2009, Landeira

et al., 2010, Landeira et al., 2013). Moreover, it has been observed

that upwelling filaments from the continental shelf transport larvae

from African populations towards the island coasts, serving as

potential pathways of connectivity (Landeira et al., 2012; Landeira

et al., 2017). The year-round upwelling system off NW Africa

generates high variability in the physical, chemical, and biological

conditions (Arıśtegui et al., 2009). Thus, islands closer to Africa are

more influenced by the upwelling system, showing colder and

nutrient-richer waters than the western side of the archipelago.

Moreover, the temporal variability of the oceanographic conditions

characterizes two distinct seasons in the region. The productive

season (Late Winter Bloom) takes place from January to May due to

surface waters cooling and vertical mixing of nutrients (Arıśtegui

et al., 2001). The rest of the year (from late spring to autumn) the

region is characterized by a strong stratification of the water column

giving rise to surface warming and oligotrophy (Couret et al.,

2023a). This seasonality determines temporal changes in plankton

biomass and composition (Schmoker et al., 2012; Couret et al.,

2023b), and reproductive strategies of decapod crustaceans

(Landeira & Lozano-Soldevilla, 2018).

Despite the advances in understanding the planktonic dynamics

of decapod crustacean larvae over the past decade, spatial and

temporal patterns of settlement larval stages near the coast remain

poorly known in the Canary Island region. Only observations on

colonizing artificial collectors in different habitats have provided

insights on the settlement preferences of post-larval stages of

decapod crustaceans through an annual cycle (Garcıá-Sanz et al.,

2014; Herrera et al., 2014). Filling the gap of knowledge is

fundamental for understanding recruitment processes and

population functioning. Ultimately, it can serve as a valuable tool

for policymakers to improve the capacities for the management of

marine resources and ecosystem services. This study aimed to

provide information on spatial and temporal variability of the

abundance, composition, and assemblages of settlement stage of

brachyuran crabs in the Canary Islands by sampling with light traps

during four consecutive environmental seasons. Moreover, we

investigated the possible effect of MPAs controlling larval

assemblages in relation to non-indigenous species and indigenous

species with commercial interest.
2 Material and methods

2.1 Decapod larvae collection

Settlement stages of decapod crustaceans (referred to megalopa)

were collected with the Ecocean CARE® light trap. The CARE light

trap consisted of a float with a watertight block containing a

rechargeable light, and a 2 m conical net (2 mm mesh size)

hanging 1.5 m below the sea surface (Lecaillon, 2004). The

sampling was designed to ensure segments of coastline with

contrasting environmental conditions in the Canary Islands
frontiersin.org
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(Central Atlantic, NW Africa, Figure 1A). Considering the

longitudinal gradient of temperature and productivity generated

by the NW African upwelling system, we targeted the islands of

Lanzarote (eastern side of the archipelago, with high upwelling

influence) and El Hierro (westernmost island, non-upwelling

influence) (Figure 2; Table 1). Thus, samples were collected

during the stratified-warm season (years 2019 and 2020) and

mixing-cold season (years 2020 and 2021) at 4 segments of

coastline in Lanzarote and 4 in El Hierro (Figures 1B, C; Table 1).

Two of those segments were placed inside each MPA of “Isla de La

Graciosa e Islotes del Norte’’ in Lanzarote, and of “La Restinga-Mar

de las Calmas” in El Hierro (Figures 1B, C; Table 1). Samples were

not obtained at Lanzarote’s MPA stations (traps A1-3, F1-3)

because of adverse weather conditions during the 2019 campaign.

Furthermore, one sample was lost during the 2021 campaign due to

a mesh breakage in the trap Q2. At each segment of coastline, three

light traps were moored nearshore, at 10-25 m depth and at 20-

300 m from the coastline. The traps were set maintaining a

minimum distance of 300 m apart from each other to prevent

light overlapping (Félix-Hackradt et al., 2013; Moreno-Borges et al.,

in press). Traps were left overnight; usually deployed and retrieved

1-2 hours before the sunset and after sunrise, respectively. Thus, for

each campaign (seasonal sampling on an island), the segments of

coastlines were sampled on consecutive days. For example, during

the stratified sampling season of 2019 on El Hierro island, the

Orchilla coastline segment was sampled on October 20th, Bonanza
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on the 21st, Tacorón on the 22nd, and Bahıá de Naos on the 23rd. On

board, the samples were recovered, labelled, and preserved in 95%

ethanol. In the laboratory, decapod larvae from each sample were

sorted and transferred to new preservation liquid (ethanol 95%) for

posterior taxonomic identifications.
2.2 Taxonomic identifications

Most of the larvae collected were in megalopa stage; however,

occasionally few zoea stage larvae occurred in the catches. As this

study is focused on settlement stages, only the megalopa was

analyzed. In the laboratory, each megalopa was identified using a

stereomicroscope and following the taxonomic key of Ingle (1992)

and Marco-Herrero (2015), as well as specific larval morphology

descriptions of decapod crustaceans recommended by González-

Gordillo et al. (2001). As the knowledge on the morphology of

megalopae is limited in subtropical areas such as the Canary Islands,

we removed the fifth pereiopod of those unidentified megalopae

with distinct phenotype for molecular identification.
2.3 Molecular identification

The identification of the megalopae, and one adult specimen of

Thalamita poissonii, was based on partial sequences of the 16S rRNA or
A B

C

FIGURE 1

Location of the sampling stations in the Canary Islands, NW Africa (A). Green lines delimit the boundaries of the Marine Protected Areas in Lanzarote
(B) and El Hierro (C) islands. Blue dots stand for section of coastline: A = Montaña Amarilla, F = Punta Fariones, M = Mala, P = Playa Quemada, B =
Bonanza, N = Bahıá de Naos, T = Tacorón, O = Orchilla.
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cytochrome oxidase unit I (COI) mitochondrial genes. Total genomic

DNA of the megalopa specimen, and the adult, was extracted from a

pereiopod following a modified Chelex 10% protocol by Estoup et al.

(1996). The 16S rRNA and COI genes were amplified with polymerase

chain reaction (PCR) using the following cycling conditions: 2 min at

95°C, 35 cycles of 20s at 95°C, 20s at 45-48°C, 45s (16S) or 47s (COI) at

72°C, and 5 min at 72°C. The primers 1472 (5’-AGA TAG AAA CCA

ACC TGG-3’) (Crandall & Fitzpatrick, 1996) and 16L2 (5’-TGC CTG

TTT ATC AAA AAC AT-3’) (Schubart et al., 2002) were used to
Frontiers in Marine Science 04
amplify a maximum of 545 bp of 16S rRNA, and for the COI gene the

primers COH6 (5´-TAD ACT TCD GGR TGD CCA AAR AAY CA-

3´) and COL6b (5’-ACAAATCATAAAGATATYGG-3’) (Schubart

& Huber, 2006) were used to amplify a maximum of 670 bp.

PCR products were sent to Stab Vida company to be purified

and then bidirectionally sequenced. Sequences were edited using

the software Chromas version 2.0. With the obtained final

DNA sequences were performed a BLAST (Basic Local Alignment

Search Tool) on NCBI (National Center for Biotechnology

Information) web facility on GenBank sequences database (http://

www.ncbi.nlm.nih.gov/genbank/) to get the best matches for

identification. The COI sequences were also searched in the official

Barcode of Life database (BOLD) (http://v3.boldsystems.org/

index.php/IDS_OpenIdEngine). Identifications were considered as

positive when retrieved sequences showed similarity values greater

than 99%, only differed in 1–3 or 1–7 mutations in 16S or COI,

respectively. This is a more conservative limit than other previous

works identifying decapod larvae considering > 98% (Brandão et al.,

2016). Larval sequences for both genes are deposited in Genbank, and

the megalopa and adult specimens DNA vouchers were deposited in

“Museos de Tenerife - Naturaleza y Arqueologıá” (MUNA).
2.4 Data analysis and statistics

Sea surface temperature derived from long-wave (11-12 μm)

thermal radiation satellite data were obtained from the Ocean

Color web site (https://oceancolor.gsfc.nasa.gov/) using long-wave

infrared algorithm and Aqua MODIS information (Kilpatrick

et al., 2015). Averaged data were computed for the study

period of each sampling season and plotted using the

geographic information system QGIS 3.18 (QGIS Development

Team, 2022).

Abundance of megalopa were standardized into catch per unit

of effort (CPUE), with ‘effort’ being both number of traps and time

fished (megalopae per trap x night) (Félix-Hackradt et al., 2013).

This standardization was important in those samplings with trap

failures. The Shannon–Wiener diversity index (H′), H0 =  

oS
i=1pi ln pi (where S is the number of taxa and pi is the

proportion of individuals in taxa i), was based on all identified taxa.
FIGURE 2

Sea surface temperature derived from satellite data. Maps
correspond to averaged values of sea surface temperature during
each sampling period: October-November 2019 (A), March-May
2020 (B), September-October 2020 (C), March-April 2021 (D).
TABLE 1 Sampling information for segment of coastline and study period.

Island Segment of coastline Trap code 2019
stratified

2020
mixing

2020
stratified

2021
mixing MPA

El Hierro Orchilla O1, O2, O3 20 Oct. 25 May 18 Oct. 11 Apr. No

Bonanza B1, B2, B3 21 Oct. 27 May 16 Oct. 14 Apr. No

Tacorón T1, T2, T3 22 Oct. 26 May 19 Oct. 12 Apr. Yes

Bahıá de Naos N1, N2, N3 23 Oct. 28 May 17 Oct. 13 Apr. Yes

Lanzarote Playa Quemada Q1, Q2, Q3 27 Nov. 12 Mar. 20 Sept. 12 Mar. No

Mala M1, M2, M3 28 Nov. 13 Mar. 19 Sept. 13 Mar. No

Punta Fariones F1, F2, F3 – 17 Mar. 22 Sept. 25 Mar. Yes

Montaña Amarilla A1, A2, A3 – 18 Mar. 23 Sept. 24 Mar. Yes
frontie
MPA stands for Marine Protected Area.
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Regarding statistical analysis, 3-way PERMANOVA (Anderson

et al., 2008), based on Bray-Curtis distances matrix calculated from

log (x+1) transformed CPUE data of each taxon. PERMANOVA

tested differences in the CPUE of megalopa assemblages between

islands (El Hierro vs Lanzarote), level of protection (inside vs outside

the MPA) and sampling season (mixing vs stratified). In this model

design, “island”, “season”, and “protection” were fixed factors, being

“protection” nested in “island”. P-values were calculated from 999

unrestricted permutations of the data. Multivariate analysis of

assemblage structure using multidimensional scaling (MDS) was

applied to visualize differences in the structure of the entire

community, and the individual contribution of each species to the

dissimilarity for each factor (island, season, and protection) was

calculated by the SIMPER routine (Clarke et al., 2014). All

statistical analyses were carried out using the software PRIMER

7.0.23 + PERMANOVA routine.
3 Results

3.1 Environmental conditions

Satellite imagery pictured the spatio-temporal variability of sea

surface temperature (SST) in the Canary Islands region (Figure 2).

Upwelling waters were present in the African shelf showing cold SST

(16.68-18.03 °C). The limited longitudinal extension of the upwelled

waters generated a westward increase of SST in the study region up to

4-5 °C during the stratified season and 3-3.5 °C during the mixing

season. Thus, El Hierro exhibited warmer SST values than Lanzarote

in both seasons. For example, during the stratified season Lanzarote

showed a mean SST of 22.48 ± 0.36 °C, whereas in El Hierro the mean

SST was 23.67 ± 0.41 °C (Figures 2A, C). During the mixing season,

typical lower SST values were observed in Lanzarote (18.96 ± 0.42 °C)

and El Hierro (19.72 ± 0.30 °C) (Figures 2B, D).
3.2 Molecular identification

We identified a subset of megalopae as A. hastatus by matching

their sequences with those deposited by Mantelatto et al. (2009);

Schubart & Reuschel (2009), and Marco-Herrero et al. (2021).
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Additionally, using sequences published by González et al. (2017),

we identified other portunid megalopae as C. ruber. Sequences

obtained from two adult specimens we deposited in the MUNA

allowed us to identify further megalopae as T. poissonii. Big-sized

grapsid megalopae aligned with sequences of Grapsus adscensionis

from Schubart (2011). Molecular analysis revealed significant

similarity between a group of megalopae and sequences of

Cryptosoma spp. from GenBank, as well as with sequences of

Dromia erythropus submitted by Mantelatto et al. (2018).

Considering the known distribution of these species and the

species documented in the Canary Islands (González, 2016), we

assigned our sequences to C. cristatum and D. marmorea. For

comprehensive details on the molecular identifications, please refer

to Supplementary Material 1.
3.3 Spatio-temporal patterns of
megalopa larvae

In the framework of this study, light traps collected a total of

65,639 crab megalopae belonging to 12 different taxa (Table 2). The

maximum abundance value of 8,832 megalopae per trap x night

occurred in El Hierro Island within the Marine Protected Area at

Tacorón (T3 trap) during the stratified season of 2019. In contrast,

significantly lower megalopa catches were observed in Lanzarote,

averaging 78.75 megalopae per trap x night, compared to El Hierro,

where the average was 1,300 megalopae per trap x night. In terms of

seasonality, megalopae were more abundant during the stratified

period (averaging 1,375.64 megalopae per trap x night) than during

the mixing period (averaging 160.64 megalopae per trap x night).

With respect to total abundance, more larvae were collected outside

the MPA (averaging 868.81 megalopae per trap x night) than inside

(averaging 590.59 megalopae per trap x night). Shannon diversity

index was low (ranging from 0.43 to 1.99) due to the limited

number of taxa found. Similar diversity values were observed

between seasons (mixing: 1.19; stratified: 1.27) and islands (El

Hierro: 1.22; Lanzarote: 1.17). However, there was a weak

difference in level of protection where the average value of

diversity was higher (1.35) inside the MPA than outside (1.13).

Permutational multivariate analysis of variance (PERMANOVA)

revealed significant differences in megalopae abundance and species
TABLE 2 Similarity percentage (SIMPER) results for seasonal, protection, and island assemblages, showing the most important species contributing to
each group (cut-off for lower contributions 70%).

Seasonality
stratified vs mixing

Protection
inside vs outside MPA

Island
el Hierro vs Lanzarote

Taxa Diss/SD Contrib% Diss/SD Contrib% Diss/SD Contrib%

Achelous hastatus 1.2 23.36 1.1 24.06 1.54 27.68

Percnon gibbesi 1.23 18.32 0.77 8.32 1.36 16.31

Pachygrapsus spp. 1.04 14.76 1.08 15.76 1.30 14.93

Cronius ruber 1.17 10.36 1.25 10.28 1.18 8.89

Plagusia depressa 0.77 7.54 1.07 15.85 0.78 7.43
The ratio between the contribution (Contrib%) of each species to the average dissimilarity within the group to the standard deviation (Diss/SD ratio) helps pointing out the key species for
each assemblage.
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composition for factors “seasonality” (PERMANOVA pseudo-

F=27.87; P=0.001), “islands” (PERMANOVA pseudo-F=51.00;

P=0.001) and “protection” (PERMANOVA pseudo-F=5.69;

P=0.001). The non-metric multidimensional scaling analysis

(nMDS), based on species composition and abundance, separated

the samples among both seasons and islands (Figures 3A, B).

However, when considering the factor “protection”, the nMDS did

not show a clear separation, despite the significant differences

detected in the PERMANOVA analysis (Figure 3C). Moreover,

overlaying the total megalopa abundance on the nMDS plots not

only aided in visualizing the higher values both during the stratified

season (Figure 3D) and in El Hierro island (Figure 3E), but also the

weak separation of sample collected inside and outside the MPAs

(Figure 3F). Similarly, overlaying the Shannon diversity indexes

confirmed the similar values across factors (Figures 3G–I).

Spatial and temporal distributions of five taxa accounted for 70%

of the differences observed in both “seasonality” and “level of

protection” (Table 2). The SIMPER analysis showed the high

contribution of A. hastatus, P. gibessi, C. ruber, Pachygrapsus spp.

and P. depressa to the average dissimilarity between seasons (57.93%)

and islands (61.06%) (Table 2). Temporal distribution of A. hastatus,

P. gibessi, C. ruber indicated a dominance during the stratified season

(Figures 4, 5). Interestingly, megalopae of A. hastatus, the most

abundant taxa, and P. gibessi occurred in both seasons, but

exhibited a clear seasonality in El Hierro (Figure 4) that was not so

evident in Lanzarote (Figure 5). In the case of C. ruber, the

phenological seasonality was observed in both islands. However, its

megalopae occurred year-round in El Hierro (Figure 4), whereas in

Lanzarote they were present only during the stratified period

(Figure 5). On the other hand, the higher abundance of

Pachygrapsus spp., P. depressa, and P. gibessi, and the lower

abundance of C. ruber inside the MPA (Figures 6, 7) contributed to
Frontiers in Marine Science 06
differentiate the community assemblages based on the protection

level, exhibiting an average dissimilarity of 56.56% (Table 2). Again,

this pattern of protection was less consistent in Lanzarote (Figure 7).
4 Discussion

4.1 Methodological considerations

Light traps offer a passive sampling method suitable for shallow

coasts and reefs where working with plankton nets can be

challenging. Their ability to collect undamaged and even live

specimens at a low cost has led to their widespread utilization in

the collection of larval stages of marine organisms (McLeod &

Costello, 2017). While light traps have predominantly been

employed for the collection of fish larvae (e.g. Félix-Hackradt et al.,

2013), their effectiveness in capturing invertebrate larvae, including

decapod crustaceans, has also been demonstrated (Reyns &

Sponaugle, 1999; Jeffs et al., 2003; Miller and Shanks, 2004; Herter

& Eckert, 2008; Sigurdsson et al., 2014; Moreno-Borges et al, in press).

Previous studies on decapod larvae have involved adaptations of the

common box traps, cylindrical traps, quatrefoil traps, and tube traps.

However, only the sampling framework analyzed in the present study

utilized a net trap like the CARE light trap (see Moreno-Borges et al.,

in press) for additional methodological information). Interestingly,

despite the utilization of different collecting methods, it appears that

all light traps exhibited high selectivity for individuals in settlement

stage. In terms of selectivity, the light traps also captured various

organisms, including fish larvae, hyperbenthic taxa (mysids,

amphipods, and isopods), as well as certain planktonic copepods

and ostracods. Nevertheless, it is noteworthy that the light traps

showed remarkable selectivity towards the megalopa stage of crabs,
A B C

D E F

G H I

FIGURE 3

Non-metric Multidimensional Scaling (nMDS) plots based on megalopae abundance and composition for each factor: season (A, D, G), islands (B, E, H) and
protection (C, F, I). Bubble size stand for total abundance, CPUE·10-2 (D, E, F) or Shannon diversity index, H’ (G, H, I).
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comprising a dominant proportion exceeding 95% of the total yield of

decapod larvae. Indeed, when Porter et al. (2008) conducted a

comparative analysis of the effectiveness of light traps and plankton

tows for sampling brachyuran crab larvae, they observed that traps

were more efficient at capturing fast-swimming megalopae, which

possessed the ability to evade the nets. This observation is

substantiated by the limited presence of megalopae in plankton

samples previously examined in the Canary Islands region

(Landeira et al., 2013, Landeira et al., 2017; Landeira & Lozano-

Soldevilla, 2018). Hence, the concurrent utilization of both plankton

nets and light traps appears to be a suitable approach for investigating

dispersive and settling processes of zoea and megalopa larval stages.

However, the ability of the CARE light trap to capture a broad

spectrum of species is limited. Given the presence of 132 crab species

within the marine fauna of the Canary Islands (González, 2016) and

the identification of approximately 40 species from plankton samples

(Landeira et al., 2013, Landeira et al., 2017; Landeira & Lozano-

Soldevilla, 2018), the identification of only 12 taxa from light traps

appear to be a relatively limited number.

On the contrary, the low number of species may also indicate

that light traps are very selective for certain species. More

specifically, we collected high numbers of portunid megalopae,

with A. hastatus as the most abundant species, as well as grapsoid

megalopae particularly represented by Pachygrapsus spp. Similarly,

using quatrefoil traps in Caribbean coral reefs, Reyns and Sponaugle

(1999) found in the catches a significant contribution of the families

Portunidae and Grapsidae along with Majidae. As light traps are
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designed to attract (McLeod & Costello, 2017), it is reasonable to

infer that the megalopa stage of these two families may exhibit a

phototaxis behavior that attracts them towards the trap amidst the

darkness. Portunidae is one of the crab families that encompasses a

higher number of non-indigenous species worldwide. Their large

body size, swimming ability and aggressive behavior, as well as its

high fecundity and broad environmental tolerance have facilitated

the expansion of several species far from their distribution ranges

such as Callinectes sapidus in the Mediterranean Sea and Atlantic

Ocean (González-Ortegón et al., 2022), Charybdis japonica in New

Zealand (Fowler and McLay, 2013) or C. ruber in the Canary

Islands (González et al., 2017). Hence, we suggest employing light

traps for the monitoring or early detection of non- indigenous

portunid species, that can enable a prompt response for the

management and mitigation of the potential invasion. Our study

demonstrates that for non- indigenous species lacking taxonomic

descriptions of larval morphology, such as C. ruber, the

combination of light trap sampling and molecular identification

can indeed serve as a potent tool.
4.2 Spatial and seasonal patterns

The study was designed to test differences in species composition

between distant islands with contrasting oceanographic conditions.

The oceanographic gradient from east to west across the archipelago

plays a significant role in shaping the distribution of biota (Brito et al.,
FIGURE 5

Temporal distribution of megalopa abundance (CPUE·10-2) for key
species in Lanzarote. Asterisks stand for samples collected inside the
Marine Protected area (MPA). Red and blue areas stand for mixing
and stratified periods, respectively.
FIGURE 4

Temporal distribution of megalopae abundance (CPUE·10-2) for key
species in El Hierro. Asterisks stand for samples collected inside the
Marine Protected area (MPA). Red and blue areas stand for mixing
and stratified periods, respectively.
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2001). In the western islands, characterized by warmer waters, there is

a greater prevalence of tropical species. Conversely, in the eastern

islands with temperate waters, species exhibiting temperate affinities

are more commonly found (Tuya et al., 2004; Sangil et al., 2012a). As

expected, we observed warmer temperatures in El Hierro than in

Lanzarote which was clearly influenced by colder waters from the

NW African upwelling (Barton et al., 1998). The relatively low

number of species observed in the samples, resulted from the high

light trap’s selectivity for capturing megalopae of certain species,

hindered the ability to characterize the expected east-west diversity

gradient. However, differences in megalopa abundanceA. hastatus, C.

ruber, Pachygrapsus spp., P. gibbesi, and P. depressa allowed the

separation of two distinct assemblages for Lanzarote and El Hierro.

The seasonality of decapod larvae in the plankton is primarily

governed by the reproductive phenology of adult populations. In
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the present study, we found significant differences in megalopae

abundance and species composition between stratified and mixing

seasons. Data derived from plankton nets in the Canary Islands has

indicated that most decapod species exhibit continuous

reproduction throughout the year, with peaks in abundance

coinciding with periods of water stratification and mixing

(Landeira & Lozano-Soldevilla, 2018). Consistent with our

findings, colonization experiments conducted in various habitats

including, seagrass meadows, sandy patches, and macroalgal-

dominated beds on Gran Canaria Island (located centrally in the

archipelago) have likewise noted a seasonality in the settlement of

postlarval stages of decapods linked to warm and cold periods of the

year (Garcıá-Sanz et al., 2014; Herrera et al., 2014). In the Atlantic

Ocean, this seasonality becomes progressively more pronounced as

one moves northward (González-Gordillo & Rodrıǵuez, 2003; Pan
FIGURE 6

Mean abundance values, log (CPU +1), of each taxon within and outside the Marine Protected Area (MPA) for each sampling period in El Hierro.
Orange values are obtained subtracting the abundance within the MPA from the abundance outside the MPA.
FIGURE 7

Mean abundance values, log (CPU +1), of each taxon within and outside the Marine Protected Area (MPA) for each sampling period in Lanzarote.
Orange values are obtained subtracting the abundance within the MPA from the abundance outside the MPA.
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et al., 2011; Stübner et al., 2016). In future investigations, it would be

interesting to conduct weekly light trap samplings throughout an

entire year to better understand the annual cycle of settlement

larval stages.

In the present study, seasonal differences were driven by the

dominance of A. hastatus, P. gibessi, and C. ruber during the stratified

season. Interestingly, the tropical-subtropical species like P. gibessi

and C. ruber were particularly abundant in El Hierro, where higher

temperature occurs. Monthly samplings were conducted to assess the

status and population structure of these species on Gran Canaria

Island. Regarding P. gibessi, Guerra-Marrero et al. (2023) identified

two primary reproductive seasons (March-April and August-

September) based on the presence of ovigerous females. Similarly,

for C. ruber, females with mature ovaries were observed consistently

throughout the year, with a higher abundance noted from July to

November, coinciding with the peak of ovigerous females (Triay-

Portella et al.)1. These reproduction strategies are consistent with our

observations of megalopa dynamics. Nevertheless, it is important to

delve into the differing temporal distribution of C. ruber megalopae

for each island. In El Hierro, we observed megalopae in both seasons,

with a higher abundance during the stratified season, aligning with

the reproduction pattern detailed by Triay-Portella et al1. However, in

Lanzarote, no megalopae were encountered during the samplings

conducted in the mixing season. The differences observed between

the islands may suggest that during the colder season (mixing) when

reproductive activity is reduced, the colder conditions of Lanzarote

(more than 1°C colder than El Hierro) may not facilitate a proper

reproduction for this subtropical species. Given that C. ruber is

considered a non- indigenous species in the study region, its

limited reproductive performance during certain times of the year

could potentially reduce its expansion in the eastern islands, such as

Lanzarote, which are more influenced by the cold waters originating

from the NWAfrica upwelling. It is well-established that temperature

plays a pivotal role in driving spatial and temporal variations in the

reproductive biology of crab species, as demonstrated in the case of

Portunus armatus on the West coast of Australia (Johnston & Yeoh,

2021). However, as there are no documented instances of marine

invertebrates displaying spatial phenological variations within the

Canary Islands, it is important to approach this pattern with caution

until further data become available.
4.3 Effect of marine protected area

The present study was also designed to test differences in

megalopa abundance inside and outside the MPAs of “La

Restinga-Mar de las Calmas” in El Hierro, and of “Isla de La

Graciosa e Islotes del Norte’’ in Lanzarote. Interestingly, we found

that species traditionally harvested from the intertidal zone for

human consumption (P. depressa) or used as bait for recreational

fishing (Pachygrapsus spp. and P. gibessi) (González et al., 2016)
1 Triay-Portella, R., Martı́ n, J. A., and Pajuelo, J. G. Reproductive features of

the invasive crab Cronius ruber (Brachyura, Portunidae) on the Canary Islands

(central eastern Atlantic). Spain. Reg. Stud. Mar. Sci. (Submitted to).
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presented higher megalopa abundances inside the MPAs. Artisanal

fisheries in the Canary Islands have benefited from more stable

yields since the MPAs were established, compared to the

overexploitation of most of demersal target fish species (Sanabria-

Fernandez et al., 2019). Protection areas from fishing pressure not

only has increased the fish biomass within the MPAs but also the

densities of harvested intertidal invertebrates, such as limpets

(López et al., 2012). Unfortunately, there are no data available to

understand the protection effect on crustaceans in the Canary

Islands, but we expect similar positive influence since it has been

proved to be effective to increase the catches of portunid crabs

inside MPAs of Thailand (Jones et al., 2017).

On the other hand, we found lower megalopa densities of the non-

indigenous species C. ruber in the protected areas. Inside the MPAs

variousmechanisms can interplay to control the population densities of

non-indigenous species within their boundaries. One such mechanism

is the potential barrier created by the high indigenous species richness

found within MPAs, which may deter the introduction and

establishment of alien species (Levine & D’Antonio, 1999). Faunistic

and botanic studies have described how the seascape recovers inside the

MPAs of the Canary Islands, not only increasing the number of species

but also producing a more balanced and better-structured ecosystem

(Sangil et al., 2012b; Sanabria-Fernandez et al., 2019). A better-

structured ecosystem, which allows more competitive native species,

could be preventing the development of large populations of C. ruber

within the MPA. Additionally, the restoration of top predator

populations within MPAs can play a pivotal role in regulating the

populations of certain non-indigenous species within these protected

areas (Mumby et al., 2011). In this sense, there is already evidence of

the top-down role offish predators controlling the populations of a key

herbivore, the sea urchinDiadema africanum (Clemente et al., 2009) in

the Canary Islands. These authors observed that the presence of higher

fish predator densities within MPAs led to an increase in post-

settlement and post-recruitment mortality events among D.

africanum. Therefore, it is plausible that top-down ecological

processes, involving fish predation on megalopae, juveniles, and even

adult crabs, are influencing the populations of the non-indigenous crab

C. ruber. It is known that lower megalopa densities may indicate both

small adult populations and lower larval survival rate (McLeod &

Costello, 2017). Thus, the increased density offish predators within the

MPAs may explain the observed lower megalopa densities there.

Consequently, our results might indicate that the invasiveness

capability C. ruber, is reduced within the MPA. This finding has

global relevance due to the scarcity of quantitative data to estimate the

effect of protection on the densities of non-indigenous species

(Giakoumi & Pey, 2017). In the future, it would be interesting to

concurrently assess the size of adult populations alongside larval

densities using light traps within and outside the MPAs to

empirically test this hypothesis.
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Daniel Álvarez Canali. We thank the Spanish Ministries of

“Agriculture, Fisheries and Food” and “Ecological Transition and

Demographic Challenge”, and “Reservas Marinas de España” for

processing and granting the necessary permissions for the field

work. As well as, the staff directly involved in the management and

vigilance of Marine Protected Areas (Zona Especial Canaria – ZEC,

and Zonas de Especial Protección para las Aves – ZEPA). During

the development of this study our dear friend and colleague

Christoph D. Schubart tragically passed away, for this reason we

would like to dedicate this work in fond memory of him.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fmars.2024.1371782/

full#supplementary-material
References
Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). PERMANOVA+ for
PRIMER: Guide to Software and Statistical Methods (Plymouth, UK: PRIMER-E).

Anger, K. (2006). Contributions of larval biology to crustacean research: a review.
Invertebr. Reprod. Dev. 49, 175–205. doi: 10.1080/07924259.2006.9652207
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Sangil, C., Clemente, S., Martıń-Garcıá, L., and Hernández, J. C. (2012b). No-take
areas as an effective tool to restore urchin barrens on subtropical rocky reefs. Estuar.
Coast. Shelf Sci. 112, 207–215. doi: 10.1016/j.ecss.2012.07.025

Sangil, C., Sansón, M., Afonso-Carrillo, J., Herrera, R., Rodrıǵuez, A., Martıń-Garcıá,
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