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A B S T R A C T   

This paper explores the link between air transport safety and profitability. Traditionally, the empirical literature 
has used Poisson regression models to estimate the expected number of accidents given the profitability of the 
airline. However, there are two major deficiencies in this analysis related to the statistical properties of the data. 
First, the equi-dispersion assumed in Poisson models hardly holds in the airline data. Second, accidents are rare 
cases, so the data has an excess of zeros. In this paper, we propose the use of a zero-inflated negative binomial 
model to deal with these shortcomings. Our results show several interesting facts. On the one hand, they show 
that airlines with higher levels of profitability are less likely to have an accident. On the other hand, when an 
accident occurs, there is a higher expected number of accidents in airlines with higher profitability. Finally, the 
severity of an accident has an inverse relationship with profitability.   

1. Introduction 

Safety is a major concern in all industries, but it is especially relevant 
in air transport. The repercussions of an aeroplane accident on markets 
have made safety a key goal for the industry, which constantly seeks to 
reduce the number of incidents and accidents (Liao, 2015).1 

When homogenizing the numbers, air transport is one of the safest 
travel modes (see, for instance, Evans, 2003). Moreover, most of the 
accidents in air transport are related to general aviation where the ac-
cident and fatality rates are around 50 and 53 times higher, respectively, 
than in commercial aviation (Sobieralski, 2013). However, even when, 
statistically, commercial aviation is a safe transport mode, the signifi-
cant impact of a single fatal accident in terms of fatalities generates 
insecurities in the population. 

Since the deregulation of the air transport markets in 1978, one of 
the main concerns of regulators and researchers has been a possible 
trade-off between profitability and safety because its relationship is 

particularly relevant in sectors that employ high technology. Are the 
managers of struggling airlines willing to take more risks when their 
organization is in the red? This question has previously been addressed 
in the literature, without consensus. See, for instance, Rose (1990), who 
found that airline profitability is directly correlated with airline safety, 
and Madsen (2013), who demonstrated a positive or negative relation-
ship depending on the firms’ profitability targets. 

In the commercial air transport market, the information regarding 
safety control belongs to airlines companies; this situation generates an 
asymmetric information relationship between airlines and regulators. 
The latter needs to establish measures in order to reduce this asymmetry. 
However, while regulation can establish minimum requirements in 
terms of safety, company stakeholders have their own incentives to 
ensure that they are perceived as safe. The issue of air transport safety 
generates implications for management systems, companies and finan-
cial markets. 

First, regarding safety management systems, the negative impacts of 
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the operation of an aircraft that affects, or could affect, the safety of this operation. 
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an accident have meant that part of technological development has been 
focused on improving safety.2 In fact, technological progress is one of 
the key variables that explain the reduction in the number of accidents 
and incidents (Oster Jr et al., 2013). Moreover, the joint action of gov-
ernments and the airline industry through the investigation of an acci-
dent and regulation systems has also improved airline safety operations 
(Stolzer et al., 2016). 

Second, regarding air transport demand, an increase in the air 
transport fatality rate leads to a fall in overall demand for flights (Liu 
and Zeng, 2007). This loss in the overall number of passengers is also 
accompanied by a loss of trust from consumers. Safety perception is an 
important variable for airlines in order to maintain consumer trust, 
because an accident can significantly affect a company’s future. For the 
airline industry, their safety reputation affects consumers’ choice of 
airline (Siomkos, 2000), and even of particular flights (Molin et al., 
2017). 

And third, the aftermath of an accident not only affects airlines in 
terms of passengers’ choice, but also the financial markets. Noronha and 
Singal (2004) showed that financially strong airlines measured by bond 
ratings are more likely to have an accident. Nevertheless, these authors 
also stated that bond ratings are sticky and not available for all the 
companies. Additionally, when an accident happens, airline stock mar-
kets experience greater volatility (Akyildirim et al., 2020). Specifically, 
this volatility is positively correlated with the degree of fatality (Ho 
et al., 2013). In fact, the impact of airline accidents on stock markets 
goes beyond airlines, by also affecting manufacturers (Akyildirim et al., 
2021), and can even spread to the global economy (Kaplanski and Levy, 
2010). 

The main objective of this paper is to focus on the third implication of 
safety on financial markets, and to address the following question: ‘How 
to improve safety management and regulation if there is a link between 
safety and profitability?’. The use of profits as economic performance 
has been usually used in the literature as a proxy of the short-term 
financial distress (see for instance: Golbe, 1986; Rose, 1990 or Fardnia 
et al., 2020). Operating profits plays a relevant role in influencing a 
company’s stock valuation. It serves as a reliable indicator of the com-
pany’s prospective earnings and, consequently, its stock price. Share-
holders typically exhibit a preference for companies boasting robust 
operating profits, leading to a rise in stock price. 

To respond to the aforementioned question, we analyze if companies 
with higher profits are safer not only for accidents, but also for fatalities 
and incidents. Furthermore, we consider the statistical side of accident 
variable, which is a count outcome and has a large proportion of zeros. 
These characteristics allow us to define a model that assumes a mixture 
of two classes of outcomes: those generated by the count data model (e. 
g., Poisson or Negative Binomial, among others), and another group, 
whose outcome is zero or not, which is modelled by a logistic regression 
model. To date, econometric methods used to investigate safety and 
profit relationship neglect heterogeneity and the excess of zeros, and, 
moreover, are based on equi-dispersed approaches (variance equal to 
the mean). Count data often display over-dispersion (variance greater 
than the mean) and inappropriate imposition of Poisson regressions may 
lead to invalid inference.3 

Therefore, this paper contributes to the airline accidents literature by 
employing a latent class model that accounts for over-dispersion and 
excess-zeros in a count data panel framework. The model we propose is 
the zero-inflated Negative Binomial model (ZINB), which has important 

applications for this type of data. The data distribution for this model 
combines the logit distribution and the Negative Binomial distribution 
in a mixed process. This allows us to investigate, firstly, the likelihood of 
an accident occurring, and secondly, the expected number of accidents. 
It is also noteworthy that this approach contains two sources of het-
erogeneity: latent heterogeneity and the mixing of latent classes. 

To do this, we use information related to a panel data for US’ com-
panies and quarterly data between 1991 and 2018. 

This paper is organized as follows. Section 2 presents the literature 
review. Methodology is explained in Section 3. Section 4 show data, 
results and the diagnostic tests and Section 5 discusses the main results. 
Finally, conclusions are presented in the last Section. 

2. Safety and profitability 

The relationship between airline safety and profitability has been 
studied previously in the literature, especially after the deregulation of 
the market. Table 1 summarizes these studies indicating the authors and 
year of publication, country and period under study, methodology, 
variables used, and results about the relation between safety and prof-
itability. The papers in Table 1 can be split into two main and general 
approaches: panel and non-panel data models. Next, we briefly 
comment on their results. 

2.1. Non-panel data approaches 

In this subsection we describe the general methods mainly used to 
assess safety and profitability, by focusing on non-panel data ap-
proaches. Econometric methods used in this context were structural 
equations and time series methods, but also count data models in cross- 
section. 

Golbe (1986) studied the relationship between profits and safety in 
the prederegulated U.S. airline industry. Two model approximation 
were used. On the one hand, the structural equations, on the other, time 
series analysis. The author could not find any significant link between 
these variables. A long time period from 1938 to 1994 was analyzed by 
Adrangi et al. (1997). These authors used a Granger causality approach 
and tested different financial variables but none of the variables tested 
proved to be significant. In a worldwide context, Fardnia et al. (2020) 
analyzed 110 airlines in 26 countries to study the relationship between 
profits and safety performance. The authors used a pooled data frame-
work, using both OLS and Poisson regressions. Their results showed a 
negative relationship between profitability and safety performance. 
Moreover, the regulatory systems and the overall economic performance 
of the countries were also related with safety. Further, these authors did 
not find any significant change following the deregulation of airlines. 

In an alternative approach, Kalemba and Campa–Planas (2019) 
analyzed the impact of safety on financial results by using regular panel 
data estimation. The authors showed that safety performance has a 
positive impact on financial results. In fact, this positive impact of safety 
performance on financial results can also be transmitted to manufac-
turers. Akyildirim et al. (2021) analyzed the relationship between an 
airline accident and manufacturers’ finance. Specifically, the authors 
employed a GARCH model to study the link between an accident and its 
economic impact on an engine manufacturers’ financial results. The 
authors found that an accident results in an immediate loss of 1.64% on 
average, and its effects persist even if the manufacturer is not in any way 
responsible for the accident. 

2.2. Panel data models 

In this subsection we describe the panel data models used to inves-
tigate the relationship under study, predominantly drawing on count 
data models in the panel data framework. 

Panel count data models have been the most common methodology 
used in the literature to evaluate the existence of a link between 

2 For example, advanced GPS location (the Automatic Dependent 
Surveillance-Broadcast, ADS-B system), improved materials, enhanced engines, 
improved navigation and communication systems, enhanced weather fore-
casting or improved safety procedures.  

3 One of the consequences of over-dispersion is the standard deviation of 
parameter estimates downward biased and significance of predictor variables 
upward biased (see Ismail and Jemain, 2007). 
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profitability and air transport safety, since Rose’s seminal paper 
(1990).4 

The main count data model used was the Poisson panel data model. 
For example, Rose (1990) used a panel Poisson regression. The author 
stated that the use of contemporary variables could create inverse 
relationship problems. To avoid this problem, the author proposed the 
use of lagged data for the profit variable, and subsequently found a 
positive relationship between safety and profits (measured as the 
operative margin). Moreover, author showed that this relationship was 
stronger in small airlines, while it was marginal on larger ones. 
Raghavan and Rhoades (2005) used both OLS and Poisson regressions, 
and found similar results. Similar to the aforementioned studies, Dionne 
et al. (1997) analyzed the situation for the Canadian market, but also 
added additional financial variables. These authors also found an in-
verse relationship that is stronger in small airlines. Moreover, their re-
sults showed that maintenance expenditure was directly related to air 
transport safety. 

Different variables have also been used in the literature. For 
example, Wang et al. (2013) used a combination of structural models 
and Poisson regression with panel data. These authors explicitly 
modelled an indirect inverse relationship between financial condition 
(measured as a Z score) and safety through their impact on safety in-
vestment. The paper shows that safety investment is negatively related 
with accidents, while accidents positively affect safety investment. 
However, the authors could not find any direct link between financial 
conditions and safety. Noronha and Singal (2004) employed bond rat-
ings and ‘mishaps’ as a proxy for financial health and safety respectively. 
The authors found that airlines with higher quality bond ratings are less 
likely to experience mishaps. Madsen (2013), on the other hand, 
employed not only current financial data, but also the profitability 
aspiration of airlines. This paper evidenced a negative relationship be-
tween financial and accidents. Moreover, it found that performing below 

airline aspirations is related to a higher number of accidents, while 
performing above aspirations implies less. However, the author could 
not find evidence about the link between profitability and safety using 
current financial data. 

However, in this literature and to our knowledge, these papers have 
only used Poisson distributions, and none investigate the profit and 
safety relationship considering zero-inflated and over-dispersed count 
data models. 

In this paper, airline safety is analyzed depending on profitability 
(among other factors). It is worth noting that the previous literature 
(Rose, 1990; Wang et al., 2013; Madsen, 2013; Akyildirim et al., 2021; 
among others) has studied this relationship in this direction of causality. 
As Akyildirim et al. (2021) argue, and as, for example, Rose (1990) 
effectively proves, reverse causality is eliminated by using lagged 
benefit measures. 

3. Methodology 

As seen in Section 2, recent empirical literature analyzing safety and 
profitability has mainly focused on Poisson panel data models. 

However, while regular count data models can model rare events, in 
the case of air transport, fortunately, the probability of an accident 
occurring is very rare. This means that the distribution of accidents 
shows an excess of zeros, which should be considered. Moreover, the 
commonly used Poisson distribution presents the restriction of equal 
mean and variance, which barely holds in air transport accident data. 
For example, it is worth noting that data on accidents show more vari-
ation than implied Poisson distribution. Thus, over-dispersion should be 
accounted for when dealing with air transport safety.5 

In this context, such over-dispersion can be factored in by using 

Table 1 
Empirical studies on the link between safety and profitability.  

Authors (year) Country Period Methodology Variables Link (safety/ 
profitability) 

Golbe (1986) U.S.A. 1952–1972 Structural Equations and 
Time Series 

Fatality rates, operating profits, net operating profits No 

Rose (1990) U.S.A. 1957–1986 Panel data with Poisson Accident rate, operating margin, average stage length, operating 
experience, international flights, Alaskan carriers 

Yes 

Adrangi et al. (1997) U.S.A. 1938–1994 Bivariate Granger 
causality regressions 

Fatalities per revenues, fatalities per departures, operating profits, net 
operating profits 

No 

Dionne et al. (1997) Canada 1976–1987 Panel data with Poisson Accidents, hours, speed, weather, time, size, operating margin, debt 
over equity, working capital 

Yes 

Noronha and Singal 
(2004) 

U.S.A. 1983–1998 Panel data with Poisson Accident rate, bond ratings, departures international revenues, time Yes 

Raghavan and 
Rhoades (2005) 

U.S.A. 1955–2002 OLS and Poisson 
regressions 

Accident rate, experience, stage length, operating profit margin, time Yes 

Madsen (2013) U.S.A. 1990–2007 Panel data with Poisson Accidents, Profitability, time departures, stage length, debt ratio, 
maintenance, domestic flights, bankruptcy protection 

Yes 

Wang et al. (2013) U.S.A. 1991–2008 Panel data with Poisson 
and Structural equations 

Accident rate, Altman’s Z-score, safety investment, departures, average 
stage length, international flights, salaries of flight personnel, salary of 
maintenance personnel 

No 

Kalemba and 
Campa–Planas 
(2019) 

Worldwide 2011–2015 Panel data Return on Investment, revenues, JACDEc index, number of passengers, 
load factor 

No 

Fardnia et al. (2020) Worldwide 1990–2009 OLS and Poisson 
regressions 

Accident rate, liquidity, Leverage, activity, Profitability, GDP, 
departures, unemployment rate, legal variables 

Yes 

Akyildirim et al. 
(2021) 

Worldwide 1995–2018 GARCH family Market cap, returns, stock price, turnover ratio, Amilhud ratio, 
benchmark index 

–  

4 From the pioneer study of Hausman et al. (1984), panel count data models 
can be seen in many applications (see, for example, Cincera, 1997; Montalvo, 
1997, among others). Many authors have highlighted the advantages of using 
panel count model over analysis based on cross-section or time series data. See 
Karlaftis and Tarko (1998), Hsiao (2003), Cameron and Trivedi (2005), and 
Winkelmann (2008), among others. 

5 The common interpretation of over-dispersion is that it can be related to 
neglected unobserved heterogeneity (Cameron and Trivedi, 2013, p.111). 
Particularly, unobserved individual heterogeneity may emerge when the vari-
ables included in the model may not be able to capture all the dependent 
variables’ heterogeneity: in our case, accidents. This unobserved heterogeneity 
might reflect a specification error, such as omitted exogenous variables. 
Therefore, both unobserved heterogeneity and over-dispersion can lead to 
biased results. 
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models with different assumptions about how the variance changes with 
the mean. Between these two elements, for example, the mean-variance 
relationship can be appropriately described by the Negative Binomial 
distribution (e.g., McCullagh and Nelder, 1989), although there are 
other approaches such as quasi-likelihood-based Poisson models (e.g., 
Wedderburn, 1974) or random effects models (e.g., Bolker et al., 2009) 
that can be also used. Therefore, we propose using the zero-inflated 
Negative Binomial (ZINB) model, which is usually adequate for allow-
ing excess-zeros and over-dispersion. This model assumes that 
excess-zero counts can be modelled from a logit model, with the 
remaining counts coming from the Negative Binomial model to account 
for over-dispersion. ZINB allows us to have a large fraction of zeros 
without restricting the range of outcomes. See Long (1997) and Cameron 
and Trivedi (2005) for a discussion of the zero-inflated count data 
models. 

Below, we define some notation. 
Let yit be the number of accidents (but also, it can be defined as the 

number of fatalities or incidents) (yit = 0,1, …,n) for firm i (i = 1,2, …,N) 
in period t (t = 1,2, …,T), xit is a column vector of order k1x1 of cova-
riates potentially explaining yit > 0, zit is a column vector of order k2x1 of 
covariates explaining yit = 0. Furthermore, firm-specific and time- 
specific fixed-effects are defined by νi and ξt, respectively. No assump-
tions on individual effects are made, and they are treated as nuisance 
parameters. 

Next, we define the ZINB model in a panel data context with both 
firm and time fixed-effects. We extend Lambert (1992)’s notation by 
including fixed effects, considering the mean number of accidents, λit, 
and the probability of yit = 0 obtained by a logistic distribution, Fit, such 
as: 

λit = exp
(
x′

itβ+ vi + ξt
)
, (1)  

Fit =
exp

(
z′

itθ + vi + ξt
)

1 + exp(z′
itθ + vi + ξt)

, (2)  

where β is a column vector of order k1x1 of unknown parameters for the 
mean equation and θ is a column vector of order k2x1 of unknown pa-
rameters for the probability equation, respectively. 

ZINB model is defined by considering yit|γit ~ Poisson(γit), where 
γit|δi ~ Gamma(λit,δi), being δi the dispersion parameter of the Negative 
Binomial distribution, which can be assumed as a generalization of the 
Poisson regression. Thus, yit = 0 with probability Fit and yit ~ Gamma 
(λit,δi) with probability 1 − Fit. This specification allows flexible fixed 
individual effects, whereas panel data with random effects are more 
restrictive and impose strong assumptions on individual effects. 

As it can be seen, the ZINB specification incorporates a parameter to 
model the overdispersion. In this sense, by assuming the Negative 
Binomial model, we are considering that the operation and financial 
data of each carrier might not capture all heterogeneous causes of ac-
cidents. The ZINB models fit over-dispersed count data with an excess of 
zero counts. 

The log likelihood maximized is defined by: 

ln L=
∑

iϵS
wi ln{Fit +(1 − Fit)pmi

it }

+
∑

i∕∈S

wi{ln(1 − Fit)+ ln Γ(mi + yit) − ln Γ(yit + 1)

− ln Γ(mi) + mi ln pit + yit ln(1 − pit) }, (3)  

where wi is the weight for the ith group, S is the set of observations for 
which the observed outcome yit = 0, pit = 1/(1 + δiλit) and mi = 1/δi. The 
mean is  

E[yit] = (1 − Fit)λit and the variance is V ar[yit] = (1 − Fit)λit{1 + λit(Fit + δi)}. 

Following Stram and Lee (1994, 1995), over-dispersion can be tested 

in Negative Binomial models using the likelihood ratio (LR) test for the 
null hypothesis: H0: δ = 0 against the alternative hypothesis H1: δ ∕= 0. 
The LR statistic is defined as LR = 2(lnL1 − lnL0), where lnL1 and lnL0 are 
the log likelihood values under H1 and H0, respectively. This statistic 
follows a chi-square distribution with one degree of freedom. For testing 
the ZINB model versus Negative Binomial model, the Vuong test (Vuong, 
1989) can be calculated. This statistic compares the probability mass 
functions of two models following a standard normal distribution and 
choosing (or not) one the models as the ”closer” to the actual one. 
Finally, Bayesian Schwarz criteria (BIC) can be used to compare the 
models’ performance, penalizing those with a larger number of pa-
rameters (k) and larger sample size (n), BIC = − 2lnL + k ln(n). 

4. Empirical analysis 

4.1. Data 

This study focuses on the domestic aviation US market because the 
publicly available data outperforms most other world markets. 

The information we use has been extracted from several databases 
such as the Bureau of Transportation Statistics (BTS), the Federal 
Aviation Administration (FAA) and the National Transportation Safety 
Board. These sources of information provide comprehensive databases 
that are publicly available online. 

Using information regarding above data sources including both main 
and low-cost carriers, an unbalanced panel data-set containing quarterly 
data for 94 passengers airlines and 28 years (1991–2018) is built. The 
data-set used excludes private jet companies and airlines that did not 
appear for at least three full years in the sample. 

Next, we define the variables employed in this study by dis-
tinguishing between endogenous and exogenous variables that will be 
used in the modelling. 

4.1.1. Accidents, fatalities and incidents as dependent variables 
The number of accidents, fatalities and incidents are measured as the 

sum of events of airline i in quarter t. These variables have been previ-
ously used in the literature (see for instance, Rose, 1990; Madsen, 2013; 
among others). 

Data about each accident was obtained from the Aviation Accident 
Database of the National Transportation Safety Board.6 This database 
contains all accidents and selected incidents. The full incident database 
was obtained from the Federal Aviation Administration Accident and 
Incident Data System (AIDS).7 

The total number of available observations for accidents is 4355 for 
all airlines and years. Regarding fatalities and incidents, the number of 
observations was 372 and 4357, respectively. These observations 
include only those airlines that have had at least one accident, fatality or 
incident throughout the entire analyzed sample. In the case of fatalities, 
there are only 11 airlines involved. 

4.1.2. Determinants or exogenous variables 
As determinants or explanatory variables for accidents, fatalities and 

incidents we use several economic and financial data but also operating 
data factors, which have also been used in a number of papers, such as 
Rose (1990), Madsen (2013), and Wang et al. (2013); among others. 

These variables can be characterized as follows. On the one hand, 
operating data used is related to the average distance between airports 
and performed departures. These data were obtained from the T-100 
Domestic Segment (US Carriers)8 database, which is part of the Form 41 
Traffic. This database contains aircraft type per airline per airport pair 
level data that had to be aggregated at airline level on a quarterly basis. 

6 See https://data.ntsb.gov/avdata.  
7 See https://www.asias.faa.gov/apex/f.  
8 See https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=GEE. 
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On the other hand, financial data for each carrier was obtained from 
Schedule P-1.2,9which is part of the Form 41 Financial Data. This 
database is provided at airline level on a quarterly basis. 

It is noteworthy that some economic variables are transformed. For 
example, the profit margin, which measures the difference between in-
come and costs in relation to the airline’s total costs, is calculated as 
follows: 

Profit margin =
Total incomes − Total operational costs

Total operational costs
.

It is also worth noting that one-lagged profit margin is used to avoid 
endogeneity problems (see, for example, Rose, 1990; Wang et al., 2013; 
Akyildirim et al., 2021). To check the reverse causality problem relating 
to profit and accidents probability, we have run the Juodis et al. (2021) 
Granger non-causality test. Results for the half-panel Jackknife esti-
mator show that there is no evidence to reject the null hypothesis that 
accidents do not cause profits (p-value = 0.891). 

Cost flight (in thousands of dollars) is used to control for the flight 
cost during the previous period. However, this variable is normalized 
during the regressions representing the deviation of the airline com-
pany’s costs from the sector’s average cost during that period. The 
maintenance cost (in thousands of dollars) represents the flight costs 
dedicated to that field; some variations in this variable has been used in 
Madsen (2013) and Wang et al. (2013). Average distance measures the 
average route distance (in miles) of each airline. Finally, performed 
departures measures the number of departures of each airline (see, for 
instance, Noronha and Singal, 2004; Madsen, 2013, or Akyildirim et al., 
2021; among others). 

Additionally, control variables are utilized in the estimation process, 
with technological progress being controlled by incorporating a time 
trend. The type of company is also controlled using a dummy variable to 
distinguish between low-cost carriers (LCC) and main carriers. 
Furthermore, control is applied for 11-S, as well as seasonal and airline 
fixed effects using dummy variables. 

Table 2 summarizes the endogenous (Panel A) and determinant 
(Panel B) variables used in this study for the overall sample, main car-
riers and, finally, LCC. In general, it can be observed that accidents, 
fatalities and incidents have standard deviations (s.d.) greater than the 
mean, which is a characteristic related to over-dispersed data. Further-
more, no significant differences are observed between the average 
number of LCC accidents and main carriers (Kolmogorov-Smirnov test, 
p-value = 0.825). 

4.2. Estimation results 

In this section, we show results corresponding to the estimation for 
passenger airlines’ number of accidents, fatalities and incidents. 

In Tables 3 and 6, we include several model results for comparative 
purposes. Therefore, we show results for both the classic Poisson and 
Negative Binomial (NB) models, but also for those models which 
consider the relevance of zeros in the dependent variables such as zero- 
inflated Poisson (ZIP) and Negative Binomial (ZINB) models. 

It is noteworthy that ZIP and ZINB models converged only for the 
number of accidents’ model. This might be explained by the high vari-
ability in the distribution of fatalities and incidents. In those cases, we 
only present results for the classic Poisson and NB models. 

The general results we obtain indicate that, while most of the liter-
ature has focused on the Poisson regression (Rose, 1990; Dionne et al., 
1997; Noronha and Singal, 2004; among others), over-dispersion exists 
in the air transport industry. This conclusion is based on the fact that the 
over-dispersion likelihood ratio test rejects the null hypothesis of no 
over-dispersion (e.g., δ = 0). This means that the Negative Binomial 
specification suits the data better than the Poisson models. 

Next, we briefly comment on the factors that affect the endogenous 
variables by distinguishing two sub-sections: the number of accidents, 
and fatalities and incidents. 

4.2.1. Determinants of the number of accidents 
Table 3 shows the estimation output for the number of accidents 

including some lagged variables and distinguishing two panel results, 
considering several panel count data models with fixed-effects. Table 3 
(Panel A) includes how the coefficients can explain the excess of zeros. 
This means that a positive value implies that the probability of having an 
accident diminishes if the value of the variable grows. Table 3 (Panel B) 
explains the number of accidents after discounting the zero cases. 
Looking at the standard Poisson and Negative Binomial models, we note 
an interesting result: those companies with higher operative profits 
relative to their operative costs in the previous period (Profit margint− 1) 
have a larger number of expected accidents. However, this result is 
biased by the existence of an excess of zeros in the sample. 

After applying a zero-inflated regression we can disentangle the ef-
fect of each variable in two. On the one hand, Panel A shows that those 
companies with positive profit margins are more likely to have more 
zeros, i.e., the probability of having an accident is lower for those 
companies. On the other hand, we can observe a positive and significant 
coefficient for the profit margin in Panel B. This means that, after an 
accident, the companies with great profit margins are expected to have 
more accidents. 

Another surprising result in the ZIP and ZINB models is that those 
companies with cost levels per flight above the average have greater 
probabilities of having an accident (a negative sign on Panel A). How-
ever, these costs do not influence the expected number of accidents 
(Panel B). On the other hand, standard Poisson and Negative Binomial 
models might lead us to expect a higher number of accidents in com-
panies with higher costs. The maintenance cost per flight does not seem 
significant either in the inflate of zeros nor in the number of accidents. 
Neither is distance significant, either in the probability of an accident or 
the expected number of them. Additionally, under zero-inflated models, 
a high number of departures increase the likelihood of having accidents, 
but not the expected number of them. Again, standard Poisson and 
Negative Binomial. 

models only predict the expected number of accidents to increase as 
departures increase. Finally, we included a dummy to control for 11-S, 
which is significant, and a dummy to control for LCC, which is not. 

While the use of zero-inflated regression can help us to understand 
the results, the model needs to be validated. To test the validity of the 
model, two different metrics are used. Firstly, a Vuong test, in which the 
null hypothesis is that standard Poisson and Negative Binomial models 
are preferred to zero-inflated specifications. This hypothesis is rejected 
at 5% in both estimations. Additionally, the BIC criteria of both the 
standard and zero-inflated estimations are also compared, with the latter 
being preferred. Lastly, we check the sample’s over-dispersion. To do so, 
a likelihood ratio test is conducted, rejecting the null hypothesis and 
confirming the existence of over-dispersion in the data. This means that, 
while most literature has employed Poisson models, the existence of 
over-dispersion implies that the Negative Binomial model better fits the 
data. 

Table 4 shows the mean, standard deviation, skewness, kurtosis and 
percentiles (p25, p50, p75 and p90) for the expected number of accidents 
obtained by the models. It is noteworthy that mean values are similar 
among estimated models, but differences are more important for higher 
percentiles. 

To assess the prediction ability of estimated models, we split the 
sample in two parts. Firstly, we estimate the model (i.e., training-phase) 
using the first 20 years (from 1991 to 2010). Secondly, the estimation 
results obtained are used for prediction of the model using information 
corresponding to the remaining 8 years (i.e., prediction-phase), from 
2011 to 2018. Table 5 displays the results of the predictive analysis 
showing statistic measures as the mean absolute error (MAE), the mean 9 See https://transtats.bts.gov/releaseinfo.asp?6o=FMI&qv52ynB=qn6n. 
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squared error (MSE), and the root mean squared error (RMSE) for all the 
models considered. The results show the predictive capacity of the ZINB 
model, which outperforms the others in statistical measurement terms, 
because it has the lowest values. 

4.2.2. Determinants of fatalities and incidents 
After observing the previous results of airlines with larger profit 

margins expecting more accidents once an accident happens, we con-
ducted two additional estimations. On the one hand, in order to measure 
the severity of the accidents, we estimate the number of fatalities 
conditioned on having an accident. On the other, we estimated the 
number of incidents which, by definition, are less severe events than 
accidents. Table 6 shows the results for both the Poisson and the 
Negative Binomial estimations. 

For the case of fatalities, our results show that companies with larger 
levels of profit margins have a smaller number of expected fatalities, 
which means that their accidents are less severe. In this case, the over- 
dispersion has clear consequences on the estimation results. As the 
test of δ = 0 and the BIC criteria show that the Negative Binomial is 
preferred for this case, using a Poisson regression could yield a biased 
parameter estimation and underestimate standard error, leading to 
invalid conclusions. In this sense, and under the Negative Binomial 
model, costs per flight, distance, departures and technological progress 
are variables that significantly explain the expected number of fatalities, 
while maintenance cost is not significant. Regarding LCC variable, due 
to the lack of any fatal accident in the sample, is omitted. Finally, the 11- 
S dummy shows a significant coefficient. 

Regarding incidents, the models show that profit margins are not 
significant for explaining the expected number. However, with the 
exception of the dummy variables, all the explanatory variables are 
significant for the expected number of incidents, with technological 
progress being the only factor with a negative parameter. Similarly to 
the number of accidents and fatalities, the likelihood ratio test and the 
BIC criterion show that the Negative Binomial model is preferred. 

Table 2 
Summary statistics (period 1991–2018).  

Variables  All carriers   Main carriers   LCC carriers  

Mean s.d. Min Max Mean s.d. Min Max Mean s.d. Min Max 

Panel A. Endogenous variables 
Number of accidents 0.103 0.382 0 5 0.110 0.395 0 5 0.082 0.340 0 5 
Number of fatalities 0.167 4.044 0 156 0.224 4.687 0 156 0 0 0 0 
Number of incidents 1.051 2.416 0 30 1.220 2.702 0 30 0.561 1.121 0 8 
Panel B. Determinant variables 
Profit margin 0.037 0.766 − 1 50.003 0.045 0.891 − 1 50.003 0.027 0.161 − 0.971 1.147 
Cost per flight 74.7 799.61 0.72 36,453.5 93.49 926.91 0.84 36,453.5 20.79 36.57 0.72 631.02 
Maintenance cost per flight 13.06 183.13 0.07 8339.5 16.63 213.99 0.075 8339.5 3.010 12.76 0.11 396.97 
Average distance 1014.72 714.80 69.43 5658.04 1022.59 767.92 69.43 5658.04 992.95 532.79 92 4029.03 
Performed departures 52,910.15 70,283.92 2 353,999 57,250.38 68,861.71 2 293,483 40,371.57 82,882 2 353,999  

Table 3 
Maximum likelihood estimates for passenger airlines accidents and several panel 
count data models with fixed-effects (period 1991–2018).   

Poisson NB ZIP ZINB 

Panel A: Inflate of zeros 
Profit margint− 1   

9.1199*** 10.7587***    

[3.100] [3.784] 
Cost flightt− 1   − 4.9061** − 7.3876*    

[2.384] [4.181] 
Maintenance costt− 1   − 0.0668 − 0.0756    

[0.081] [0.097] 
log Average distance   0.0513 0.5017    

[0.802] [1.653] 
log Performed 

departures   
− 0.4327** − 0.6856**    

[0.200] [0.316] 
Technological progress   − 0.0527 − 0.0435    

[0.067] [0.062] 
LCC   0.9576 1.0035    

[0.933] [1.112] 
11-S   3.122** 3.241**    

[1.234] [1.268] 

Panel B: Number of 
accidents Profit 
margint− 1 

0.9699*** 0.9363*** 3.5786*** 2.7146***  

[0.315] [0.341] [0.747] [0.747] 
Cost flightt− 1 0.2909** 0.2810** 0.2119 0.1440  

[0.120] [0.125] [0.151] [0.134] 
Maintenance costt− 1 0.0001 0.0001 0.0001 − 0.00005  

[0.001] [0.001] [0.001] [0.001] 
log Average distance − 0.1021 − 0.0876 − 0.4069 0.0643  

[0.314] [0.327] [0.368] [0.372] 
log Performed 

departures 
0.3170** 0.3124** 0.1372 0.2108  

[0.148] [0.154] [0.164] [0.165] 
Technological progress 0.0086 0.0066 0.0044 − 0.0063  

[0.009] [0.010] [0.009] [0.010] 
LCC 15.7097 15.5274 12.1286 12.2030  

[4099.213] [3775.135] [528.050] [721.415] 
11-S 0.0784 0.0496 1.123** 1.125**  

[0.363] [0.360] [0.499] [0.165] 
δ  0.4463***  0.3202***   

[0.1561]  [0.158] 

Fixed-company effects YES YES YES YES 
Fixed-time effects YES YES YES YES 

Observations 4355 4355 4355 4355 
Log likelihood − 1176.55 − 1169.99 − 1166.17 − 1163.40 
BIC 3090.45 3085.71 3077.33 3069.69 
Vuong test   2.40*** 1.89** 

Standard errors in brackets. 
* p < 0.10, ** p < 0.05, *** p < 0.01. 

Table 4 
Descriptive statistics for the expected number of accidents (period 1991–2018).   

Poisson NB ZIP ZINB 

mean 0.1049 0.1048 0.1007 0.1039 
s.d. 0.1592 0.1585 0.1654 0.1594 
skewness 2.4761 2.4444 3.0315 2.5326 
kurtosis 9.7904 9.4958 19.5945 10.0901 
p25 0.0082 0.0084 0.0064 0.0079 
p50 0.0423 0.0423 0.0384 0.0417 
p75 0.1256 0.1261 0.1285 0.1237 
p99 0.7230 0.7194 0.7045 0.7506  

Table 5 
Predictive analysis for the models (period 2011–2018).   

Poisson NB ZIP ZINB 

MAE 6.5366 6.8481 6.3991 5.9123 
MSE 91.5109 103.1594 95.7053 77.9316 
RMSE 9.5661 10.1567 9.7829 8.8279  

U. Pérez-Granja et al.                                                                                                                                                                                                                          



Journal of Air Transport Management 118 (2024) 102599

7

5. Discussion 

In this study, which has been designed to re-analyze the link between 
safety and profitability, we identified several important issues that need 
to be discussed. Due to the existence of over-dispersion, all the com-
ments in this discussion refer to the results of the estimations based on 
Negative Binomial distributions. 

5.1. Zero-inflated model 

The zero-inflated models are used in cases where the number of zeros 
greatly exceeds the number of positive cases. In the case of air transport 
where the zeros outperform any other number of accidents, this model is 
necessary. After checking the results of the Vuong test and the BIC cri-
terion, our results confirm that this model is preferred over the tradi-
tional models used in the literature. Moreover, the zero-inflated model 
helps us understand the mechanism behind the effects of the variables 
on the expected number of accidents, where the common variables in 
the literature - such as departures - can help explain the probability of 
having an accident but not the expected number of accidents. Addi-
tionally, it can help to explain the counterintuitive results of having a 
positive parameter on profit margins without using the zero-inflated 
specification. 

5.2. Effects on count variables 

5.2.1. One-lagged profit margin 
While classic literature, such as Rose (1990) and Raghavan and 

Rhoades (2005), showed an inverse relationship between accidents and 
profitability, it should be noted that these papers used data starting in 
the 50s. Thus, more recent papers such as Fardnia et al. (2020) found out 
a positive link between expected number of accidents and profitability. 
This counterintuitive effect is also found in our results. Nevertheless, the 
use of zero-inflated model can help to disentangle the mechanism 
behind it. Firstly, in relation to accidents, it shows a positive sign in the 
excess of zeros’ model. This means that those companies with a larger 
profit margin have a lower probability of having an accident. However, 
as the coefficient for the number of accidents is positive, it means that 
after having an accident, the total number of expected accidents in a 
period can be higher for those companies with larger profit margin. It 
could be positing to think that after an accident, the company enhances 
safety protocols, lowering accident likelihood. Nevertheless, while 
having an accident is a rare event, our results show that the even rarer 
occurrence of having more than one accident, which only happens in 8% 
of the observations with accidents, is more likely in companies with 
higher profit margins. 

Table 7 shows the expected number of accidents (E[ỹ]) under the 
ZINB estimation considering the company quartiles listed by the size of 
their profit margins. N represents the number of observations and s.d. is 
the standard deviation. The expected number of accidents is higher for 
medium-high and medium-low profit margins. However, high and low 
profit margins correlate with a lower expected number of accidents. 
Fig. 1 illustrates this relationship for each of the airlines by representing 
the quartiles with dashed lines. On the Y-axis, the figure represents the 
average number of expected accidents of a particular airline for the 
whole analytical period (which is positive or zero), while on the X-axis 
the average profit margin (which can be negative) for the overall period 
is represented. This means that dots on the left represent less profitable 
companies and dots on the right represent more profitable companies. 
On average, there is a growing relationship between profits and number 
of companies with accidents, as seen in the grey regression line. 

To analyze the severity of those accidents, additional regressions 
were run over fatalities and incidents. The results, showed in Table 6, 
display that those companies with higher profit margins have a lower 
expected number of fatalities if they have an accident. This means that 
those companies’ accidents are less severe. On the other hand, results 

about incidents indicate that there is no relationship between profit 
margins and the number of incidents. 

5.2.2. Distance 
The results show that distance is not important in explaining acci-

dents. It seems that accidents are more related to landing and takeoff 
operations. Regarding fatalities, once the accident occurs, the distance 
traveled affects the number of deaths. This can be explained because 
larger airplanes are usually the ones that perform the longest routes. 
Finally, as the distance increases, the expected number of incidents 
increases. 

5.2.3. Departures 
As expected, this control variable is negative and significant in 

explaining the excess of zeros, meaning that the higher the number of 
departures, the greater the probability of having an accident. However, 
this variable does not show significance explaining the number of ac-
cidents. Regarding fatalities and incidents, a high number of departures 
decreases the fatalities but increases the expected number of incidents. 

5.2.4. Normalized cost per flight 
The variable seems to be significant in explaining the probability of 

having an accident. In this sense, those companies with a normalized 
cost per flight higher than the average 

have a greater probability of having an accident. However, the 

Table 6 
Maximum likelihood estimates for passenger airlines fatalities and incidents and 
standard panel count data models with fixed-effects (period 1991–2018).   

Fatalities  Incidents  

Poisson NB Poisson NB 

Profit margint− 1 − 3.1461*** − 3.2104*** 0.0240 0.0420  
[0.759] [0.762] [0.165] [0.203] 

Cost flightt− 1 − 10.337*** − 9.9956*** 0.1716*** 0.1672***  
[1.539] [1.505] [0.038] [0.046] 

Maintenance costt− 1 − 0.6023 − 0.4287 0.0003** 0.0003**  
[0.499] [0.633] [0.000] [0.000] 

log Average distance 4.9028*** 4.8156*** 0.7213*** 0.6954***  
[0.854] [0.794] [0.095] [0.117] 

log Performed 
departures 

− 4.8390*** − 5.3589*** 0.6754*** 0.6359***  

[0.492] [0.335] [0.047] [0.056] 
Technological 

progress 
− 0.3448*** − 0.3225*** − 0.0943*** − 0.937***  

[0.034] [0.028] [0.003] [0.004] 
LCC   17.1815 12.5138    

[7288.375] [644.571] 
11-S 7.1012*** 6.8254*** 0.1048 0.1991  

[0.462] [0.748] [0.108] [0.143] 
δ  8.0868***  0.260***   

[2.807]  [0.026] 
Fixed-company 

effects 
YES YES YES YES 

Fixed-time effects YES YES YES YES 
Observations 372 372 4357 4357 
Log likelihood − 499.74 − 490.25 − 4043.45 − 3908.80 
BIC 1289.50 1265.01 8639.93 8546.57 

Standard errors in brackets. 
* p < 0.10, ** p < 0.05, *** p < 0.01. 

Table 7 
Expected number of accidents according to the profit margins under ZINB 
model.  

Company N E[ỹ] s.d. Min Max 

High profit margins 1070 0.0807 0.1236 0 0.6222 
Medium-High profit margins 1097 0.2118 0.1918 0 1.1551 
Medium-Low profit margins 1077 0.1999 0.1981 0 1.1569 
Low profit margins 1111 0.0456 0.0657 0 0.3028  
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variable does not show significance to explain the expected number of 
accidents. Once an accident happens, the cost per flight is significant in 
explaining the fatalities: it is expected that companies with higher costs 
will have less number of fatalities. Finally, companies that show higher 
costs in relation to the average, expect to experience a higher number of 
incidents. 

6. Conclusions 

Our paper provides new evidence about the relationship between 
profits and safety by updating previous studies, such as that of Rose 
(1990). 

On the one hand, it estimates not only the impact of profitability on 
the number of accidents, which is the most common aim in the litera-
ture, but also on fatalities and incidents. On the other, this study con-
siders the statistical nature of accidents, fatalities or incidents, 
something that the relevant literature has not done so far. All of them are 
count variables with a lot of variability in relation to their mean 
(overdispersion). Furthermore, a plane crash is a rare event, so the 
database contains a large proportion of zeros. Therefore, this paper 
contributes to the empirical literature on the relationship between 
profitability and safety using a model that accounts for over-dispersion 
and excess-zeros in a count data panel framework. The model the paper 
proposes is the zero-inflated Negative Binomial, which has proved to 
better fit over-dispersed and zero-inflated data. 

Estimation results show that the relationship between profits and 
safety has to be carefully analyzed due to the infrequency of accidents. 
The main results show that the companies with higher profit margins 
and lower costs per flight are the least likely to have an accident. While 
accidents represent a huge cost for airlines and they make great efforts to 
avoid them, it seems that airlines experiencing hard times can relax their 
safety protocols, thereby increasing the likelihood of a fatal event. 
However, once the event occurs, companies with higher profits are ex-
pected to have more accidents. There is empirical sufficiency to 
conclude that there are companies with large profits that suffered more 
than one accident in the periods analyzed. Nevertheless, regarding fa-
talities, these profitable companies are expected to have less severe 
accidents. 

In relation to operational variables, first, there does not seem to be 
any relationship between the average distance of the flight and the ex-
pected rate of accidents. Distance positively affects the expected number 
of fatalities and incidents. Second, as expected, the number of 

departures positively influences the likelihood of the accident and the 
number of incidents, and negatively, the number of fatalities. 

In sum, this paper provides a number of insights that might prove 
useful for researchers and policy makers. Firstly, from the policy 
perspective, regulators should focus on companies based on their prof-
itability. As profitability is associated with a lower likelihood of acci-
dents, severity is associated with poor economic performance. 
Regulators should ensure that airlines do not compromise safety in 
pursuit of higher profits. Conducting regular audits of airlines to verify 
compliance with safety regulations and ensuring appropriate pre-
cautions are being taken, or implementing higher penalties for airlines 
that fail to comply with safety regulations, including significant fines 
and even the revocation of operating licenses, are recommended mea-
sures to help increase safety. If the aim is to reduce the probability of an 
accident occurring, these measures should focus more on airlines with 
low profits. However, once a company has experienced an accident, the 
regulator must closely monitor that company, especially if it has high 
profits. It is possible that the company is achieving these profits at the 
expense of safety. Secondly, the presence of over-dispersion should be 
considered when analyzing the relationship between profitability and 
safety. Failure to account for over-dispersion can result in serious un-
derestimation of standard errors and misleading inference for regression 
parameters. 
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U. Pérez-Granja et al.                                                                                                                                                                                                                          

http://refhub.elsevier.com/S0969-6997(24)00064-4/sref3
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref3
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref3
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref4
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref4
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref4
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref5
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref5
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref6
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref6
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref7
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref7
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref7
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref8
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref8
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref9
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref10
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref10
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-19-004
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-19-004
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref11
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref11
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref12
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref12
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref13
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref13
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref14
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref14
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref15
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref15
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref16
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref16
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref17
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref17
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref18
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref18
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref19
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref19
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref20
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref20
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref21
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref21
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref22
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref22
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref23
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref23
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref24
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref24
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref25
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref25
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref26
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref26
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref27
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref27
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref28
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref28
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref29
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref29
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref30
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref30
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref31
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref31
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref32
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref32
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref33
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref33
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref34
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref34
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref35
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref35
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref36
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref36
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref37
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref37
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref38
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref38
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref38
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref39
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref39
http://refhub.elsevier.com/S0969-6997(24)00064-4/sref40

	Assessing economic performance and aviation accidents using zero-inflated and over-dispersed panel data models
	1 Introduction
	2 Safety and profitability
	2.1 Non-panel data approaches
	2.2 Panel data models

	3 Methodology
	4 Empirical analysis
	4.1 Data
	4.1.1 Accidents, fatalities and incidents as dependent variables
	4.1.2 Determinants or exogenous variables

	4.2 Estimation results
	4.2.1 Determinants of the number of accidents
	4.2.2 Determinants of fatalities and incidents


	5 Discussion
	5.1 Zero-inflated model
	5.2 Effects on count variables
	5.2.1 One-lagged profit margin
	5.2.2 Distance
	5.2.3 Departures
	5.2.4 Normalized cost per flight


	6 Conclusions
	Declaration of interest
	CRediT authorship contribution statement
	References


