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in marine and coastal environments due to continued popu-
lation growth and the simultaneous development of coasts 
and offshore waterways (Ruiz et al. 2013). Ocean sprawl 
removes or transforms marine habitats by adding artificial 
structures (Heery et al. 2017). Artificial substrates include 
a variety of structures, such as groins, walls, breakwaters 
(Dugan et al. 2011), and floating devices, such as buoys, 
aquaculture farms, and nets (Heery et al. 2017).

Fouling refers to the growth of organisms on surfaces 
that are in contact with water (Ferrario et al. 2020). It 
involves the attachment and growth of microorganisms on 
submerged natural or human-made substrates (Ferrario et al. 
2020). Fouling comprises algae and fauna, which are both 
sessile and mobile. Among the most abundant phyla in this 
type of epifauna are arthropods, mollusks, annelids, and 
echinoderms (Fortič et al. 2021; Castro et al. 2022). These 
taxonomic groups play a crucial role in coastal food webs 
and are intricately linked to benthic environments (Gagnon 
et al. 2021). The epifaunal community has been recognized 
as an effective indicator of changes in biodiversity and 
abundance (Pierri-Daunt and Tanaka 2014).

Floating devices such as buoys are objects that can be 
found in rivers, lakes, or seas and are anchored to the bottom 

Introduction

Human-driven perturbations are extensive all over the 
planet (Halpern et al. 2019). The main drivers of these 
changes include pollution, eutrophication, and deforestation 
(Nelson et al. 2006). Various activities in the ocean, such 
as fishing, aquaculture, and harbouring, contribute to these 
disturbances (Halpern et al. 2008). Artificial substrates are 
one of the major perturbations that show a steady increase 
in coastal areas (Ferrario et al. 2016). Extensive develop-
ment and construction in marine and coastal systems con-
tribute to a phenomenon called ‘ocean sprawl’. This term 
describes the increasing dominance of man-made structures 
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Abstract
Ocean sprawl has become increasingly prevalent in marine environments. Artificial substrates, notably floating structures 
like buoys, have gained significant attention in recent years. They serve as valuable models for future studies aimed at 
understanding and mitigating the impacts of anthropogenic activities on marine ecosystems. We studied the epifauna from 
buoys at six different locations on the northern and southern coasts of the island of Gran Canaria (Canary Is., NE Atlantic 
Ocean). A total of 12,130 individuals belonging to 57 species were collected. The abundance of individuals was higher in 
the northern area, whereas the species richness was higher in the southern area. The n-MDS showed significant differences 
between localities, with Las Alcaravaneras being separated from the remaining ones. These dissimilarities were due to the 
differences in the abundances of the amphipods P. gammaroides and A. rubricata. The orientation was a pivotal factor in 
structuring these associated communities in floating buoys. As a preliminary approach, high biodiversity and species rich-
ness were observed in these buoys; hence, they have a high potential to be used as bioindicators of human disturbance.
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(Bedard et al. 2010). Buoys are used for various purposes, 
including navigating boats through channels, marking ship-
ping lanes, submerged objects or danger zones, and serving 
as weather stations (Templin et al. 2022). Studies on epi-
fauna have often focused on floating objects such as buoys 
and ship hulls (Firth et al. 2016). Ship-mediated marine 
invasions are primarily caused by the transfer of organisms 
associated with ship hulls or ballast materials (e.g., Ruiz et 
al. 2013; Ros et al. 2020).

Maritime traffic can be affected by harmful plants and 
animals, creating complex communities, and contributing 
to material degradation (Murtaugh and Hernández 2014). 
The economic impact of biological pollution has affected 
countries striving for technological development (Coutts et 
al. 2010).

The Canary Islands, particularly the island of Gran 
Canaria, are of great ecological and marine importance 
(Riera and Delgado 2019). Gran Canaria is an island with 
a high population density and has Puerto de la Luz, an 
international maritime transport port (Tovar et al. 2015). 
A significant increase in the number of buoys in aquacul-
ture, marinas, and beaches in Gran Canaria, effective mark-
ing strategies should be developed to ensure the safety of 
maritime activities while preserving marine ecosystems 
(Abramic et al. 2021).

The main aim of this study was to explore the epifauna 
community of the buoys on different beaches of the island 
of Gran Canaria and determine if orientation (North vs. 
South) is a pivotal factor in structuring these associated 

communities in floating buoys. This study hypothesized that 
the epifauna composition did not vary among the studied 
beaches neither North nor South areas.

Materials and Methods

Study Area

The Canary Islands is an archipelago in the Atlantic Ocean, 
which is located on the northwest coast of Africa, between 
27° 37’ and 29° 25’ north latitude and 13°20’ and 18° 10’ 
west longitude (Fig. 1).

Samples were collected from beaches with buoys on Gran 
Canaria Island between March and April 2023 (Fig. 1). In a 
proactive survey carried out in February 2023, 15 beaches 
were sampled. However, due to the absence of buoys on 
some beaches during this period, sampling was limited to 
six specific beaches (Amadores, Inglés, Las Alcaravaneras, 
Las Nieves, Mogán and Puerto Rico). Table 1 provides an 
overview of the sampling areas and their characteristics.

Sampling Design

Ten samples were collected from each beach, using 
25 × 25 cm quadrats, with each sample was equivalent to the 
measurements of two small yellow buoys (60 cm in diame-
ter and 40 cm in height), making up a total of 60 samples (10 
samples per beach x 6 studied beaches. At each beach, five 

Fig. 1 Map of the study area, showing the sampled beaches on the island of Gran Canaria
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buoys were selected randomly for sampling. The selected 
buoys had a similar fouling load, being left in the sea for a 
minimum of one year and a maximum of three years. The 
sampling procedure used a scraper to collect samples from 
the buoys, which was a destructive process. The collected 
samples were then preserved in marked zip bags and trans-
ported to the laboratory. To ensure preservation, a solution 
of seawater and 70% ethanol was added to the samples 
to facilitate identification in the laboratory. At the labora-
tory, the collected sample was carefully poured into a tray. 
A detailed sorting procedure was then carried out to sort 
the samples into different taxonomic groups. These groups 
were kept in vials to facilitate identification to the lowest 
taxonomic level, i.e. species. For species identification, 
taxonomic identification guides were used for the groups 
represented in the samples (e.g., Day 1968; Lincoln 1979; 
Riera et al. 2003).

Data Analysis

Statistical analyses were performed using the R software. 
Boxplot graphs were used to represent the distributions of 
species richness and individual abundance. In addition, it 
shows the median or second quartile, the distance between 
the third quartile and the first quartile, and the extreme val-
ues that cannot be explained by the distribution. The first 
quartile indicated that 25% of the values were equal to or 
less than this, and the third quartile had 75% of the values.

The non-metric multidimensional scaling (n-MDS) 
allows an analysis based on the ordination of the sampling 
points in a two-dimensional spatial system where the dis-
parity or similarity of the points is noticeable. To do this, 
a code was created for the automatic selection of the low-
est stress in 20 trials. The n-MDS shows the distribution 
of the different locations (10 beaches) and their respective 
orientation (North and South). Permutational Multivariate 
Analysis of Variance (PERMANOVA) allows analysis of a 
group of objects distributed or dispersed according to the 

factors considered. PERMANOVA was performed by con-
sidering the following factors: location and orientation. As 
a result, it is obtained the F value and the probability of F. 
The latter was required to be significant and must have a 
value of p < 0.05. Differences between localities in commu-
nity descriptors (individual abundance and species richness) 
were analyzed by employing one-way analysis of variance 
(ANOVA), after verifying normality using the Shapiro test 
and Mann-Whitney test for homogeneity of variances.

The statistical analyses were performed using a set of R 
packages. The vegan (Oksanen et al. 2022) package con-
tains the codes to perform n-MDS and PERMANOVA, 
and ggplot2 (Wickham 2016) allows us to perform graphs, 
including the box plot. Other packages, such as tidyverse 
(Wickham et al. 2019), janitor (Firke 2023), flextable (Gohel 
and Skintzos 2023), and readxl (Wickham and Bryan 2022), 
were also used to read the data and create graphs and tables 
of higher quality.

Results

A total of 12,130 individuals were collected, belonging to 57 
species, within five taxonomic groups (annelids, arthropods, 
chordates, echinoderms, and mollusks) (Table S1). Arthrop-
oda was the most abundant group in the epifaunal commu-
nity (11,007 individuals, 90.75% of the overall abundance), 
followed by annelids (1,078 ind., 8.89%), echinoderms 
(41 ind., 0.34%), mollusks (3 ind., 0.02%) and chordates 
(1 ind., 0.008%). The three most abundant species were 
amphipods, which stand out because of their dominance, 
namely, Pleonexes gammaroides (3,658 ind., 30.15%), 
Ampithoe rubricata (3,267 ind., 26.94%), and Elasmopus 
rapax (1,553 ind., 12.80%). Followed by the tanaid Tanais 
dulongii (608 ind., 5.01%), the sipunculid Phascolosoma. 
(Phascolosoma) stephensoni (593 ind., 4.89%), the amphi-
pod Stenothoe marina (583 ind., 4.81%), the crustacean 
Pachygrapsus transversus (411 ind., 3.39%), the polychaete 
Polyophthalmus pictus (252 ind., 2.08%), the amphipods 
Jassa marmorata (236 ind., 1.95%) and Apohyale perieri 
(208 ind., 1.71%), and the crustacean Pachygrapsus mar-
moratus (204 ind., 1.68%).

As shown in Table 2, it was used different diversity indi-
ces at the localities to observe the changes at these sites. 
Mogán beach is the locality with the highest number of spe-
cies in a community. In contrast, Las Nieves and Puerto Rico 
had the lowest species richness, although there was little dif-
ference between the localities in terms of species richness. 
Inglés beach had the highest Margalef index value, although 
all values were very low. Las Alcaravaneras and Las Nieves 
had the highest Simpson dominance index values. On the 
other hand, the Simpson diversity index value was higher 

Table 1 Characteristics of each sampling location
Sites / Beaches Coordinates Type of 

beach
AMADORES (South 
zone)

Latitude: 27°47’25.00"N
Longitude: 15°43’27.14"W

Sand

INGLÉS (South zone) Latitude: 27°45’29.34"N 
Longitude: 15°33’56.80"W

Sand

LAS ALCARAVANE-
RAS (North zone)

Latitude: 28° 7’52.02"N
Longitude: 15°25’44.77"W

Sand

LAS NIEVES (North 
zone)

Latitude: 28° 6’0.53"N
Longitude: 15°42’37.80"W

Pebbles

MOGÁN (South zone) Latitude: 27°49’5.22"N
Longitude: 15°45’49.21"W

Sand

PUERTO RICO (South 
zone)

Latitude: 27°47’4.48"N
Longitude: 15°42’48.82"W

Sand
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The northern area, including the beaches of Las Alcara-
vaneras and Las Nieves, was the area with the highest abun-
dance of individuals (248.20 ± 139.89 ind.). In contrast, 
the southern area, consisting of Inglés, Amadores, Mogán, 
and Puerto Rico (179.13 ± 130.35 ind.), showed lower 
abundances than the northern counterparts. In contrast, the 
southern (9.95 ± 2.63 spp.) was the richest area. The north-
ern zone (8.10 ± 2.26 spp.) was also species-diverse, but 
less than the southern zone (Fig. 3). The differences in indi-
vidual abundances between North and South areas were not 
significant (One-way ANOVA, F = 3.57, p = 0.0639), but 
the differences in species richness were highly significant 
between both areas (F = 7.19, p = 0.0095).

As shown in Fig. 4, the Alcaravaneras beach is differ-
ent from the others, as it is concentrated on the left side 
of the ordination. The rest are grouped in the center and 
to the right of the figure. In addition, a high heterogene-
ity was observed in the Mogán samples compared to the 
other locations (Fig. 4). The stress of n-MDS was 0.24, a 
high number indicating the heterogeneity of the samples. 
The values obtained when performing the PERMANOVA, 
considering the beach (F = 7.10, p = 0.0001), the orientation 
(F = 6.62, p = 0.0001), and the interrelation with the factors 
(F = 15.571, p = 0.0001), in all cases showed highly signifi-
cant differences. The epifauna communities were different 

for Inglés beach and the Shannon–Wiener index value. Spe-
cific richness (One-way ANOVA, F = 0.599, p = 0.482) and 
the Margaleff index (F = 1.179, p = 0.339) showed that there 
were no significant differences in the diversity of individu-
als between northern and southern zones. In contrast, the 
Simpson dominance index (F = 19.18, p = 0.0119), Simpson 
diversity index (F = 19.18, p = 0.0119), and Shannon-Wiener 
index (F = 16.39, p = 0.0155) showed significant differences 
in the diversity of individuals. The values obtained when 
performing the PERMANOVA, considering the locations 
(F = 1.8789, p = 0.2444) and the orientation (F = 2.6759, 
p = 0.2) in both cases showed no significant differences.

Las Alcaravaneras (312.6 ± 162.30 ind.), and Amadores 
(293.9 ± 163.82 ind.) were the beaches with the highest 
abundances. On the other hand, abundances were lower in 
the remaining sampling areas, Inglés (95.4 ± 86.76 ind.), 
Las Nieves (183.8 ± 75.84 ind.), Mogán (204.8 ± 103.64 
ind.) and Puerto Rico (122.4 ± 42.22 ind.). The number of 
species was similar in the studied beaches, mostly com-
prising 7 and 13 taxa, and Inglés beach (11.4 ± 2.5 spp.) 
showed the highest species richness, followed by Amadores 
(9.1 ± 2.60 spp.), Mogán (9.8 ± 2.70 spp.) and Puerto Rico 
(9.5 ± 2.51 spp.). In contrast, Las Nieves (8.0 ± 3.13 spp.) 
and Las Alcaravaneras (8.2 ± 1.03 spp.) had the lowest rich-
ness (Fig. 2).

Fig. 2 Abundance and species richness of epifaunal communities at different sites

 

Diversity indices/ locations Specific rich-
ness (S)

Margalef 
index

Simpson domi-
nance index

Simpson 
diversity 
index

Shannon-
wiener 
index (E)

AMADORES 25 0.0082 0.8359 0.1641 0.0590
INGLÉS 28 0.0283 0.6511 0.3489 0.1363
LAS ALCARAVANERAS 26 0.0080 0.9860 0.0140 0.0044
LAS NIEVES 23 0.0120 0.9806 0.0194 0.0064
MOGÁN 29 0.0137 0.6959 0.3041 0.1134
PUERTO RICO 23 0.0181 0.7017 0.2983 0.1192

Table 2 Diversity indices of each 
sampling location
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stebbingi (8.4%) and the tanaid T. dulongii (6,0%) in Puerto 
Rico (Table 3).

The amphipod P. gammaroides was the important con-
tributor to establishing the dissimilarity between northern 
and southern locations (26.5%) and is found in greater 
abundance in the northern zone. This species was followed 
by the amphipod A. rubricata (25.9%), which peaked in 
the southern zone. The amphipods E. rapax (11.8%) and S. 
marina (5.6%), the sipunculid P. (P.) stephensoni (5.5%), 
and the tanaid T. dulongii (4.5%) were minor contributors. 
The species E. rapax and P. (P.) stephensoni were more 
abundant in the southern zone, whereas S. marina and T. 
dulongii were more abundant in the northern zone. Finally, 
the crustacean P. transversus (3.0%) was important in Ama-
dores, and not in the remaining locations (Table 4).

among the studied beaches and between northern and south-
ern locations.

The amphipod A. rubricata was the most important 
contributor to the similarity of epifauna community in Las 
Nieves (36.6%) and Amadores (50.9%), and contributed to 
Las Alcaravaneras, Inglés and Puerto Rico, with a percent-
age over 15% (15.4%, 20.6% and 15.9%, respectively). The 
amphipod P. gammaroides was the most abundant species 
in Las Alcaravaneras (47.9%), Inglés (28.0%), Puerto Rico 
(20.1%), and Mogán (38.3%) and contributed to Las Nieves 
(26.1%). Finally, there were specific species on the different 
beaches such as the amphipod S. marina in Las Alcaravane-
ras (15.7%), the polychaetes P. dumerilii (7.9%) N. cirrosa 
(4.4%), and P. pictus (4.1%) in Inglés, and the amphipod A. 

Fig. 4 NMDS showing sampled 
beaches (Northern area: Alcara-
vaneras and Las Nieves; Southern 
area: Amadores, Inglés, Mogán 
and Puerto Rico)

 

Fig. 3 Abundance and species richness of epifaunal communities in different orientations
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Discussion

In the present study, the orientation (North vs. South) 
played an important role in the structure of the epifaunal 
community. Mogán beach had the highest species diversity 
in the community. The Margalef index values consistently 
indicated low biodiversity across all locations. The Simp-
son’s index values, which indicate the probability of two 
randomly selected individuals belonging to different species 
within a population of N individuals, suggest limited bio-
diversity. The southern zone has the highest species rich-
ness, while the northern area has the highest abundance of 
individuals. n-MDS analysis showed a high dissimilarity 
between the epifauna-associated communities between the 
sampling locations. The differences between northern and 
southern areas are mainly explained by differences in the 
densities of the most abundant species, i.e. the amphipods P. 
gammaroides and A. rubricata.

The presence of artificial structures on the coastal envi-
ronment modifies the marine dynamics (currents, waves 
and connectivity of water masses), leading to changes in 
sedimentation patterns, beach erosion, larval dispersal and 
water mass transport (Sánchez-Jerez et al. 2002). This study 
indirectly considered several hydrodynamic effects at large, 
intermediate, and small spatial scales (Heery et al. 2017) 
by using orientation (North and South) as a proxy. Marine 
species often benefit from maritime traffic through ballast 
waters and hull biofouling (Castro et al. 2022), mechanisms 
that facilitate the transport and introduction of various 
organisms across different marine environments. The pres-
ent study, focusing on the ecological dynamics of coastal 

Table 3 Percentage of species contribution at each sampled beach
Locations Species % 

Contribution
% Cum-
sum

AMADORES Phascolosoma 
(Phascolosoma) 
stephensoni

81.7 7.2

Elasmopus 
rapax

74.5 23.6

Ampithoe 
rubricata

68.7 50.9

INGLÉS Pachygrapsus 
marmoratus

79.5 3.6

Phascolosoma 
(Phascolosoma) 
stephensoni

75.9 3.9

Polyophthalmus 
pictus

72.0 4.1

Nephtys cirrosa 67.9 4.4
Apohyale perieri 63.5 7.0
Platynereis 
dumerilii

56.5 7.9

Ampithoe 
rubricata

48.6 20.6

Pleonexes 
gammaroides

28.0 28.0

LAS 
ALCARAVANERAS

Ampithoe 
rubricata

79.0 15.4

Stenothoe 
marina

63.6 15.7

Pleonexes 
gammaroides

47.9 47.9

LAS NIEVES Elasmopus 
rapax

79.4 16.7

Pleonexes 
gammaroides

62.7 26.1

Ampithoe 
rubricata

36.6 36.6

MOGÁN Phascolosoma 
(Phascolosoma) 
stephensoni

75.8 11.0

Pachygrapsus 
marmoratus

64.8 11.0

Elasmopus 
rapax

53.8 15.5

Pleonexes 
gammaroides

38.3 38.3

PUERTO RICO Tanais dulongii 81.1 6.0
Apohyale 
stebbingi

75.1 8.4

Elasmopus 
rapax

66.7 8.6

Phascolosoma 
(Phascolosoma) 
stephensoni

58.1 11.0

Apohyale perieri 47.1 11.1
Ampithoe 
rubricata

36.0 15.9

Pleonexes 
gammaroides

20.1 20.1

Table 4 Percentage of species contribution in North/South
Variable Species North 

ind.
South 
ind.

% 
Contribution

% 
Cum-
sum

ORIEN-
TATION 
(NORTH-
SOUTH)

Pachygrap-
sus 
transversus

122 
(29.68%)

289 
(70.32%)

82.8 3.0

Tanais 
dulongii

367 
(60.36%)

241 
(39.64%)

79.8 4.5

Phasco-
losoma 
(Phasco-
losoma) 
stephensoni

2 
(0.34%)

591 
(99.66%)

75.3 5.5

Stenothoe 
marina

565 
(96.91%)

18 
(3.09%)

69.8 5.6

Elasmopus 
rapax

246 
(15.84%)

1307 
(84.16%)

64.2 11.8

Ampithoe 
rubricata

1223 
(37.43%)

2044 
(62.57%)

52.4 25.9

Pleonexes 
gammaroi-
des

2067 
(56.51%)

1591 
(43.49%)

30.2 26.5
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factors to be considered as medium- and long-term research 
objectives.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s41208-
024-00714-1.
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