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Abstract : Patchinese is the name given to a
heterogeneous, unequal, epatial distribution of many
populations. A simple mathematical model to explain the
temporal evolution of patch sizes ie built. The model
introduces random parameters in a baeic differential
equation which rules the logistic growth of patch
sizes thus obtaining a stochastic differential equation
whose associated Fokker - Planck equation is solved
afterwards.

1 INTRODUCTION .

Logistic growth is one of the moest important tools
in the modelling of wvarious problems in Ecology.
Roughly epeaking, it i &a wvariant of the classical
malthueian growth law y'= ky where R is dependent on
the population eize ¥ and on some limiting factor. In
general, this factor represente the maximum population
that can survive on the available rescurces, although
short periode can happen where the population is
greater than thies maximum. On the other, hand,
small-scale phenomena can modify the logistic growth
path in such a way to render it difficult to reccgnize.
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The contribution of these must be added to the logistic
pattern, in order to obtain an equation where both
large and small-acale factore are represented.This can
be achieved by way of a stochastic differential
equation, whose solution is the probabilistic
distribution of the population s8ize rather than 1ite
actual size.

2. PATCH SIZES IN THE OCEAN.

The study of patches of several substances or
living beinge is of foremoat importance in the field of
marine sciences, where estimation of patch sizee and of
their spreading mechanisms is an active research field.
When one deals with patches whose constituents are
passive, logistic growth ias a rather aduquafa modelling
for the estimation of patch sizes. First of all, we
shall suppose that patches are elongated bodies whoee
size can be described by the diameter L{t>, where time
dependence shows the variability of L. Second, the
size of the patch depends on how energy is fed into it.
Two Bources are available: a) large or medium-scale
energy-containing eddies characteristic of the ocean
zone where the patch appears. b) emall-scale eddies
responsible for very small variations in the patch
aize. The scale of these is so small with respect to
the energy -containing eddies that they can be
considered as noise. In any definite ocean area one
can find a typical scale for the energy-containing
eddies. It is natural to think that whenever the aize
of a patch ia greater than this typical scale, the
patch will break into emaller patches. Thus, the
typical scale iﬁla limiting factor for the patch size.
Now we write £ for this typical s8cale and find the
logiatic expression for L{t2:
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dl
dt

3 _ L
= A 1 —- b 2 I (1)

where A models features of the ocean ambient. A typical
interpretation for A i1s the stress tensor given by the
velocity gradient within the eddies. Now we turn to
emall-scale energy transfers. If the scale is very far
from the typical scale, we find that fluctuations are
much faster than those due to +the general logistic
pattern. Thue we model them as

3’:; = wCed L (2)

where exponential growth 1s prevented by the changing
pattern of wm(t2>, This ut> is thought of a=s a
stochastic procees; thus equation (2) is a 8tochaatic
differential equation. Physical considerations allow us
to write the expression

uie) = ¥ 2k @D (3)

where ¢(t) is white noise. The parameter R models the
intensity of randomness and can be interpreted in
various ways. One of them 1ie the effect of shear
etreeses and of molecular viscoaity. By adding
equations (2) and (3) we find a simple model for patch
eize in the ocean:

dlL L 1.2
5 A C —— DL + 2R L) L (4)

This is a Langevin-type stochastic differential
equation whose soclution 1is some stochastic procesas
L{t>, instead of a deterministic function.

3. THE FOKKER-PLANCK EQUATION FOR PATCH SIZE.
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Equation (4) 1is usually interpreted as shorthand
for the physically formulated difference equation:

M:A{I-%}Lﬁt+f’é‘h L AWCED

where AW(t)> is the increment of the Wiener process.
This process ( also called Brownian motion )is defined
as the stochastic Ito integral of white noiee.
Equations (4) and (5) can be used to s8how that the
solution procese L(t)> is a Markov process.

In effect, we see that the formal =solution to
the Langevin equation (4), with the initial condition
LCOI)=0 is:

t L
/ all(s2> ds (s> ds
Lty = e ek o J; ® eJ; °

from which we obtain

+At

iy as [ s> as
Lt+At) = (L) e =

Since ¢C(t> is &-correlated, ite valuee in the interval
(t,t+At] are independent of the previous history and
L{t+AtD does not depand on the history preceding L{tJ.
Therefore the process L(t> is Markovian.

Homogeneity of the procese can be assumed on
physical grounds. Owing to the 1inertial system that
prevails in the oceane, the joint probability deneities
depend only Ion the time difference between
obaservations. In this way, time homogeneity expresses
the invariance of the mechaniesm which generates

fluctuations.
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Thus, a Fokker-Planck equation (FPE) can be
formulated for our process, whose drift and diffusion
terms are calculated in the standard way:

2

a
aL

N e o [ =1 p] + k

(L?p)  (5)

a t aL ]
The scolution of thia FPE is simply the probability
distribution &/ L.t?> of finding a size L at time ¢. As
it ies & continuous distribution, it must be interpreted
a2 the probability of finding L at time t between some
fixed values.

Now we proceed to find a solution of the FPE. It

is reasonable to think that the esteady atate is
natural in normal conditions, under the assumption that
the environmental eddies are in statistical

equilibrium within the tidal period.

The FPE (5) can be written as

é
7 PCL.tD = pr p(L,t2 (8)

where

L :—ﬂ—ACLJ+d

fp aL aLs

BCL>

and ACL)> and B(L> are time-independent drift and
diffusion coefficients reapectively.

Now equation (6) may be written in the form

ap atJ
ac t ar ¢ 0 (7)

where
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g
aL

KL, t> = [m:.r.;r - BCLD ] oL, D (8)
Because (7) is a continuity equation for a probability
distribution, 7 may be interpreted as & probabllity
current, i.e. probability flow.

Therefore, we concentrate on solving the statio-

nary FPE with the supplementary normalization:

_[:p(f_}dl = ¢

4. THE GarMMa DISTRIBUTION.

Solving the stationary FPE, we obtain the
following reeulte. For a stationary procces the
probability current must be a constant. Nevertheless,
the stochastic variable L cannot reach wvalues smaller
than zero, so we require that the probability current
be zero at L = O. Thus, the probability current
vanishea for all L. Setting J = O, we rewrite equation
(7) a8

a
a L
for which the solution is obtained by a =single integra-
tion as

ACLD pll’f_} = BCLD p'('f_}

N ACS)
pCL? =—grrs5 © P[J: —Eer_sT'ﬂ]

-

where N is a normalisation constant such that

Jmp{'LJdJ_—-i
o -]
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We then obtain

S N
oCl) = N ‘z LN g BE
o Jel.
with
M = A
M _ 2
L% Ek =
F{T“IIE( ?..}

Finally, we write the expression for stationary p{l):

L
Fid = uu L b ! T Ta
Pa = TeB) a a -

where we have introduced a = Elk and & = —%— - 1

This happens to be a gamma distribution

depending on two parameters: £ and &. & models the
relative incidence of large and amall-scale eddies in
the spreading of the patch. When & iﬁ large the
energy-containing eddies dominate, and if & 1is small,
the more chactic behaviour of the =small-scale eddies
prevente the patch from attaining a size similar to £E.
This is shown in the accompanying graphs, where the
evolution of p(L> according to £ and & is represented.
It ie interesting to note that the larger & is, the
closer is the mode distribution to the typical ecale £E.
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Figure 1: The Gamma distributions for b=5 and A) E=200, B) E=500, C) E=1000.
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Figure 2: The Gamma distributions for b=10 and A) E=200, B) E=500, C) E=1000.
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Figure 3: The Garmma distributions for b=25 and A) E=200, B) E=500, C) E=1000.
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