

Blood 142 (2023) 200-204

The 65th ASH Annual Meeting Abstracts

ORAL ABSTRACTS

642.CHRONIC LYMPHOCYTIC LEUKEMIA: CLINICAL AND EPIDEMIOLOGICAL

Laboratories Can Reliably Detect Clinically Relevant Variants in the TP53 Gene below 10 % Allelic Frequency: A Multicenter Study of ERIC, the European Research Initiative on CLL

Sarka Pavlova, PhDMSc^{1,2}, Jitka Malcikova^{2,1}, Lenka Radova¹, Silvia Bonfiglio^{3,4}, Jack B. Cowland, PhDMS⁵, Christian Brieghel, MDPhD⁶, Mette Klarskov Andersen, MDPhD⁵, Maria Karypidou⁷, Bella V Biderman, PhD⁸, Michael Doubek^{2,9,1}, Gregory Lazarian, PharmD^{10,11}, Inmaculada Rapado, PhD¹², Matthijs Vynck¹³, Naomi Porret, PhD¹⁴, Martin Andres 14, Dina Rosenberg 15, Dvora Sahar 15, Carolina Martinez-Laperche 16, Ismael Buño Borde 16,17,18, Andrew Hindley 19, Julio Bravo Sánchez 20, José García-Marco 20, Alicia Serrano, PhD 21, Blanca Ferrer Lores, MD 21, Concepción Fernández-Rodriguez, PhD²², Beatriz Bellosillo²³, Stephan Stilgenbauer, MD²⁴, Eugen Tausch, MD²⁴, Hero Nikdin²⁵, Fiona Quinn²⁶, Emer Atkinson²⁶, Lisette Van De Corput²⁷, Cafer Yildiz²⁷, Cristina Bilbao, PhD²⁸, Yanira Florido²⁸, Christian Thiede²⁹, Caroline Schuster²⁹, Anastazja Stoj³⁰, Sylwia Czekalska³⁰, Anastasia Chatzidimitriou³¹, Stamatia Laidou⁷, Audrey Bidet, MD³², Charles Dussiau³², Friedel Nollet¹³, Giovanna Piras³³, Tereza Borosova¹, Terezia Kurucova ^{1,34}, Maria Monne ³³, Svetlana Smirnova ⁸, Evgeny Nikitin, MD ³⁵, Ivan Sloma, PhDPharmD ^{36,37}, Marie-Helene Delfau, MDPhD ^{38,37}, Laetitia Largeaud ³⁹, Loic Ysebaert ³⁹, Peter J. M. Valk, PhD ⁴⁰, Amy Christian ⁴¹, Renata Walewska, MD PhD ⁴¹, Marta Sebastião, MD ⁴², Maria Gomes da Silva, MD ⁴², Piero Galieni, MD ⁴³, Mario Angelini ⁴³, Davide Rossi⁴⁴, Valeria Spina⁴⁵, Sónia Matos⁴⁶, Vânia Martins⁴⁶, David Donaldson¹⁹, Tomasz Stoklosa, MDPhD⁴⁷, Monika Pepek⁴⁷, Panagiotis Baliakas, MD⁴⁸, Rafa Andreu⁴⁹, Irene Luna⁴⁹, Tiina Kahre^{50,51}, Ülle Murumets⁵⁰, Sophie Laird⁵², Daniel Ward⁵², Miguel Alcoceba, PhD⁵³, Ana Balanzategui⁵³, Lydia Scarfo, MD^{3,54}, Francesca Gandini⁵⁵, Ettore Zapparoli⁴, Adoracion Blanco 56,57,58, Pau Abrisqueta Costa, MD PhD 59,57,58, Ana E. Rodriguez, PhD 60, Maria Rocio Benito Sanchez, PhD⁶¹, Frédéric Davi⁶², Clothilde Bravetti⁶², Paula Gameiro⁴², Joaquin Martinez-Lopez, MD PhD⁶³, Barbara Tazon, PhD^{64,58,57}, Fanny Baran-Marszak ^{11,10}, Zadie Davies ⁴¹, Mark Caterwood ¹⁹, Andrey B Sudarikov, PhDDSc⁸, Richard Rosenquist, MD²⁵, Carsten Utoft Niemann, MD PhD⁶⁵, Kostas Stamatopoulos⁶⁶, Paolo Ghia^{67,3}, Sarka Pospisilova, Prof PhD ^{9,2,1}

- ¹ Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- ²Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ³B-Cell Neoplasia Unit, Division of Experimental Oncology, Università Vita-Salute San Raffaele, Milan, Italy
- ⁴Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
- ⁵Department of Clinical Genetics, Centre of Diagnostic Investigations, Copenhagen University Hospital, Copenhagen,
- ⁶Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- ⁷ Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- ⁸ National Medical Research Center for Hematology, Moscow, Russian Federation
- ⁹Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ¹⁰GHUPSSD Hôpital Avicenne AP-HP, Bobigny, France
- ¹¹ INSERM U978 Université Sorbonne Paris Nord, Bobigny, France
- ¹²Department of Hematology, Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid, Madrid, Spain
- ¹³Department of Laboratory Medicine, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
- ¹⁴Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ¹⁵Hematology Laboratory, Rambam Medical Center, Haifa, Israel
- ¹⁶Department of Hematology, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (liSGM), Madrid, Spain

ORAL ABSTRACTS Session 642

¹⁷Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain

- ¹⁸Department of Cell Biology, Medical School, Complutense University of Madrid, Madrid, Spain
- ¹⁹ Haematology Department, Belfast City Hospital, Belfast, United Kingdom
- ²⁰ Molecular Cytogenetics Unit, Hematology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
- ²¹ Department of Hematology, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
- ²² Laboratori de Biologia Molecular, Servei de Patologia, Hospital del Mar, IMIM, Barcelona, Spain
- ²³ Pathology Department, Hospital del Mar, Barcelona, Spain
- ²⁴Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
- ²⁵ Karolinska Institutet, Stockholm, Sweden
- ²⁶Cancer Molecular Diagnostics Dept., Centre for Laboratory Medicine and Molecular Pathology, St. James Hospital, Dublin, Ireland
- ²⁷ Central Diagnostic Laboratory (CDL), Unit HLA, University Medical Center Utrecht, Utrecht, Netherlands
- ²⁸ Hospital Universitario de Gran Canaria Dr. Negrín, Servicio de Hematología. Departamento de Morfología de La Universidad de Las Palmas de Gran Canaria, Las Palmas De Gran Canaria, Spain
- ²⁹ AgenDix GmbH, Dresden, Germany
- ³⁰University Hospital in Krakow, Krakow, Poland
- ³¹ Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- ³²Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
- ³³Laboratorio specialistico UOC ematologia, Ospedale San Francesco, ASL Nuoro, Nuoro, Italy
- ³⁴Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- ³⁵Moscow City Clinical Hospital named after S.P. Botkin, Moscow, Russian Federation
- ³⁶Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- ³⁷ Departement d'Hematologie et Immunologie, AP-HP, Hopital Henri Mondor, Creteil, France
- ³⁸ Hemato-biology, Henri Mondor University Hospital, Créteil, France
- ³⁹ Laboratoire d'Hématologie, Institut Universitaire de Cancérologie de Toulouse, Toulouse, France
- ⁴⁰Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- ⁴¹ Molecular Pathology, University Hospitals Dorset, Bournemouth, United Kingdom
- ⁴²Laboratório Hemato-Oncologia, Instituto Português de Oncologia de Lisboa, Lisbon, Portugal
- ⁴³UOC Hematology, Mazzoni Hospital-Ascoli Piceno, Ascoli Piceno, Italy
- ⁴⁴Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- ⁴⁵Laboratorio di Diagnostica Molecolare, Servizio di Genetica Medica EOLAB, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- ⁴⁶Genomed Diagnósticos de Medicina Molecular, iMM Instituto de Medicina Molecular, Faculdade de Medicina, Lisbon, Portugal
- ⁴⁷Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
- ⁴⁸Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- ⁴⁹ Hematology Department, Hospital Universitari i Politècnic la Fe, Valencia, Spain
- ⁵⁰Department of Laboratory Genetics, Genetics and Personalized Clinic, Tartu University Hospital, Tartu, Estonia
- ⁵¹Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
- ⁵²Wessex Genomics Laboratory Service, Salisbury NHS Foundation Trust, Salisbury, United Kingdom
- ⁵³Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Center of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
- ⁵⁴ Strategic Research Program on CLL, IRCCS Ospedale San Raffaele, Milan, Italy
- ⁵⁵B-Cell Neoplasia Unit, Division of Experimental Oncology, Università Vita-Salute San Raffaele, Milan, Italy
- ⁵⁶Department of Hematology, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
- ⁵⁷ Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- ⁵⁸Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- ⁵⁹ Department of Hematology, Hospital Vall d'Hebron, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- ⁶⁰ Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Centre (IBMCC, USAL-CSIC) and University of Salamanca, Salamanca, Spain
- ⁶¹University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Department of Hematology Hospital Universitario de Salamanca, Salamanca, Spain
- ⁶²Department of Biological Hematology, Hopital Pitié-Salpêtrière & Sorbonne Université, Paris, France
- ⁶³Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Complutense University, CNIO, CIBERONC, Madrid, Spain
- ⁶⁴Department of Hematology, Vall d'Hebron University Hospital, Barcelona, Spain
- ⁶⁵Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- ⁶⁶Institute of Applied Biosciences, Centre for Research and Technology Hellas, Asvestohori, Greece

ORAL ABSTRACTS Session 642

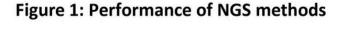
⁶⁷ Strategic Research Program on CLL, IRCCS Ospedale San Raffaele, Milan, Italy

The presence of mutations in the TP53 gene is a powerful prognostic and predictive marker in chronic lymphocytic leukemia (CLL). Widespread use of NGS has enabled the detection of variants \leq 10 % variant allelic frequency (low-VAF variants); however, the overall reliability and reproducibility of NGS techniques to identify such variants have been questioned repeatedly. Individual studies using sensitive, custom NGS-based assays have mostly demonstrated the shortened overall survival (OS) and event-free survival in patients with low-VAF TP53 variants treated with chemoimmunotherapy (CIT) regimens with median survival ranging between that of TP53 variants >10 % VAF (high-VAF) and wild-type TP53 (wt- TP53).

Within an ERIC multicenter study, we tested the ability of NGS methods used in diagnostic and research laboratories to detect low-VAF *TP53* variants and analyzed the impact of the identified low-VAF variants on patients' survival.

In the first phase of the study (Fig. 1), seven sample mixes containing 23 pathogenic *TP53* variants (range, 0.7-6.3% VAF) were analyzed in 41 ERIC centers using 44 NGS-based assays. All variants were validated with droplet digital PCR (ddPCR); obtained values were used as a reference for the assessment of each NGS method's performance. NGS results were categorized as true positive (TP), false positive (FP; not present in original samples and reported by one center each), and not reported/false negative (FN). In total, laboratories reported 77.8% of all variants (784 out of 1008), reaching a sensitivity [TP/ (TP + FN)] of 85.6%, 94.5%, and 94.8% at 1%, 2%, and 3% VAF cut-off, respectively. While the VAFs of individual variants reported by laboratories varied, median values strongly correlated with ddPCR (R 2 =0.9841). Thirty-eight FP variants were reported by 10 laboratories, mainly <2% VAF (23 FP of VAF \leq 1%, 14 FP of VAF >1 and \leq 2%, 1 FP > 2%). Individual feedback was provided to improve the methods' performance and to help set an appropriate detection limit.

In the second phase of the study, 12 centers provided results of *TP53* NGS-based analysis of 1092 CLL clinical samples taken before first-line treatment (median time from sample to treatment 40 days). The impact of low-VAF variants (1-10% VAF; N=59) on time to second treatment (TTST; event: second treatment, death) and OS calculated from 1 st treatment initiation was compared to that of high-VAF variants (N=123) and wt- *TP53* using logrank test with Benjamini-Hochberg correction of p-values. TTST (Fig. 2) of the low-VAF group was significantly shorter compared to wt- *TP53* (P=0.013; median TTST wt- *TP53* 3.6 y, low-VAF 2.8 y, high-VAF 1 y) in patients not treated with targeted agents (N=999). If del(17p) status was considered, median TTST was the shortest in patients with a combination of del(17p) and either high (0.8 y) or low-VAF (1 y) *TP53* mutations, followed by high-VAF (1.5 y) and low-VAF (2.8 y) mutations in the absence of del(17p) (P<0.001, P=0.032, P<0.001, P=0.026, respectively, compared to wt- *TP53*/no del(17p) (3.6 y)). In patients receiving frontline targeted agents (N=73; enriched for *TP53* mutations), the results suggested shorter TTST for the high-VAF group only, but the difference was not significant (Fig. 2; P=0.06; median wt- *TP53* n.r., low-VAF 4.8 y and high-VAF 3.6 y).


OS of patients with low-VAF variants was significantly shorter compared to the wt- TP53 group in patients never treated with targeted treatment (P=0.033; median OS wt- TP53 6.6 y, low-VAF 3.2 y and high-VAF 2.1 y). Targeted therapy in 2 nd or later therapy lines diminished the difference and only OS of the high-VAF group differed significantly from wt- TP53 (P<0.001; median OS wt- TP53 10.6 y, low-VAF 8.6 y, and high-VAF 5.1 y).

Altogether, we show that the cumulative reliability (no FN and FP) of methods tested increased continuously with VAF (Fig. 1), reaching 30% and 64% for variants \geq 1.1% and 2% VAF, respectively. The reliability was affected by the type of NGS method and bioinformatic pipeline settings. We conclude that no strict threshold can be suggested from a technical standpoint. However, our results emphasize a strong need to validate/verify the NGS method, describe its limits, and report only reliable results. From a clinical standpoint, while low-VAF variants impact clinical outcomes for patients receiving CIT in the frontline setting, their clinical impact for patients treated with novel therapies remains to be evaluated in larger cohorts.

Disclosures Brieghel: Octapharma: Other: Travel grant. Andres: AstraZeneca, Novartis, Roche, Janssen-Ciliag: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support. Bellosillo: ThermoFisher: Research Funding, Speakers Bureau. Stilgenbauer: Amgen: Consultancy, Honoraria, Other: travel support, Research Funding; Abbvie: Consultancy, Honoraria, Other: travel support, Research Funding; Janssen: Consultancy, Honoraria, Other: travel support, Research Funding; Roche: Consultancy, Honoraria, Other: travel support, Research Funding; GSK: Consultancy, Honoraria, Other: travel support, Research Funding; Gilead: Consultancy, Honoraria, Other: travel support, Research Funding; Celgene: Consultancy, Honoraria, Other: travel support, Research Funding; AstraZeneca: Consultancy, Honoraria, Other: travel support, Research Funding; Novartis: Consultancy, Honoraria, Other: travel support, Research Funding; Sunesis: Consultancy, Honoraria, Other: travel support, Research Funding. Tausch: Janssen-Cilag: Consultancy, Honoraria, Other: travel support, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Other: travel support, Speakers Bureau; BeiGene: Consultancy, Other: Travel support, Speakers Bureau; Roche: Consultancy, Honoraria, Research Funding, Speakers Bureau; Abbvie: Consultancy, Honoraria, Other: Travel Support, Research Funding, Speakers Bureau. Czekalska: Astra Zeneca: Honoraria. Chatzidimitriou: Novartis: Other; Jansenn: Other. Walewska: AbbVie, AstraZeneca, Janssen, Beigene: Other: meeting attendancies. da Silva: AstraZeneca: Research Funding; Janssen Cilag: Consultancy, Research Funding; Abbvie: Consultancy, Research Funding; Roche: Consultancy, Research Funding; Takeda: Consultancy, Research Funding. Rossi: AbbVie, AstraZeneca, Gilead, BeiGene, BMS, Janssen, Lilly, Kyte: Honoraria, Research Funding. Baliakas: Gilead: Honoraria. Kahre: AstraZeneca Estonia: Honoraria. Alcoceba: Janssen, AstraZeneca: Honoraria, Other: Travel expenses. Scarfo: Octapharma: Speakers Bureau; Lilly: Consultancy; Janssen: Consultancy; BeiGene: Consultancy; AstraZeneca: Consultancy; AbbVie: Consultancy. Costa: Roche: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Astrazeneca: Consultancy, Honoraria; Genmab: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Davi: Janssen, AstraZeneca:

ORAL ABSTRACTS Session 642

Honoraria. Tazon: Bristol Myer Squibb: Honoraria. Niemann: Carsten Niemann has received research funding and/or consultancy fees from AstraZeneca, Janssen, AbbVie, Beigene, Genmab, CSL Behring, Octapharma, Takeda, and Novo Nordisk Foundation.: Consultancy, Research Funding.

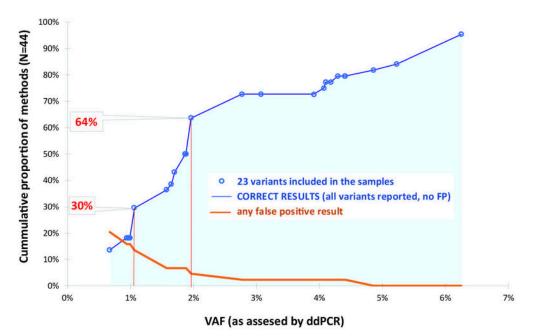


Figure 2: Time to second therapy

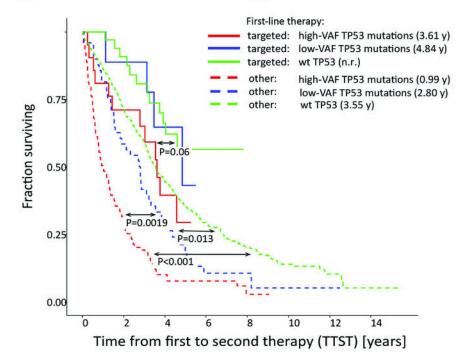


Figure 1

https://doi.org/10.1182/blood-2023-173235