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• Hybrid model that tackles bias in user-
specific Brain Computer Interfaces train-
ing.

• Combined 2D CNN and LSTM for EEG 
mental task classification.

• Classification rates of up to 90% with an 
average of 74.54% for EEG tasks.

• Set thresholds increase accuracy by 21.34%, 
remove low affinity.

• Methodology enhances BCI systems, im-
proves accuracy and reliability avoiding 
bias.
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Objective: This study addresses the challenge of user-specific bias in Brain-Computer Interfaces (BCIs) 
by proposing a novel methodology. The primary objective is to employ a hybrid deep learning model, 
combining 2D Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers, to 
analyze EEG signals and classify imagined tasks. The overarching goal is to create a generalized model 
that is applicable to a broader population and mitigates user-specific biases.
Materials and Methods: EEG signals from imagined motor tasks in the public dataset Physionet form the 
basis of the study. This is due to the need to use other databases in addition to the BCI competition. 
A model of arrays emulating the electrode arrangement in the head is proposed to capture spatial 
information using CNN, and LSTM algorithms are used to capture temporal information, followed by 
signal classification.
Results: The hybrid model is implemented to achieve a high classification rate, reaching up to 90% for 
specific users and averaging 74.54%. Error detection thresholds are set to eliminate subjects with low 
task affinity, resulting in a significant improvement in classification accuracy of up to 21.34%.
Conclusion: The proposed methodology makes a significant contribution to the BCI field by providing a 
generalized system trained on diverse user data that effectively captures spatial and temporal EEG signal 
features. This study emphasizes the value of the hybrid model in advancing BCIs, highlighting its potential 
for improved reliability and accuracy in human-computer interaction. It also suggests the exploration of 
additional advanced layers, such as transformers, to further enhance the proposed methodology.
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Nomenclature

AI Artificial intelligence
BCI Brain-Computer Interface
BiLSTM Bidirectional Long short-term memory
CNN Convolutional Neural Networks
DL Deep Learning
EEG Electroencephalogram
MI Motor Imagery

GRU Gate Recurrent Unit
JCR Citation Reports
LSTM Long short-term memory
ML Machine Learning
PRISMA Preferred Reporting Items for Systematic reviews 

and Meta-Analyses
RMSProp Root Mean Square Propagation
1. Introduction

Brain-Computer Interface (BCI) establishes a direct pathway be-
tween the brain and the computer. This type of technology, which 
is being widely researched, can capture and transmit the neural 
signals of an individual at different mental stages to a computer or 
external device [1]. Subsequently, after being processed, these sig-
nals are treated by these computers or devices using artificial in-
telligence algorithms (Deep Learning (DL), Machine Learning (ML)). 
This can be used for making predictions of imagined movements 
or to diagnose mental illnesses such as Parkinson’s disease or sleep 
disorders among other applications [2–7].

Therefore, BCIs are very useful for people with motor prob-
lems, physical dependence, or neurodegenerative diseases, as they 
provide a direct link between the brain and the device to be con-
trolled (without passing nerves, muscles, or tendons) and conse-
quently improve life quality of the subjects [8]. Moreover, the sig-
nals captured by the BCI are electrochemical signals derived from 
brain synapses [4,9,10]. This signal is an effect of the neuronal ac-
tivity of thoughts or imaginary tasks and is captured by recording 
brain signals using the electroencephalogram (EEG) [6,7]. The brain 
signal, according to several authors, is structured depending on its 
frequencies into five bands: delta, theta, alpha, beta, and gamma 
[5,11]. These frequencies vary between different ranges, consider 
Table 1.

According to Roc et al. [13], these types of readings require a 
high level of concentration and vary depending on the subject. In 
addition, in the tasks performed, it should be taken into account 
for factors such as breathing, heartbeat, or even eye movement, 
that can produce noise in the signal as they are movements asso-
ciated with low frequencies, that can mask the frequencies of the 
brain signal.

1.1. Literature review

There are several works in which Deep Learning (DL) is used to 
classify mental tasks such as spelling words, emotions recognition, 
or even the movement of an arm with the mind [14,15].

One of the most difficult problems associated with BCI and 
brain signals is the poor signal-to-noise ratio, and a long list of 
tools, filters, and methods have been developed over the years to 
solve this problem. There are also various optimization techniques 
to improve the collection of this type of data and thus obtain 
better results. One example is the technique developed by Jin et 

Table 1
Classification of brain signals ac-
cording to Miller et al. [12].

Type Frequency (Hz)

Delta(�) 1-4
Theta(θ) 4-8
Alpha(α) 8-13
Beta(β) 13-35
Gamma(γ ) >35
2

al. [16], where the BCI-based steady-state visual evoked poten-
tial (SSVEP) was studied. Specifically, the task-related component 
analysis (TRCA)-based method and its variant, the ensemble TRCA 
(eTRCA)-based method. In order to solve the noise problems in 
these methods, they successfully designed a novel time filter that 
introduces the temporal local weighting into the objective function 
of the TRCA-based method and uses singular value decomposition. 
Thus, a tool with promising potential for SSVEP detection was es-
tablished.

Another method developed by Jin et al.[17] to improve EEG 
signal processing was related to common spatial pattern (CSP) 
algorithms. This is a well-known spatial filtering method for fea-
ture extraction in motor imagery (MI)-based BCIs. In their work, 
they address the problem of EEG non-stationarity and its derived 
features in the context of CSPs. To this end, they design a new 
feature selection method based on an improved objective function. 
In particular, improvements are made in outlier suppression and 
feature discovery with larger inter-class distances. Furthermore, a 
fusion algorithm based on the Dempster-Shafer theory is proposed, 
which takes into account the feature distribution. As a result, less 
additional computational cost and a significant increase in the per-
formance of MI-based BCI systems are achieved.

There are also other methods that mix different techniques and 
devices to complement the EEG, such as the one developed by 
Yang Yu et al. [18]. In this paper, they use an electrooculogram 
(EOG) to complement spelling tasks with EEG. Specifically, they use 
a classic P-300 speller (where the peak of brain intensity marks the 
desired letter), and through the EOG they create an asynchronous 
method that assists and improves spelling. This allows for a speller 
that works as long as the subject wants to spell and increases the 
speed of this type of procedure.

Finally, a very famous way to address the noise signal problem 
is the one developed by Sun, B et al. [19], which deals with how to 
make an optimal subset of channel selection without seriously af-
fecting the classification performance. In this article, they propose 
an end-to-end deep learning framework called EEG Channel Active 
Inference Neural Network (EEG-ARNN), which is based on Graph 
Convolutional Neural Networks (GCN) to fully exploit the correla-
tion of signals in the temporal and spatial domains. They use the 
BCI IV 2a competition and the Pysionet dataset to evaluate perfor-
mance. Their results show that the proposed method outperforms 
state-of-the-art methods in terms of both classification accuracy 
and robustness.

In this work, although the selection of channels is taken into 
account, an approach based on the demonstration of the hypoth-
esis for the simplest case has been preferred, specifically on the 
binary classification of the imagined movement of the right hand 
versus the left hand, using the complete set of channels.

Previous work has shown a 60-95% success rate for such classi-
fication [20–23]. This success rate depends on the database, the 
method, and even the predisposition of the subjects. Therefore, 
each study must be analyzed according to its characteristics, being 
difficult to compare two studies based on different databases and 
conditions. There are generalized classification models (less suc-
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Table 2
Summary of the databases used in 89 studies selected from Scopus and PubMed 
using PRISMA criterion.

Dataset Channels Users Percentage of 
use in studies

BCI competition III-3a [26] 64 3 17/89 (19%)
BCI competition III-4a [26] 118 5 27/89 (30%)
BCI competition IV-1 [27] 59 7 14/89 (15%)
BCI competition IV-2a [28] 22 9 52/89 (58%)
BCI competition IV-2b [29] 3 9 36/89 (40%)
Dataset from GigaScience [30] 64 52 3/89 (3%)
High-Gamma Dataset [31] 128 14 3/89 (3%)
PhysioNet EEG [32] 64 109 2/89 (2%)
MAMEN Phase I [33] 61 34 2/89 (2%)
Other datasets [34–36] 15-62 5-15 3/89 (3%)
Private datasets 2-64 1-12 9/89 (10%)

cessful) and very specific ones (more successful). Jiao et al. [20]
propose a new representation model group to improve the ef-
ficiency of MI-based BCI by exploiting the information between 
subjects, obtaining a success rate of 78.2% with BCI by exploit-
ing the information between subjects, obtaining a success rate of 
78.2% with BCI Competition IV dataset IIb. Lee and Choi [21] with 
a success rate of 78.93%, present a new convolution neural net-
work (CNN) approach to classify motor imagery EEG. Ha and Jeong 
[22] offers a capsule network (CapsNet) to learn about the prop-
erties of EEG signals, increasing and improving performance over 
previous CNN methods, such that they achieved a 78.44% success 
rate. On the other hand, Luo and Chao [23] offer a new method of 
constructing and modeling highly accurate and robust ICMs based 
on limited trials of EEG signals, obtaining a success rate of 82.75 
±3.84. Finally, Biao Sun et al. [24] propose an adaptive spatio-
temporal graph convolutional network (ASTGCN) that exploits the 
characteristics of EEG signals in the time domain and channel 
correlations in the spatial domain simultaneously. They use their 
own data set in which twenty-five healthy subjects performed MI 
movements of the right hand and feet to generate motor com-
mands. Their experimental results show that the proposed method 
outperforms state-of-the-art methods both in terms of classifica-
tion quality and robustness.

1.2. Bias with different datasets

In the studies previously mentioned, it is observed that BCI 
competition IIa, IIIa, and IV databases are used. These data sets 
are widely used, as they achieve high success rates due to the use 
of small groups of people, between 3 and 9 users. This implies that 
the system trains with a very specific number of data, resulting in 
a system that is not very generalized or with a certain bias, even 
in certain cases with the overtraining problem.

According to Arpaia et al. [25] it is important to carry out 
studies with different databases, such as Physionet, High-Gamma 
Dataset, or GigaScience, as more than 75% of the studies are 
carried out with BCI competition databases. The use of these 
databases with more users would imply a drop in the success rate, 
as the system is more generalized, but, on the other hand, a higher 
reliability rate is achieved by using groups with a greater number 
and variety of people and a greater amount of data to train and 
test the system. Table 2 shows the most famous databases and 
their percentage of use in a total of 89 studies indicated in JCR 
and selected with the PRISMA criterion, together with the number 
of users they have. Table 2 is summarized in Fig. 1, it can be seen 
how the works focused on the use of BCI competition databases 
occupy most of the state of the art, since they allow a much higher 
percentage of success in the studies as explained before, being of 
interest the use of other databases with a greater number of users.
3

Fig. 1. Percentage of use of databases in the state of the art by Arpaia et al. [25].

1.3. Our proposal

This study presents a novelty over previous research by em-
ploying a unique data processing approach using event-specific 
low-resolution time windows and unconventional spatial shaping 
of the data. This approach allows our algorithm to extract and 
specifically package the EEG signal from the Physionet database to 
obtain useful spatio-temporal information.

By combining this algorithm with a CNN-LSTM network, a suc-
cess rate of over 90% for some users and an average of 74.54% 
was achieved, with improvement potential. The network was then 
tested and trained user by user. To minimize bias and avoid data 
cross-contamination, each user is k-fold trained on 2/3 of their ex-
periments and tested on 1/3 of their experiments. Thus, the final 
analysis is user and session independent, but the classifier relies 
on data from the entire set. This avoids the generalized training of 
other studies [20–23].

A secondary analysis was performed to identify users with low 
EEG responsiveness. This led to the development of a novel vali-
dation tool that includes setting different thresholds of success for 
subjects, testing, or data collection. Overall, this study makes sev-
eral significant contributions to the field, including the use of a 
larger dataset, a unique approach to data processing, a novel vali-
dation tool, and a more generalized system that can be applied to 
a diverse range of users and data.

By way of outline, the paper is structured as follows:
After an introduction and contextualization of previous work 

and an explanation of the existing bias in the use of the database, 
the materials and methods are explained. A presentation of the 
database used and the parts of the network, such as the CNN and 
LSTM networks, is given as well as the network architecture and 
conditions. Finally, the results obtained in both the user-to-user 
classification and the use of detection thresholds are explained. All 
this is accompanied by a comparison of existing works to obtain 
a contextualization and to frame the precision of the work con-
cerning others of a similar nature. It ends with some conclusions 
summarizing the work and explaining the most important results.

Furthermore, the proposed methodology for brain-computer in-
terfaces has several potential connections to the United Nations’ 
Sustainable Development Goals (SDGs), including [37]:
• SDG 3.8: Universal Health Coverage - By developing a more gen-
eralized system for brain-computer interfaces that can be trained 
on a large amount of data from different types of users, this work 
has the potential to improve access to healthcare for people with 
disabilities, such as those who may benefit from brain-computer 
interfaces.
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Fig. 2. General outline of an image recognition through a CNN. It can be seen how the different convolutions are performed to extract the feature map that will later define 
the output.
Table 3
Task used in PhysioNet.

Task 1 Open and close left or right fist
Task 2 Imagine opening and closing left or right fist

Task 3 Open and close both fists or both feet
Task 4 Imagine Opening and closing both fists or both feet

• SDG 3.d: Strengthen the capacity of all countries, in particular 
developing countries, for early warning, risk reduction, and man-
agement of national and global health risks - By improving the ac-
curacy and reliability of brain-computer interfaces, this work may 
contribute to more effective management of neurological disorders 
and other health risks related to the brain.
• SDG 10.2: Social, economic, and political inclusion of all, irre-
spective of age, sex, disability, race, ethnicity, origin, religion, or 
economic or another status - The proposed methodology seeks to 
develop a more generalized system that can be applied to a larger 
population, potentially reducing biases that arise from user-specific 
models. This may lead to more equitable access to brain-computer 
interfaces and the benefits they provide.

2. Materials & methods

2.1. Dataset

This work was conducted using the PhysioNet public database 
[32,38], which consists of a series of two-minute EEG recordings 
from 109 individuals provided by the developers of the BCI2000 
instrumentation system. A number of tasks are performed on this 
database. First, a baseline EEG is obtained from users with their 
eyes closed and then with their eyes open in the relaxation phase. 
Subsequently, users are asked to perform various real and thought 
motor tasks, which are recorded by the 64-channel EEG.

In total, subjects perform 14 experimental tasks divided into 
five runs: the first two, as mentioned above, are baseline runs with 
a duration of one minute. The remaining 12 trials are divided into 
4 task types, each of which is performed 3 times, see Table 3. The 
first type of task consists of opening and closing the right or left 
fist (denoted T2/T1), depending on which side a symbol appears 
on a screen. Task type 2 is the same as task 1, but the movement 
of opening and closing the left or right fist is imagined. Tasks 3 
and 4, which consist of moving both fists and both legs (task 3) 
and imagining this movement (task 4), are not considered in this 
study because we focus on the development of the tool in a binary 
way.

Therefore, keeping task 1 and task 2, both repeated 3 times, 
we have a set of 6 experiments. Each experiment lasted 2 min-
utes and was recorded with 64 electrodes using the 20-10 system. 
EEG channels Nz, F9, F10, FT10, A1, A2, TP9, TP10, P9 and P10 
were excluded. The sampling rate was 160 Hz. In each two-minute 
4

experiment, movements or thoughts T1 and T2 (lasting 4.1 s) are 
alternated with rest periods recorded as T0 (lasting 4.2 s). That is, 
there is always a T1 or T2 event lasting 4.1 s followed by a T0 rest 
period lasting 4.2 s. T0 events are eliminated for data uniformity 
and to treat all trials in the same way.

These data, provided in European Data Format (EDF+) files, are 
converted from EDF+ format to numerical format and from there 
to matrices that, after passing through the algorithm, are in the 
correct format to enter the classifier.

2.2. CNN

CNN is a type of artificial neural network (ANN) designed to 
process pixel data, which is commonly applied for visual image 
analysis and processing, using a mathematical operation called 
convolution in at least one of its layers [39,40]. These types of net-
works usually consist of three layers: the input layer, the output 
layer, and one or more hidden layers where the convolutions are 
performed. These layers alternate with grouping layers, fully con-
nected layers, and normalization layers to group the feature maps 
that are obtained to arrive at a layer that connects them all in one 
or several outputs.

This network is suitable for image analysis due to its grid-like 
typology since during convolution and clustering it takes into ac-
count the different spatial relationships existing between its sepa-
rate features [41,42]. The general scheme of the CNN architecture 
is shown in Fig. 2. In this work, 2D convolutional layers are used to 
process the EEG signal data. These data are presented in the form 
of 2D matrices after being treated. These matrices are the result 
of arranging the EEG channels by copying the structure of the EEG 
cap. In other words, the conformation of the array is the same as 
the conformation of the electrodes in the cap.

With this, the CNN will have the advantage of taking into ac-
count the spatial conformation of each moment of the experiment. 
Three convolutional layers are used in series with 128, 64, and 32 
feature maps. The mathematical expression for a 2D CNN layer is 
given by [43]:

O i, j,k = f

(
M−1∑
m=0

N−1∑
n=0

C−1∑
c=0

Ii+m, j+n,c ∗ Km,n,c,k + bk

)
(1)

Where, O is the output tensor of dimensions (Io , Jo , K ) I, is 
the input tensor of dimensions (I i , J i , C), K is the kernel (or filter) 
tensor of convolution of dimensions (M, N, C, K ), f is the activa-
tion function (for example, ReLU), b is the bias tensor (scalar). The 
summation is over the indices m, n, and c to traverse the input 
tensor and the kernel tensor.
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Fig. 3. LSTM architecture.
2.3. LSTM

LSTMs are one of the most widely used neural networks in the 
field of DL for time series processing or prediction. They use a 
memory cell (ck), which can store and transmit information from 
previous and present states for future use. Along with this, LSTMs 
use a series of algorithmic gates capable of retaining useful infor-
mation from previous or current stages and acting according to the 
target.

There are variants such as Bidirectional LSTM (BiLSTMs) or Gate 
Recurrent Units (GRUs) with slightly different functions. LSTMs ap-
ply to tasks such as handwriting recognition, speech recognition, 
healthcare, video games, and weather prediction, among others. It 
can also be combined with other techniques to improve the overall 
network architecture, as in this case.

LSTM is essential for our model as it takes into account the 
temporal features of the system (sequences) and analyzes the CNN 
spatial windows over time. It extracts useful temporal information 
and improves performance significantly.

The LSTM is mainly composed of three parts and a memory 
cell, their mathematical expressions are as follows [44,45]:
Input gate: this layer, is responsible for updating the status of the 
network. In the next step, decide the values to be updated through 
the sigmoidal function.

it = σ (W i · [ht−1, xt] + bi) (2)

W i represents the weight for input, bi represents the correspond-
ing bias, xt is the current time-step, and (ht−1) is the output from 
the previous time-step. The output of the sigmoid function (σ ) will 
be a value ∈ [01], representing fully discard or fully save data, re-
spectively [45,46].
Forget gate: the decision to save or discard information is made 
by this layer which is the first step of LSTM. Inputs to the gate are 
output from the previous time-step (ht−1) and input at the current 
time-step (xt ) [46].

ft = σ
(
W f · [ht−1, xt] + b f

)
(3)

W f and bf represent the weight and the bias for the forget gate 
respectively.
Output gate: determines what information is eventually outputted. 
The output is based on the filtered version of the cell state. The 
sigmoid layer decides on output values and then it is multiplied 
by the cell state [46].

ot = σ (Wo · [ht−1,xt] + bo) (4)

ht = ot · tanh(Ct) (5)

W i and bo are the weight and bias for the output gate, respec-
tively. ht is the output of the LSTM layer at the current time step.
5

The final step is to update the previous cell state (ct−1), which, 
as can be seen from Fig. 3 is calculated through forget and input 
gates.

Ct = ft · Ct−1 + it · gt (6)

Where gt is the tanh layer.
In this study, the CNN layers’ output is fed into a two-layer 

LSTM network with 64 hidden neurons, which are analyzed to in-
corporate temporal information about the events. This approach 
enables the study to consider time-series data and reduce the 
data’s resolution while increasing the quality of information. The 
time series is the size of a complete event, which ensures that the 
data contain sufficient quality information. Using shorter fragments 
would increase the resolution but would result in the loss of use-
ful information. More details about this approach can be found in 
Section 2.4.

2.4. Pre-processing

Our study introduces a novel CNN-LSTM architecture for T1 or 
T2 event classification (previously explained in Section 1.3) of EEG 
signal data related to imaginary right and left fist movements.

The preprocessing consists of a series of arrays in which the 
extractable features are sought to be maximized. Specifically, this 
preprocessing seeks to establish an optimal spatial and temporal 
conformation to feed the algorithm and make it as efficient as pos-
sible in performing the classification.

After acquiring the signal from the database (with 64 channels) 
and performing the separation by subjects and sessions, the ses-
sion data are treated to eliminate the rest events (T0), leaving only 
events of type T1 and T2. At this point, we have vectors of each 
user and session containing only events of type T1/T2 (correspond-
ing to left/right). Each of these events, as explained in section “2.1. 
Dataset” has a duration of 4.1 seconds and a sampling frequency 
of 160Hz, so there are 656 samples per event. This results in a 
64x656 vector per event.

The next preprocessing step is to restructure this data into 
10x11 matrices. Here, the 64 channels used to measure the brain 
signal are restructured to have a matrix conformation similar to 
that of the EEG helmet, mimicking the physical configuration of 
the electrodes in the helmet and resulting in a 10x11 2D matrix 
(where the gaps with no signal are filled to 0), see Fig. 4.

This 2D matrix is then labeled and sorted into 10x11x656 vec-
tors. Where 656 is the number of samples contained in a full T1 
or T2 event. We note that using the full event provides higher ac-
curacy than using shorter time windows (e.g., 328 or 164 samples) 
This could be due to the fact that by using much higher resolu-
tions (shorter time windows), useful information is lost from the 
full events of each subject, as they have different response capabil-
ities. With this event grouping step, we are able to capture spatial 
information, which will be crucial for classification later on.
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Fig. 4. Conversion of the EEG data into 2D arrays with the same layout as the EEG helmet.
These two preprocessing methods work synergistically in clas-
sification, providing better performance than if they were used 
separately.

2.5. Architecture of the network

After this pre-processing of the data using our own algorithm, 
the data is passed to the classifier architecture. This was developed 
and implemented using Matlab and DL Toolbox software and has 
the following structure:

� First, the architecture consists of a sequential input layer “se-
quenceInputLayer”, where the 3D matrices (10x11x656) are 
treated as 2D matrices (10x11), with the remaining 3 dimen-
sion taken as a temporary variable (656), since they corre-
spond to the event to be classified. In this layer, a normaliza-
tion of the type “Zscore”, which normalizes the data to “zero” 
is carried out. This is done to try to equalize the different mi-
crovolt values that exist between different users and have a 
standard.

� After the output of this layer, the folding layer “sequenceFold-
ingLayer” is added, which is used to make the use of CNN and 
LSTM layers compatible in Matlab and have the correct format. 
Within this layer, 3 CNN layers are added sequentially. These 
have 32, 64, and 128 feature maps as parameters, respectively. 
The first two convolutional layers use a “same” type and a 
“replicated” value padding as parameters of the CNNs, while 
the last layer uses a “symmetric-includes-edge” padding value. 
The goal of these layers is to capture the spatial information 
contained in the event matrices through convolutions.

� After the output of the CNNs, a fully connected layer is used 
followed by a dropout layer. These two layers, based on the 
bibliography, have a good perform in these types of classi-
fications [47]. On one hand, what is sought with the fully 
connected layer is to establish multiple connections between 
the output neurons, improving the relationships between neu-
rons [43]. And on the other hand, with the dropout layer it 
seeks to reduce the randomness of the classification by ran-
domly deactivating neurons. This results in less bias and more 
reinforced and less random learning [48].
6

� The folding is then closed using the “sequenceUnfoldingLay-
er” layer so that the output of the dropout is in the correct 
input format to the next layer. This layer is the Flatten layer 
which seeks to flatten and convert the output matrix into a 
1-dimensional vector. This is done in order to allow entry into 
the next 2 layers.

� These are 2 LSTMs layers placed in series that will iterate. 
Hence, the sequences are treated as a set of vectors from 
which the LSTM algorithms are capable of extracting tempo-
ral characteristics. These 2 LSTM layers have 64 neurons in the 
hidden layer each. The first LSTM layer has the parameter set 
to iterate only with the “last” value while the second LSTM 
returns the entire “sequence” value. This allows feedback in 
these layers that provide information about the previous event 
or sequence and that subsequently result in the complete se-
quence with the temporal information being output.

� As was done in the output of the CNN layers, a Fully connected 
layer and another dropout layer are added with the same ob-
jective.

� Finally, a softmax layer is placed, which is responsible for per-
forming a statistical distribution of the output and finally the 
binary classification layer that will perform a comparison with 
the labels to give a final output response.

Fig. 5 shows the Matlab DL toolbox diagram where it can be 
seen the sequence of steps described above. On the other hand, 
Fig. 6 shows a flowchart of the process where it can be seen the 
steps that were followed.

1- Dataset, where data were collected from the Physionet data-
base, showing the nature of the signal in different channels 
and the formation of an EEG helmet in data collection accord-
ing to the 20-10 system.

2- Example of the formation of a 2D matrix after applying the 
preprocessing algorithm. It is observed how the 64 channels 
form a matrix representing the helmet, and below what the 
3D matrix would look like.

3- Simplified diagram of an example where 2D matrices are fed 
into the classification algorithms and a T1 or T2 response is 
obtained at the output.
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Fig. 5. Scheme of classifier architecture in DL toolbox.

Fig. 6. Outline of the process carried out in the study.
The proposed architecture represents a significant contribution 
to the field due to its unique combination of CNN and LSTM layers 
and its synergy for EEG signal data classification.

2.5.1. Network training options
The model used in the classification was trained in Matlab 

using the Adaptive Moment Estimation or Adam method, which 
consists of a Root Mean Square Propagation (RMSProp) with mo-
mentum [49]. The values of the hyperparameters in the classifier 
were:

� “Epsilon” value of 1-10-9.
� Initial Learn Rate value of 0.0001
� Mini Batch Size of 128
� Max Epochs of 90 and “Shuffle” in each epoch
� Gradient Threshold Method is set to “l2norm”
� Gradient Decay Factor is set to 0.8.
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Training and testing are performed using the k-fold method 
with n = 10, with multiple iterations for each user. In each it-
eration, 8 of the folders are used for training and the remaining 2 
are used for a blind test. This gives a percentage of accuracy for 
each user and the associated standard deviation.

2.6. Metrics

The metric that has been used to evaluate the performance of 
the models is accuracy, which has been derived from the confu-
sion matrices for each experiment. To ensure the reliability of our 
findings, we have also included the standard deviation, and the ex-
periments were conducted using the k-fold 10 method to achieve 
a more homogeneous representation.

The results have been analyzed and we have taken into consid-
eration the p-value to ensure that the findings are statistically sig-
nificant, being this a key factor in determining the significance of 
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Table 4
Results of the user-by-user prediction with standard deviation and total mean.

User Success STD

1 66,25 2,25
2 66,47 1,28
3 74,07 1,62
4 86,28 2,05
5 61,01 1,28
6 58,92 2,49
7 64,32 2,31
8 75,46 1,86
9 86,50 2,08
10 77,40 1,80
11 87,58 1,53
12 77,11 2,05
13 62,22 2,34
14 68,95 1,41
15 66,43 2,35
16 85,42 1,93
17 85,19 1,80
18 79,78 1,85
19 60,55 0,95
20 78,06 2,01
21 74,46 1,06
22 76,08 1,88
23 63,74 1,78
24 64,25 2,27
25 73,30 0,96
26 85,44 1,95
27 81,97 1,90
28 86,70 2,05
29 80,76 1,73
30 76,83 1,77
31 76,40 3,93
32 74,81 1,90
33 72,54 1,88
34 75,57 1,28
35 58,22 2,38

USer Success STD

36 65,38 2,77
37 78,88 1,49
38 57,04 3,15
39 85,71 1,16
40 77,77 2,04
41 85,48 1,27
42 80,51 2,80
43 72,84 2,36
44 76,08 1,95
45 62,78 1,64
46 76,79 1,91
47 78,74 2,62
48 82,88 1,42
49 67,22 1,69
50 78,21 1,65
51 83,04 1,08
52 72,03 2,04
53 64,84 1,96
54 83,11 1,62
55 76,56 1,14
56 64,08 1,52
57 78,00 1,50
58 74,18 1,15
59 83,30 2,67
60 84,78 2,08
61 69,56 1,49
62 85,36 1,85
63 58,97 2,15
64 79,16 1,70
65 73,06 1,75
66 60,29 3,08
67 77,80 2,08
68 90,54 1,22
69 69,47 1,80
70 81,52 2,57

User Success STD

71 78,57 1,98
72 81,56 1,60
73 74,93 1,61
74 76,56 1,56
75 63,52 3,03
76 78,52 1,64
77 87,17 1,59
78 71,76 2,85
79 64,38 1,16
80 60,82 2,00
81 83,92 1,40
82 77,07 1,56
83 71,94 1,20
84 85,07 0,73
85 66,65 1,64
86 70,29 1,89
87 58,30 1,78
88 70,59 1,60
89 72,88 2,43
90 77,80 1,38
91 63,21 1,21
92 71,23 1,98
93 76,97 3,11
94 65,44 1,84
95 76,54 1,34
96 65,24 2,10
97 75,90 2,51
98 83,15 2,05
99 72,13 2,16
100 83,55 1,21
101 90,37 2,11
102 79,36 1,94
103 71,28 1,61
104 73,68 2,07
105 81,73 2,47

Average 74,54 1,86
the findings. The most advanced study in binary classification with 
Physionet has been used. This study by Kim et al. [50] achieves 
a hit rate of 80.05%, so our hypothesis will be based on a confi-
dence level of α = 0.05 where users either exceed or fail to exceed 
this value for the different thresholds. The use of accuracy, stan-
dard deviation, k-fold 10, and p-value analysis has allowed us to 
gain valuable insights into the effectiveness of the proposed model 
and tool.

3. Results & discussion

In this section, the results of a user-by-user classification have 
been shown and discussed. Consequently, a threshold was applied 
to create a tool to discern which users are valid to use EEG or if 
there were any problems in the EEG samples or the experiment 
when it was carried out.

The hardware used to obtain the results is a computer with an 
I7-9600-K processor, 16 GB of RAM, and a Gigabyte GeForce RTX-
2060 Windforce OC-6GB-GDDR6 graphic card with a 7.03 TFLOPS. 
The computation time ranges from 25 to 35 ms.

3.1. Classification user-by-user

Table 4 shows the results of the user-by-user classification of 
the 105 users in the database (described in Section 2.1). For each 
user, we use the k-fold method with n = 10, where each user 
is trained on its data and tested on a blind sample of it at each 
iteration. Thus, we are looking for specificity and a model that is 
trained on data from the whole set, but separately, unlike previous 
work that trains on data from the whole set at the same time.
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The results show an average accuracy of 74.54%. Some subjects 
exceed 90% accuracy, while other subjects stay around 60% accu-
racy, see Fig. 7. As can also be analyzed in these results, 56 of the 
105 database users show a classification success rate above 75%, 
while 49 of the 105 of the subjects did not exceed 75% classifica-
tion success.

This indicates that in the generic classification experiments, 
when training with the whole ensemble at once, it is not possi-
ble to distinguish which subjects contribute value to the network 
and which ones contribute noise by being inappropriate. This, to-
gether with reviewed studies such as Roc et al. [13], suggests that 
there is a limit to the success due to the nature of the subjects, 
who have different predispositions and must be trained correctly 
to respond to the stimuli.

For this reason, a secondary analysis is proposed in which a 
decision threshold is established above which the test is valid. The 
objective is to create a tool capable of detecting subjects whose 
test is invalid and who are burdening the system. This will make it 
possible to analyze the reason (distractions in the test, bad predis-
position, need for specific training, or even instrumentation errors 
in the acquisition of the signal) and to increase the accuracy of the 
whole set.

3.2. Threshold

As mentioned above, a series of pass thresholds were then 
established for the subject’s test to be considered valid. These 
thresholds are set at 75%, 80%, 85%, and 90% success. 75% is cho-
sen because it is the average of the experiment. 80% because it is 
the average of other experiments using the same methodology and 
database [50]. The 85% threshold is used because it is an objective 
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Fig. 7. Representation of the classification accuracy of the 105 users. In green, those that exceed 75% of accuracy (golden users). In red those that do not.
Table 5
Classification results applying the different thresholds. The percentage change in 
success and in the number of users with respect to.

Threshold Users Success Increase of success (%) p-value (α = 0.05)

none 105 74,54 none P > 0.05
75 56 81,01 8,68 P > 0.05
80 28 84,59 13,48 P < 0.01
85 14 86,63 16,22 P < 0.01
90 2 90,45 21,34 P ∼= 0.25

value that would exceed that of other user-to-user training studies, 
such as that of Luo et al. [23] (82.75%). No study using user-to-
user training and the Physionet database has managed to exceed 
this threshold. Finally, the 90% threshold is set because there is no 
study with a similar methodology (user-to-user) that reaches this 
percentage.

It should be noted that there are certain subjects who have a 
better predisposition to obtain a good EEG and, on the contrary, 
there are others who do not reach sufficient concentration to ob-
tain an optimal signal-to-noise ratio. Some studies have referred 
to these as “golden users”, i.e. subjects with a good EEG predis-
position, while they also use the term “EEG illiterates” for users 
with a bad predisposition [51]. The latter can improve their signal 
in a new attempt by various methods, such as a short meditation 
before the tests [52]. Thus, by establishing this threshold, a tool 
is created that allows us to distinguish between valid users and 
those who should repeat the test. Establish an improvement in the 
system. The results are shown in Table 5.

These show that only by applying a threshold of 75% success, 
the success rate increased from an average of 74.54% to 81.01%. The 
success concerning the initial experiment is 8.68% higher while 
the users go from 105 to 56. This would guarantee a success rate 
higher than that of most studies with this number of subjects.

When the threshold is set at 80%, the number of users drops 
to 28 (a drop of 73.33% respect the first experiment), while the 
average success rate increases to 84.59%. For the 85% threshold, 
the number of users is 14, which is still a higher number than 
databases like the BCI competition. With this threshold, an aver-
age percentage of success of 86.63% is reached. This is a 16.22% 
improvement over the full set.

Finally, if the threshold is set at 90, only 2 users manage to 
exceed this limit, being too demanding for the rest of the users 
and obtaining an average of 90.45% in the classification success.
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This implies that the use of this threshold in the classification 
works, allowing tests to be discarded so that the set reaches a 
higher success rate and the subjects that fall below know that they 
must repeat the test. With this, a system is achieved that is capable 
of working with a large number of users and responds correctly.

Furthermore, the p-value indicates that the probability that the 
data you have observed (in this case, the classification successes) 
were obtained randomly or by chance is practically zero in the 
cases where the threshold was 80 and 85%. In the case of 90% 
having a small population, the statistics do not apply well. And in 
the case of 75% and no threshold, the p-values indicate that there 
is not enough evidence to guarantee that some classifications have 
not arisen from chance or the nature of the data.

3.3. Comparison of applied threshold method with other studies

Below, in Table 6, a comparison of some existing jobs taking 
into account the number of users, channels, and success rate is 
shown. They are not included in the table of works with their own 
database because they have not been studied enough to be com-
pared.

If we use the number of users as a reference, when applying 
the 85% threshold we have 14 users (5 more than in the BCI IV 
contest). With a higher number of users, we obtain an average suc-
cess rate of 86.63%. This percentage is higher than the 85.04% of 
Olivas-Padilla and Chacon-Murguia [53] using 9 users with the BCI 
database. On the other hand, using a threshold of 90%, a success 
rate of 90.45% was obtained, surpassing the 3 users of the BCI III 
competition whose ranking gave 89.2% in Miao et al. [55].

4. Conclusions

In conclusion, the results of this study demonstrate the poten-
tial of the proposed methodology to address a major challenge in 
the development of BCIs, that is the bias that arises from user-by-
user training models and the bias associated with small datasets 
used in most studies.

Two tasks from the four possible ones suggested in the 
database were chosen because we gave priority to proving the hy-
pothesis. We wanted to apply it to a simple case where subjects 
open and close their fist and then imagine themselves doing these 
movements. On the other hand, the reason for doing an intra-
subject analysis is that in the existing bibliography, many works 
propose a system where training is done with a set, where the 
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Table 6
Comparison of applied threshold method with other studies.

Article Dataset Channels Users Success rate

Yong et al. [20] BCI competition IV-2b 3 9 78.2%
Lee and Choi [21] BCI competition IV-2b 3 9 78.93%
Ha and Jeong [22] BCI competition IV-2b 4 9 78.44%
Luo and Chao [23] BCI competition IV-2b 3 9 82.75%
Olivas-Padilla and Chacon-Murguia [53] BCI competition IV 2a 8 9 85.04%
Ai et al. [54] BCI competition IV 2a 3 9 79,70%
Miao et al. [55] BCI competition III 4a 118 3 89,2%
This study (complete set) PhysioNet dataset 64 105 74.54%
Kim et al. [50] PhysioNet dataset 64 105 80.05%
This study (threshold 75%) PhysioNet dataset 64 56 81.01%
This study (threshold 80%) PhysioNet dataset 64 28 84.59%
This study (threshold 85%) PhysioNet dataset 64 14 86.63%
This study (threshold 90%) PhysioNet dataset 64 2 90.45%
data of some subjects are mixed with those of others. Here we 
wanted to develop a classification tool based on the subject, which 
allows us a generalization when it comes to know if any new user 
is valid or not and, if so, to have a system that allows a good clas-
sification of its imaginary signal of movement.

By using a hybrid deep learning model consisting of a CNN and 
LSTM network to analyze the spatial and temporal characteristics 
of EEG signals from the Physionet public dataset, a high classifica-
tion accuracy of up to 90% for some users and a global average of 
74.54% is achieved.

In addition, a second analysis using different test acceptance 
thresholds is performed, resulting in a significant improvement in 
classification accuracy of up to 21.34%. The proposed methodology 
represents a significant contribution to the field of BCIs, providing 
a more generalized system that can be trained on a large amount 
of data from different users, thus avoiding biases arising from 
user-specific models. Additionally, the proposed model effectively 
captures spatial and temporal features of EEG signals, improving 
classification performance and providing a discriminative tool to 
detect inefficient EEG recordings. The potential impact of this re-
search extends beyond the field of BCIs and has implications for 
the broader area of human-computer interaction. We believe that 
this work represents a promising step towards developing more 
reliable and accurate BCIs, and can serve as a valuable tool for 
analyzing users who present worse results on their EEG record-
ings. Future research could explore the addition of more advanced 
layers, such as transformers, to further improve the performance 
of the system, as well as the addition of multitasking classifica-
tion, which adds another level of complexity to the process. Also, 
technics as the developed by Sun, B et al. [18] could allow us to 
improve the proposed system.
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