
H
YP

ER
S

P
EC

TR
A

L
IM

AG
E

C
O

M
P

R
ES

S
IO

N
 O

N
B

O
A

R
D

 N
EX

T-
G

EN
ER

AT
IO

N
S

AT
EL

LI
TE

S
: I

M
P

LE
M

EN
TA

TI
O

N
 S

O
LU

TI
O

N
S

 O
N

 G
P

U
 A

N
D

 F
P

G
A

S
M

ar
ía

 L
uc

an
a

S
an

to
s

Fa
lc

ón
TE

S
IS

 D
O

C
TO

R
A

L

Tesis Doctoral
María Lucana Santos Falcón

Las Palmas de Gran Canaria, Julio 2014

HYPERSPECTRAL IMAGE COMPRESSION
ONBOARD NEXT-GENERATION SATELLITES:
IMPLEMENTATION SOLUTIONS ON GPUs
AND FPGAs

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
Instituto Universitario de Microelectrónica Aplicada

DIVISIÓN DE DISEÑO DE SISTEMAS INTEGRADOS

TESIS DOCTORAL

Hyperspectral image compression
onboard next-generation satellites:
implementation solutions on GPUs

and FPGAs

María Lucana Santos Falcón

Abstract

The compression of multispectral and hyperspectral on-board satellites is at

the same time a challenge and a necessity whose importance is currently

growing as the resolution of the sensors tend to increase. The images are

captured in several different wavelengths, which can range from tens to hun-

dreds or thousands, and therefore represent a huge amount of data which

has to be reduced in order to meet the available on-board storage and the

transmission bandwidth limitations.

On-board multispectral and hyperspectral compression algorithms have to

meet several requirements which are specific to the space environment such

as low complexity and error resilience. The available processing power on

a satellite is limited, and most usual data compression algorithms used on

ground cannot be applied to space data systems. Therefore, besides the

proposal of new compression techniques, it is also necessary to develop new

physical implementations which are able to execute the proposed algorithms

on devices suitable for operating on-board a satellite.

This Thesis proposes new technological solutions for the physical implemen-

tation and execution of multispectral and hyperspectral compression on-

board satellites. In particular, we explore the implementation of a lossy

compression algorithm named LCE on a GPU and an FPGA, and devise

strategies in order to accelerate it by exploiting parallel processing features.

First, a parallelization strategy is designed for both the LCE compressor

and the corresponding decompressor, and they are implemented on a GPU

using Nvidia’s CUDA parallel architecture. Experimental results on several

hyperspectral images with different spatial and spectral dimensions show

significant speedups of up to 15 times faster with respect to a single-threaded

CPU implementation.

We present furthermore an FPGA implementation of the LCE algorithm.

The results of the implementation on a Virtex 5VFX130 display effective

performance in terms of area (maximum device utilization at 14%) and fre-

quency (86 MHz). A comparison of the technologies utilized to implement

the LCE is also provided, showing that, although the GPU is the one yielding

the highest throughput, the FPGA offers the best tradeoff between perfor-

mance, low power consumption and flexibility.

Finally, a low complexity FPGA implementation of the recent CCSDS-123

standard for multispectral and hyperspectral compression is presented. A

hardware architecture is conceived and designed with the aim of achiev-

ing low hardware occupancy and high performance on a space-qualified

FPGA from the Microsemi RTAX family. The resulting FPGA implemen-

tation is therefore suitable for on-board compression. The effect of the sev-

eral CCSDS-123 configuration parameters on the compression efficiency and

hardware complexity is taken into consideration to provide flexibility in such

a way that the implementation can be adapted to different application sce-

narios. Results show an occupancy of 34% and a maximum frequency of 43

MHz on an RTAX1000S.

The benefits of the proposed implementations have been addressed and com-

pared in terms of the computational performance, the cost of the solution

and the flexibility of the implementation. Ultimately, this work is intended

to make contributions to the future space missions, providing solutions which

can yield implementations of hyperspectral compression algorithms with in-

creased flexibility, high-performance and low power consumption.

Resumen

La compresión de imágenes multiespectrales e hiperespectrales en satélites

supone al mismo tiempo un reto y una necesidad, cuya importancia se está

haciendo cada vez mayor a medida que la resolución de los sensores tiende

a aumentar. Las imágenes se capturan en un número de longitudes de onda

que puede variar desde decenas hasta miles, conformando un cubo de datos

cuyo tamaño debe ser reducido para cumplir con las limitaciones actuales en

relación a la cantidad de almacenamiento disponible a bordo y los anchos de

banda de las comunicaciones.

Los algoritmos de compresión de imágenes multiespectrales e hiperespec-

trales deben cumplir determinados requisitos espećıficos del entorno espacial,

como son la baja complejidad y la tolerancia a errores, entre otros. La ca-

pacidad computacional de los equipos que operan en los satélites es limitada,

y en consecuencia, la mayoŕıa de los algoritmos para compresión de datos

usados en el sector terreno no pueden ser utilizados en el espacio. Es por

ello que, además de proponer nuevas técnicas de compresión, es necesario

desarrollar las implementaciones f́ısicas para ejecutar dichos algoritmos en

dispositivos aptos para trabajar en el espacio.

En esta Tesis se proponen nuevas soluciones tecnológicas para la imple-

mentación f́ısica y ejecución de algoritmos de compresión de imágenes hiper-

espectrales a bordo de satélites. En concreto, se estudia la implementación

de un algoritmo de compresión sin pérdidas denominado LCE en una GPU

y en una FPGA, y se elaboran estrategias para acelerarlo mediante técnicas

de procesamiento paralelo.

Se realiza, por tanto, una paralelización del compresor LCE y de su co-

rrespondiente descompresor, y se implementa en una GPU utilizando Nvidia

CUDA. Los resultados experimentales, realizados sobre imágenes hiperespec-

trales de diferentes tamaños en la dimensión espacial y espectral muestran

que se ha obtenido una aceleración significativa. La implementación para

GPU del LCE se ejecuta 15 veces más rápido que su equivalente sobre CPU.

Además, se presenta una implementación del LCE sobre una FPGA. Los

resultados experimentales muestran una ocupación de área reducida (como

máximo del 14 %) y una frecuencia de 80 MHz cuando se sintetiza en una

Virtex 5 5VFX130. Finalmente, se realiza una comparación de las diferentes

tecnoloǵıas utilizadas para implementar el LCE, en la que se muestra que,

aunque la GPU tiene un rendimiento superior en cuanto a número de mues-

tras procesadas por unidad de tiempo, la FPGA ofrece el mejor compromiso

entre rendimiento, bajo consumo de potencia y flexibilidad.

Este trabajo de investigación se completa con una implementación de baja

complejidad del recientemente publicado estándar CCSDS 123 para la com-

presión de imágenes multiespectrales e hiperespectrales sin pérdidas. Se

realiza un diseño arquitectural con el objetivo de conseguir una baja ocu-

pación de recursos hardware y alto rendimiento en una FPGA cualificada

para el espacio, en concreto la RTAX1000S de la familia Microsemi. La im-

plementación resultante es, por lo tanto, apta para ser utilizada a bordo de

un satélite. Durante esta investigación se realiza un estudio del efecto de los

distintos parámetros de configuración que admite el estándar CCSDS 123 en

el ratio de compresión y en la complejidad de la implementacón resultante,

de modo que sea flexible para adaptarse a distintos escenarios manteniendo

una baja complejidad. Los resultados muestran una ocupación del 34% y

una frecuencia máxima de 43 MHz en la citada RTAX1000S.

Las ventajas de las soluciones presentadas se ponen de manifiesto y se com-

paran en cuanto a su rendimiento, el coste de la solución y la flexibilidad

de la implementación. En definitiva, este trabajo pretende realizar una con-

tribución para las misiones espaciales futuras, de manera que cuenten con

soluciones capaces de ejecutar algoritmos de compresión de imágenes hiper-

espectrales con más flexibilidad, alto rendimiento y bajo consumo de poten-

cia.

Acknowledgements

I would not have been able to complete this journey without the aid and sup-

port of countless people over the past four years. Foremost, I would like to

express my gratitude to my supervisors, Prof. José López and Prof. Roberto

Sarmiento, who have been greatly supportive and have guided me during this

research and while writing this Thesis, offering constructive comments and

warm encouragement. Over the years, I have received funding from sev-

eral entities, which have supported me while I completed my PhD. I would

like to thank Thales Alenia Space España S.A., the European Network of

Excellence on High Performance and Embedded Architecture and Compi-

lation (HIPEAC), the Institute for Applied Microelectronics (IUMA) and

Ayuntamiento de Las Palmas de Gran Canaria for their financial support.

I highly appreciate the feedback offered by Luis Berrojo and Javier Moreno,

from Thales Alenia Space España S.A., who have made an important con-

tribution to the technical quality of this Thesis. I also thank the European

Space Agency for offering me the opportunity to make a fruitful research

stay. In particular I would like to thank Raffaele Vitulli and Luca Fossati for

their generous support and for sharing their immense knowledge. I am also

grateful to the Group on Interactive Coding of Images (GICI) from Universi-

tat Autònoma de Barcelona and to Enrico Magli, from Politecnico di Torino

for kindly offering their help. I’d like to thank also my fellow labmates, for

all the stimulating discussions, the fun we have had, the coffees and their

patience. I could not have imagined a better work environment for pursuing

the PhD.

Last, but not least, I am deeply grateful to my parents for generously offering

me support and the education that has made it possible for me to get here.

Thanks also to my sister, Isabel, the rest of my family and to Lola and

Ricardo, for instilling me confidence and believing in me.

vii

Contents

Abstract i

Resumen iii

Acknowledgements vii

List of Figures xv

List of Tables xix

Abbreviations xxiii

Symbols xxviii

1 Introduction 1

1.1 Outline . 2

1.2 Preliminary concepts . 3

1.2.1 Multispectral and hyperspectral images 4

1.2.2 Instruments and sensors for hyperspectral data collection 6

1.2.3 Applications of hyperspectral images 8

1.2.4 Hyperspectral image compression 11

1.2.4.1 Lossless versus lossy compression 14

1.3 Motivation of research . 15

1.3.1 Importance of on-board hyperspectral image compres-
sion . 16

ix

x Contents

1.3.2 Limitations and difficulties of the on-board hardware . 18

1.4 Research goals . 21

1.5 Organization of this document 22

2 On-board hyperspectral image compression algorithms and
hardware implementations 25

2.1 Outline . 26

2.2 Algorithms for on-board hyperspectral image compression . . 27

2.2.1 Requirements and limitations of an on-board hyper-
spectral image compression algorithm 30

2.2.2 Transform-based compression algorithms for hyperspec-
tral images . 31

2.2.3 Prediction-based compression algorithms for hyperspec-
tral images . 34

2.2.4 Recent research on hyperspectral image compression
algorithms . 38

2.2.5 CCSDS Standard algorithms for satellite data com-
pression . 39

2.3 Physical implementations for on-board compression of hyper-
spectral images . 41

2.3.1 On-board hardware technology requirements 43

2.3.2 Software implementations 47

2.3.2.1 Implementations on general-purpose central
processing units (CPUs) 47

2.3.2.2 Implementations on digital signal processors
(DSPs) . 49

2.3.2.3 Implementations on graphics processing units
(GPUs) . 51

2.3.3 Hardware implementations 53

2.3.3.1 Hardware design flow 53

2.3.3.2 Implementations on application-specific inte-
grated circuits (ASICs) 54

2.3.3.3 Implementations on field-programmable gate
arrays (FPGAs) 56

3 Implementation of a lossy compression algorithm for hyper-
spectral images on a GPU 65

3.1 Outline . 66

Contents xi

3.2 LCE algorithm description . 67

3.2.1 Prediction . 69

3.2.2 Rate-distortion optimization 71

3.2.3 Quantization and mapping 72

3.2.4 Entropy coding . 72

3.2.5 File format . 73

3.2.6 LCE compression efficiency 74

3.3 Software implementation of the Lossy Compression for Exo-
mars (LCE) algorithm . 74

3.3.1 Generation of the compressed file 76

3.3.2 Configuration parameters 77

3.4 GPU architecture and NVidia CUDA 78

3.4.1 CUDA abstractions 79

3.4.2 CUDA memory spaces 81

3.4.3 Nvidia TESLA C2075 GPU 81

3.5 Parallelization of the LCE compressor with Computer Unified
Device Architecture (CUDA) 85

3.5.1 Allocation of the image data in the GPU 86

3.5.2 Prediction, quantization and mapping 86

3.5.3 Entropy coding . 88

3.5.4 Bit packing . 94

3.6 Parallelization of the LCE decompressor 101

3.6.1 Preliminary considerations 102

3.6.2 Header design . 103

3.6.3 Decoding the blocks 107

3.6.4 Inverse quantization and prediction 108

3.7 Experimental results . 108

3.7.1 Validation . 109

3.7.2 Impact of adding a header 110

3.7.3 Profiling . 111

3.7.4 Speedup . 113

3.7.5 Throughput . 115

3.7.6 Effect of the configuration parameters in the perfor-
mance of the GPU implementation of the LCE com-
pressor . 118

xii Contents

4 Implementation of a lossy compression algorithm for hyper-
spectral images on an FPGA 121

4.1 Outline . 122

4.2 CatapultC design flow . 124

4.3 Adapting the C language source code of the LCE algorithm
for CatapultC . 128

4.3.1 Identification of the top function and inputs and out-
puts of the design . 129

4.3.2 Configuration parameters 132

4.3.3 Reducing the complexity of the mathematical opera-
tions to calculate the gain factor α 133

4.3.4 Loop optimization . 137

4.4 Results of the FPGA implementation of the LCE algorithm
with CatapultC . 141

4.4.1 Manual scheduling of the design 145

4.4.2 Implementation of the LCE algorithm using a modular
approach . 147

4.4.3 Comparison with the FPGA implementation of a near-
lossless algorithm . 148

4.5 Performance comparison: FPGA, GPU, CPU 149

5 Implementation of the CCSDS standard for lossless hyper-
spectral image compression on a space-qualified FPGA 155

5.1 Outline . 156

5.2 The CCSDS 123 standard for lossless multispectral and hy-
perspectral image compression overview 157

5.2.1 Prediction . 159

5.2.2 Entropy coding . 163

5.3 Design methodology . 163

5.4 Impact of the user-defined parameters in the compression ef-
ficiency . 165

5.5 Architectural design considerations 169

5.5.1 Encoding order . 171

5.5.2 Local sum mode and prediction mode 172

5.5.3 Number of bands for prediction 173

5.5.4 Hardware complexity estimation 174

5.5.4.1 Comparison and complexity estimation . . . 177

5.6 HyLoC Hardware architecture description 181

Contents xiii

5.6.1 HyLoC verification and validation 185

5.7 Experimental results . 189

5.8 Comparison of hardware technologies for the implementation
of hyperspectral image compression algorithms 191

5.8.1 Implementations on GPUs 192

5.8.2 Implementations on FPGA 193

5.8.2.1 Comparison with state-of-the-art FPGA im-
plementations of hyperspectral compression
algorithms 196

5.8.3 Implementations on space-qualified FPGAs 198

6 Conclusions 201

6.1 Further research work . 207

A Sinopsis en español 211

A.1 Introducción . 212

A.2 Objetivos y metodolǵıa de trabajo 215

A.3 Compresión con pérdidas en GPU y FPGA 217

A.3.1 Implementación del algoritmo LCE en una GPU . . . 219

A.3.2 Implementación del algoritmo LCE en una FPGA . . 220

A.4 Compresión sin pérdidas en FPGA 224

A.4.1 Algoritmo CCSDS 123 225

A.4.2 Implementación del CCSDS 123 sobre una FPGA cuali-
ficada para el espacio 226

A.5 Conclusiones . 227

B Publications 229

B.1 Journals . 230

B.2 International Conferences . 230

References 233

List of Figures

1.1 Hyperspectral data cube. 4

1.2 Electromagnetic spectrum. 5

1.3 Remote sensing scanners. a) Whiskbroom b) Pushbroom . . 7

1.4 (a) Band-sequential order (b) band-interleaved order 9

1.5 Example of the generation of the codeword with Golomb codes 13

2.1 Prediction-based compression scheme. 34

2.2 CCSDS 123 Recommendation for lossless multi- and hyper-
spectral image compression. 41

2.3 Radiation effects on a MOSFET transistor.(a) Normal oper-
ation. (b) Post irradiation. 45

2.4 LEON3 spacecraft controller on a chip. 49

2.5 Simplified CPU and GPU architecture comparison. 52

2.6 CWICOM compression ASIC. 55

2.7 Basic elements of an FPGA. 56

3.1 Division of the hyperspectral cube into blocks and notation. . 69

3.2 Prediction neighbourhood of the LCE algorithm: a) first band
b) all other bands. 70

3.3 File format of the LCE compressed data. 74

3.4 Rate-distortion curves for AVIRIS when compressed with LCE
and other algorithms of the state-of-the-art [33] 75

3.5 Flowchart of the LCE algorithm 76

3.6 Pseudo-code of the main function of the LCE algorithm im-
plementation in C language. 77

3.7 CUDA abstractions: threads, blocks and grid. 80

3.8 CUDA memory spaces . 81

xv

xvi List of Figures

3.9 Fermi architecture. Streaming multiprocessors (SM) are po-
sitioned around a common L2 cache. Each SM is a vertical
rectangular strip that contains an orange portion (scheduler
and dispatch), a green portion (execution unit) and light blue
portions (register file and L1 cache) 83

3.10 Fermi memory hierarchy . 84

3.11 CUDA abstractions for the parallel execution of the LCE pre-
diction, quantization and mapping stages. 87

3.12 CUDA abstractions for the parallel execution of the LCE en-
tropy coding stage. 89

3.13 Parallel generation of a compressed 16× 16 block. 93

3.14 Bit packing strategy . 95

3.15 Prefix-sum of vector with more than 1024 elements. 98

3.16 Shifting compressed blocks in parallel. 100

3.17 Format of header and compressed file for Option1. 104

3.18 Format of header and compressed file for Option2. 106

3.19 Profiling of the CUDA implementation of the LCE compressor.112

3.20 Comparison between the CPU profiling and the GPU profiling 112

3.21 GPU decompressor profiling 113

3.22 Number of samples computed per second against number of
samples for the MODIS hyperspectral image 116

3.23 Number of samples computed per second against number of
samples for the AVIRIS hyperspectral image 116

3.24 Number of samples computed per second against number of
samples for the AIRS hyperspectral image 117

3.25 Effect of the configuration parameters of the LCE algorithm
in the performance of the GPU compressor implementation
(a) and the CPU implementation (b) 119

3.26 Effect of varying delta in the performance of the GPU and
the CPU for the AVIRIS image) 120

4.1 CatapultC design flow . 125

4.2 Setting architectural constraints: loop unrolling. 126

4.3 Setting architectural constraints: loop pipelining. 127

4.4 Pseudo-code of the C source code containing the top function
for the hardware implementation of the LCE algorithm . . . 129

4.5 Top design with its inputs and outputs 131

4.6 Saving the codewords to a memory which is not initialized . . 140

List of Figures xvii

4.7 Saving the codewords to a memory which has been initialized
with all ones . 141

4.8 Manual scheduling of the loops in the LCE compressor 146

4.9 Comparison of the throughput of the GPU, CPU and FPGA
implementations of the LCE algorithm for the MODIS image 151

4.10 Comparison of the throughput of the GPU, CPU and FPGA
implementations of the LCE algorithm for the AVIRIS image 151

4.11 Comparison of the throughput of the GPU, CPU and FPGA
implementations of the LCE algorithm for the AIRS image . 152

5.1 Current sample and neighbours used for computing the local
sums and local differences . 158

5.2 Flowchart of the CCSDS 123 algorithm 159

5.3 Current sample and neighbours used for computing the direc-
tional local sum . 160

5.4 Current sample and neighbours used for computing the direc-
tional local differences . 160

5.5 Sample-adaptive codeword generation. 164

5.6 Influence of the user-defined parameters in the compression
ratio. (a) Number of bands used for prediction (P); (b) Weight
component resolution (Ω) . 169

5.7 HyLoC schematic . 182

5.8 HyLoC input buffers to arrange current samples and neighbours184

5.9 HyLoC top module . 185

5.10 HyLoC testbench schematic 186

5.11 Development board used in the HyLoC demonstrator (I) . . . 187

5.12 Development board used in the HyLoC demonstrator (II) . . 188

5.13 Schematic of the HyLoC demonstrator 188

5.14 Hyperspectral images used in the HyLoC demonstrator. The
dimensions are given in Nz ×Ny ×Nx 189

5.15 Throughput of the different technologies. Best achievable
cases for the LCE and the Consultative Committee for Space
Data Systems (CCSDS) 123 algorithm on CPU, GPU and
FPGA . 194

A.1 División de la imagen hiperespectral en bloques independientes218

A.2 Módulo de compresión y sus interfaces de entrada/salida . . . 222

xviii List of Figures

A.3 Comparasión del rendimiento de la implementación del LCE
en CPU, GPU and FPGA cuando se comprime una imagen
de AVIRIS. 224

List of Tables

1.1 Imaging spectrometers on-board HyspIRI 17

1.2 Missions implementing on-board data compression 20

2.1 Results of implementing CCSDS 122 on an RTAX2000S FPGA 60

2.2 Virtex IV LX160 device utilization of the FL algorithm . . . 62

2.3 Virtex4 and Virtex2 device utilization of a lossless and near-
lossless hyperspectral compression algorithm 62

2.4 FPGA implementations of on-board data compression algo-
rithms. NDA stands for No Data Available. 64

3.1 Main specifications of the Tesla C2075 GPU. 82

3.2 Hyperspectral images under compression 109

3.3 Impact of adding a header to the compressed file 111

3.4 GPU compressor and decompressor speedup 115

4.1 Input and output ports of the top module 131

4.2 Constants of the FPGA implementation of the LCE algorithm 132

4.3 Accuracy of the results obtained with the proposed implemen-
tation of the alpha quantizer for CatapultC (MODIS) 135

4.4 Accuracy of the results obtained with the proposed implemen-
tation of the alpha quantizer for CatapultC (AIRS) 136

4.5 Accuracy of the results obtained with the proposed implemen-
tation of the alpha quantizer for CatapultC (AVIRIS) 136

4.6 Estimation of area, cycles and slack for ALPHA ORIGINAL
and ALPHA CATAPULT . 137

4.7 Description of the loops in the design 142

4.8 Optimization of the loops in the design 144

4.9 Utilization results after P&R 145

4.10 Timing results after P&R . 145

xix

xx List of Tables

4.11 Number of samples processed per second for each band 145

4.12 Number of samples processed per second for each band with
a manual scheduling of the design 146

4.13 Functional units identified in the modular approach 147

4.14 Occupancy modular approach against non-modular approach 148

4.15 Throughput of the modular approach against the non-modular
approach . 148

4.16 Implementation comparison 149

4.17 Throughput of the FPGA implementation of the LCE for the
hyperspectral images under evaluation 150

5.1 Equations for calculating the local sum 161

5.2 Equations for calculating the elements of the local differences
vector Uz,y,x . 162

5.3 Hyperspectral images used to assess the effect of the user-
defined parameters of the CCSDS 123 standard 166

5.4 Parameters studied for the prediction characterization 167

5.5 Parameters studied for the entropy coder characterization . . 168

5.6 Influence of the user-defined parameters of the predictor in
the compression ratio . 170

5.7 Influence of the user-defined parameters of the entropy coder
in the compression ratio . 170

5.8 Effect of parameter P in the computational complexity 174

5.9 Summmary of the proposed architectural options 175

5.10 Estimation of the memory storage (bits) needed by the pro-
posed architectural options. 178

5.11 Target images used to evaluate the complexity of the proposed
architecture . 178

5.12 Internal memory storage (Kbits) needed by the proposed ar-
chitectures . 179

5.13 Differences in terms of hardware resources needed by the pro-
posed architectures . 180

5.14 External memory accesses per compressed sample for the dif-
ferent architectures . 181

5.15 HyLoC synthesis results on an RTAX1000S 190

5.16 HyLoC synthesis results on an RTAX1000S for the most com-
plex conguration . 190

5.17 Maximum throughput for different configurations of HyLoC . 191

List of Tables xxi

5.18 Hardware technologies with the best reported throughput for
the LCE and CCSDS 123 algorithms 193

5.19 Occupancy lossy LCE and lossless HyLoC (CCSDS 123) on a
Virtex 5 . 194

5.20 Throughput of the lossy LCE and lossless HyLoC (CCSDS
123) on a Virtex 5 . 195

5.21 Virtex IV LX160 device utilization of the FL algorithm and
HyLoC . 197

5.22 Virtex IV LX200 comparison lossless and near-lossless, LCE,
HyLoC . 197

5.23 Implementation on an RTAX2000S FPGA: CCSDS 122, LCE
and HyLoC (CCSDS 123) . 199

A.1 Ocupación en la FPGA del LCE 222

A.2 Muestras comprimidas por segundo de la implementación so-
bre FPGA del LCE . 223

A.3 Resultados de la śıntesis de HyLoC en una RTAX1000S para
distintas configuraciones . 227

A.4 Rendimiento de las distintas configuraciones de HyLoC 227

Abbreviations

2D two-dimensional

3D three-dimensional

ASIC application-specific integrated circuit

BIP band interleaved by pixel

BPE bit plane encoder

CALIC Context-based, Adaptive, Lossless Image Codec

CCD charge-coupled device

CCSDS Consultative Committee for Space Data Systems

CMOS complementary metal-oxide semiconductor

CNES Centre National d’Etudes Spatiales

COTS commercial off-the-shelf

CPU central processing unit

CUDA Computer Unified Device Architecture

xxiii

xxiv Abbreviations

DCT Discrete Cosine Transform

DPCM differential pulse code modulation

DSP digital signal processor

DWT Discrete Wavelet Transform

EDAC error detection and correction

EEPROM electrically erasable programmable read only memory

EPROM erasable programmable read only memory

ESA European Space Agency

FAPEC Fully Adaptive Prediction Error Coder

FET field effect transistor

FL Fast-Lossless

FLOPS floating-point operations per second

FP7 The Seventh Framework Programme

FPGA field-programmable gate array

FSM finite-state machine

GDDR Graphics Double Data Rate

GPU graphics processing unit

HLS high-level synthesis

ITI Innovation Triangle Initiative

Abbreviations xxv

JPL Jet Propulsion Laboratory

KLT Kahrunen-Loève Transform

LCE Lossy Compression for Exomars

LUT lookup-table

LWIR long wavelength infrared

MAE maximum absolute error

MSE mean-squared error

MSRE mean square-root error

MWIR medium wavelength infrared

NASA National Aeronautics and Space Administration

NIR near infrared

NOAA National Oceanic and Atmospheric Administration

OpenMP Open Multi-Processing

PC principal component

PCA Principal Component Analysis

PLB Processor Local Bus

PSNR peak signal-to-noise ratio

RAM random access memory

RD rate-distortion

xxvi Abbreviations

RD rate-distortion

RTL register-transfer level

SDRAM synchronous dynamic random access memory

SEE single event effects

SEU single event upset

SLSQ Spectrum-oriented Least Squares

SM streaming multiprocessor

SMID single instruction multiple data

SoC System-on-Chip

SPECK set partitioned embedded block

SPIHT set partitioning in hierarchical trees

SRAM static random access memory

SWIR short wavelength infrared

TD Tucker Decomposition

TDP thermal design power

TID total ionizing dose

TIR thermal infrared

TMR triple modular redundancy

UTQ uniform-threshold quantizer

Abbreviations xxvii

VNIR visible and near infrared

VSWIR visible shortwave infrared

Symbols

x row index

y line index

z band index

n row index within a block

m line index within a block

s image sample

ŝ predicted sample

s̃ reconstructed sample

α least-square estimator

µ average value

α′ quantized value of α

µ′ quantized value of µ

ez,y,x prediction error

k Golomb-code parameter

Nx number of rows

Ny number of lines

Nz number of bands

N number of pixels in a squared spatial block

xxix

xxx Symbols

hb horizontal block index

vb vertical block index

Bz,hb,vb N ×N block with spatial coordinates (hb, vb) in band z

Nhb number of horizontal blocks

Nvb number of vertical blocks

NB total number of blocks

i block index i = hb+ vb×Nhb

j sample index within a block of N ×N samples

j = m+ n×N

qj number of bits taken by the j-th codeword of a block

Qj bit position of the j-th codeword in the compressed block

li bits left unused in the last 32-bits word of the

i-th compressed block

Li prefix-sum of li

pi position of the last codeword within block i

Pi word position where compressed block i starts in the

compressed stream

CH chunk

NC number of chunks

K first element of the last chunk

dxe ceil x to the nearest integer

bxc floor x to the nearest integer

sh lefti number of bits that block i has to be shifted to the left

sh righti number of bits that block i has to be shifted to the right

Dedicado a Isabel, Lucana, Juan y Ricardo

xxxi

Chapter 1

Introduction

The main objective of this Chapter is to present the motivation for this

Thesis, whose major contributions are to the field of hardware platforms

for on-board multispectral and hyperspectral image compression. The ba-

sic concepts of this work are introduced by briefly explaining the notion of

multispectral and hyperspectral images, how they are collected and their

applications. Furthermore, the necessity for performing on-board multispec-

tral and hyperspectral image compression is justified and the grounds of data

compression are explained. Finally, the research goals and methodology fol-

lowed throughout this Thesis work are presented.

1

2 Chapter 1. Introduction

1.1 Outline

Hyperspectral and multispectral imaging system are considered nowadays

the most powerful tools in the field of remote sensing. These systems are

able to provide images in which single pixels have spectral information of

the scene under observation.

Airborne multispectral sensors have recorded spectral information since the

mid 1950s, but it was since the early 1970s that a large number of space-

borne multispectral sensors have been launched on-board satellites, like for

instance the LANDSAT [1], SPOT [2] or the Indian Remote Sensing (IRS) [3]

satellite series. The first sensor considered hyperspectral and hence capable

of acquiring data in continuous narrow bands simultaneously, was the Air-

borne Visible/Infrared Imaging Spectrometer (AVIRIS) [4], proposed by the

National Aeronautics and Space Administration (NASA) in 1983. AVIRIS

is nowadays still considered the best hyperspectral remote sensing sensor

ever manufactured, and represents a significant precursor and driving force

for the development of remote sensing technologies as a whole [5]. Airborne

and spaceborne remote sensors were conceived to satisfy the scientific and

research data requirements, nevertheless these data are used today in many

commercial applications too.

Current remote sensors cover a large area of the Earth surface with unprece-

dent spatial and spectral resolution. This yields accurate imagery which en-

ables a variety of applications, e.g. identification of materials or estimation

of physical parameters. New sensors are expected to increase their resolu-

tion and will therefore be able to capture even more data. This, together

with the development of new software tools for multispectral and hyperspec-

tral image analysis, has positioned hyperspectral imagery to become one of

the most common research, and fastest growing technologies in the field of

remote sensing.

Chapter 1. Introduction 3

The high dimensionality of multispectral and hyperspectral data is highly

advantageous from the point of view of image analysis for scientific purposes.

However, a challenge appears when the images are acquired on a satellite,

where the amount of storage and downlink bandwidth are limited. Data

compression can alleviate this problem, by reducing the data volume prior

to transmission to a ground station. It has become a popular research field

in the past years, and many different algorithms have been proposed for

satellite data compression. These algorithms have the particular feature of

meeting specific requirements, as a consequence of the limited on-board com-

putational power available on a satellite and the special operating conditions

of the hardware in the space environment.

Developing a physical implementation of a multispectral and/or hyperspec-

tral data compression algorithm which can efficiently operate on a satellite

is an important and exciting challenge. Hardware technologies running on-

board a satellite have to feature high-performance, and at the same time

they must be small in size and weight, have low power consumption and be

tolerant to radiation. This Thesis work provides a discussion and proposes

several technological solutions for hardware implementations for on-board

hyperspectral image compression.

1.2 Preliminary concepts

The following sections introduce the reader to the main topics that will be

repeatedly mentioned throughout this document, including a definition of

multispectral and hyperspectral images, a brief explanation about how they

are acquired and the basics of remote sensing data compression.

4 Chapter 1. Introduction

1.2.1 Multispectral and hyperspectral images

Remote imagers are designed to measure the reflectance of areas on the

Earth’s surface. Reflectance is defined as the percentage of the light hitting

a material that is then reflected by that material, and can be represented

across a range of wavelengths, showing a pattern or spectrum, which can

uniquely identify certain materials. In imaging spectroscopy, a sensor ac-

quires a spectral vector in hundreds or thousand different wavelengths of ev-

ery pixel in a given scene. This results in a three-dimensional image known

as hyperspectral or multispectral image. Hyperspectral and multispectral

imagery is typically depicted as a data cube with the spatial information

represented in the X-Y plane, and spectral information represented in the

Z-direction, as it is shown in Figure 1.1, where Ny, Nx and Nz are the

number of lines, columns and bands respectively.

Ny

Nx

Nz

z

y

x

Figure 1.1: Hyperspectral data cube.

Chapter 1. Introduction 5

There is no agreed criterion on how to make the difference between hy-

perspectral and multispectral images. The literature includes definitions in

terms of the number of bands, their narrowness or if the bands are con-

tiguous or there are gaps between them. However, analysing the available

documents, we find that it is reasonable to define hyperspectral imaging sys-

tems as those which collect at least 100 spectral bands of 10-20 nm width.

Multispectral sensors, on the other hand, can be defined as those collecting

less than 20 non contiguous bands [6, 7]. Hyperspectral imagers produce a

detailed, seemingly continuous spectrum that can provide much more infor-

mation than a multispectral pixel spectrum. Hence, hyperpsectral systems

have a very wide capability of spectral discrimination, while multispectral

systems provide bands that detect information in specific combinations of

desirable regions of the spectrum. Most hyperspectral and multispectral

imaging systems work in a wavelength range from the visible to the infrared,

the latter commonly divided in bands called near infrared (NIR), λ: 0.7 - 1.1

µm; short wavelength infrared (SWIR), λ: 1.1 - 3.0 µm; medium wavelength

infrared (MWIR), λ: 3.0 - 5.5 µm; and long wavelength infrared (LWIR), λ:

7.7 - 14 µm. Figure 1.2 shows the electromagnetic spectrum.

Penetrates Earth's
Atmosphere?

0.5×10-6

NIR SWIR MWIR LWIR VLWIR

350 nm 740 nm 0.74 μm 1 3 5 8 14 1000 μm

Low
atmospheric
transmit tance

Visible Infrared

Gamma ray X-ray Ultraviolet Infrared Microwave RadioVisibleRadiation Type

Wavelength (m)

Frequency (Hz) 1020 1018 1016 1013 1010 1051015

10-12 10-10 10-8 10-5 10-2 103

Figure 1.2: Electromagnetic spectrum.

6 Chapter 1. Introduction

Although multispectral and hyperspectral images have different features, for

the sake of simplicity, in the rest of this document we will use the term

“hyperspectral” to refer to both.

1.2.2 Instruments and sensors for hyperspectral data collec-

tion

The data collection in hyperspectral systems is a four dimensional problem,

consisting of two spatial, one spectral and one time dimension, i.e. the

collection of a hyperspectral cube requires scanning, in a time interval, in

the spectral or spatial domain. In a remote sensing instrument, the light

reflected by objects is captured by photodectector arrays, in which each

element records one pixel of the image.

Remote sensors, as opposed to photographic, acquire data using scanning

systems that sweep over the terrain to build up and produce a two-dimensional

image of the surface. The hyperspectral scanners are of two main types:

whiskbroom and pushbroom, as depicted in Figure 1.3. Whiskbroom scan-

ners or across track scanners reflect light into a single dectector using a

mirror which moves back and forth to collect measurements from one pixel

in the image at a time. All LANDSAT sensors prior to LANDSAT 8 use

the whiskbroom design [1]. Other examples of whiskbroom imagers are the

ones from the National Oceanic and Atmospheric Administration (NOAA):

the Advanced Very High Resolution Radiometer (AVHRR) and the Geosta-

tionary Operational Environmental Satellite (GOES). On the other hand,

pushbroom scanners, or along track scanners, use a line of detectors ar-

ranged perpendicular to the flight direction of the spacecraft. The image is

collected one line at the time as the spacecraft flies forward. Instruments

that use the pushbroom design include the ones on-board LANDSAT 8 [1],

SPOT [2], IRS [3], PLEIADES [8] and PROBA [9]. The selection of the type

of scanner depends mainly on the purpose and specific requirements of the

Chapter 1. Introduction 7

remote sensing mission. Whiskbroom scanners are mechanically more com-

plex but simpler from the optical point of view, while pushbroom imagers

consist of a simpler mechanical system but more complex optics. The swath

width is longer for whiskbroom imagers, when compared with pushbroom.

Moreover pushbroom sensors must have the detectors perfectly calibrated to

avoid stripes in the data caused by the varying sensitivity in the along track

direction.

Rotating
mirror

n bands

Prism

Swath width

Scan
direction

Flight
direction

Swath width

Flight
direction

Optics

Array of detectors

Dispersing element

n bands

(a) (b)

Figure 1.3: Remote sensing scanners. a) Whiskbroom b) Pushbroom

As it was already mentioned, hyperspectral imagers have to collect infor-

mation of each pixel at different wavelengths. There are several types of

devices for the spectral division or selection, which can be divided in three

main classes: dispersive spectrometers; Fourier Transform interferometers;

and narrow band tunable filters. Dispersive spectrometers use grating or a

prism coupled with a two-dimensional array of detectors, in such a way that

a spectral image is produced with the spatial information along one axis and

8 Chapter 1. Introduction

the spectral information along the other. Fourier Transform interferometers

split the radiation into two beams, introducing a controlled phase shift, and

recombining them. The wavefronts of the beams on recombination interfere

by the principle of superposition and the combined beam is focused on a

detector. Finally, the narrow band tunable filters pass radiation through a

very narrow bandpass or spectral bin, which can be spectrally tuned over

different wavelengths, usually in a very short time.

Although most past and current hyperspectral sensors have been airborne,

many new space-based hyperspectral sensors have been proposed recently.

These sensors have become increasingly important, because they are able to

achieve near global coverage repeated at regular intervals of time, providing

more imagery than their airborne counterpart.

Once the image samples are detected they are converted into digital val-

ues, which can be arranged in different forms, commonly known as band-

sequential or band-interleaved formats. In band sequential order, the sam-

ples are stored in raster order, band by band, i.e. all the samples in a specific

band are stored before the storing of the samples in the next band start. On

the other hand, in band interleaved format, the information is stored in such

a way that all the spectral information of a specific pixel or line of pixels is

stored before continuing with the next pixel or line of pixels. This is better

illustrated in Figure 1.4.

1.2.3 Applications of hyperspectral images

Hyperspectral technologies were developed for science and research purposes,

but have progressed to allow the development of a diversity of commercial

applications. The captured three-dimensional data cubes are processed after

they are collected, so that the most relevant information can be extracted

from them [10]. This information is extremely useful in many diverse fields,

Chapter 1. Introduction 9
N

y

Nx

Nz

bandn

band0

band1

band2

band3

(b) Band-Interleaved order

(a) Band-sequential order

Figure 1.4: (a) Band-sequential order (b) band-interleaved order

including mineralogy, Earth monitoring, surveillance and medicine. Some of

the applications of hyperspectral data analysis are listed next.

� Atmospheric characterization and climate research

� Geologic mapping

� Environmental monitoring

� Vegetation analysis, food safety

� Monitoring of coastal environment

� Urban grow analysis

� Biological and chemical detection

� Non invasive diagnosis in cancer detection

� Surveillance

10 Chapter 1. Introduction

� Detection of weapons of mass destruction

� Detection of landmines

Some of the main techniques utilized to extract useful information from

hyperspectral data are summarized next.

� Dimensionality reduction. The dimensionality of the input hyperspec-

tral image is reduced, in order to facilitate the subsequent processing

of the scene [11].

� Hyperspectral unmixing. The signal captured by a hyperspectral sensor

at a given band and from a given pixel is a mixture of the reflectances

of the different materials located in the respective pixel area. When

mixing occurs, it is not any more possible to determine which materials

are present in the pixels directly from the measured spectral vectors.

The ability to discriminate materials can be recovered by applying

hyperspectral unmixing techniques. An extensive amount of research

work has been devoted to hyperspectral unmixing [12, 13].

� Classification. Hyperspectral image classification has been a very ac-

tive area of research in recent years [14]. Given a set of observations,

the goal of classification is to assign a unique label to each pixel vector,

so that it is well-defined by a given class.

� Hyperspectral target detection. Hyperspectral imagery has been used in

reconnaissance and surveillance applications where targets of interest

are detected and identified [15]. In the process of detecting a target,

first the anomalies in the image are extracted [16, 17]. Then, the targets

can be identified by their spectral signature, by comparing it with the

data available in a spectral library [18] or from a set of training data.

Chapter 1. Introduction 11

1.2.4 Hyperspectral image compression

Hyperspectral images acquired by aircrafts or satellites represent a high

amount of data. For instance, a single AVIRIS image occupies 134 Mbytes of

data storage. In the specific case of remote sensors placed on satellites, the

computational power, storage and downlink bandwidth are limited, therefore

applying compression techniques have become an effective and cheap solu-

tion in order to cope with these restrictions and still allow the hyperspectral

imagers to produce images at a high data rate.

Compression of hyperspectral images is effective because the pixel values

of neighbouring locations and wavelengths are highly correlated. Removing

the correlation allows for reducing the data volume. Hyperspectral images

have similar characteristics to natural photographic images or video, and

consequently their size can be reduced with compression tools which were

developed for image or video [19, 20].

The fundamentals of data compression are based on representing the nec-

essary information with the smallest possible amount of bits. In general,

compression can be lossless or lossy. Lossless techniques make it possible to

recover all the original information after decompression, while lossy methods

permit to recover the original data with some losses of information, enabling

higher compression ratios.

Compression techniques take advantage of several facts. The spatial or spec-

tral redundancy in the images makes it possible to deduct a pixel value by

using information of neighbouring pixels. Decorrelation methods like pre-

diction o transformation can be applied, in such a way that it is no longer

necessary to transmit the whole pixel information, but just the necessary

information for the decoder to be able to calculate - or approximate if the

technique is lossy - the value of the original pixel. In addition, compres-

sion methods exploit the statistical redundancy in the data, exploring the

12 Chapter 1. Introduction

probability of the symbols in such a way that long codewords are used to

represent symbols with low probability and short codewords are utilized to

represent the most frequent symbols. These codes try to reduce the redun-

dancy present in a source of information, and represent it with fewer bits

which carry more information, minimizing the average length of the mes-

sages according to a particular assumed probability model, which is known

as entropy encoding. Among the most common entropy encoding techniques

we can find:

� Huffman codes. In Huffman codes [21], the source is encoded using

a table of codes of variable length, which has been derived based on

the estimated probability of occurrence for each possible value of the

source symbol.

� Arithmetic codes. These type of codes convert strings of data into single

floating point numbers between 0 and 1. They establish a model of the

entire data set and find the occurrences of sequences of symbols that

can be expressed in the form of a single number with high precision.

� Universal codes. Universal codes are prefix codes which map positive

integers into binary codewords, ensuring that the length of the resulting

codeword is within a constant factor of the expected lengths that an

optimal code would have assigned.

� Golomb codes. These codes are prefix codes, used when the distribu-

tion of the source data is geometric. Golomb codes [22] first find the

quotient and the remainder of the division of the source and a tunable

parameter. The codeword consists of the quotient of the division ex-

pressed in unary notation, followed by a stop bit and the remainder in

truncated binary notation, as showed in Figure 1.5. These codes are

known as Rice codes [23] when the tunable parameter (the divisor) is

a power of two. Golomb and Rice codes are widely used for lossless

Chapter 1. Introduction 13

image and video compression, as well as for satellite data compression.

In fact, it is employed in the Consultative Committee for Space Data

Systems (CCSDS) standard for universal lossless satellite data com-

pression, CCSDS 121 [24]; and in the standard for multispectral and

hyperspectral image compression CCSDS 123 [25].

N

Input sample q = floor (N/m)

r = N-q*M

Codewordq = floor (N/m)
q ones r least significant bits of N

Figure 1.5: Example of the generation of the codeword with Golomb
codes

Regardless the selected type of entropy encoding, there is a limit which

determines the smallest possible expected number of bits needed to encode

an event, known as the Shannon limit [26]. Shannon limit establishes that,

given a set of mutually distinct events e1, e2, e3...en, and the probability

distribution P of the events, the smallest possible expected number of bits

needed to encode an event is the entropy of P , denoted by:

H(P) =
n∑
k=1

−p{ek} log2 p{ek} (1.1)

In the former equation, p{ek} is the probability that event {ek} occurs. An

optimal code outputs − log2 p bits to encode an event whose probability of

occurrence is p.

It is important to assess how well a specific compression method performs

when it is employed, since the compression efficiency will depend on the

compression technique as well as on the distribution of the image data. The

14 Chapter 1. Introduction

compression ratio is calculated and expressed commonly in two different

ways: as the relationship between the size in bits of the raw image and the

compressed image; or as the number of bits necessary to represent a pixel

after compression, also known as bits per pixel. The formulas that can be

employed to estimate how much a compression method reduces the data

volume are shown next:

� Compression ratio

CR =
Size of original image(bits)

Size of compressed image (bits)
(1.2)

� Bits per pixel per band

bpppb =
Size of compressed image (bits)

Lines× Columns×Bands
(1.3)

1.2.4.1 Lossless versus lossy compression

As it was mentioned, compression can be lossless or lossy. Lossless com-

pression allows the source data to be reconstructed perfectly, therefore it

is acceptable to be used to compress any kind of scientific data without

sacrificing data quality. On the contrary, lossy compression removes some

information in order to achieve higher compression ratios. The removed

information cannot be recovered when the data are decompressed.

The compression ratios for lossless techniques are typically limited to val-

ues around 2 or 3, except for data with low information density such as a

black sky. Another limitation of lossless compression is the fact that the

compression ratios cannot be predicted in advance, what makes it difficult

to estimate the amount of data that will be sent, i.e. the necessary down-

link capability. Furthermore, it is necessary to introduce error containment

Chapter 1. Introduction 15

strategies, since when the data are corrupted, it can no longer be perfectly

reconstructed and errors can propagate.

Lossy compression allows to find a trade-off between source fidelity and com-

pression ratio and achieves significantly higher compression ratios, although

it shares some of the limitations of the lossless techniques, like the possibil-

ity of error propagation. There is no upper limit for the ratio that can be

achieved with lossy compression techniques, which is established depending

on the downlink constraint and the amount of original data measured.

Furthermore, progressive compression provides a bridge between lossless and

lossy compression methods. It partitions the data into ordered hierarchical

segments. Each compressed segment, when combined with the previous ones,

allows for the reconstruction of successively higher fidelity versions of the

data. The initial version of the reconstruction is very lossy, while the final

reconstruction can in principle be lossless or nearly lossless.

1.3 Motivation of research

While the resolution of the remote sensors, and consequently the data rates,

continue to increase, the available downlink bandwidth is comparatively sta-

ble, as has been observed by NASA [27] and European Space Agency (ESA)

[28]. The solution offered is to apply data compression, hence payload data

processors on-board satellites have to be able to accomplish this task. In

particular, Earth Observation missions have the highest performance needs

for data processing, data reduction and compression, and future missions

and applications will require more powerful on-board processing platforms.

16 Chapter 1. Introduction

1.3.1 Importance of on-board hyperspectral image compres-

sion

The challenge and importance of data compression on-board satellites can

be illustrated with a few example missions, which are briefly described next.

The Euclid space science mission was selected by ESA to be launched in 2019

in the Cosmic Vision Program [29]. Its goal is to understand the origin of the

accelerating expansion of the Universe by mapping the geometry of the dark

universe. Euclid is not an Earth Observation mission, it was conceived to

observe the Universe. It carries probes able to measure the shape and spec-

tra of several hundreds of millions of galaxies over more than 15000 square

decrees of extragalactic sky, both in the visible and in the near infrared. The

focal plane is composed by 6 × 6 full frame charge-coupled devices (CCDs)

of 4096× 4096 and a data rate of around 1.08 Terabits per day, with a sin-

gle frame taking more than 10 Gbits. However, the rate should not exceed

the value of 520 Gbits per day, which will be achieved by applying lossless

compression with a ratio greater than 2.8 [30].

Other examples which demonstrate that on-board compression is becom-

ing increasingly important, are the SPOT and Pleiades series of satellites

developed at the Centre National d’Etudes Spatiales (CNES). While the

first satellites launched by CNES had a spatial resolution of 10m, SPOT-5,

launched in 2002 had a resolution of 2.5m to 5m; and future missions are

expected to reach resolutions below 50cm. The enhancement in resolution

cannot be compensated with the evolution in telemetry equipments. For

example, SPOT-4 only used one channel of 50Mbps, whereas two channels

with the same capacity are used for SPOT-5. Pleiades-HR was designed with

three channels of 155Mbps each. In the future, it is expected to reach an

overall capacity of 2Gbps by improving coding, modulation and transmission

efficiency. If we take SPOT-4 as an example, we observe that the improve of

Chapter 1. Introduction 17

Table 1.1: Imaging spectrometers on-board HyspIRI

Instrument Type Bands Spectral range Spatial
resolu-
tion

Swath Repeat
cycle

VSWIR PB 214 380 nm - 2510 nm 60 m 145 km 19 days

TIR WB 8 7.3 µm - 12.1 µm 60 m 600 km 5 days

downlink capacity can be estimated of a factor of 40, while the pixel density

will have grown by a factor of around 1000. Therefore, efficient compression

techniques will become an essential element of on-board processing units.

The HyspIRI mission was scheduled by NASA to be launched in the time-

frame 2013-2016 [31]. Its goal is to detect ecosystem responses to climate

change and human land management. Two imaging spectometers are car-

ried by the mission, the visible shortwave infrared (VSWIR) hyperspectral

imaging spectrometer and the thermal infrared (TIR) multispectral imager.

The details of the imagers can be seen in Table 1.1.

The HyspIRI mission is considered unique due to the amount of data be-

ing collected, stored and distributed, with a data rate of the order of hun-

dreds of gigabytes per day and a maximum sample rate of approximately 70

Mega-samples per second. If we take into consideration that each sample

is represented with 14 bits, the resulting data stream is considerable. The

downlink bandwidth and on-board processing capabilities (including data

compression) will determine the amount of data that can be collected and

analysed by the HyspIRI mission. The mission will collect approximately five

terabits per day, which will make nearly two petabytes over the three year

mission life. The spacecraft is also limited by the on-board storage, which

must be able to store hundreds of gigabytes until the next ground station is

in range. The on-board data storage of HyspIRI is limited to 1.6 terabits, i.e.

200 gigabytes. As a consequence, the mission utilizes hardware implemen-

tations of data processing and compression methods in order to reduce the

18 Chapter 1. Introduction

data stream coming from the instruments. HyspIRI performs lossless data

compression, which must be able to compress up to 70 Msamples/second in

real time. The compression algorithm selected for the HysPIRI mission is

the Fast-Lossless (FL) algorithm, developed at the Jet Propulsion Labora-

tory (JPL), which achieves a compression ratio of 3.1 and was implemented

on an field-programmable gate array (FPGA) with a resulting throughput of

33 Msamples/second at a system clock rate of 33 MHz [32]. The reduction

and compression techniques will reduce the data volume from 6.43 petabytes

to 1.67 petabytes over the 3-year mission and from 6455 gigabytes to 637

gigabytes per day.

1.3.2 Limitations and difficulties of the on-board hardware

Besides the selection of an appropriate algorithm for on-board hyperspectral

data compression, it is crucial to choose adequately a hardware technology

to physically implement the selected algorithm. Compression is required to

provide a high reduction of the data volume with minimum consumption of

the on-board resources, i.e. low hardware occupancy and low power; and it

has to be robust enough in order to minimize the propagation of errors in

the data.

Data compression can be implemented in hardware or software. The im-

plementation platform is selected based on a trade-off of several factors,

which include: compression performance; lossless versus lossy compression;

hardware resources requirements; impact of system complexity; impact on

reliability and implementation cost. It has to be noted that there is always

a trade-off between the effectiveness of the algorithm and the complexity of

its implementation, i.e. the more compression is achieved, the more the re-

sources needed by the hardware implementation. The algorithm must have

low computational and memory requirements, with a number of operations

Chapter 1. Introduction 19

per sample of the order of 10 and a reduced amount of multiplications, which

take a long number of clock cycles to be executed.

Hyperspectral on-board compression algorithms are usually implemented in

hardware rather than in software. The motivation for this is speed, since

hardware compression may perform as much as five times faster than software

compression for data of this type. Hardware implementations of on-board

compression algorithms are particularly challenging, due to the existing lim-

itations of the on-board hardware, which has to meet specific requirements

like tolerance to solar radiation and low power consumption. All this makes

the on-board processing devices have a lower performance and a higher cost

than the available commercial solutions which can be found on the ground

segment.

Normally, on-board compression algorithms are implemented on FPGAs,

application-specific integrated circuits (ASICs) or digital signal processors

(DSPs). Among them, FPGAs stand out because they present multiple ad-

vantages such as the ability to apply parallel processing to increase through-

put, provide flexibility to adapt the designs to successive upgrades of com-

pression algorithms as well as scalability and data integrity features. One

of the most important features of FPGAs when used for on-board process-

ing is the fact that they can be reconfigured, what will make them become

even more important for space missions in the near future. As science goals

change or as spacecraft capabilities are limited, the ability of an FPGA to

be reprogrammed from Earth allows for the functional evolution of hardware

through the life of the mission. A new compression algorithm with higher

performance could be implemented on the satellite in the future with relative

ease.

Besides the aforementioned hardware platforms, graphics processing units

(GPUs) have become popular recently, and widely used for data-intensive

20 Chapter 1. Introduction

Table 1.2: Missions implementing on-board data compression

Instrument Satellite Launched Status Compression
algorithm

Payload data
processing

COIS NEMO Planned
2000

Never
flown

ORASIS
(Compression
ratio > 10)

Array of DSP
(2.5 GFLOPS)

HERO NDA NDA Planned Near-lossless
vector quanti-
zation

Xilinx Virtex
FPGA

Hyperion EO-1 2001 Running Rice coding RISC processor
12 MHz Mon-
goose 5

HRS SPOT-5 2002 Running DCT-based Marconi
MDC31750

OMEGA Mars Ex-
press

2003 Running Wavelet-based TSC12020

HySI-T IMS-
1TWsat

2008 Running JPEG2000 NDA

HiRI Pleiades-
HR

2012 Running Wavelet-based
(Compression
ratio 4− 7)

NDA

OLI Landsat-8 2013 Running Optional loss-
less

ASIC

HysPIRI NDA Planned
2013

Mission
concept

Fast Lossless Xilinx Virtex
FPGA

computation, making it possible to achieve a substantial acceleration of al-

gorithms taking advantage of their parallel multiprocessors. These devices

are at the moment not qualified to operate in space, however they represent

a promising alternative. Many hyperspectral compression algorithms allow

for a fair amount of parallelism, therefore it is possible to obtain significantly

short processing times when parallelized and executed on GPUs.

Table 1.2 shows some of the current and planned missions which implement

multispectral or hyperspectral on-board data compression.

NDA stands for ‘No Data Available’.

Chapter 1. Introduction 21

1.4 Research goals

As it has been explained, future remote sensing missions will have to imple-

ment on-board compression to allow capturing data with a high data rate and

meet the storage and downlink bandwidth limitations at the same time. Ef-

ficient compression relies on both, compression algorithms and the on-board

physical implementation of the algorithms. The main goal of this Thesis

is to propose new technological solutions for the physical implementation

and execution of hyperspectral compression algorithms on-board satellites.

The results of this research work are expected to improve the state-of-the-

art benchmarks of the current available hardware implementations, as well

as set the direction for future research work on this topic, which will lead

to further developments. The principal objectives of this research work are

summarized next.

� New solutions for accelerating algorithms on several technologies, namely

GPUs and FPGAs are proposed. Two different algorithms of the state-

of-the-art are utilized as subjects of study, due to their particular in-

terest for future space missions: the lossy compression algorithm for

Exomars (LCE), developed under a collaboration between ESA and

Politecnico di Torino [33]; and the standard for lossless multispectral

and hyperspectral compression, recently issued by the CCSDS [25].

� A characterization of the aforementioned algorithms is provided, as well

as an analysis of the architectural options for their implementation.

� The improvements obtained when accelerating the compression algo-

rithms on GPUs and FPGAs are assessed and compared in terms of

the computational performance, the cost of the solution and the flex-

ibility of the obtained implementation to adapt to future changes or

improvements.

22 Chapter 1. Introduction

� The validity of the proposed solutions is demonstrated by showing

the correctness of the algorithm’s execution on the different platforms,

comparing the results with those obtained with golden reference soft-

ware implementations.

Further goals are achieved part of the progress of the work plan. These are

detailed next.

� Different digital hardware design methodologies are utilized and com-

pared, including high-level synthesis solutions.

� Accelerating algorithms by means of parallelization implies solving bot-

tlenecks and data dependencies which can reduce the parallelization

capabilities. The common difficulties which appear when trying to

accelerate hyperspectral image compression algorithms are identified.

� Solutions are given in order to solve data dependencies and allow for

more parallelization of the algorithms. When possible, the paralleliza-

tion strategies are given in a general way, so that they can be applied

for other algorithms of the same kind.

All these contributions are expected to be useful to reduce the cost and

improve the performance of future satellite missions in which hyperspectral

on-board data compression will play a critical role.

1.5 Organization of this document

The present document is structured in six chapters, including this introduc-

tory one, which is dedicated to present the main motivations and goals of

this Thesis work. The rest of the chapters are briefly described next.

Chapter 1. Introduction 23

Chapter 2: On-board hyperspectral image compression algorithms

and hardware implementations

This chapter presents a review of the state-of-the-art in the field of algorithms

for hyperspectral data compression on-board satellites and their hardware

implementations. The main requirements of the algorithms and the on-board

hardware are described and the different solutions proposed in the literature

are analysed, with the objective of contextualizing this research work and

setting quantitative goals.

Chapter 3: Implementation of a lossy compression algorithm for

hyperspectral images on a GPU

This chapter describes the GPU implementation of a lossy compression al-

gorithm for hyperspectral images, showing the acceleration that can be po-

tentially obtained.

Chapter 4: Implementation of a lossy compression algorithm for

hyperspectral images on an FPGA

This chapter shows the implementation on a FPGA of a lossy compres-

sion algorithm for hyperspectral images. The resulting experimental results

are useful to evaluate how well the algorithm performs on an FPGA and

furthermore make it possible to perform a comparison with the GPU imple-

mentation of the same algorithm developed in Chapter 3.

Chapter 5: Implementation of the CCSDS standard for lossless

hyperspectral image compression on a space-qualified FPGA

An implementation of the CCSDS standard for lossless hyperspectral image

compression is performed on a space-qualified FPGA, which is currently

being used in space-applications. Several architectural options are explored

for the implementation of the algorithm, selecting the one that provides the

best trade-off between complexity, power consumption and flexibility of the

24 Chapter 1. Introduction

implementation. Experimental results are provided and a comparison with

the other implementations studied in this Thesis as well as implementations

of the state-of-the-art is given.

Chapter 6: Conclusions

Finally, the collection of contributions of this Thesis are summarized and

further research works are proposed.

Chapter 2

On-board hyperspectral

image compression

algorithms and hardware

implementations

This Chapter summarizes the main characteristics of the algorithms for satel-

lite data compression, focusing on those specifically designed for on-board

hyperspectral image compression. An overview of the particular require-

ments of on-board compression is provided, as well as a detailed description

of the most relevant algorithms of the state-of-the-art, based on their the-

oretical basis. Furthermore, the physical implementations and performance

figures of several hyperspectral compression algorithms on different hardware

technologies, including space-qualified devices, are presented.

25

26 Chapter 2. On-board compression algorithms and hardware

2.1 Outline

An efficient compression of hyperspectral images on-board satellites is manda-

tory in order to save bandwidth and storage space. Hence, it has become a

very popular research topic for academia and the space industry. Reducing

the data volume in a harsh environment like space, where the computational

power is limited, is also a challenge which has been faced with a twofold

approach: to propose new algorithms, specifically designed to take advan-

tage of the nature of hyperspectral images; and to present the technologies

and strategies to execute the compression in the hardware available on a

satellite, minimizing the complexity, and consequently the resource usage

and power consumption. In order to make it easier for the space industry

to implement on-board compression on their satellites, an effort has been

made to develop standard algorithms. In this sense, the Consultative Com-

mittee for Space Data Systems (CCSDS), a consortium of the major space

agencies in the world, has issued three recommended standards for space

data compression: a universal lossless compression solution [24], a lossless to

lossy two-dimensional (2D) image compressor [34] and a lossless compression

algorithm for multispectral and hyperspectral images [25].

Both, lossless and lossy techniques for hyperspectral image compression can

be found in the literature. As any other state-of-the-art compression algo-

rithm, they utilize the redundancies in the image samples to reduce the data

volume. Two different approaches are feasible in the case of hyperspectral

image compression, either 2D coding, which only takes advantage of the

spatial redundancies among neighbouring pixels, or three-dimensional (3D)

coding, which also exploits the existing redundancies between bands. Among

the 2D approaches it is possible to find algorithms like LOCO-I [35] or 2D-

CALIC [36]. However, since most remote-sensing images have a large number

of spectral components (hundreds of bands in the case of hyperspectral im-

ages), taking into consideration the third spectral dimension has been proven

Chapter 2. On-board compression algorithms and hardware 27

to increase the compression performance of the algorithms, achieving higher

compression ratios. Examples of these are the 3D extensions of the afore-

mentioned algorithms, LCL-3D [37] and 3D-CALIC [38]; and the algorithms

presented in Section 2.2.

Compression algorithms are inherently computationally demanding, and those

designed for hyperspectral images are not an exception. When they are to

be executed on a satellite, the specific requirements of on-board process-

ing have to be considered. The available processing power is limited, and

most usual data compression technological solutions used on ground cannot

be applied to space data systems. Therefore, together with the algorithms,

different hardware implementations have been proposed for the compres-

sion to be executed on-board a satellite. The most usual approach is to

implement a demonstrator of the algorithms in software, which is executed

on a general-purpose single-threaded central processing unit (CPU). How-

ever, the processors available for on-board usage are not powerful enough

to accomplish the compression in an efficient way. Other solutions, more

suited for on-board compression, include highly-customized ASICs and im-

plementations on reconfigurable FPGAs. Lately, GPUs have been shown

as a promising alternative, although they cannot be used for on-board com-

pression nowadays. A discussion about the current state-of-the-art hardware

implementations for hyperspectral image compression is presented in Section

2.3.

2.2 Algorithms for on-board hyperspectral image

compression

Typically, a hyperspectral compression algorithm consists of a spatial and/or

spectral decorrelator, a quantization stage and an entropy coder, which ex-

plores the probability of the symbols to assign short codewords to the most

28 Chapter 2. On-board compression algorithms and hardware

probable symbols and long codewords to the less probable ones. The decor-

relator can be transform-based or prediction-based. In the former approach,

a transform like the Discrete Wavelet Transform (DWT), Kahrunen-Loève

Transform (KLT), or Principal Component Analysis (PCA) is utilized to

decorrelate the data, whereas in the latter, the samples are predicted from

neighbouring (in the spectral or spatial direction) samples, and the predic-

tion errors are encoded.

Lossless algorithms have been traditionally preferred, to preserve all the in-

formation present in the hyperspectral cube for scientific purposes. However,

the performance in terms of compression ratio of the lossless techniques is

limited, usually showing a data volume reduction from half up to one third

the size of the original image, at most. The necessity for obtaining higher

compression ratios will become more critical in the near future, as the data-

rate of the next-generation sensors is expected to increase. Therefore, lossy

techniques have been also proposed. Whenever lossy techniques are em-

ployed, it is necessary to evaluate the impact of the losses in the reconstructed

data. Usually the relationship between the peak signal-to-noise ratio (PSNR)

and the compression ratio, commonly named rate-distortion (RD) ratio, is

used as a metric, together with the maximum absolute error (MAE) and the

mean square-root error (MSRE). The aforementioned metrics are defined in

the following equations, where sz,y,x represents a sample located in coordi-

nates (x, y) and band z and ŝz,y,x is the corresponding reconstructed sample.

Ny, Nx and Nz are the number of lines, columns and bands respectively.

� Compression ratio in bits per pixel per band

bpppb =
Size of compressed image (bits)

Nz ×Ny ×Nz
(2.1)

Chapter 2. On-board compression algorithms and hardware 29

� Maximum absolute error (MAE)

MAE = max (|sz,y,x − ŝz,y,x|) (2.2)

� Mean-squared error (MSE)

MSE =

∑
|sz,y,x − ŝz,y,x|

Nz ×Ny ×Nx
(2.3)

� Peak signal to noise ratio (PSNR)

PSNR =
10 log(215 − 1)2

MSE
(2.4)

Nevertheless, it has been observed that a high PSNR does not necessarily

yield higher quality in the reconstructed hyperspectral images when they are

used in specific applications [39]. Hence, other application-oriented assess-

ments of the impact of the losses have been reported in the literature, where

the experiments aim at demonstrating how useful the reconstructed hyper-

spectral images are at the post-processing stage for particular purposes, e.g.

classification, endmember extraction or anomaly detection [40–43]. It is ob-

served that the compression techniques might introduce artifacts which have

a little impact in the PSNR but can significantly bias the analysis results

of the decompressed image. Lossy compression can also produce a low-pass

filtering of the image, which might ease the extraction of the endmembers

from the reconstructed data. For instance, in [20] the H.264/AVC video cod-

ing standard is utilized to compress hyperspectral images, taking advantage

of the fact that both, video and hyperspectral images, constitute 3D data.

Despite the high compression ratios achieved, it was demonstrated that a

very accurate endmember extraction from the decompressed data was still

possible.

30 Chapter 2. On-board compression algorithms and hardware

2.2.1 Requirements and limitations of an on-board hyper-

spectral image compression algorithm

The hyperspectral image compression algorithms need to meet several re-

quirements to be amenable to operate on the hardware available on a satel-

lite, specifically:

� The complexity of the compression algorithm has to be low. Regard-

less of the technology where the algorithm is finally implemented, the

computational power of the space-qualified hardware used nowadays on

satellites is much lower than that of any personal computer or worksta-

tion used on ground. Although the radiation-hardened space-qualified

components have the same functionality of an equivalent standard pro-

cessor, they are designed to be insensitive to ionisation and hence are

more expensive to design and manufacture. As a result, the avail-

able devices do not have the state-of-the-art computational capabilities.

Moreover, it is advantageous that the algorithm can be parallelized in

order to speed up the compression process for high data-rate sensors;

and must use the available resources effectively, possibly not needing

an external memory.

� It is desirable that the algorithm is resilient to errors. Errors can take

place during on-board compression because of the effects of radiation,

e.g. bit flips in the on-board memory, and while transmitting the data

to the ground station. A corrupted packet will prevent the decoding of

other packets that depend on it, causing significant error propagation.

Traditional compression algorithms cannot recover from a single bit

error, causing a wrong decoding of the remainder of the compressed

file after the error. Error-resilience aims at limiting error propagation

at the cost of losing compression performance, by using error-resilient

Chapter 2. On-board compression algorithms and hardware 31

entropy codes or by partitioning the data in units that are coded in-

dependently, in such a way that an error in one unit will not prevent

from decoding other units.

� The compression algorithm has to be able to handle raw data. Never-

theless, most of the times the algorithms are only tested on calibrated

data. The significance of these results is bounded by the fact that

raw data generated on-board are known to have quite different char-

acteristics than calibrated data. For instance, an algorithm for hy-

perspectral image compression based on look-up tables known as LUT

[44] showed remarkable high compression ratios when applied to old

calibrated AVIRIS data, because it exploited artificial regularities in-

troduced in the conversion of raw data values to radiance units. These

methods did not work that well on raw or newer calibrated data.

2.2.2 Transform-based compression algorithms for hyperspec-

tral images

A transform-based compression method applied to 2D data consists of trans-

forming the spatial information to another domain, in such a way that the

data are decorrelated. The most popular transforms used in compression

are the DWT and the Discrete Cosine Transform (DCT). The transform

is followed by the quantization and encoding of the resulting coefficients.

Wavelet-based compression techniques are particularly interesting and have

shown excellent rate-distortion performance for traditional 2D imagery. Al-

though transform-based methods are mostly popular for lossy compression,

reversible transforms allow lossless compression likewise. Examples of popu-

lar transform-based compression methods are the JPEG2000 standard [45],

and set partitioning methods, such as set partitioning in hierarchical trees

(SPIHT) and its 2D and 3D variations (SPIHT-2D, SPIHT-3D, SPECK).

32 Chapter 2. On-board compression algorithms and hardware

The algorithms for hyperspectral image compression which are based on

transforms are usually extensions of 2D compression techniques. 3D com-

pression involves coupling a spatial transform with a transform in the spec-

tral direction. A popular approach is to apply a one-dimensional spectral

decorrelator, such as KLT [46, 47] or the DWT [48] followed by JPEG2000.

The latter serves as spatial decorrelator, rate allocator and entropy coder.

Several 3D transform coding techniques for lossy hyperspectral image com-

pression are compared in [39], showing increased rate-distortion performance

when a spectral KLT is employed, especially in the low bit-rate region. How-

ever, the complexity of the KLT is rather high, due to the need to estimate co-

variances matrices, solve eigenvector problems and computing matrix-vector

products. Hence, a low-complexity version of the KLT is also presented,

[39], showing a minor performance loss with respect to the full KLT and a

20 to 100 times less complexity. In [49] a fault-tolerant implementation with

reduced complexity is presented, introducing a error detection and correc-

tion (EDAC) method for the matrix factorization operation of the integer

KLT transform.

In [50], PCA is used as a spectral decorrelator before JPEG2000 to per-

form lossy compression of hyperspectral images. PCA transforms a set

of correlated data into linearly uncorrelated variables, known as principal

components (PCs). The performance of the proposed approach, named

PCA+JPEG2000 is addressed in terms of the usefulness of the decompressed

data for detection and classification and rate-distortion (RD) performance.

The results are compared with an approach in which the DWT is employed

before JPEG2000, showing increased performance for PCA+JPEG2000. Fur-

thermore, PCA produces dimensionality reduction in the spectral domain,

and it is equivalent to the KLT when all PCs are retained. Remarkably,

in [50] it is observed that the best rate-distortion performance occurs when

Chapter 2. On-board compression algorithms and hardware 33

significantly less PCs than the total number of spectral components are re-

tained, because the minor PCs are mostly noise. The main drawbacks of

using PCA for compression is that computing the transform is computa-

tionally intensive, together with the fact that the transform matrix has to

be communicated to the decoder, what produces an overhead which can af-

fect the compression performance at low bit-rates. A method to reduce this

overhead is presented in [51].

Another application of transform-based methods for hyperspectral image

compression is presented in [52], where 2D-DWT is employed in each spectral

band, followed by Tucker Decomposition (TD) of the transform coefficients

to increase the compression ratio. The results exhibit better rate-distortion

performance when compared with PCA+JPEG2000, especially at bit-rates

lower than 0.1 bpppb, and better classification accuracy.

ICER [53] is a wavelet-based 2D image compressor which is currently be-

ing used on-board the Mars Exploration Rovers for compression of a large

majority of the images returned [54]. The 3D extension of ICER, ICER-3D

uses a 3D wavelet decomposition to provide decorrelation in the spectral

dimension as well as both spatial dimensions. ICER-3D is progressive, i.e.

the compressed information is organized so that as more of the compressed

data stream is received, reconstructions with successively higher overall im-

age quality can be reproduced. ICER-3D uses reversible wavelet transforms

in such a way that it can provide lossless or lossy compression. To limit

the effects of data loss during transmission, the wavelet-transformed data

are partitioned into a user-selectable number of segments which are com-

pressed independently. The compression ratio results show that ICER-3D

gives effective compression, but is outperformed by the much simpler Fast-

Lossless (FL) compressor based on prediction [55], which is described with

more details in Section 2.2.3.

34 Chapter 2. On-board compression algorithms and hardware

2.2.3 Prediction-based compression algorithms for hyperspec-

tral images

Although transform-based methods provide an efficient compression, they

are better suited for the compression of 2D images than for hyperspectral

cubes, since extending the methods to perform an additional transform in

the third dimension requires significant computational resources, which are

not available on-board.

The predictive coding paradigm represents an alternative that achieves a

good balance between performance and complexity. It consists of predict-

ing the value of a pixel from past data, generally neighbouring pixels in the

spatial (intra-band prediction) and/or spectral (inter-band prediction) di-

mension, subtract the predicted value from the actual sample, quantize the

resulting prediction error and entropy code it. This is a form of differential

pulse code modulation (DPCM). Figure 2.1 shows the principle of a predic-

tion scheme where the previously processed sample in the spatial dimension

is used for prediction.

Predictor

Entropy coder+

previously
processed

sample

sample to be
compressed

predicted sample

Figure 2.1: Prediction-based compression scheme.

While lossy compression is more efficiently performed by transform-based

methods at the cost of increased complexity; prediction is mostly preferred

Chapter 2. On-board compression algorithms and hardware 35

for lossless compression. Nevertheless, near-lossless or lossy compression can

be achieved by a predictive coding algorithm by means of selecting an ap-

propriate quantization method [33, 56]. The prediction plus entropy coding

paradigm is amenable to low complexity. Traditionally, on-board compres-

sion algorithms avoid using arithmetic coding, as it is considered a relatively

complex coding scheme. Instead, Golomb-power-of-two codes [57] are the

preferred choice, because they achieve a good balance between performance

and complexity.

Several methods based on prediction can be found in the literature. Among

the lossless techniques, the FL algorithm [55] uses low-complexity adaptive

filtering for predictive compression of hyperspectral images, using the sign

algorithm [58]. The samples are predicted using only causal information, i.e.

the part of the image which has been already processed. In particular, it

utilizes the samples in the current band ans well as in the three previous

bands and adapts the predictor coefficients using recursive estimation. This

algorithm is particularly interesting, since it was selected by the CCSDS to be

standardized and become the CCSDS 123 recommendation for multispectral

and hyperspectral compression [25].

A method based in Context-based, Adaptive, Lossless Image Codec (CALIC),

named 3D-CALIC, is presented in [38]. 3D-CALIC switches between intra-

band and inter-band compression mode depending on the strength of the

correlation between two consecutive bands. In [59], a modification of 3D-

CALIC is presented, in which only inter-band prediction is utilized, specifi-

cally, the prediction is performed using two samples in the previous band in

the same spatial position of the current sample.

Furthermore, clustered DPCM [60] partitions the spectral vectors into clus-

ters and then applies a separate least-squares optimized linear predictor to

each cluster of each band. An adaptive least squares optimized prediction

technique called Spectrum-oriented Least Squares (SLSQ) can be found in

36 Chapter 2. On-board compression algorithms and hardware

[61]. The predictor is optimized for each sample and each band in a causal

neighbourhood of the current samples.

Other predictive algorithms, are based on lookup-tables (LUTs) [44], search-

ing the previous band for a sample of equal value to the sample co-located

to the one to be coded. The sample in the same position as the obtained

sample is used as the predictor. LAIS-QLUT performs also quantization of

the co-located samples. A generalization of the LUT method to multiband

and multi-LUT is proposed where the prediction of the current band relies

on N previous bands. It was demonstrated that LUT-based methods exploit

artifacts that are sometimes introduced by the calibration process, making

them less appealing for on-board use, where those artifacts are not likely to

occur [44].

Prediction-based algorithms can achieve an improved compression perfor-

mance when band reordering is applied, as has been demonstrated in the

literature [62–64]. In the latter, the spectral channels of the image are re-

ordered to maximize the correlation of adjacent bands. However, searching

for the most correlated band given a specific one is computationally de-

manding, and would significantly increase the hardware complexity if it is

performed on-board.

In order to allow parallelization and reduce the impact of errors, some algo-

rithms partition the image in squared independent blocks and compress one

block at a time. For instance, the BH algorithm [65] employs a simple block-

based predictor. It first predicts the block from the corresponding block in

the previous band, then selects a predesigned code based on the prediction

errors and finally it encodes the predictor coefficient and errors.

In [56] a very simple lossless to near-lossless compression algorithm is de-

scribed, which is based on block-by-block prediction and predictive Golomb

coding. The proposed algorithm can exploit optimal band reordering, and

Chapter 2. On-board compression algorithms and hardware 37

can be extended to near-lossless compression by means of a uniform scalar

quantizer. In order to avoid the complex operations that band reordering

involves, the authors of [56] propose to perform the band reordering at the

ground station based on sample data and then upload it to the satellite for

the compression of the captured images. The motivation for that is tha the

optimal ordering depends on both the sensor and the scene, with the former

potentially dominating the ordering. Experiments on AVIRIS data show bet-

ter compression than LUT, almost as good as FL and similar to 3D-CALIC.

Band reordering shows a small improvement of 1% in the compression ratio.

When near-lossless compression is performed, it is demonstrated that the

algorithm, although being block-based, does not produce blocking artifacts

in the reconstructed images.

As it has been already stated, prediction methods are preferred for loss-

less compression. However, they can be also successfully applied for low-

complexity lossy compression. In [33], a block-based lossy compression

scheme is proposed, based on prediction, uniform-threshold quantization and

rate-distortion optimization. The experimental results demonstrate a per-

formance competitive with the state-of-the-art transform coding techniques,

but with significantly lower complexity. Since it is block-based, it is able to

limit the scope of errors and it is amenable for a parallel implementation. All

this makes it a good candidate for on-board compression at high through-

puts. This algorithm was developed under an ESA project in the framework

of the Exomars mission [66].

38 Chapter 2. On-board compression algorithms and hardware

2.2.4 Recent research on hyperspectral image compression

algorithms

Recent work has applied ideas from distributed source coding to construct

extremely simple and error-resilient algorithms [67]. Distributed source cod-

ing techniques consider a situation in which two or more statistically depen-

dent information sources must be encoded by separate encoders which do not

share any information. The theory proves that, under certain conditions, sep-

arate coding is optimal, provided that the sources are decoded jointly. When

applied to hyperspectral images, the previous band is used for the prediction

of the current band. The first band is transmitted uncompressed, while for

all others, the prediction parameters are not sent to the decoder. Instead,

the decoder reconstructs the pixels by guessing them, and computing a cyclic

redundancy check (CRC). Once the CRC matches the one included in the

compressed file, the process terminates. This approach provides furthermore

error resilience, since an error in the transmitted compressed data does not

necessarily yield an erroneous reconstruction. The proposed algorithm shows

a competitive complexity when compared with the state-of-the-art, adding

the advantage of error resilience features. However, an appropriate trade-off

is yet to be found between robustness, complexity and compression per-

formance. The algorithms based on distributed source coding can achieve

a compression performance higher than the state-of-the-art 2D prediction

algorithms and slightly lower than other 3D prediction-based algorithms,

which is the price to be paid for error resilience.

Other recent studies are focused on compressed sensing techniques [68],

which suggest that a signal, supposed to be sparse, can be perfectly re-

constructed from a limited, i.e. fewer than Shannon, number of incoherent

measurements. These techniques could indeed simplify the process of hyper-

spectral image acquisition [69], providing a reduced number of measurements

directly produced by the sensor, saving an important amount of resources.

Chapter 2. On-board compression algorithms and hardware 39

In fact, preliminary results have demonstrated that the amount of measure-

ments needed to represent a hyperspectral image can be reduced by a factor

of up to 10 [70]. Nevertheless, the design of a sensor able to produce these

measurements is difficult, and a lot of technological developments are still

needed in order to leverage the full potential of this know-how for hyper-

spectral imaging [71].

2.2.5 CCSDS Standard algorithms for satellite data compres-

sion

The importance of an efficient data compression in space missions is further

evidenced by the fact that the CCSDS has issued several standards which

facilitate for the different the space agencies and industries to exploit the

benefits of compression, by making high quality documentation available

and helping to establish a broad user community.

The first released compression standard for space applications is known as

CCSDS 121 [24] and is a universal lossless data compressor consisting of a

preprocessor and an entropy coder based on Rice coding [72]. The objec-

tive of the preprocessor is to change the statistics of the data by applying a

reversible function, hence reducing the entropy. The recommendation does

not strictly specify the preprocessing stage, which can be determined by the

final user according the specific characteristics of the target data. The subse-

quent stage consists of a mapper followed by an entropy coder which operates

on blocks of J samples. It incorporates multiple coding options, based on

Golomb power-of-two codes, which are applied concurrently to a J-samples

block. Furthermore, it includes a zero-block and a no compression option,

as well as a low entropy option known as second extension. The algorithm

option that yields the shortest encoded length is selected for transmission.

40 Chapter 2. On-board compression algorithms and hardware

The CCSDS 121 features very low complexity, however its performance de-

creases significantly with the presence of outliers or when the data do not

follow any well-defined statistics. With the motivation of overcoming this

difficulties, some alternatives to the CCSDS 121 can be found in the liter-

ature. In [73] a Fully Adaptive Prediction Error Coder (FAPEC) is pre-

sented, together with its software and hardware implementations. FAPEC

shows increased compression ratios when compared with CCSDS 121, and a

complexity that is amenable for an on-board implementation. More details

about the hardware implementation of FAPEC can be found in Section 2.3.

The Image Data Compression recommendation [34], CCSDS 122, describes

a compression technique which can be used to produce both lossy and loss-

less compression of 2D satellite images. It consists of a DWT module that

performs decorrelation and a bit plane encoder (BPE). The DWT module

employs a three-level 2D-DWT, by repeatedly applying a one-dimensional

DWT. It is possible to choose between a float DWT or an integer approx-

imation to this transform. The output coefficients are converted to integer

values before applying the BPE, which represents each value with a binary

word consisting of a single sign bit along with several magnitude bits depend-

ing on the bit width of the input image data. The CCSDS 122 is similar to

JPEG2000, however it has a a reduced performance which allows for lower

complexity and hence low-power hardware implementations.

Finally, the CCSDS 123 recommendation [25] defines a payload lossless data

compressor that can be applied to multispectral and hyperspectral imagers

and sounders. The compressor consists of a predictor and an entropy coder

and is based on the FL algorithm [55]. The predictor uses an adaptive linear

prediction method to predict the value of each image sample based on the

values of nearby samples in a small three dimensional neighbourhood. The

residual of the prediction is mapped to an unsigned integer value and encoded

with an entropy coder whose parameters are adaptively adjusted to adapt to

Chapter 2. On-board compression algorithms and hardware 41

changes in the statistics of the mapped prediction residuals. The standard

offers the alternative of using the block-based entropy coder defined in the

lossless data compression standard, CCSDS 121. Experimental results in

terms of compression ratio for a real hyperspectral and multispectral image

corpus show that the CCSDS 123 standard is competitive with other state-of-

the-art algorithms, providing the best trade-off between coding performance

and computational complexity [74].

Figure 2.2: CCSDS 123 Recommendation for lossless multi- and hyper-
spectral image compression.

2.3 Physical implementations for on-board com-

pression of hyperspectral images

Several algorithms with different complexity and performance features for

on-board compression have been proposed in the literature. Nevertheless, it

42 Chapter 2. On-board compression algorithms and hardware

is also necessary to provide physical implementations which serve to demon-

strate that the algorithms are suited for on-board compression, and that

their performance will be maintained when implemented in the on-board

hardware.

Obtaining a physical implementation is a difficult and time-consuming task,

therefore not all the studies about hyperspectral image compression algo-

rithms include them. Many times only the theoretical basis is explained,

and the experimental results are obtained with high-level software tools,

such as MATLAB. In general, the different implementations found in the

literature can be classified based on their technology as follows:

� Software implementations:

- Implementations on general-purpose CPUs. Usually a high-level

programming language is used to produce a software which can be

executed on any general-purpose CPU. These kinds of implemen-

tations are really flexible and can be obtained in a relatively short

time at a low cost. However, the low throughput presented by the

on-board processors when performing hyperspectral image com-

pression makes them inadequate to perform hyperspectral image

compression on-board a satellite, as it will be further explained

in Section 3.3.

- Implementations on DSPs. These devices are specifically designed

to perform signal processing in an efficient way and are therefore

an interesting option for hyperspectral image compression, due to

the amount of mathematical operations demanded by the algo-

rithms, mainly in those based on transforms.

- Implementations on GPUs. These devices have recently become

popular for general-purpose computing, employing massively par-

allel processing to achieve high throughput. Nevertheless, they are

Chapter 2. On-board compression algorithms and hardware 43

not space-qualified and their usage on-board satellites is subtle to

future technical developments which would reduce their power

consumption and make them insensitive to solar radiation.

� Hardware implementations:

- Implementations on ASICs. These highly-customized implemen-

tations achieve high throughputs and low power at the cost of

relatively high design times, more expensive manufacturing and

lack of flexibility.

- Implementations on FPGAs. Represent a trade-off between cus-

tomization and cost, making it possible to obtain high through-

puts and low power consumption.

The remaining of this Chapter gives more details about the aforementioned

technologies and the most significant hardware implementations of several

of the algorithms described in Section 2.2. It has to be noted that not all

the presented implementations correspond to 3D hyperspectral compression

algorithms. FPGA implementations of universal satellite data compression

algorithms or 2D image compressors are also presented, since they are con-

sidered relevant for the state-of-the-art and they can anyhow be employed

for hyperspectral image compression with a reduced compression efficiency,

as it was shown in Section 2.2.

2.3.1 On-board hardware technology requirements

In general, any hardware implementation, regardless of the technology, is

desired to be small in area, have low power consumption and achieve a high

throughput. In this sense, the implementation of algorithms for on-board

hyperspectral image compression are no exception. However, the specific

44 Chapter 2. On-board compression algorithms and hardware

characteristics of the space environment makes it mandatory for the hard-

ware operating on a satellite to meet additional requirements, mainly toler-

ance to solar radiation and low power consumption, among others. All this

difficulties the on-board device fabrication, increases its cost and ultimately

reduces its performance. The most relevant requirements of the on-board

hardware are summarized next.

Tolerance to high energy radiation

Hardware operating in space has to be integrated by components and man-

ufactured with materials which can tolerate high energy radiation. The

biggest threat to their operation are high energy particles like galactic cos-

mic rays, solar winds, solar events and radiation belts. High energy particles

can cause upsets in complementary metal-oxide semiconductor (CMOS) and

field effect transistor (FET) technologies, which are used to manufacture

most of nowadays microelectronic devices. A single event upset (SEU) is

a change of state caused by ions in a microelectronic device, producing an

error in the device output or even a permanent damage which can destroy

the device.

The relevant effects of the space radiation environment on microelectronics

can be divided into two categories: total ionizing dose (TID) effects and

single event effects (SEE). The SEEs can be further subdivided into effects

that lead to permanent damage (latch-up) and recoverable effects.

Radiation effects that accumulate over time are referred to as total ionizing

dose (TID). In normal operating conditions, a voltage applied on te gate of

a MOSFET transistor creates an electric field, which reaches into the semi-

conductor below the gate oxide. This electric field causes the formation of a

conducting channel between source and drain. When high energy particles

impact on the gate oxide of a transistor, they cause ionisation. Electrons get

swept out, leaving behind immobile holes, as it is shown in Figure 2.3. These

Chapter 2. On-board compression algorithms and hardware 45

positively charged holes in the gate oxide decrease the threshold voltage re-

quired for the creation of a conductive channel. If the threshold becomes too

low the device is in a permanent “on” state. Space-qualified microelectronic

materials are tested for a specific total ionising dose, to ensure they operate

as expected in space.

Channel On
with VG<VT

Gate Oxide

Drain

Gate

Source

P-Type Silicon

VG=0

n+ n+
++++++

Conductive Inversion
Channel (VG>VT)

Gate Oxide

Drain

Gate

Source

P-Type Silicon

+VG

n+ n+

(a) (b)

Figure 2.3: Radiation effects on a MOSFET transistor.(a) Normal oper-
ation. (b) Post irradiation.

A latch-up is the occurrence of a path of low resistivity between the voltage

supply and ground connection, which can destroy the device.

On the other hand, protons can origin nuclear reaction with silicon atoms,

what produces short range ionisation and can upset a memory cell. When

a heavy ion impacts on material, it loses energy which causes ionisation of

the atoms in the proximity of the impact trace. When ionisation occurs in

a pn-junction of a microelectronic device the charges created are separated

due to the pn-junction’s electric field. This process creates a charge in the

electronic device, what can cause an erroneous transient or interact with the

charge of a memory cell. If the charge created exceeds a critical value, the

state of the memory cell can be upset.

When microelectronic devices for space are manufactured with a technology

susceptible to SEUs, mitigation techniques have to be employed in order to

46 Chapter 2. On-board compression algorithms and hardware

reduce the system error rate. The typical approach is to apply triple modular

redundancy (TMR), which uses three replicas of the same circuit and applies

a majority voting strategy to select the correct output among the replicas.

The direct consequence of utilizing TMR is an increase in the design area.

Some commercial off-the-shelf (COTS) solutions have been tried in the past

to implement on-board compression algorithms. In particular, in [75] an im-

plementation study of JPEG2000 standard is performed with radiation hard-

ened components, exhibiting disappointing results because of the complexity

of the algorithm for its implementation in such a hardware. Subsequently, in

the same study, a commercial hardware platform implementing JPEG2000

is used to perform a performance analysis and a study of tolerance to the

spatial environment. The circuit revealed a high sensitivity to radiation,

demonstrated by the fact that not a single image was compressed success-

fully under heavy ions beams. Although the COTS solution is really efficient

to implement JPEG2000, it is really inappropriate for on-board usage. Ex-

amples like these illustrate the need for hardware specifically designed to

operate on-board a satellite.

Power efficiency

Besides the device being radiation-tolerant, it has to be considered that the

available power on-board a satellite is limited and therefore the constraints

in terms of power consumption for on-board technologies are much more

restrictive than for commercial applications.

High throughput

In the specific case of hyperspectral image compression, taking into account

the amount of data to deal with, a high throughput is desired, especially

when real-time compression is wanted. Although compression is expected to

become a necessity in the future space missions, there is still a lack of viable

on-board platforms to perform significant image processing and compression.

Chapter 2. On-board compression algorithms and hardware 47

2.3.2 Software implementations

A hyperspectral image compression algorithm can be described by a set of

instructions suitable to be executed in a computer’s processor. Among the

existing software implementations, it is possible to find implementations on

general-purpose processors, digital signal processors (DSPs), and graphics

processing units (GPUs). The main contributions that can be found in the

literature are summarized in the following sections. Moreover the advantages

and disadvantages of each approach are explained, from the point of view of

the on-board hyperspectral image compression needs.

2.3.2.1 Implementations on general-purpose CPUs

Most of the algorithms proposed for hyperspectral image compression have

been implemented in software for general-purpose processors. The program-

ming languages utilized vary, being C/C++ and Java the most popular.

These software implementations can be compiled and executed on any pro-

cessor, and most of them are open source. Their purpose is usually to demon-

strate how efficient the algorithms are in terms of compression ratio. They

are also sometimes utilized to address the complexity of the algorithms, by

comparing for instance the execution times of two different algorithms. Al-

though it can be in general inferred that the faster the execution of the

algorithm, the lower its complexity, the execution times are also dependent

on how the software was programmed -e.g. to make the source code under-

standable or to maximize the throughput- or the compiler options. Hence,

in order to address the complexity of an algorithm other metrics besides the

software execution times shall be used, for instance the number of opera-

tions, the bit width of the different variables, the precision of the operations

or if they are integer or floating-point operations.

48 Chapter 2. On-board compression algorithms and hardware

Some examples of software implementations of algorithms for hyperspectral

image compression are summarized next. In [74] a software implementa-

tion of the CCSDS 123 standard is presented. The implementation is open

source, developed in Java programming language and utilized to present a

review of the state-of-the-art, providing an experimental comparison of the

coding performance, and extensive results over the vast corpus of test im-

ages from the CCSDS working group. It serves as reference implementation.

Recently, ESA made an open source implementation in C language of the

same algorithm [76].

Whitedwarf [77] is an application developed by ESA that supports the eval-

uation of compression algorithms, by enabling the compression and decom-

pression of files and optimization of the algorithm choice and compression

parameters. It supports the CCSDS 121 and the CCSDS 122 standards.

Additional compression algorithms are expected to be added by ESA in the

future, once the related standardization process are completed.

Although software implementations are highly flexible and can be developed

at low cost and in a short time, they have limited throughput performance

and are power-hungry. Hence, they are usually inefficient for the particular

case of on-board hyperspectral image compression. Satellites are generally

equipped with an on-board computer, which is able to run software and con-

sists essentially of a microprocessor, non-volatile and volatile memories and

interconnection buses. The major microprocessor currently used in most

European space applications is the LEON2. The LEON2-FT design is an

extension of the basic LEON2 model including advanced fault-tolerance fea-

tures at design level, in order to to withstand arbitrary SEU errors without

loss of data. There are two newer versions of LEON, namely LEON3 (and

its fault-tolerant version LEON3-FT) and LEON4, which were designed by

Aeroflex Gaisler. LEON3-FT was licensed in 2007 for new space missions

Chapter 2. On-board compression algorithms and hardware 49

in Europe [78]. A LEON3-FT spacecraft controller chip manufactured by

Astrium is shown in Figure 2.4.

Figure 2.4: LEON3 spacecraft controller on a chip.

On-board computers do not provide enough throughput to compress hy-

perspectral images and are generally loaded with other tasks, such as alti-

tude and orbit control, telecommands execution or dispatching, housekeeping

telemetry gathering and formatting, on-board time synchronisation and dis-

tribution, failure detection, isolation and recovery, etc. Dedicated hardware

solutions are highly desirable, taking off load of the main processor, while

providing power efficient solutions at the same time.

2.3.2.2 Implementations on DSPs

Alternatively to a general-purpose processor, it is possible to utilize DSPs

to implement hyperspectral compression algorithms. These processors are

specialized and optimized for the operational needs of digital signal process-

ing and hence have been commercially used for digital image processing,

including image and video compression.

An example of a space-qualified DSP, is manufactured in Europe by At-

mel and is known as TSC21020F. It is radiation-tolerant with a typical

50 Chapter 2. On-board compression algorithms and hardware

performance of 40 Mega-floating-point operations per second (FLOPS) (60

MFLOPS peak) and has already become obsolete. For this reason and with

the motivation of reducing the dependency on critical technologies from out-

side Europe, research has been performed towards the development of a

new space-qualified DSP under The Seventh Framework Programme (FP7)

project of the European Commission called DSPACE [79]. The need of this

DSP has been also stressed by ESA [28] and the developed device is expected

to feature a performance superior to ≥ 1 GFLOPS, radiation harness ≥ 100

KRad TID, EDAC memory protection, support for standard interfaces, high

reliability and low power consumption.

Several algorithms for 2D image compression on satellites were implemented

on DSPs, however few research studies exist where DSPs are used for hyper-

spectral image compression. An example of the latter is the study presented

in [49] where an integer approximation with reduced complexity of the KLT is

used for hyperspectral image compression. The proposed algorithm includes

an EDAC method which introduces fault-tolerance. An implementation of

this algorithm on a multi-core DSP manufactured by Texas Instruments

is presented and implemented on an evaluation board TDMSEVM6678L,

which includes 8 DSP cores operating at 1.0 GHz and 512 DDR3 memory.

It supports Open Multi-Processing (OpenMP), a simple and flexible inter-

face for developing parallel applications on shared memory multiprocessing

platforms. For this implementation, the KLT is performed in clusters, i.e.

z bands are decorrelated by the transform instead of the total number of

bands, Z, being z < Z. The total number of clusters is c = Z/z. In the

multi-core DSP implementation the clusters are executed concurrently, each

of the 8 cores encoding an individual cluster. Hyperspectral images from the

AVIRIS and HYPERION datasets are used for compression on the platform

with several number of clusters. Results show a throughput of 53.4 Mbps

for the AVIRIS image at the optimal clustering level with error detection

enabled.

Chapter 2. On-board compression algorithms and hardware 51

Despite being more specialised for digital data processing, and having the

flexibility inherent to any other software implementation, DSP implementa-

tions suffer from the same problems of CPU implementations when used for

on-board hyperspectral image compression. Although the DSPs achieve a

higher throughput, it is far from what can be obtained with more customized

hardware like ASICs or FPGAs. Moreover, the power consumption for space

applications should be lower. In the aforementioned study, the multi-core

DSP implementation shows an average power consumption higher than 15

Watts.

2.3.2.3 Implementations on GPUs

GPUs became popular thanks to the video games industry, but they have de-

veloped fast, and have allowed their usage for general-purpose computation.

They are able to dramatically increase the computational speed of applica-

tions my means of massive parallelism and have evolved much faster than

CPUs in terms of GFLOPS. GPUs consist of a set of multiprocessors, each

composed of a set of simple processing elements working in single instruction

multiple data (SMID) mode. Unlike CPUs, where most of the transistors are

devoted to control and memory, GPUs devote them on many arrays of small

execution units, dispatches, small volumes of shared memory and memory

controllers, as shown in Figure 2.5. All of these does not accelerate the ex-

ecution of separate streams, but allows a GPU to process several thousands

of execution threads. Therefore, GPU achieve high speedups in applications

which are computationally intensive, rather than control-flow intensive.

Hyperspectral image compression is both computationally and control-flow

intensive. Many of the typical processes involved in the compression, e.g.

the entropy coder, are mainly sequential and there are strong data depen-

dencies. Nevertheless, hyperspectral image compression involves handling a

massive amount of data, and some algorithms allow for a fair amount of data

52 Chapter 2. On-board compression algorithms and hardware

ALU
CONTROL

ALU ALU

ALU

CACHE

DRAM DRAM

CPU GPU

Figure 2.5: Simplified CPU and GPU architecture comparison.

parallelism. These algorithms can benefit from GPU acceleration, yielding

high throughput at a relatively low-cost. However, space-qualified GPUs

do not exist yet, and their power consumption is usually too high for space

applications, ranging from around 10 W to above 200 W depending on the

particular GPU model and the demands of the application running on it [80].

A parallel implementation of the CCSDS 123 standard for lossless multi- and

hyperspectral image compression is presented in [81]. The study provides a

fast parallel software implementation which is described and subsequently ex-

ecuted using hardware acceleration on GPUs and multicore processors. The

performance of the proposed implementation exceeds that of previous hard-

ware and software versions of the same algorithm. Although the operations

performed by the CCSDS 123 algorithm are highly sequential, parallelism is

gained by image segmentation coupled with an improved data-flow. The final

implementation is executed on a Nvidia GeForce 560M GTX with 1.5 GB

of random access memory (RAM) memory. The specifications show a power

consumption of 75 W (thermal design power (TDP)). The performance

results show a speedup of 10.38× and a throughput of 297.15 Msamples/sec-

ond, when the algorithm is executed on a system with one GPU. There is a

slight, but not significant, improvement when the same algorithm is executed

in a system with two GPUs, what demonstrates that the parallel portion of

Chapter 2. On-board compression algorithms and hardware 53

the algorithm is so fast, that the run time is dominated by the inevitable

sequential operations, like file accesses or bus transfers. On the other hand,

the multicore implementation shows a maximum speedup of ×7.89 when 4

cores (Intel i7-2760QM at 2.4 GHz and 16 GB of RAM) are utilized. The

power consumption of the Intel i7-2760QM processor is 45 W (TDP).

GPUs exhibit promising results when utilized to accelerate hyperspectral im-

age compression algorithms. Nevertheless, their usage on-board satellites is

not feasible yet, due to their high power consumption and lack of tolerance

to radiation. Research is currently being performed towards the develop-

ment of low power GPUs, mainly for commercial small technology devices,

like phones or tablets. Evidence of this is the EU-funded project named

”Low-power GPU” (LPGPU), which aims at enabling a next-generation of

advanced graphics technologies for power-efficient devices [82].

2.3.3 Hardware implementations

As an alternative to software, which is executed on general-purpose proces-

sors, physical hardware devices can be designed and manufactured to perform

the specific task of hyperspectral image compression. In the following, the

main characteristics of the hardware design flow are explained. On-board

hardware implementations of data compression algorithms can be found in

the form of ASICs and programmable FPGAs. Some examples of both ap-

proaches are also provided in this Section, with special emphasis in those

designed for hyperspectral image compression.

2.3.3.1 Hardware design flow

Digital hardware design involves describing a digital circuit for one particular

application. At the first step of the design flow, the circuit specifications are

54 Chapter 2. On-board compression algorithms and hardware

determined. Afterwards, the behaviour of the circuit is described. This

description can be performed at different levels of abstraction. The most

commonly utilized is register-transfer level (RTL). At RTL, a synchronous

design is modelled in terms of logical operations and the data path between

hardware registers. Hardware description languages like Verilog or VHDL

are utilized in order to create a high-level representation of a circuit, from

which a lower level representation and actual wiring (physical design) can be

derived, performing the logic synthesis, placement and routing. Finally, the

design is prepared for manufacturing depending on the final implementation

technology.

The RTL design flow is rather long, and it involves careful planning and

a designer experienced with hardware description languages. Verification is

necessary in order to match the behaviour of the design with the specification

at various stages of the design flow. The process can be shortened with the

help of high-level synthesis tools, which are capable of porting high-level

source codes written in programming languages like C/C++ or Matlab to

RTL. Examples of these are CatapultC, Impulse C or C-to-Silicon [83].

These tools are useful for rapid prototyping, and present several advantages,

e.g. the amount of code to be written by the designers is highly reduced

and the tools open up opportunities for extensive design space exploration.

However, if a highly optimized implementation is desired, it is mandatory to

write the RTL description from scratch.

2.3.3.2 Implementations on ASICs

ASICs are tailored to be optimum for a particular application and therefore

can achieve high throughputs and low power when specifically designed for

on-board hyperspectral image compression. Most of the 2D compression

algorithms which are currently executed on satellites are implemented on

ASICs [84].

Chapter 2. On-board compression algorithms and hardware 55

An example of an ASIC implementation for space is the CWICOM chip,

see Figure 2.6, developed by Astrium in the frame of an ESA contract.

CWICOM is a high speed 2D image compression ASIC which implements

the CCSDS 122 standard for image data compression [34]. The CCSDS 122,

as it was explained in Section 2.2.5, consists of a DWT followed by a BPE

and can perform lossless as well as lossy compression.

Figure 2.6: CWICOM compression ASIC.

CWICOM features high data rate of 60 Msamples/sec, what results in 960

Mbps if the sample values are represented with 16 bits. The power con-

sumption is < 100 mW/Msample/sec. This means that for the maximum

throughput of 60 Msamples/sec the consumption would be approximately 3

W. It supports a TID of 100 KRad and is tolerant to SEU thanks to its in-

ternal EDAC. One of the main challenges present during the development of

a hardware implementation of the CCSDS 122 algorithm is the high amount

of memory which is needed to store the DWT coefficients during the process-

ing. An external memory can address this problem, but would decrease the

performance. Hence, the CWICOM includes a high amount internal memory

cells, and a very efficient internal embedded memory organization, making

it possible to compress the images without the need of an external memory.

While ASICs are power and area efficient, they also present some weak-

nesses. In many occasions, space applications require more flexibility and

56 Chapter 2. On-board compression algorithms and hardware

scalability for post-launch modifications and repair. ASICs, once manufac-

tured, cannot be configured to efficiently match subsequent mission needs

and requirements.

2.3.3.3 Implementations on FPGAs

Alternatively to ASICs, FPGAs offer solutions at a lower cost and with

increased flexibility. They consist of arrays of blocks of generic logic cells

which can be interconnected in a general way. Both the logic blocks and the

interconnection structure are programmable by means of switches which can

be set as open or short circuit. FPGAs are manufactured by a number of

companies like Microsemi, Altera or Xilinx, among others. The basic scheme

and elements of an FPGA are shown in Figure 2.7.

I/O Pad

Routing
Line

Logic
Resource

R
A

M
R

A
M

R
A

M
R

A
M

Combinational

Sequential

Figure 2.7: Basic elements of an FPGA.

FPGAs present several advantages for on board hyperspectral image com-

pression. They are able to apply parallel processing to increase throughput

and provide some flexibility at the same time. Moreover, FPGAs offer the

Chapter 2. On-board compression algorithms and hardware 57

possibility of adapting the designs to successive upgrades of compression al-

gorithms and electronic components over a long term. Moreover, FPGAs

provide scalability and data integrity features.

The switches which allow the FPGA programming can be constructed in

several ways, including: pass-transistors constrolled by RAM, anti-fuses,

EPROM transistors or EEPROM transistors (flash-based). Both static ran-

dom access memory (SRAM)-based and anti-fuse FPGA are used nowadays

in satellites.

Traditionally, anti-fuse technology has been preferred by the space industry,

due to its increased robustness against radiation. An anti-fuse normally re-

sides in a high-impedance stage, but can be “fused” into a low-impedance

state when programmed by a high voltage. An example of radiation-tolerant

anti-fuse FPGAs is the RTAX family from Microsemi. However, anti-fuse

FPGAs present an important disadvantage: they are one-time programmable.

On the other hand, in SRAM-based FPGAs the programmable connections

are made using pass-transistors, transmission gates or multiplexers that are

all controlled by SRAM cells. The major advantage of this technology is

that it provides an FPGA that can be reprogrammed many times and very

quickly, and can be produced using standard CMOS technology. However,

one of their disadvantages it that they have to be programmed again every

time the system is powered up, due to the volatile nature of SRAM. SRAM-

based FPGAs are becoming increasingly important for new space missions.

The lifetimes of the satellites expand far beyond 10 years, which is much

longer than the validity of telecom standards. Hence, reprogrammability

becomes an important requirement.

58 Chapter 2. On-board compression algorithms and hardware

SRAM-based FPGA are susceptible to SEUs, which are induced by high-

energy particles in the harsh environment of space. This problem is ad-

dressed through the use of radiation-tolerant and radiation-hardened tech-

nologies as well as SEU mitigation techniques. Unlike ASICs, where only

memory elements have to be protected against SEU, SRAM-based FPGAs

must implement full triplication of all the design elements due to the high

sensitivity of its configuration memory to radiation effects. A single error

affecting a TMR circuit is masked and tolerable, however, when multiple

independent SEUs hit a TMR circuit, it might occur that the majority voter

in the TMR scheme votes for the wrong answer. To mitigate his effect, the

configuration bit-stream has to be written periodically back to the FPGA,

whith a scrub cycle that must be selected according to the frequency of SEUs

occurrence. During this reconfiguration time, which can be of the order of

milliseconds, the device is offline, what can be intolerant for systems with

hard real-time constraints.

The FPGA manufacturer Xilinx has developed several radiation-hardened

models as part of the Virtex IV and Virtex 5 families. The radiation-

hardened Xilinx FPGA XQR40662XL on-board FedSat, is the first demon-

stration of hardware reconfiguration in space [85].

Finally, flash-based FPGAs are similar to SRAM-based FPGAs, but they

present the advantage that the configuration memory is non-volatile and

therefore they can be programmed off-line. The downside is that flash-

based FPGAs tend to have higher static power consumption and longer

programming times. An example of radiation-tolerant flash-based FPGAs

are the ProASIC3 family, manufactured by Microsemi. This model, however,

is not used in any current space mission.

The most relevant contributions to the field of FPGA implementations of

satellite data compression algorithms are summarized next.

Chapter 2. On-board compression algorithms and hardware 59

The FAPEC universal lossless data compressor was implemented on a radiation-

hardened RTAX anti-fuse FPGA, from a RTL description in VHDL lan-

guage [73]. Several considerations are taken into account in order to lower

the complexity of FAPEC in such a way that its FPGA implementation is

more efficient. For instance, floating-point operations are avoided and the

data block size is reduced. These changes are reported to have little or no

effect in the performance of the algorithm. The designed compressor is fi-

nally implemented in a ProASIC3L developement board which includes a

M1A3P1000L FPGA, whose number of equivalent gates is equal to that of

the space-qualified anti-fuse RTAX1000S. The implementation shows a crit-

ical path of 18.32 ns (maximum frequency 55 MHz), with a throughput of 2

Msamples/sec (32 Mbps if the input samples are 16 bits wide). The hard-

ware occupancy is 12% of combinational logic and 15% of sequential logic

and the power consumption is estimated at 35 mW.

Another universal compression algorithm and the corresponding hardware

architecture are presented in [86]. The algorithm performs context-based

statistical lossless compression of multiple types of data. It takes advantage

of FPGAs that support partial and dynamic reconfiguration, which con-

sists of changing a portion of the reconfigurable hardware while the rest is

still operating. Their method is based on a dynamically reconfigurable mod-

elling stage followed by statistically configured probability estimation and an

arithmetic coding. The dynamic modelling is specialized to each data type

and uses a combination of context modelling, predictive coding and motion

estimation depending on the data type being processed. The throughput

performance of the proposed system is 100 Mbps on a Xilinx Virtex4 SX35

FPGA. Partial dynamic reconfiguration has become a popular research topic

in the space industry, since it can enhance space applications with run-time

adaptive functionality, enabling mission specific adaptability. However, tech-

nical developments are still needed for this technology to become reliable and

fault tolerant for its usage on-board satellites [87].

60 Chapter 2. On-board compression algorithms and hardware

Table 2.1: Results of implementing CCSDS 122 on an RTAX2000S
FPGA

Resource Proba-V EnMap

Combinational C-Cells 8455 (39%) 9772 (45%)

Sequential R-Cells 7125 (66%) 7620 (71%)

Total Cells 15580 (48%) 17392 (54%)

Block RAMs 54 of 64 58 of 64

An FPGA implementation of the CCSDS 122 standard for 2D satellite im-

age compression can be found in [88]. The study presents the designed

hardware architecture and its implementation on a space-qualified FPGAs,

specifically on an anti-fuse RTAX2000S. However, the ProASIC3E flash-

based FPGA is utilized for prototyping. As it was explained in Section 2.2.5,

the CCSDS 122 standard algorithm consists basically of a Discrete Wavelet

Transform (DWT) plus a bit plane encoder. The intermediate coefficients

of the DWT have to be stored and rearranged during the compression pro-

cess, what requires more memory than available in the RTAX2000S FPGA.

Hence, an external SDRAM memory is used, with an appropriate mem-

ory organization to reduce the access overhead. The hardware occupancy

and frequency of the implementation depends on the selected configuration

parameters of the CCSDS 122 algorithm. The results of two different con-

figurations for two specific space missions, namely ESA Proba-V and the

German EnMap are shown in Table 5.23. The maximum frequency is 64

MHz for the Proba-V mission and 50 MHz for the EnMap mission. The

throughput is 90 Mbps for Proba-V and 130 Mbps for EnMap.

As it was already mentioned, transform-based methods for hyperspectral

image compression require a fair amount of processing memory, are compu-

tationally intensive, and not amenable to parallelization due to the sequen-

tial nature of the transforms. Hence they are not popular candidates for

an FPGA implementation. However, efforts have been made to accelerate

Chapter 2. On-board compression algorithms and hardware 61

transforms in order to be able to implement them efficiently on FPGAs, as

shown in [89], where the KLT is investigated. A comprehensive analysis

of the computations needed to calculate the KLT is performed to inspect

the feasibility of different acceleration techniques, such as parallelism. The

proposed designs are implemented in a FPGA-based System-on-Chip (SoC),

which incorporates a flash-based FPGA, a 32-bit ARM Cortex M-3 micro-

controller subsystem and an analogue computing engine. The hyperspectral

images are divided in clusters of 32 bands to reduce the processing time and

memory requirements. The results show an improvement of more than 54 %

of the execution time for the proposed architecture and a power consump-

tion of 225 mW for a cluster of 32 bands. These results demonstrate that

it is possible to reduce the complexity of the KLT transform to target space

applications.

The implementation of the ICER-3D algorithm [90] is another interesting

case in which a transform-based hyperspectral compression method is im-

plemented on an FPGA. Specifically, it was implemented on a Xilinx Vir-

tex2 Pro (XC2VCP70) with an embedded PowerPC processor and on-chip

bus architecture. The implementation features efficient utilization of off-

chip memory through internal buffering to minimize intensive input/output

operations. The results display a maximum frequency of 50 MHz and a

throughput of 4.5 Msamples/sec. The power consumption of the prototype

is less than 6.5 W and the hardware occupancy is around 60%.

Among the FPGA implementations of prediction-based algorithms for hy-

perspectral image compression, the one of the FL algorithm is particularly

remarkable [55]. It has to be noted that the FL algorithm was selected by the

CCSDS for standardization and it represents, with little modifications, the

base of the current CCSDS 123 standard for lossless multi- and hyperspectral

image compression. The FL algorithm was implemented on a Xilinx Virtex4

LX160 SRAM-based FPGA [32]. The implementation has a critical path of

62 Chapter 2. On-board compression algorithms and hardware

Table 2.2: Virtex IV LX160 device utilization of the FL algorithm

Device Virtex IV LX160

Resource Used

Slice 67584 (5%)

FIFO/RAMB16 9 (3%)

DSP48 6 (6%)

Table 2.3: Virtex4 and Virtex2 device utilization of a lossless and near-
lossless hyperspectral compression algorithm

Device XQR4VLX200 XQ2V3000

Used LUT 10306 (5%) 10248 (35%)

RAMB16S 21 of 336 (5%) 21 of 96 (22%)

Mult18×18 - 9 of 96 (9%)

DSP48 9 of 96 (9%) -

29.5 nsec (maximum frequency 33 MHz) and compresses one sample every

clock cycle, which results in a throughput of 33 MSamples/sec. It processes

the samples in band interleaved by pixel (BIP) order. It is 33 times faster

than a software implementation running on a Pentium IV machine. The im-

plementation has a rather low hardware occupancy, as shown in Table 2.2,

and its power consumption is estimated at 1.27 W.

Another example of a prediction-based algorithm is the lossless to near-

lossless hyperspectral compression algorithm presented in [56]. The algo-

rithm implemented on a Xilinx Virtex2 V3000 and on a Xilinx Virtex4 LX200

FPGA, producing the hardware occupancy results presented in Table 2.3,

with a maximum frequency of 81 MHz and a throughput of 70 Msamples/sec

for the Virtex4 FPGA and 79 MHz and 69 Msamples/sec for the Virtex2.

Table 2.4 summarizes the most relevant figures in terms of throughput, fre-

quency and power of some of the FPGA implementations of satellite data

compression algorithms presented in this Section. Since the algorithms were

Chapter 2. On-board compression algorithms and hardware 63

implemented on different technologies, the hardware occupancy data could

mislead the reader to imprecise comparisons and therefore are not included in

Table 2.4. Nevertheless, the on-board compression algorithms implemented

on FPGAs that can be found in the literature have a complexity which is

low enough to allow their implementation on most of the currently available

space-qualified FPGAs.

64 Chapter 2. On-board compression algorithms and hardware

T
a
b
l
e
2
.4
:

F
P

G
A

im
p

lem
en

ta
tion

s
o
f

o
n

-b
o
a
rd

d
a
ta

co
m

p
ressio

n
a
lg

o
rith

m
s.

N
D

A
sta

n
d

s
for

N
o

D
ata

A
vailab

le.

A
lg

o
rith

m
T

y
p

e
B

a
sis

F
P

G
A

T
e
ch

n
o
lo

g
y

T
ro

u
g
h

p
u

t
(M

sa
m

-
p

le
s/

se
c
)

T
ro

u
g
h

p
u

t
(M

b
p

s)
M

a
x
.

F
re

q
.

(M
H

z
)

P
o
w

e
r

(m
W

)

F
A

P
E

C
1
D

P
red

ictio
n

A
n
tifu

se
(p

ro
to

ty
p

e
in

fl
a
sh

)

2
N

D
A

5
5

35

C
C

S
D

S
122

fo
r

P
R

O
B

A
-V

2
D

T
ra

n
sfo

rm
A

n
tifu

se
(p

ro
to

ty
p

e
in

fl
a
sh

)

N
D

A
9
0

6
4

N
D

A

C
C

S
D

S
122

fo
r

E
n

M
a
p

2
D

T
ra

n
sfo

rm
A

n
tifu

se
(p

ro
to

ty
p

e
in

fl
a
sh

)

N
D

A
1
3
0

5
0

N
D

A

IC
E

R
-3D

3
D

T
ra

n
sfo

rm
S

R
A

M
4
.5

N
D

A
5
0

<
6500

F
L

3
D

P
red

ictio
n

S
R

A
M

3
3

N
D

A
3
3

1700

L
ossless

to
n

ear-lo
ssless

3
D

P
red

ictio
n

S
R

A
M

8
0

N
D

A
8
1

N
D

A

Chapter 3

Implementation of a lossy

compression algorithm for

hyperspectral images on a

GPU

This Chapter presents the implementation of an algorithm for lossy com-

pression of hyperspectral images on a GPU. The compression algorithm is

described, showing that it allows a fair amount of parallelization, and hence

is a good candidate for a GPU implementation. The main strategies utilized

to boost the performance of the algorithm on a GPU are presented, as well

as experimental results demonstrating the achieved speedup.

65

66 Chapter 3. Lossy hyperspectral compression on GPU

3.1 Outline

The Lossy Compression for Exomars (LCE) algorithm [33] was specifically

designed for the compression of hyperspectral images on-board satellites.

Hence, it meets several important requirements which facilitate its imple-

mentation on the available on-board hardware and exhibits high compres-

sion efficiency at the same time. It is inherently data- and task-parallel what

makes it a good candidate for its implementation in technologies which can

exploit parallel processing. This is the case of both, GPUs and FPGAs.

In this Chapter we assess how well the LCE algorithm performs in each of

these technologies, demonstrating the features of the algorithm in terms of

low-complexity and hardware-friendliness. Furthermore, we present strate-

gies in order to exploit parallelization as much as possible, by removing data

dependencies and finding solutions for reducing the number of iterations and

simplifying computations along the algorithm’s flow.

The suitability of both implementation options, GPUs and FPGAs, for im-

plementing the LCE algorithm is proven, and the performance of the imple-

mentations is evaluated in terms of throughput, area occupancy (in the case

of the FPGA) and power consumption.

Whenever hyperspectral compression algorithms are designed for on-board

applications, it is mandatory to determine how well they will perform when

they are actually implemented in hardware. However, most of the litera-

ture analysed limit their implementations to software which is executed on

general-purpose processors, which might not be the best candidates for hy-

perspectral image compression, because of the nature of the algorithms and

their characteristic complexity. This study aims at exploring other imple-

mentation options, which can possibly exhibit very good performance when

utilized for hyperspectral image compression, exploiting parallelism and a

more customized implementation design.

Chapter 3. Lossy hyperspectral compression on GPU 67

3.2 LCE algorithm description

The Lossy Compression for Exomars (LCE) algorithm [33] was developed in

Politecnico di Torino and was conceived with the aim of fulfilling the data

compression needs of the Exomars mission [66]. It derives from a lossless

compression algorithm based on distributed source coding principles, which

was the outcome of an ESA project in the framework of its Innovation Tri-

angle Initiative (ITI) program, whose main objective is to promote the intro-

duction of innovations and technologies in the space environment. The LCE

algorithm presents an improved version of that algorithm with significant

differences. LCE is purely lossy and not based on distributed source coding,

but on predictive coding coupled with quantization and RD optimization.

These last steps, quantization and RD optimization, make the algorithm

truly lossy, and not near-lossless; and allow the algorithm to perform well at

low bit-rates, where near-lossless compression typically shows poor perfor-

mance. Another important characteristic of the LCE, which motivates its

inclusion in this Thesis work, is that it had been designed specifically taking

into consideration that it would be used in space missions, and therefore

it was expected to operate on-board. Consequently, the algorithm was de-

signed to achieve a high compression efficiency, and meet the requirements

for on-board compression at the same time, specifically:

� Low-complexity. The algorithm applies a scheme based on prediction

plus Golomb power-of-two entropy coding of the prediction residuals.

This scheme exhibits lower complexity than others based on transforms

or arithmetic coding. The low-complexity of the algorithm facilitates

its physical implementation, which is expected to require a low amount

of hardware resources; and increases the throughput (number of sam-

ples compressed per unit of time) and the possibility of obtaining an

implementation which would operate in real-time.

68 Chapter 3. Lossy hyperspectral compression on GPU

� Error-resilience. Errors can be caused by radiation effects or occur dur-

ing the transmission of the data. A single bit error in the compressed

bit stream can cause a significant loss of data, because it prevents the

decompression of the rest of the image after the error. The LCE al-

gorithm operates on independent blocks of N × N samples with all

bands, providing some resilience to errors, since the error propagation

will be confined to the block where it was produced. The rest of the

blocks in the hyperspectral image can be decoded successfully despite

the error.

� Hardware-friendliness. The LCE algorithm is a good candidate for an

ASIC or an FPGA implementation, due to its low-complexity and the

fact that it can operate using only integer arithmetic. Moreover, the

fact that it operates on independent blocks of data makes it possible

to parallelize it in order to speed up the compression. The amount

of data parallelization in the algorithm makes it also suitable for an

implementation on a GPU.

As it was mentioned, the LCE algorithm compresses independent non-over-

lapping blocks of spatial size N ×N samples with all bands. The fact that

each block is processed separately entails a small performance penalty, since

the entropy coding operations have to be reset at the end of each block.

However, it offers two important advantages: it allows parallelization and

provides error resilience. Throughout this study, we consider that the size

of the block is set to N = 16, since it yields the best trade-off between

compression performance and resilience to errors [33].

The aforementioned features make the LCE algorithm the best candidate at

the moment to be included in this Thesis as the implementation target in the

hardware technologies that this work is focused on: FPGAs and GPUs. In

the following sections, the main stages of the LCE algorithm are described.

Chapter 3. Lossy hyperspectral compression on GPU 69

3.2.1 Prediction

In this first stage, the LCE algorithm performs the prediction of the current

sample to be compressed. In the following we use indices (z, y, x) to locate

a sample in the whole hyperspectral cube and indices (z,m, n) to locate a

sample within a block of 16 × 16 pixels with all bands. Therefore, sz,y,x is

used to denote a sample in the z-th band, y-th line and x-th column; and

sz,m,n a sample located in the z-th band, m-th line and y-th column within

a specific block, as shown in Figure 3.1.

16x16
block
(0,0)

16x16
block
(0,1)

16x16
block
(1,0) sz,y,xNy

Nx

Nz

z

y

x

Nz

z

m

n

16

16

sz,m,n

Hyperspectral image Block

Figure 3.1: Division of the hyperspectral cube into blocks and notation.

The prediction neighbourhood used by the LCE algorithm is illustrated in

Figure 3.2. For the first band (z=0), 2D compression is performed without

any information of other bands (INTRA-mode) using a predictor defined as:

70 Chapter 3. Lossy hyperspectral compression on GPU

s0,m,ns0,m,n-1

s0,m-1,n

sz,m,n

sz-1,m,n

band 0 band z

band z-1

(a) (b)

z
m

n

Figure 3.2: Prediction neighbourhood of the LCE algorithm: a) first
band b) all other bands.

ŝ0,m,n = (s̃0,m−1,n + s̃0,m,n−1)� 1 (3.1)

In the previous equation, ŝ denotes the predictor, s̃ the decoded value and

� stands for right shift.

For all the other bands, the samples sz,m,n are predicted from the decoded

samples s̃z−1,m,n in the co-located block in the previous band. A least-square

estimator (LMS) is computed over the block as

α = αN/αD (3.2)

where

αN =
∑
m,n

[(s̃z−1,m,n − µz−1)(sz,m,n − µz)] (3.3)

and

αD =
∑
m,n

[(s̃z−1,m,n − µz−1)(s̃z−1,m,n − µz−1)] (3.4)

Chapter 3. Lossy hyperspectral compression on GPU 71

where µz and µz−1 are the average values of the co-located decoded blocks

in bands z and z − 1. Quantized versions of α and µz, denoted α′ and

µ′z, are generated using a scalar quantizer. Finally, the predicted values are

computed for all samples in a block as:

ŝz,m,n = µ′z + α′(s̃z−1,m,n − µz−1) (3.5)

and the prediction error is calculated as:

ez,m,n = sz,m,n − ŝz,m,n (3.6)

3.2.2 Rate-distortion optimization

Before proceeding with the quantization of the prediction error samples, the

algorithm checks if the prediction is so close to the actual pixel values that

it makes sense to skip the encoding of the prediction error samples and,

instead, rise a one-bit-flag indicating that the current block contains all-zero

prediction error samples (this is denoted as zero block condition). To make

this decision, the energy of the predictor error is computed:

D0 =
1

N ×N
∑
m,n

e2
z,m,n (3.7)

If D0 < DT , with DT a chosen threshold, then the zero block condition is

triggered and the decoded values are calculated as:

s̃z,m,n = ŝz,m,n (3.8)

72 Chapter 3. Lossy hyperspectral compression on GPU

3.2.3 Quantization and mapping

For the non-zero blocks, the prediction error samples are quantized to integer

values e′z,m,n, and dequantized to reconstructed values e′′z,m,n. The decoded

pixel values can be then obtained by adding the dequantized prediction error

to the predicted value:

s̃z,m,n = ŝz,m,n + e′′z,m,n (3.9)

For the first band, the quantization process is performed pixel by pixel using

a scalar uniform quantizer. For the other bands, it is possible to choose be-

tween a scalar uniform quantizer and the uniform-threshold quantizer (UTQ)

described in [91]. The UTQ quantizer exhibits superior reconstruction per-

formance, however, this quantizer, as described in the LCE algorithm, cannot

be implemented with integer arithmetic only and involves a non-linear for-

mula. This has to be taken into account when implementing the algorithm

in hardware. As an alternative, the user can opt for the scalar quantizer,

which utilizes only integer arithmetic.

Finally, the quantized prediction errors are mapped to non-negative values

and entropy encoded, with one exception: in the first band, the first sample

of each block is neither mapped nor encoded. It is written in binary format

using 16 bits.

3.2.4 Entropy coding

The 16× 16 residuals of a block are encoded in raster order using a Golomb

code whose parameter is constrained to a power of two, except for the first

sample of each block, which is encoded using an exponential Golomb code

of order zero.

Chapter 3. Lossy hyperspectral compression on GPU 73

Exponential Golomb (exp-Golomb) codes were first proposed in [57]. The

codewords consist of a prefix and a suffix. The prefix part of the exp-Golomb

code of parameter k for a nonnegative integer τ consists of a unary code

corresponding to the value u =
⌊
log2 (τ

2k
+ 1)

⌋
. The suffix is computed as

the binary representation of τ + 2k(1−2u) using k+ l significant bits. In the

particular case of the LCE, the k value for the exp-Golomb code is always

fixed to 0.

The rest of the samples are encoded using a Golomb code. The parameter

kj for the j-th sample of the block is computed from a running count Rj of

the sum of the magnitude of the last 32 unmapped residuals of the block;

for samples with index less than 32 only the available values are used.

Similarly to a Huffman code, Golomb codes are unable to produce codewords

shorter than 1 bit. This means that, without the rate-distortion (RD) opti-

mization stage described in Section 3.2.2, it would be impossible to obtain

bit-rates lower than 1 bpp. However, with the proposed scheme, the mini-

mum rate for each block is still 1 bpp, except for the blocks that are skipped,

what makes it possible for the average rate to go as low as desired.

3.2.5 File format

The compressed file is a concatenation of coded blocks which are read spa-

tially in raster order, and each block is coded with all bands. The first band

is conformed by the quantized first sample represented with 16 bits followed

by the codewords of the remaining mapped prediction residuals of the block.

For all other bands, since the predictor is not causal, it is necessary to write

the parameters α′ and µz for each block. 10 bits are used to store α′ and

16 bits are reserved for µz. These parameters are followed by the zero block

decision bit. For the non-zero blocks, the exp-Golomb and Golomb encoded

74 Chapter 3. Lossy hyperspectral compression on GPU

codewords are appended. Figure 3.3 illustrates the format of the compressed

file.

block 0 [band 0 -> first sample in binary +

 encoded prediction errors

 band 1 -> + + zero_block flag +

 encoded prediction errors

 ...

 band Nz]

block 1 ... block NB-1

block 0 [band 0 -> first sample in binary +

 encoded prediction errors

 band 1 -> + + zero_block flag +

 encoded prediction errors

 ...

 band Nz]

block 1 ... block NB-1

Figure 3.3: File format of the LCE compressed data.

3.2.6 LCE compression efficiency

The compression efficiency of the LCE algorithm was compared in terms of

RD in [33], showing the relationship between the achieved compression bit-

rate and the PSNR of the reconstructed images. The results demonstrate

that the LCE algorithm shows equal or better rate-distortion (RD) than

JPEG2000 with a spectral wavelet transform, but with a significantly lower

complexity and memory requirements. The RD curves obtained for an hy-

perspectral image taken by AVIRIS are depicted in Figure 3.4. The Figure

is shown exactly as it appeared in [33].

3.3 Software implementation of the LCE algorithm

The LCE algorithm was originally implemented in software using C pro-

gramming language, to be executed on a single threaded CPU. It operates

independently on every N × N block with all its bands. For the specific

case of this study, we consider the block size N = 16, which as stated in

Chapter 3. Lossy hyperspectral compression on GPU 75

Figure 3.4: Rate-distortion curves for AVIRIS when compressed with
LCE and other algorithms of the state-of-the-art [33]

[33] typically optimizes the algorithm performance. Each block in the im-

age is identified with two coordinates in the vertical and horizontal spatial

directions, namely vb and hb. Bz,vb,hb represents a 16 × 16 pixel block in

coordinates (vb, hb) and band z. A single sample in Bz,vb,hb is symbolized as

sz,m,n. Additionally, Nvb and Nhb are the total number of 16 × 16 blocks

that can be found in the image, in vertical and horizontal spatial dimensions.

The LCE compressor consists essentially of a chained loop, which iterates to

cover all horizontal and vertical blocks in the image, and all bands in a block.

The innermost loop reads a 16× 16 block Bz,vb,hb and performs the different

stages of the LCE algorithm presented in Section 3.2 for every single pixel

sz,m,n, namely the prediction, rate-distortion optimization, quantization, en-

tropy coding and bit packing to create the compressed file. The pseudo-code

76 Chapter 3. Lossy hyperspectral compression on GPU

2-D predictor
Spectral
predictor

Rate-dist
optimization

Quantization and mapping

Golomb entropy coding

Bit packing

Band++

1st band?
yes no

no

yesZero block?

Figure 3.5: Flowchart of the LCE algorithm

showing the chained loop and the different compression stages is shown in

Figure 3.6.

3.3.1 Generation of the compressed file

The result of the previously described chained loop is a bit stream which

represents the compressed image. The codewords generated at the entropy

coding stage and the parameters α′ and µ′z are written by the software in a

single file, in the same order they are obtained. Since Golomb codes produce

Chapter 3. Lossy hyperspectral compression on GPU 77

Additional for loops
are needed to cover
all the pixels
in a block

Figure 3.6: Pseudo-code of the main function of the LCE algorithm
implementation in C language.

codewords of variable length, they are buffered in a bit-by-bit fashion in a

32-bit variable. When the buffer is full, it is written to the compressed file,

generating the bit stream.

3.3.2 Configuration parameters

The software implementation allows the user to configure the LCE algo-

rithm by selecting several parameters to set the functionality mode (base-

line or advanced) and the quality of the resulting compressed image. The

baseline algorithm performs compression using a scalar quantizer, fully im-

plemented with integer arithmetic; and an advanced algorithm replaces the

scalar quantizer with the uniform-threshold quantizer (UTQ) [91], which uses

floating-point arithmetic. The parameter UTQ can be set by the user to se-

lect the functionality mode. Setting UTQ = 1 enables the UTQ quantizer

and setting UTQ = 0 uses the baseline functionality mode.

78 Chapter 3. Lossy hyperspectral compression on GPU

The quality of the resulting compressed image can be likewise set by the user

by assigning values to a parameter named delta, making it possible to find

a trade-off between quality and bit rate. Delta sets the quantization step

size of the quantizer, therefore, increasing delta yields to higher compression

ratios, but lower quality of the reconstructed image. Delta has to be an

integer greater than 1, with delta = 1 providing the maximum possible

quality.

Taking into account the specifications of the LCE algorithm, we can conclude

that it can benefit from parallel execution schemes, due to the amount of

operations that can be performed independently. As it was explained before,

the algorithm compresses independent blocks of data, and having a closer

look at the stages of the algorithm, we observe that there are operations

that can be performed on every sample independently. Given the amount

of data that can be processed in parallel, we first explore how much the

algorithm can be accelerated when executed in a GPU. In the following,

we present a brief description of the GPUs architecture and programming

environment. Afterwards, we show the main strategies utilized to optimize

the LCE implementation in order to achieve the maximum possible speedup

with the GPU. Finally, we show the achieved acceleration with experimental

results running on real hyperspectral images.

3.4 GPU architecture and NVidia CUDA

GPUs are structured as a set of multiprocessors, each composed of a simple

processing element working in single-instruction multiple data mode. They

offer the possibility to dramatically increase the computation speed in ap-

plications where a huge amount of data can be processed in parallel. At

the time this document is written, the biggest GPU manufacturers are Intel,

Chapter 3. Lossy hyperspectral compression on GPU 79

Nvidia and AMD. GPUs were initially designed to accelerate graphic com-

putations, but recently they have become popular also for general-purpose

computing, i.e. they can be programmed to compute any computable value.

However, they are very restrictive in operations and programming, and are

only effective for problems which can be solved using stream processing - pro-

cessors that can operate in parallel by running one kernel on many records

in a stream at once; and the hardware can only be used in certain ways.

The currently dominant open general-purpose GPU programming language

is OpenCL [92], but other proprietary frameworks exist. The GPU utilized

for this Thesis work is the Tesla C2075 from Nvidia (see 3.4.3), and con-

sequently, it was decided to program it using Nvidia’s platform, known as

CUDA.

The Computer Unified Device Architecture (CUDA) [93] [94] [95] is a parallel

computer architecture developed by Nvidia, which provides a scalable pro-

gramming model and a software environment for parallel computing. It is an

extension of C language, which offers an Application Programming Interface

(API), allowing programmers to use a GPU as a massively multi-threaded

general purpose co-processor. The APIs make it possible to manage devices

and memories, but hide the real hardware from the developers, making it

unnecessary for the programmers to explicitly manage threads. The CUDA

abstractions guide the programmer to partition the problem into coarse sub-

problems that can be solved independently in parallel and then into finer

pieces that can be solved cooperatively in parallel.

3.4.1 CUDA abstractions

CUDA names the CPU and its memory the host and the GPU and its

memory, the device. The code executed in parallel using the GPU is typically

called a kernel. A kernel is launched from the host and can have parameters,

like any other C language functions (see Figure 3.7).

80 Chapter 3. Lossy hyperspectral compression on GPU

Figure 3.7: CUDA abstractions: threads, blocks and grid.

A CUDA kernel executes in parallel across a set of parallel threads. The

programmer organizes these threads into a hierarchy of grids of blocks. A

CUDA block is a set of concurrent threads that can cooperate among them-

selves. A grid is a set of blocks that may be executed independently and

may thus execute in parallel. The dimensions of the grid and blocks is set

by the programmer in the kernel call, however it must be noted that there is

a maximum number of blocks and threads that can be launched in a single

kernel invocation. This number depends on the specific model of GPU in

use.

Chapter 3. Lossy hyperspectral compression on GPU 81

Each thread is given a unique thread identification number (threadIdx) within

its block, and each block is given a unique block identification number (block-

Idx) within its grid. These identifiers can be used by the programmer to

index data allocated in the GPU memory.

3.4.2 CUDA memory spaces

Threads may access data from multiple memory spaces during their execu-

tion. Each single thread has a private local memory, not visible for other

threads. Shared memory is a fast access memory which is visible to all

threads in a block. Finally all threads in all blocks have access to the same

global memory. The CUDA memory abstractions are depicted in Figure 3.8.

thread

block

grid

GLOBAL MEMORY

SHARED MEMORY

LOCAL MEMORY

Figure 3.8: CUDA memory spaces

3.4.3 Nvidia TESLA C2075 GPU

Before parallelizing an algorithm using the CUDA abstractions, the pro-

grammer has to keep in mind the hardware architecture, specifications and

82 Chapter 3. Lossy hyperspectral compression on GPU

Table 3.1: Main specifications of the Tesla C2075 GPU.

Description Tesla C2075

Nvida CUDA Cores 448

GPU memory 6144 MB

Maximum memory bandwidth 144 GB/sec

Peak double precision floating point perfor-
mance

515 Gflops

Frequency of CUDA cores 1.15 GHz

Memory speed 1.50 GHz

Power consumption 225 W TDP

limitations of the target GPU. Specifically, these limitations refer to the

amount of dedicated memory storage, computation capability and maximum

number of CUDA blocks and threads that can be launched by a single kernel.

In this Thesis work, the LCE algorithm is implemented in a Nvidia Tesla

C2075 GPU, which has 6 GBytes of dedicated off-chip Graphics Double Data

Rate (GDDR), Version 5 memory and restricts the number of CUDA blocks

and threads to a maximum of 65535 and 1024 respectively.

The most important features of the Nvidia Tesla C2075 are summarized in

Table 3.1. It is based on the Nvidia GPU architecture code-named Fermi

[96]. The first Fermi based GPU, implemented with 3.0 billion transistors,

features up to 512 CUDA cores. A CUDA core executes a floating point or

integer instruction per clock for a thread. The 512 CUDA cores are organized

in 16 streaming multiprocessors (SMs) of 32 cores each. A Fermi GPU has

six 64-bit memory partitions, for a 384-bit memory interface, supporting up

to a total of 6 GB of GDDR5 DRAM memory. A host interface connects

the GPU to the CPU via PCI-Express. The GigaThread global scheduler

distributes thread blocks to SM thread schedulers. A representation of the

Fermi architecture can be seen in Figure 3.9.

Chapter 3. Lossy hyperspectral compression on GPU 83

Figure 3.9: Fermi architecture. Streaming multiprocessors (SM) are
positioned around a common L2 cache. Each SM is a vertical rectangular
strip that contains an orange portion (scheduler and dispatch), a green
portion (execution unit) and light blue portions (register file and L1 cache)

The Fermi architecture has a configurable 64KB on-chip private first-level

(L1) cache with every streaming multiprocessor and a 768 KB second-level

(L2) cache shared by all multiprocessors. The L1 cache can be configured

as 48 KB of shared memory with 16 KB of L1 cache or as 16 KB of shared

memory with 48 KB of L1 cache. The configuration is selected by the user at

compiler time, in order to optimize the performance of a specific application.

L1 cache and shared memory help to hide the memory latency of the off-chip

GDDR5.

The Fermi memory architecture is related with the CUDA memory spaces

abstraction as is shown in Figure 3.10 and is explained next. Global memory

84 Chapter 3. Lossy hyperspectral compression on GPU

resides off-chip, and it is cached in L1 and L2. CUDA shared memory resides

on-chip, and the user should ensure that the configuration of the on-chip

memory makes it possible to allocate all the necessary shared data. CUDA

local memory also resides in the GDDR5 memory and is chached in L1.

It must be noted that accessing local memory can be faster than accessing

the global memory, since the local memory addresses are resolved by the

compiler.

The first step when executing a parallel kernel on a GPU is to send the

necessary data from the host to the device global memory, in such a way

that it is available for all the threads. Transactions between CPU and GPU

might represent a bottleneck for performance, which is carefully studied in

the particular case of hyperspectral image compression, since the amount of

data to be sent to the GPU is considerable.

thread

DRAM

SHARED MEMORY L1 CACHE

L2 CACHE

Figure 3.10: Fermi memory hierarchy

Chapter 3. Lossy hyperspectral compression on GPU 85

3.5 Parallelization of the LCE compressor with CUDA

In order to parallelize the LCE compressor for its execution in a GPU, several

facts are considered, in particular:

� The compression of every Bvb,hb block with all its bands can be per-

formed independently.

� The prediction of all samples sz,m,n in a block Bz,vb,hb in a specific band

can be performed independently, except for the first band (z = 0),

where 2D prediction is employed.

� There is a dependency between bands for the prediction, rate-distortion

optimization and quantization phases. This means that these opera-

tions have to be finished for band z before they can be started for next

band z + 1.

� The entropy coding operations can be performed in every spatial 16×
16 block Bz,vb,hb independently, as there is no dependency between

bands for this operation. However, there is a data dependency between

samples at the entropy coding stage, specifically when calculating the

Golomb parameter. A strategy is devised (see Section 3.5.3), in order

to make it feasible to compute the Golomb parameter and create the

codewords in parallel for all the samples in a block.

The CUDA implementation of the compressor consists of various kernels,

instead of a single one which performs all stages. By doing so, we permit to

optimize the dimension of the kernels for the different levels of parallelism

that can be achieved at the several stages of the algorithm.

Both, the parallel LCE compressor and decompressor, are designed in such

a way that they are useful for any hyperspectral image, regardless its spatial

86 Chapter 3. Lossy hyperspectral compression on GPU

or spectral dimension, achieving high performance at the same time. Hence,

the number of CUDA threads and blocks called in each kernel is established

in such a way that the CUDA application is suitable to compress any hy-

perspectral image regardless its spatial or spectral size in short compression

times. Nevertheless, the kernel dimensionality might be further optimized for

a specific image, taking into consideration its size and adjusting the number

of threads and blocks accordingly.

3.5.1 Allocation of the image data in the GPU

The necessary image data has to be sent and stored in the GPU dedicated

memory in order to make it possible to perform operations on them. It is

decided to copy the whole hyperspectral cube in the GPU before executing

any of the kernels, in order to minimize the number of transactions between

the CPU and GPU. Once the necessary data are stored in the GPU, an

efficient use of the different memory spaces is necessary to hide latency.

When data are copied from the CPU to the GPU, they are initially stored

in global memory. However, CUDA local or shared memory spaces are used

whenever it is convenient in order to accelerate memory accesses.

The hyperspectral data are read in the same format which was used in the

C implementation, i.e. band-sequential (BSQ). Once allocated in the GPU,

the different 16× 16 pixel blocks are read and copied to the shared memory

to hide the global memory latency, since the original pixels are accessed

repeatedly and shall be visible for all threads in a block.

3.5.2 Prediction, quantization and mapping

The main difficulty found when parallelizing these stages of the LCE al-

gorithm is that it is impossible to avoid having a sequential loop to cover

Chapter 3. Lossy hyperspectral compression on GPU 87

all bands, because the processing in band z cannot be started until the

processing of samples in band z − 1 is finished. Acceleration by means of

parallelization is obtained by taking advantage of the fact that each 16× 16

image block with all its bands can be processed independently.

The parallelization strategy, as shown in Figure 3.11, is based on mapping

the problem to the CUDA abstractions in such a way that a CUDA block

is launched by the kernel for each spatial 16 × 16 block Bvb,hb with all its

bands. Each CUDA block is set up to have 256 (16 × 16) CUDA threads,

each responsible for performing operations on a sample sz,m,n in parallel.

Therefore, the number of CUDA blocks which are launched can be calculated

for a specific hyperspectral cube as:

CUDA blocks =
Ny ×Nx
16× 16

(3.10)

where Ny is the number of lines and Nx represents the number of columns

in a specific band of a hyperspectral image.

Nz

16x16 block

CUDA block

CUDA grid

16x16 block

Figure 3.11: CUDA abstractions for the parallel execution of the LCE
prediction, quantization and mapping stages.

88 Chapter 3. Lossy hyperspectral compression on GPU

The hyperspectral image samples are stored in the CUDA global memory.

As the samples are going to be accessed many times by the CUDA threads,

it is decided to copy them to the CUDA local memory. Specifically, every

iteration of the loop that covers all bands, a spatial 16× 16 block is copied

to the CUDA local memory, indexing it with the CUDA blocks and threads

identifiers. This way, threads have fast access to the sample they are entitled

to process.

Local memory can only be accessed by a single thread, and it is invisible for

the other threads in a CUDA block. Nevertheless, not all the operations on a

sample sz,m,n can be performed independently, as it is the case of computing

parameters α and µ, for which a summation has to be performed. However,

these operations can be accelerated by making threads cooperate and share

information by means of CUDA shared memory. Specifically, in order to

reduce the number of iterations of the loops when computing summations,

the so-called parallel reduction algorithm is employed [97]. The strategy

presented in [98] is also utilized to reduce the number of iterations when

prefix-sums have to be performed.

Once the prediction errors are obtained, they are copied again to the CUDA

global memory, to make them accessible for the next stages of the LCE.

3.5.3 Entropy coding

Unlike the prediction stage previously described, the entropy coding opera-

tions can be performed on every 16× 16 block of a specific band in parallel,

without any information from neighbouring bands, what makes it possible

to process more data in parallel.

A kernel is designed to perform the entropy coding of the mapped prediction

residuals, which processes each 16× 16 block of prediction residuals in par-

allel, as shown in Figure 3.12. For optimization purposes, it is established

Chapter 3. Lossy hyperspectral compression on GPU 89

that each kernel launches the maximum number of possible threads allowed

by the Tesla C2075 GPUs, which is 1024. Therefore, the number of CUDA

blocks to be launched can be calculated as:

CUDA blocks =
Nz ×Ny ×Nx

16× 16
(3.11)

4 spatial blocks of 16x16 samples

CUDA block

CUDA grid

Figure 3.12: CUDA abstractions for the parallel execution of the LCE
entropy coding stage.

It has to be considered that the maximum number of CUDA blocks is limited

to 65535. If the number of CUDA blocks calculated in the previous equation

is higher than this maximum, then the kernel has to be called more than

once, affecting the performance negatively. Setting the number of threads

to the maximum is likewise a way to minimize the number of necessary

CUDA blocks, and therefore reduce the impact of having to invoke the kernel

repeatedly.

Several facts are considered when designing the GPU implementation of the

entropy coding stage:

90 Chapter 3. Lossy hyperspectral compression on GPU

� The codewords shall be computed in parallel for each mapped predic-

tion error sample.

� It is not possible to directly write on a file from the GPU, consequently,

the codewords have to be saved to variables in the CUDA memory

spaces.

� The codewords have variable lengths, which can be greater than 32

bits.

The strategy followed to generate the codewords and pack them to a bit-

stream must be different to the one followed in the CPU implementation,

which is based on the sequential ordered generation of the codewords, as it

was explained in Section 3.3. For the GPU implementation, the approach is

to pre-process the Golomb parameters of all mapped prediction error sam-

ples in a 16 × 16 block, and afterwards compute the codewords for every

sample in parallel.

Computing the codewords

A strategy is designed to compute the Golomb parameter of every j-th sam-

ple of the block, kj , in parallel. This parameter is computed from a running

count Rj of the sum of the magnitude of the last 32 unmapped prediction

errors of the block, ej ; for samples with index less than 32, only the avail-

able values are used. This implies that the Golomb parameter of a specific

prediction error in a block depends on the accumulated sum of the previ-

ous unmapped prediction errors. The running count is calculated for every

sample as:

Rj = Rj−1 − |ej−33|+ |ej−1| (3.12)

Chapter 3. Lossy hyperspectral compression on GPU 91

In order to be able to obtain Rj in parallel, the prefix-sum of all the un-

mapped values is computed as:

Ej =

0, if j = 0
254∑
j=1

ej , if j > 0
(3.13)

This is implemented in CUDA following the scheme proposed in [98], as

it is explained in the following. We note that this strategy requires the

cooperation of threads, therefore the necessary data has to be copied to the

CUDA shared memory.

The array of unmapped prediction errors in a block of 16× 16 is represented

as: [e0, e1, ...e255]

The prefix-sum gives the result:

E =

E0

E1

E2

...

Ej

...

E255

=

0

|e0|

|e0|+ |e1|

...

|e0|+ |e1|+ ...+ |ej−1|

...

|e0|+ |e1|+ ...+ |e254|

(3.14)

After the prefix-sum, Rj is calculated by subtracting element Ej−33 to each

Ej with j > 32 in parallel, resulting in the desired Rj :

92 Chapter 3. Lossy hyperspectral compression on GPU

Rj =

Ej , if j ≤ 32

Ej − Ej−33, if j > 32
(3.15)

Once kj is known for every prediction error sample, the codewords can be

created in parallel by the CUDA threads. Each thread computes and saves a

codeword in its local memory. The codewords are of variable length and each

of them is saved in a 32-bits unsigned integer variable. The Golomb codes

can produce codewords of any length, i.e. it might happen that a codeword

is longer than 32-bits. For those specific unusual cases, an auxiliary array

is created to save the codeword in more than one 32-bits variable. Utilizing

this auxiliary array can cause a performance penalty. As part of a future

work, this problem can be solved by setting a maximum codeword size so

that, in case the codeword is longer than the maximum, the data are not

encoded but saved in binary. The size in bits of the codewords is also saved

by every thread, in order to be able to create the encoded buffer, as it is

explained in the following.

Generating a compressed bit stream for each 16× 16 block

The encoded prediction residuals have to be saved in raster order to produce

the final encoded 16 × 16 block, which contains the ordered sequence of

codewords, without leaving any bits unused between them. The strategy

presented in [99] is followed to write every codeword of a 16× 16 block in a

single output buffer, as shown in Figure 3.13.

First, the final position of a codeword in the output buffer is calculated.

This final position is given by two coordinates: the word position where the

codeword is saved, word position; and the bit position in that word where the

codeword starts, starting bit of every codeword. These coordinates can be

calculated in parallel for every codeword. The number of bits taken by each

codeword is known as a result of the entropy coding stage. In the following,

Chapter 3. Lossy hyperspectral compression on GPU 93

Data structure of codewords after Golomb Coding

codeword 0

Shifted codewords

word_position = 0

codeword 1
word_position = 1

codeword 2
word_position = 2

codeword 3
word_position = 3

codeword 255
word_position = 255

word 0 word 1 word pword 2

Data structure of compressed buffer for every 16x16 block

OR

Figure 3.13: Parallel generation of a compressed 16× 16 block.

we denote qj the number of bits taken by each codeword j. A prefix-sum of

these data yields the bit position of a codeword in the output buffer, Qj .

Q = prefix-sum(qj) = [0, (q0 + q1), (q0 + q1, q2), ...,

254∑
j=0

qj] (3.16)

Dividing these results by 32 and obtaining the remainder yields the desired

word position and starting bit. Once the two coordinates are calculated, the

codewords are shifted in such a way that they start in the corresponding

starting bit. Afterwards, a logical OR is performed between the codewords

which share the same word position, using CUDA atomic operations, which

make it possible for a thread to perform an operation without interference

from any other threads, to avoid having threads with the same word position

accessing the output encoded buffer at the same time.

94 Chapter 3. Lossy hyperspectral compression on GPU

3.5.4 Bit packing

Once the encoded blocks corresponding to a 16×16 pixel portion of the image

are obtained, they have to be written to a single bit stream which represents

the compressed image. As each block has been processed independently in

the entropy coding kernel, the resulting encoded blocks have been written

to a specific position of the global memory. To construct the final output

bit stream, the encoded blocks have to be saved in sequential order and, as

it happened with the codewords, in such a way that no bits are left unused

between them.

A similar strategy to the one used by the entropy coder is followed: the

word position and starting bit is calculated for every compressed block.

Afterwards, the compressed block is shifted and and atomic OR is per-

formed. However, this time it is necessary to perform the operations on

complete encoded blocks (conformed by more than one 32-bits variable).

The word position and starting bit are calculated now for every encoded

block. The blocks are copied from global to shared memory where they are

shifted according to the starting bit in parallel. Finally the atomic opera-

tions are used to perform the logic OR and create the compressed bit stream,

see Figure 3.14.

The strategy to perform all these operations in parallel is explained in more

detail next.

Calculating the final position of a block in the output buffer

Let pi be the position of the last codeword written in block i, and let li be

the number of bits left unused in the 32-bits variable where the codeword in

pi is stored. Let NB be the total number of blocks in the image, computed

as:

Chapter 3. Lossy hyperspectral compression on GPU 95

Output from entropy coder (compressed 16x16 blocks)

Final bit stream (content of the compressed file)

OR

block i block i+1

block i

shifted block i+1

word 0 word 1 word pi word 255 word 0 word 1 word pi+1 word 255

word 0 word 1 word pi

word 0 word 1 word pi+1 word pi+1+1

li li+1

Figure 3.14: Bit packing strategy

NB =

⌈
Nz ×Ny ×Nx

16× 16

⌉
(3.17)

In order to calculate the number of bits that a block i has to be shifted to

the left, a prefix-sum of li is performed, obtaining for each block:

Li =

0 if i = 0
i−1∑
i=1

li−1 if i > 0
(3.18)

The number of bits that a block has to be shifted to the left, sh lefti is then

calculated as follows:

sh lefti =

Li, if Li < 32

Li mod 32, if Li ≥ 32
(3.19)

where operator mod stands for modulo. The prefix-sum performed to cal-

culate Li is computed using the same strategy explained in Section 3.5.3.

96 Chapter 3. Lossy hyperspectral compression on GPU

However, in this case, the number of elements to sum, i.e. the number of

blocks NB is, for most hyperspectral images greater than the number of

possible CUDA threads allowed by the GPU, which in our case is 1024.

Nevertheless, it is possible to perform a prefix-sum of vectors greater than

the number of available CUDA threads by following the strategy shown in

[100]. This strategy was adapted to our problem as it is explained in next

and illustrated in Figure 3.15.

First, the array, whose elements will be prefix-summed, is divided in chunks

of 1024 elements. Hence, each chunk has as many elements as the maxi-

mum possible number of CUDA threads and is processed by a CUDA block.

A kernel performs the prefix-sum of each chunk in parallel. Besides, the

summation of all the elements in each chunk is computed and saved to an

auxiliary array. Afterwards, the prefix-sum of this auxiliary array is also

performed, and the resulting values are added to each element of the prefix-

summed chunks.

Let L = [l0, l1, l2, ..., l1024, ...lNB], be the array where the prefix-sum has to

be performed, with NB > 1024. We divide the array into chunks (CH),

resulting in:

CH0 = [l0, l1, l2, ..., l1023]

CH1 = [l1024, l1025, l1026, ..., l2047]

...

CHNC−1 = [lK , lK+1, lK+2, ..., lNB−1]

(3.20)

In the previous equation, NC is the number of chunks, calculated as NC =

dNB/1024e. We note that for a better understanding, the indices used in

the elements of the chunks are the ones in the original array, L. Symbol

Chapter 3. Lossy hyperspectral compression on GPU 97

K represents the index of the first element in the last chunk, CHNC−1,

calculated as K = (NC − 1)× 1024.

A CUDA kernel of NC blocks and 1024 threads computes the prefix-sum of

each chunk in parallel, as in Section 3.5.3. However, in this occasion, the

summation of all the elements in a chunk is also saved to an auxiliary array.

CHUNKS AFTER

PREFIX-SUM

AUXILIARY ARRAY

CH0 = [0, l0, (l0 + l1), ...,
1022∑
i=0

li]
1023∑
i=0

li

CH1 = [0, l1024, (l1024 + l1025), ...,
2046∑
i=1024

li]
2047∑
i=1024

li

... ...

CHNC−1 = [0, lK , (lK + lK+1), ...,
NB−2∑
i=K

li]
NB−1∑
i=K

li

The prefix-sum of the auxiliary array is also performed, resulting in:

AUXILIARY ARRAY AFTER PREFIX SUM

[0,
1023∑
i=0

li,
1023∑
i=0

li +
2047∑
i=1024

li, ...,
K−1∑
i=0

li]

Finally, the elements of the prefix-summed auxiliary array are added as

scalars to every element of the corresponding chunk, as:

98 Chapter 3. Lossy hyperspectral compression on GPU

Pr
ef

ix
-s

u
m

Pr
ef

ix
-s

u
m

Pr
ef

ix
-s

u
m

Pr
ef

ix
-s

u
m

Pr
ef

ix
-s

u
m

A
d
d
 t

o
 e

ac
h

el
em

en
t

in

ve
ct

o
r

A
d
d
 t

o
 e

ac
h

el
em

en
t

in

ve
ct

o
r

A
d
d
 t

o
 e

ac
h

el
em

en
t

in

ve
ct

o
r

A
d
d
 t

o
 e

ac
h

el
em

en
t

in

ve
ct

o
r

V
ec

to
r

is
 d

iv
id

ed
 i
n
 c

h
u
n
k
s

o
f

1
0

2
4

 e
le

m
en

ts
.

C
h
u
n
k

0
C

h
u
n
k

1
C

h
u
n
k

N
C

-1
C

h
u
n
k

2

A
n
 a

u
x
ili

ar
y

ve
ct

o
r

is
co

m
p
u
te

d
 b

y
p
er

fo
rm

in
g

th
e

p
re

fi
x
-s

u
m

 o
f

th
e

su
m

m
at

io
n
 o

f
al

l
th

e
el

em
en

ts
 i
n
 a

 c
h
u
n
k
.

Pr
ef

ix
-s

u
m

 o
f

th
e

w
h
o
le

 v
ec

to
r.

0
00

00
0

0

0

Figure 3.15: Prefix-sum of vector with more than 1024 elements.

Chapter 3. Lossy hyperspectral compression on GPU 99

CHUNKS AFTER

PREFIX-SUM

AUXILIARY ARRAY

AFTER PREFIX-SUM

CH0 = [0, l0, (l0 + l1), ...,
1022∑
i=0

li] + 0

CH1 = [0, l1024, (l1024 + l1025), ...,
2046∑
i=1024

li] +
1023∑
i=0

li

... ...

CHNC−1 = [0, lK , (lK + lK+1), ...,
NB−2∑
i=K

li] +
K−1∑
i=0

li

This yields the desired prefix-sum of L, and from each element in L, Li, it

is possible to obtain the number of bits a block has to be shifted, sh lefti.

The final word position in which the block i has to be saved in the compressed

output stream is given by Pi =
∑
i = 1i−1pi−1, where pi is the position of

the last codeword written in block i, as it was already mentioned. Hence, Pi

can be obtained also with a prefix-sum. It is important to note that pi must

be updated before performing the prefix-sum, because in some cases, shifting

the compressed blocks will make them take one more word, as it happens to

block n+ 1 in Figure 3.14. This can be inferred from the resulting sh lefti

and the number of bits left unused by the last codeword of each block, li.

Pn =

pi + 1, if sh lefti = 0 and 32− li = 0

pi + 1, if sh lefti 6= 0 and sh lefti ≤ 32− li

pi, otherwise

(3.21)

Shifting a block in parallel and saving the final compressed stream

Each of the compressed blocks has to be shifted sh lefti bits to the left in

order to obtain the final compressed stream. A parallel CUDA kernel is

100 Chapter 3. Lossy hyperspectral compression on GPU

designed to perform these operations. The strategy followed in this kernel is

shown in Figure 3.16.

Shifting blocks in parallel

block i
word 0 word 1 word pi word 255

aux
word 0 word 1 word pi word 255

block i
word 0 word 1 word pi

aux
word 0 word 1 word pi

word 0 word 1

word 0 word 1 word pi-1 word pi

word 0 word 1 word pi

word 0 word 1 word pi

shifted block i

shifted aux

word 2

word 2

word piword pi-1

OR
shifted block i

shifted aux
word pi-1

word pi+1

word 0 word 1 word 2 word pi word pi+1

Resulting shifted block

Figure 3.16: Shifting compressed blocks in parallel.

First, each CUDA thread creates an auxiliary variable in which an element

of the block is copied. Then, each element in the block is shifted in parallel

to the right sh righti = 32 − sh lefti bits. The auxiliary variables are also

shifted the amount of bits established by sh lefti. Finally, a logical OR is

performed between the auxiliary variables and the next element in the block.

After shifting the compressed blocks, the only step remaining is to copy the

compressed shifted block to its final position in the compressed stream. The

final location is determined by the word position, stored in Pi =
i−1∑
i=1

pi, there-

fore the CUDA threads can perform an atomic OR operation in parallel for

each element in a block. The final compressed stream is stored in CUDA

Chapter 3. Lossy hyperspectral compression on GPU 101

global memory, and therefore the atomic OR operations are performed di-

rectly to this memory space. Finally, the compressed data are copied to the

CPU memory and stored in a file.

3.6 Parallelization of the LCE decompressor

After finishing the CUDA implementation of the LCE compressor, we per-

form also the implementation of the decompression unit, which has basically

the same stages of the compressor, but in inverse order, also processing in-

dependent 16 × 16 blocks with all bands. Having a hyperspectral image

decompressor accelerated on a GPU presents several advantages which can

be exploited nowadays in real applications since, unlike the compression, the

decompression is not performed on-board but on the ground station, where

any commercial GPU can be utilized.

The main function in the decompressor software consists of a nested loop,

with the same structure of the nested loop encountered in the compressor.

First, the compressed data are read in order from the compressed file, de-

coded and inverse mapped to obtain the quantized prediction error samples.

For the first band, an inverse quantizer is employed and afterwards, inverse

2D prediction is applied. For all other bands, a least-mean-squares predictor

for the current band is computed from parameters α′ and m, which are also

read from the compressed file, using the previous band as reference.

The prediction error residuals are then dequantized to obtain the predic-

tion error samples, which are added to the predictor values, yielding the

reconstructed samples. The output file contains the reconstructed image in

exactly the same format as the input to the compressor.

102 Chapter 3. Lossy hyperspectral compression on GPU

3.6.1 Preliminary considerations

The main drawback encountered when trying to parallelize the LCE decom-

pressor algorithm lies in the fact that the codewords have been buffered to

the compressed file one after the other, in a bit-by-bit fashion and it is im-

possible to know when a compressed block starts. Therefore, in principle,

although the blocks can be decoded independently, the compressed file must

be read sequentially to obtain the codewords for every 16× 16 block.

There are several reasons why it is not feasible to find out where the com-

pressed blocks start in the compressed file:

� The codewords are of variable length, therefore the compressed 16×16

blocks have different sizes in bits.

� A single block contains codewords obtained in different ways:

– α, µz and the first sample of the first band are not encoded.

– The first sample of blocks in band z > 0 is encoded using an

exponential Golomb code.

– The rest of the samples are encoded using a Golomb code.

These facts make it impossible to split the compressed file in order to obtain

the different decompressed blocks in parallel without additional information

about the location of the blocks in the compressed bit stream. In order to

solve this issue, it is proposed to add a header to the compressed file, which

contains information about the size in bits of each compressed block. The

downside of adding a header is that it increases the size of the compressed

file, and therefore reduces the compression ratio. Consequently, the header

must be designed in such a way that it allows achieving more parallelization,

without affecting the compression ratio considerably. The amount of accel-

eration that can be obtained by adding the header can be calculated taking

Chapter 3. Lossy hyperspectral compression on GPU 103

into account the number of blocks that will be processed in parallel and the

number of iterations needed to decode each block.

3.6.2 Header design

Two different options are explored before adding a header to the compressed

file. For simplicity and as a worst case scenario, it is considered that the

header is saved at the beginning of the compressed file, storing each value in

a 32-bits word.

The impact of adding a header to the compressed image is evaluated in terms

of:

� The increment (I) in bits of the size of the compressed file, which can

be calculated as:

I = Size of header × 32 (3.22)

� The number of elements that can be processed in parallel if the header

is added (PBLOCKS), which gives an idea of the amount of acceleration

that will be obtained.

� The number of sequential iterations (SI) that are necessary to decode

each parallel element.

Taking into account these facts, a figure of merit (FM) is defined:

FM =
PBLOCKS
I × SI

(3.23)

The figure of merit is evaluated for each of the proposed options, in order to

find out which of them is able to potentially produce a higher speedup with

the lowest possible impact on the compression ratio.

104 Chapter 3. Lossy hyperspectral compression on GPU

Option1

In the first option explored, the header contains the size in bits of every

16 × 16 spatial block with all its bands, as shown in Figure 3.17. For this

option, the size of the compressed file increases proportionally to the spatial

dimension of the hyperspectral image.

Hyperspectral image

16x16
block
(0,0)

16x16
block
(0,1)

16x16
block
(1,0)Ny

Nx

Nz

number of bits in compressed band0

 number of bits in compressed band1
 number of bits in compressed band2

number of bits in compressed bandNz-1

HEADER OPTION 1

COMPRESSED FILE

compressed band0[block{0},...block{Nbv x Nbh-1}]

 compressed band1[block{0},...block{Nbv x Nbh-1}]

compressed bandNz-1[block{0},...block{Nbv x Nbh-1}]

Figure 3.17: Format of header and compressed file for Option1.

The increment of the compressed file in this case is calculated as:

I = Size of header × 32 =
Ny ×Nx
16× 16

× 32 (3.24)

where Ny and Nx denote the number of lines and columns in the hyperspec-

tral cube respectively.

Chapter 3. Lossy hyperspectral compression on GPU 105

The number of elements which can be processed in parallel corresponds to

the number of 16 × 16 spatial blocks with all their bands present in the

hyperspectral image.

PBLOCKS =
Ny ×Nx
16× 16

(3.25)

The number of sequential iterations which are necessary to decode the com-

pressed buffer is the number of bands in the image, Nz:

SI = Nz (3.26)

Finally, the figure of merit (FM) is calculated, yielding the result:

FMOPT1 =
1

32×Nz
(3.27)

Option2

In the second option, it is proposed that the header contains the size in bits

of all 16× 16 spatial blocks in a specific band, resulting in a header with the

format shown in Figure 3.18. With this header, the spatial blocks in a band

can be decoded in parallel. The header contains a value for every band in

the image, each saved in a 32-bits variable.

Adding the described header involves making additional changes to the en-

coder, since the order in which the codewords are saved to the compressed

file must be altered. Specifically, as it is shown in Figure 3.18, it must con-

tain the codewords which represent a compressed band with all its spatial

blocks in order. The changes must be made to the compressor’s main nested

loop, which must be modified so that all horizontal and vertical 16 × 16

spatial blocks in a band are processed before the compression of the next

band begins. Additional changes might be needed in order to guarantee

106 Chapter 3. Lossy hyperspectral compression on GPU

that the necessary information from the previous band is available for the

compression of a specific band.

Hyperspectral image

16x16
block
(0,0)

16x16
block
(0,1)

16x16
block
(1,0)Ny

Nx

Nz

number of bits in compressed block{0}

 number of bits in compressed block{1}
 number of bits in compressed block{2}

number of bits in compressed

 block{Nbv x Nbh-1}

HEADER OPTION 2

COMPRESSED FILE

compressed block{0}[band0,...bandNz-1]

 compressed block{1}[band0,...bandNz-1]

compressed block{Nbv x Nbh-1}[band0,...bandNz-1]

Figure 3.18: Format of header and compressed file for Option2.

The increase of size (I) in the compressed file and the number of parallel

elements (P BLOCKS) for this case are:

I = Size of header × 32 = Nz × 32 (3.28)

PBLOCKS = Nz (3.29)

The number of sequential iterations (SI) which have to be performed by

the decoder for every parallel element corresponds to the number of spatial

16× 16 blocks, given by:

Chapter 3. Lossy hyperspectral compression on GPU 107

SI =
Ny ×Nx
16× 16

(3.30)

Yielding a figure of merit of:

FMOPT2 =
8

Ny ×Nx
(3.31)

Comparing the figures of merit resulting from both options, it can be ob-

served that the best trade-off between the increase of the compression ratio

and the potential speedup achieved depends basically on the image dimen-

sions. For images which are spatially big and do not comprise a very high

number of bands, which is the case of multispectral and hyperspectral im-

ages, Option1 is more convenient. However, for ultraspectral images, which

can contain thousands of bands and are usually smaller in the spatial dimen-

sions, Option2 should be considered.

It is decided to adopt Option1 for the reasons stated below:

� Most of the sensors are multispectral or hyperspectral, therefore per-

formance is expected to be better with Option1.

� Other than adding the header to the compressed file, no changes need

to be made to the original LCE compressor.

3.6.3 Decoding the blocks

The first stage of the LCE parallel decompressor is to read and decode the

compressed file. The header containing the size in bits of each compressed

16× 16 block with all its bands is attached to the compressed bit stream to

make it possible to parallelize this stage.

108 Chapter 3. Lossy hyperspectral compression on GPU

With the information in the header, the exact location of the first codeword

of each 16×16 compressed block can be calculated performing a summation.

A kernel is created to read and decode every compressed block in parallel

in such a way that once a block is read from the compressed buffer, the

kernel iterates sequentially to decode all the codewords. These iterations

have to cover all bands and all samples in a 16 × 16 block. As it will be

demonstrated in the experimental results (Section 3.7) this loop represents

the main performance weakness of the parallel LCE decompressor.

After the execution of this kernel, parameters α̂, µz and all the decoded

prediction errors are saved to the CUDA global memory so that the inverse

predictor can be applied to them.

3.6.4 Inverse quantization and prediction

The kernel designed to perform the inverse quantization and prediction is al-

most the same as the one designed for the LCE CUDA compressor, however,

it performs the inverse operations in the inverse order. As for the compres-

sor, the inverse quantization and prediction kernel is designed in such a way

that a CUDA block is launched for every block in the image and every CUDA

block launches 256 (16× 16) threads.

3.7 Experimental results

The CUDA implementation of the LCE compressor and decompressor are

executed on an Nvidia Tesla C2075 GPU. The experiments are designed

in such a way that it is possible to assess several aspects: the accuracy of

the GPU implementation; the acceleration achieved when compared with

the execution of the algorithm in a single threaded CPU; the relationship

Chapter 3. Lossy hyperspectral compression on GPU 109

Table 3.2: Hyperspectral images under compression

Sensor Area Nz Ny Nx bpppb

MODIS - 17 1984 1344 12

AVIRIS Indian Pines 220 1952 608 16

AIRS Granule 1501 128 80 14

between the achieved acceleration and the hyperspectral image dimensions

and the configuration parameters of the LCE algorithm.

Three different hyperspectral scenes, acquired by different sensors and with

different spatial and spectral sizes, are used as targets for compression. Table

5.11 summarizes the main characteristics of the images: the sensor which

acquired them; the number of lines (Ny), columns (Nx) and bands (Nz);

and the number of bits utilized to represent the raw samples (bpppb).

All the experiments are performed in a worskstation with a 3.19 GHz In-

tel Xeon W5580 processor, running on a 64-bits operating system with 12

GBytes of RAM memory. The LCE algorithm implementation operates with

integer variables only, except for the quantization stage, where it is neces-

sary to utilize double precision floating point variables when the uniform-

threshold quantizer (UTQ) is enabled.

3.7.1 Validation

Before any experiment is performed, it is mandatory to verify that the GPU

implementations of both the compressor and decompressor produce the same

results as their CPU version counterpart. For this purpose, the images are

compressed and decompressed with the GPU and the CPU implementations.

The resulting compressed and reconstructed files are then compared bit by

bit, demonstrating that the results of both implementations are identical.

110 Chapter 3. Lossy hyperspectral compression on GPU

3.7.2 Impact of adding a header

Once it is verified that the GPU versions of the LCE algorithm produce the

correct results, we assess the impact in the compression ratio of adding a

header to the compressed file, in order to demonstrate the validity of the

decisions adopted in Section 3.6.2.

The compression strength of the LCE algorithm can be configured by the user

by setting a parameter delta. Low values of delta yield low compression while

a high delta value increases the compression ratio at the cost of producing

more losses of information. The impact of adding a header is more significant

if the compression ratio is high, i.e. the compressed file is smaller, hence,

each hyperspectral image under test is compressed with two different values

of delta, namely 1 and 60 in order to perform a fair evaluation.

The compression ratio (CR) in bits per pixel per band (bpppb) is calculated

as:

CR (bpppb) =
Size of compressed file (bits)

Nz ×Ny ×Nx
(3.32)

Moreover, the percentage of increment in the compression ratio (CR increment)

is calculated as:

CR increment(%) =
Size of header (bits)

Size of compressed file (bits)
× 100 (3.33)

It is observed in Table 3.3 that, although adding a header to the compressed

file increases the compression ratio, the impact produced is not considerable,

with an average of 0.06% and a maximum of 0.20% for all the images under

test.

Chapter 3. Lossy hyperspectral compression on GPU 111

Table 3.3: Impact of adding a header to the compressed file

Sensor Size (Nz ×Ny ×Nx) delta CR
without
header

CR with
header

Increment
(%)

MODIS 17× 1984× 1344
1 7.3352 7.3426 0.10

60 3.9538 3.9612 0.19

AVIRIS 220× 1952× 608
1 5.8970 5.8976 0.01

60 2.3604 2.3610 0.02

AIRS 1501× 125× 80
1 4.3474 4.3475 0.00

60 0.8704 0.8704 0.01

3.7.3 Profiling

The GPU implementation of the LCE compressor and decompressor are

profiled with the software tools supplied by Nvidia. For this purpose a 512×
512 subimage of the AVIRIS scene, which comprises 220 bands, is employed.

This hyperspectral cube is compressed with the GPU implementations and

profiled with the tools supplied by Nvidia, in order to detect which of the

kernels is the most time-consuming and where are the main bottlenecks of

the implementation.

GPU compressor profiling

Figure 3.19 shows the profiling of the LCE compressor. The total time to

perform the compression is 394 ms, which is almost a quarter of the time

achieved with the GPU implementation of JPEG2000 presented in [19]. The

predictor takes a 23.29%, what shows that, although the predictor has to loop

to cover all bands in the hyperspectral cube, this fact is not a bottleneck for

global performance. The most time-consuming operations for both GPUs

are the entropy coding (44.24%), and the memory transactions between the

CPU and the GPU. The strategy designed for the bit packing, which is used

to create the final bit stream shows very good results, taking only 4.73% of

the total compression time.

112 Chapter 3. Lossy hyperspectral compression on GPU

Figure 3.19: Profiling of the CUDA implementation of the LCE com-
pressor.

Afterwards, the execution times of the prediction, entropy coding and bit

packing stages of the GPU implementation are compared with the corre-

sponding stages in the CPU implementation. The results in Figure 3.20

show the high acceleration obtained with the GPU implementation in both

stages. The strategy designed to parallelize the entropy coding and bit pack-

ing stages exhibits very good results. This stage is executed more than ten

times faster in the GPU than in the CPU.

Prediction

TOTAL

Entropy coder + bit packing
Tesla C2075 GPU
CPU

Figure 3.20: Comparison between the CPU profiling and the GPU pro-
filing

Chapter 3. Lossy hyperspectral compression on GPU 113

GPU decompressor profiling

Similar results are shown in Figure 3.21 for the GPU decompressor. Nev-

ertheless, the total time necessary to perform the decompression is higher

than the GPU compression, mainly because of the time spent by the entropy

decoding kernel, which is 864.20 ms, a 78.62% of the total time, and approx-

imately 5 times the time spent by the entropy coding kernel in the GPU

compressor. It is observed that the difficulties existing when parallelizing

the entropy decoding stage, which were partially solved with the addition of

a header to the compressed file, cause the GPU decompressor to achieve a

smaller speedup than the one obtained by the compressor.

Figure 3.21: GPU decompressor profiling

3.7.4 Speedup

After profiling the GPU implementation of the LCE compressor and decom-

pressor, their performance is evaluated in terms of the speedup achieved

with respect to the CPU implementation. The compression time of the CPU

implementation is measured with the CPU timers, whereas the compression

114 Chapter 3. Lossy hyperspectral compression on GPU

time of the GPU implementation is obtained with the timers provided by

the CUDA environment.

Several subimages of the available hyperspectral cubes are created with dif-

ferent spatial sizes, ranging from 64 × 64 to their maximum original size.

Each hyperspectral image is compressed and decompressed with the CPU

implementation of the LCE algorithm and with the GPU implementation.

Afterwards, the speedup is calculated for both, compressor and decompressor

as:

Speedup =
Total CPU time

Total GPU time
(3.34)

Table 3.4 show the range of widths and lengths selected for generating the

subsets of hyperspectral images, and the average speedup achieved. It can

be observed, that high speedup is achieved for the GPU compressor, of up to

an average of 15.41. Nevertheless, although speedup is also obtained for the

GPU decompressor, it is much lower than that of the GPU compressor. The

reason for this lies in the limitations found when parallelizing the entropy

decoder of the decompressor. Although adding a header helps to solve this

issue, a lot of data still has to be read from the compressed bit stream

sequentially. The worse speedup results of the decompressor are obtained for

AIRS, which is an expected result, taking into consideration the fact that

the image from this sensor is ultraspectral and hence has a high number of

bands but is spatially smaller than the others. Therefore, the header added

to this particular image does not permit to have as many parallel elements

and a lot of iterations are needed to perform the entropy decoding.

Chapter 3. Lossy hyperspectral compression on GPU 115

Table 3.4: GPU compressor and decompressor speedup

Sensor Range Nz Average Speedup

Ny Nx Compressor Decompressor

MODIS 64-1984 64-1344 17 12.50 2.95

AVIRIS 64-1952 64-608 220 15.41 5.82

AIRS 64-128 64-80 1501 13.35 1.32

3.7.5 Throughput

The performance is now evaluated in terms of throughput, defined as the

number of samples computed per second for all the hyperspectral images

under study.

Throughput

(MSamples/sec)

= 10−6 × Nz ×Ny ×Nx
total execution time(sec.)

(3.35)

Figures 3.22, 3.23 and 3.24 show the number of samples computed per second,

which are achieved by the GPU and CPU for the different images under

test, against the total number of samples. The worst performance results

are obtained when the number of elements in the image is low, because this

implies that the number of blocks which can be computed in parallel is also

small, and therefore the utilization of the multiprocessors of the GPU is

poor. However, as the number of samples to be compressed increases, the

performance of the GPU gets better until it becomes almost stable. Although

the performance of the kernel increases with the number of samples, the time

necessary to transfer the image from the CPU to the GPU is still proportional

to the amount of samples, what stabilizes the performance.

The performance of the compressor is in general better than that of the

decompressor. This is caused by the fact that there are more operations

116 Chapter 3. Lossy hyperspectral compression on GPU

Figure 3.22: Number of samples computed per second against number
of samples for the MODIS hyperspectral image

Figure 3.23: Number of samples computed per second against number
of samples for the AVIRIS hyperspectral image

Chapter 3. Lossy hyperspectral compression on GPU 117

Figure 3.24: Number of samples computed per second against number
of samples for the AIRS hyperspectral image

which can be programmed to be executed in parallel in the GPU compressor,

as the parallelization of the decompressor is limited by the bit unpacking and

the entropy decoding stages.

Specifically, for the AIRS image it is observed that the performance of the

GPU decompressor is much worse than that of the other images under test;

showing even higher compression times than the CPU for the smallest image

of 64 × 64 pixels. Calculating the figures of merit for the different header

options shown in Section 3.6.2, it is observed that the use of Option 2 for

the header represents a better option for this image, what should be taken

into account in case the GPU decompressor is developed for an image with

similar spatial and spectral dimensions.

118 Chapter 3. Lossy hyperspectral compression on GPU

3.7.6 Effect of the configuration parameters in the perfor-

mance of the GPU implementation of the LCE com-

pressor

Finally, the effect of the configuration parameters of the LCE compressor

in the performance of both implementations is presented. The parameters

UTQ and delta can have an impact in the compression time of both, the

CPU and the GPU implementations of the algorithm. In the following, it

is analysed how the variation of these parameters affects the performance of

the GPU implementation, with respect to the CPU implementation.

To evaluate the effect of varying UTQ, the set of images shown in Table

3.4 is compressed with the CPU and GPU implementation with UTQ = 1

and then with UTQ = 0. Besides, two possible configurations of delta are

set, namely delta=1, which provides the best possible results in terms of

quality and the lowest compression ratio; and delta = 60, which decreases

the quality and increases the compression ratio.

In order to better asses the effect of the parameters, the performance is

evaluated in terms of the number of samples computed per second, calculated

with Equation 3.35.

This value is calculated for all the sub-images, and the average is computed.

The results are summarized in Figure 3.25.

Both, the GPU and CPU show better results when UTQ is disabled, since,

with UTQ enabled, double precision operations have to be performed in the

quantization stage of the LCE compressor. On the other hand, for parame-

ter delta, it is observed that when delta is high, the performance improves,

and this improvement is more noticeable in the CPU implementation, par-

ticularly for the AIRS image. This is explained by the fact that, when delta

is increased, the number of blocks which skip quantization is also high, and

Chapter 3. Lossy hyperspectral compression on GPU 119

Figure 3.25: Effect of the configuration parameters of the LCE algorithm
in the performance of the GPU compressor implementation (a) and the

CPU implementation (b)

therefore the CPU implementation can avoid part of the operations and com-

plete the processing of the image in a shorter time. Although the number

of skipped block is the same for the GPU implementation, since the data

are processed in parallel, the fact that some of the blocks can be skipped

does not make a significant difference in the processing time of the whole

hyperspectral cube.

To better depict this fact, in Figure 3.26, the 512×512 AVIRIS image with

220 bands is compressed with the CPU and the GPU implementation of the

LCE algorithm for increasing values of delta, starting with delta = 1 up

to delta = 100. It can be observed that for both implementations, shorter

compression times are achieved when delta is higher and that the num-

ber of samples computed per second for the GPU implementation is always

around 10 times greater than the number of samples per second achieved

by the CPU. It can be observed that the variation of the number of sam-

ples computed per second is more noticeable for the CPU implementation.

Nonetheless, even for higher values of delta, the performance of the GPU is

anyhow significantly better than that of the CPU.

120 Chapter 3. Lossy hyperspectral compression on GPU

Figure 3.26: Effect of varying delta in the performance of the GPU and
the CPU for the AVIRIS image)

Chapter 4

Implementation of a lossy

compression algorithm for

hyperspectral images on an

FPGA

In this Chapter, we obtain an FPGA implementation of the lossy compres-

sion algorithm for hyperspectral images known as LCE, whose GPU imple-

mentation was presented in Chapter 3. The RTL description of the algo-

rithm is obtained with high-level synthesis tools. The experimental results

presented demonstrate the suitability of the LCE algorithm for an FPGA

implementation and furthermore make it possible to assess and compare the

potential features of both, GPU and FPGA technologies for on-board data

compression.

121

122 Chapter 4. Lossy hyperspectral compression on an FPGA

4.1 Outline

In Chapter 3, the implementation of the LCE compressor and its decompres-

sion counterpart have been implemented on a GPU, showing a fair amount

of paralellization that yields a high acceleration. GPUs are, to the date,

not suited to operate on-board a satellite. To demonstrate the benefits

of the LCE algorithm for on-board compression, an implementation in a

different technology is needed. We opt to implement the algorithm on an

FPGA for several reasons: to benefit from parallelization inherent to the LCE

algorithm; FPGAs provide faster developments and less expensive designs

than ASICs; and there are space-qualified options (unlike GPUs). Moreover,

FPGAs they offer flexibility through reconfiguration.

We present in what follows an implementation of the LCE algorithm on an

FPGA. Although FPGAs are very attractive for on-board compression, ob-

taining an efficient implementation usually involves following a rather long

design flow. Furthermore, most implementations are usually optimized for a

specific technology, what forces the developers to spend a long time adapt-

ing the original design whenever changes or improvements are necessary. In

this sense, high-level synthesis (HLS) tools represent an interesting option

they make it possible to reduce the times necessary for obtaining an efficient

hardware description of a digital design suitable for an FPGA or ASIC im-

plementation. This is the case of the popular tool known as CatapultC [101],

which offers the possibility to generate RTL implementations from C or C++

specifications with little restrictions. Moreover, it increases the flexibility of

the implementations, enabling the exploration of different optimizations or

target technologies without the need for the developer to perform changes in

the original C or C++ source code. CatapultC will also generate a testbench

together with the description of the user’s design, so that it is possible to run

simulations with ModelSim and verify the correct behaviour of the generated

RTL.

Chapter 4. Lossy hyperspectral compression on an FPGA 123

The LCE algorithm which is our target of study in this Chapter (see Section

3.2) is a good candidate for an FPGA implementation, because of its low

complexity, the fact that it can operate on integer variables only and its

parallelization capabilities. Likewise, it is a good example for obtaining an

RTL description with HLS tools, since a working and verified software imple-

mentation in C language was available prior to this study. During our work,

several modifications are made to the C source code of the LCE compressor

software in order to make it possible for CatapultC to generate an efficient

implementation of the algorithm. Although these alterations are specifically

performed for the LCE algorithm, most of the ideas and strategies devised

can be applied to other prediction-based adaptive compression algorithms.

Moreover, general recommendations regarding the HLS design flow can be

inferred from this work, since the whole experience serves as a case of use

demonstrator.

In the next sections of this Chapter, an FPGA implementation of the LCE al-

gorithm is obtained with CatapultC, to demonstrate its features for on-board

compression, providing a quantitative idea of its low-complexity and suitabil-

ity for an FPGA implementation in terms of area, latency and throughput;

and at the same time showing how CatapultC can be used to generate effi-

cient hardware implementations and shorten the design flow. HLS has been

proven to be useful for obtaining synthesizable hardware blocks in a short

time [102] [103]. As it was mentioned in Section 3.2, the LCE algorithm

consists of several differentiated stages with their corresponding data de-

pendencies. The C source code utilized as input for CatapultC contains

the description of all the compressor stages. This serves also to assess how

well CatapultC performs for a rather complex system as it is the case of a

compression algorithm. Most of the examples given in the CatapultC docu-

mentation are rather small designs which comprise a few lines of C language

code. The LCE compressor is a good example to evaluate the suitability of

HLS for these kind of problems.

124 Chapter 4. Lossy hyperspectral compression on an FPGA

4.2 CatapultC design flow

CatapultC [101] is a synthesis tool which provides implementations from C

or C++ working specifications, generating RTL descriptions, netlists (Ver-

ilog, VHDL and SystemC), simulation scripts, schematics and reports. The

output generated by CatapultC can be synthesized, mapped and placed and

routed on an FPGA using synthesis tools such as Mentor Graphics Precision

or Synplify. This study is focused on obtaining a synthesizable description

in VHDL from a source code which is written in C language.

The user is guided through the CatapultC design methodology by following

a sequence of specific steps, which are shown in Figure 4.1 and are briefly

explained next.

Step 1: Writing and testing the C/C++ source code

The way in which the C language source code of the algorithm is written

affects the final result more than any other step in the CatapultC design

flow. CatapultC is able to generate a hardware implementation from almost

any algorithm written in C or C++ with little restrictions, e.g. dynamic

memory allocation cannot be utilized. However, in order to optimize the

results or meet specific requirements in terms of area, throughput or latency,

it is necessary to carefully design the C code and understand how CatapultC

interprets it. In the specific case of the LCE algorithm, several minor and

major changes had to be done to the original C language code in order

to obtain an optimized implementation with CatapultC. These changes are

detailed in Section 4.3.

Step 2: Setting global hardware constraints

The global hardware constraints are mainly the clock frequency, reset and

enable behaviour of the design, and the target technology, which must be

determined by the user. The user has to identify, likewise, the main function

Chapter 4. Lossy hyperspectral compression on an FPGA 125

Write C/C++
source code

Set global hardware
constraints

Specify architectural
constraints

loop unrolling
loop pipelining

Design scheduling

RTL generation

RTL Synthesis

ASIC/FPGA

Figure 4.1: CatapultC design flow

of the C language code, which will be the top module of the generated design.

All functions called from inside the main function are considered part of the

hardware design, while those functions outside the top design module are

considered part of the testbench and no VHDL code is generated for them.

Step 3: Specifying architectural constraints

Subsequently, the user selects the architectural constraints, i.e. maps arrays

to memory resources; decides how memories are mapped; optimizes loops;

identifies inputs, outputs and global resources or controls the input and

output interfaces. The most remarkable feature at this step is the loop

optimization by means of loop unrolling and loop pipelining.

126 Chapter 4. Lossy hyperspectral compression on an FPGA

CatapultC allows partial or full unrolling of loops, making it possible for

the user to decide how many times a loop is replicated, as shown in Figure

4.2. If there are no data dependencies between iterations, i.e. the individual

iterations can be executed in parallel, loop unrolling can reduce the latency

and increase the throughput of the resulting implementation at the cost

of increased area. It has to be noted that CatapultC always respects the

data dependencies. If the user asks the tool to unroll a loop where data

dependencies exist between the iterations, CatapultC makes an effort to

unroll it anyway, as long as it has enough hardware resources to replicate

the iterations. The result in this case is a repetition of hardware without

any parallelism and therefore no benefits in terms of latency and throughput

are achieved.

4

Rolled loop

Fully unrolled loop

Figure 4.2: Setting architectural constraints: loop unrolling.

On the other hand, when a loop is pipelined, see Figure 4.3, the second itera-

tion starts before the first one has finished. CatapultC provides a parameter

called Initiation Interval (II), which sets the number of cycles the second

iteration waits before it starts. To get the maximum possible throughput,

Chapter 4. Lossy hyperspectral compression on an FPGA 127

II should be set to 1. Loop pipelining can fail for the selected II for two

reasons: there are not enough hardware resources in the target technology

to implement the pipelined loop or data dependencies cannot be guaranteed.

In order to solve this problem, the user can try to increase the II .

c0 c1 c2 c3

c0 c1 c2 c3

c0 c1 c2 c3

iteration 0

iteration 1

iteration 2

II

Figure 4.3: Setting architectural constraints: loop pipelining.

Pipelining can be combined with partial unrolling, in such a way that the

body of a loop is replicated several times and the remaining iterations in

each of the replicated loops are pipelined.

Furthermore, the number of iterations in the loop must be known to get

optimal implementations and an accurate estimation of the latency of the

design. If the number of iterations is variable, it must be set to the maximum

possible value.

Step 4: Scheduling the design The design is scheduled by CatapultC

according to the given constraints. A Gantt chart showing also the data

dependencies is generated, what gives the user valuable information in order

to further optimize the loops and options set in the previous steps.

Step 5: Generate RTL After the scheduling, the RTL files are generated,

which can be used to perform the synthesis on the ASIC or FPGA chosen by

the user. CatapultC provides a direct link to the Mentor Graphics Precision

tool, which can be used to perform the synthesis, mapping and placement

and routing.

128 Chapter 4. Lossy hyperspectral compression on an FPGA

4.3 Adapting the C language source code of the

LCE algorithm for CatapultC

Several changes are made to the original C language source code of the LCE

algorithm in order to obtain an optimized hardware implementation of the

design with CatapultC. The original C implementation is used as golden

reference, to ensure the correctness of the C code modified for CatapultC.

First, the data types are changed to Algorithmic-C bit-accurate data types,

which allow the user to create variables of any bit width and also determine

if they are signed or unsigned. When these data types are used, CatapultC

has more accurate information about the hardware resources necessary to

perform the different operations in the design, and is able to find better

optimizations.

Furthermore, the size of all the data arrays in the design is determined

and set to fixed values, i.e. all the dynamic memory allocation sentences are

eliminated from the source code, as they cannot be interpreted by CatapultC.

The present global variables in the source code are removed and transformed

to parameters to the different functions.

The code is also analysed to make sure there are no redundant sentences or

lines of code written for debug purposes or to make the code more under-

standable. The variables whose value does not change during the execution

time are turned into constants, to make it easier for CatapultC to interpret

them.

Chapter 4. Lossy hyperspectral compression on an FPGA 129

4.3.1 Identification of the top function and inputs and out-

puts of the design

The original C implementation of the LCE algorithm reads the whole hy-

perspectral image and then compresses it block by block. As the 16 × 16

blocks with all bands are independent, it is decided to create a hardware

implementation which would perform the compression of a 16 × 16 block

of pixels in a specific band. This way, the user can have the flexibility to

use the designed core for compressing the complete images by using several

instances according to the specific throughput or area needs.

Consequently, the top design module of the LCE hardware implementation

compresses a 16 × 16 block of pixels in a specific band. The top function

in the C implementation modified for CatapultC has to perform exactly

those operations, as it is interpreted as the top module. A function called

pred1block() is created in the C source code to be the top function of the

implementation. The pseudo-code of the top function is shown in Figure 4.4.

Figure 4.4: Pseudo-code of the C source code containing the top function
for the hardware implementation of the LCE algorithm

The parameters of the function pred1block() are interpreted by CatapultC as

the input and output ports of the top design. CatapultC decides if a parame-

ter should become input (I), output (O) or input/output (I/O) depending on

130 Chapter 4. Lossy hyperspectral compression on an FPGA

how they are utilized inside the function. The parameter cur block [256] con-

tains the input pixels in a 16× 16 block; ref block [256] contains the decoded

pixels, which are necessary perform the spectral prediction in the next band.

It is decided to map these arrays to RAM memory. The variable ym contains

the mean value of the samples in the current band, which will be also used

for the spectral prediction in the next band. The parameter block out [256] is

also mapped to RAM and stores the output results after the entropy coding

phase.

The top design module pred1block performs the prediction, quantization and

mapping of the pixels in cur block [256]. In the entropy coding phase, the

codewords are generated. These codewords represent the compressed pixels

and have to be saved in raster order in a bit by bit fashion, not leaving

any bits unused between codewords. For this purpose, and considering that

the generated codewords have variable length, parameters pp and m are

utilized. The parameter pp is a 32-bit buffer where the codewords are saved

and pp indicates the number of unused bits in pp. Only when pp is full, it is

saved to the output memory. After the compression of one block, pp might

be still partially full, and the first codeword generated in the compression

of the next block must be also buffered in it. The parameter filecount is

used to indicate how many 32-bit words are written in the output memory.

It must be noticed, that, although the compression of the 16 × 16 blocks

with all bands can be performed independently, the core pred1block must

have finished writing in pp and m and updating filecount before the first

codeword of the next block of 16× 16 pixels is generated. The resulting top

design with its inputs and outputs is shown in Figure 4.5. A summary of

the inputs and outputs of the design is presented in Table 4.1, showing the

size and a description of each port, and if it is mapped to a RAM memory.

Chapter 4. Lossy hyperspectral compression on an FPGA 131

Table 4.1: Input and output ports of the top module

Port Direction Size(bits) Mapped to Description

curr block I 256 × 16 Dual port RAM 16 × 16 samples of an
uncompressed block.

ref block I/O 256 × 16 Dual port RAM 16× 16 decoded values
of the previously com-
pressed band.

pp I/O 32 Buffer to store the gen-
erated codewords.

m I/O 6 Number of bits used in
the buffer (pp).

ym I/O 16 Mean of the samples a
band.

filecount I/O 32 Number of 32-bits
words written in the
output memory.

block out O 256 × 32 Dual port RAM Compressed data.

LCE
compressor

ym

filecountfilecount

pp

mm

block_out
RAM

ref_block
RAM

cur_block
RAM

Figure 4.5: Top design with its inputs and outputs

132 Chapter 4. Lossy hyperspectral compression on an FPGA

Table 4.2: Constants of the FPGA implementation of the LCE algorithm

Constant Description

NB Number of bands in the image.

RI Number of lines.

CI Number of columns.

signed Input data are represented with signed integers (1) or unsigned (0).

UTQ Choose whether to use or not the UTQ quantizer.

delta Strength of the compression.

DB Number of samples in a spatial block. Set to 256.

4.3.2 Configuration parameters

As it was mentioned in the previous Sections, the LCE algorithm allows the

user to set several parameters. It is necessary for the algorithm that the user

provides the number of samples and dimensions of the hyperspectral cube,

as well as how the raw data are represented. Furthermore, the user can

set two configuration parameters of the algorithm: the type of quantization,

by enabling or disabling the UTQ; and the strength of the compression, by

setting parameter delta. These parameters do not change their value during

the execution of the algorithm. However, in the C language implementation

they are represented as global variables. From the point of view of the

hardware design, it does not make sense to have these parameters as I/O

ports of the design, because they will always have the same value. Therefore,

these variables are eliminated from the C language code and turned into

#define clauses, in such a way that CatapultC treats them as constants

that the user can change before synthesizing the design. A summary of the

variables turned into constants is shown in Table 4.2

Chapter 4. Lossy hyperspectral compression on an FPGA 133

4.3.3 Reducing the complexity of the mathematical opera-

tions to calculate the gain factor α

It is mandatory to study all the mathematical operations in the C language

source code of the algorithm, in order to obtain an optimized implementation

with CatapultC. For instance, we found that many multiplications could be

replaced by shift operations. Setting the correct bit width of the variables

is also important, to provide Catapultc with the necessary information to

appropriately allocate resources for the operations. A particularly difficult

and interesting case was the optimization of the mathematical operations to

calculate, quantize and dequantize the gain factor α, necessary to perform

the prediction (see Equations 3.2, 3.3, 3.4 in Section 3.2.1). It is observed

that computing α takes the division of two integer variables which can be

up to 47 bits wide. The division of two variables is costly to implement

in hardware in terms of area and latency. With the aim of avoiding this

division, a strategy is conceived to replace it with a dichotomic search.

As it was shown in Section 3.2.1, α is computed over the block as α = αN/αD.

Once it is calculated, it is quantized using a uniform scalar quantizer with

256 levels in the range [0,2). The quantization yields α′ =floor(128α) and α′

is then clipped between 0 and 255. The dequantized gain factor is obtained

as α′′ = α′/128 and used to compute the predicted values within the block.

The original C source code implemented this operations as it is explained

next. In order to avoid performing a fixed point division, and use only integer

operations, α is computed as α =round(100αN/αD). Scaling αN by a factor

of 100 makes it possible to calculate it with more precision. After computing

α, it is quantized, yielding α′ =round(128α, 100) and the dequantized value

is obtained as α′′ =round(100α′, 128).

The alternative approach which is proposed for this Thesis work, aims at

finding a different way to calculate the quantized α′ and the dequantized α′′,

134 Chapter 4. Lossy hyperspectral compression on an FPGA

avoiding the division between two variable integers. Consequently, instead

of calculating the actual value of α, the quantized value is obtained directly

as α′′ =floor(α) =floor(128αN/αD). Taking into account that the quantized

value is represented with 8 bits at most, because it has 256 levels, and hence

it is then clipped between 0 and 255; it is also possible to avoid dividing

αN/αD by searching between the possible 256 values which one minimizes

the subtraction |α′αD − 128αN |. This can be performed with a dichotomic

search which involves a loop of 7 iterations. As it will be demonstrated in

this Section, the cost in hardware of this approach is in any case lower than

the one obtained with the original C implementation.

After computing α′, it is necessary to calculate also its dequantized coun-

terpart, α′′, which is used to obtain s̃z,y,x. With the presented approach,

we found out that it is more convenient to use an alternative way to de-

quantize α′ when it is computed with the proposed dichotomic search. In

particular, instead of dequantizing α′ as α′′ =round(100α′, 128), we compute

α′′ =ceil(100α′, 128), except when α′ = 0, whose dequantized value is set to

α′′ = 0.

The effect of making these changes in the computation of the quantized and

dequantized α is addressed next. In order to evaluate the possible impact in

terms of compression ratio or quality of the reconstructed image, the same

three hyperspectral images introduced in Table 5.11 are compressed with the

original C code for computing α′ and α′′, referred as ALPHA ORIGINAL

and with the proposed approach, referred as ALPHA CATAPULT.

Several simulations are run, compressing the images with both options for

different values of delta ranging from 1 to 100. The compression ratio ob-

tained with ALPHA ORIGINAL and ALPHA CATAPULT is calculated in

bits per pixel per band (bpppb).

Chapter 4. Lossy hyperspectral compression on an FPGA 135

Table 4.3: Accuracy of the results obtained with the proposed imple-
mentation of the alpha quantizer for CatapultC (MODIS)

MODIS IMAGE

ALPHA CATAPULT ALPHA ORIGINAL

DELTA bpppb MAE MSE PSNR bpppb MAE MSE PSNR

1 7.335 1 0.513 93.209 7.335 1 0.513 93.209

20 5.290 2 2.004 87.290 5.290 2 2.004 87.290

40 4.463 4 6.668 82.069 4.463 4 6.669 82.068

60 3.954 6 14.121 78.810 3.954 6 14.124 78.809

100 3.317 46 36.450 74.692 3.317 46 36.464 74.690

After compressing the images, they are decompressed, and the quality of the

reconstructed image obtained for ALPHA ORIGINAL and ALPHA CAT-

APULT is also evaluated in terms of PSNR, MAE and mean-squared error

(MSE).

It has to be noted that the decompressor for the images compressed with

ALPHA CATAPULT is also modified so that the compressed image can be

reconstructed correctly.

In Tables 4.3, 4.5 and 4.4 it is observed that for all the images, the results in

terms of compression ratio and fidelity of the decompressed image are almost

the same, the differences, if any, are negligible. Therefore, it is possible to

conclude that the ALPHA CATAPULT implementation is valid and can be

used instead of the ALPHA ORIGINAL to save hardware resources.

In order to address the benefits of using ALPHA CATAPULT in terms

of the hardware occupancy, number of clock cycles to complete and crit-

ical path of the FPGA implementation, both ALPHA CATAPULT and

ALPHA ORIGINAL are isolated from the rest of the source code and their

RTL descriptions are generated using CatapultC. The target technology and

clock frequency are set to the same values which are later used to obtain

136 Chapter 4. Lossy hyperspectral compression on an FPGA

Table 4.4: Accuracy of the results obtained with the proposed imple-
mentation of the alpha quantizer for CatapultC (AIRS)

AIRS IMAGE

ALPHA CATAPULT ALPHA ORIGINAL

DELTA bpppb MAE MSE PSNR bpppb MAE MSE PSNR

1 4.338 1 0.588 92.616 4.333 1 0.588 92.612

20 2.559 11 2.051 87.188 2.554 11 2.053 87.184

40 1.637 36 8.782 80.873 1.628 33 8.838 80.845

60 0.948 58 22.470 76.793 0.942 59 22.554 76.777

100 0.447 86 54.061 72.980 0.445 82 54.051 72.981

Table 4.5: Accuracy of the results obtained with the proposed imple-
mentation of the alpha quantizer for CatapultC (AVIRIS)

AVIRIS IMAGE

ALPHA CATAPULT ALPHA ORIGINAL

DELTA bpppb MAE MSE PSNR bpppb MAE MSE PSNR

1 5.898 1 0.536 93.019 5.897 1 0.536 93.018

20 3.946 2 2.000 87.298 3.945 2 2.000 87.297

40 3.130 4 6.670 82.068 3.130 4 6.669 82.068

60 2.580 128 49.346 73.376 2.580 129 49.345 73.376

100 1.650 128 49.346 73.376 1.649 129 49.345 73.376

the implementation of the whole LCE compressor (see Section 4.4), specif-

ically: Virtex 5VFX130 and 80 MHz. CatapultC estimations of cycles to

complete, area and slack for both options are shown in Table 4.6, where it

is observed that despite ALPHA CATAPULT taking 4 more cycles to com-

plete, the savings in area and critical path are evident, and therefore, for the

targeted technology, it is the best option.

Chapter 4. Lossy hyperspectral compression on an FPGA 137

Table 4.6: Estimation of area, cycles and slack for ALPHA ORIGINAL
and ALPHA CATAPULT

Virtex 5VFX130 80 MHz

Option Area (gates) Cycles to complete Slack (ns)

ALPHA ORIGINAL 6254.22 13 0.08

ALPHA CATAPULT 3388.08 17 2.94

4.3.4 Loop optimization

The way CatapultC schedules and implements the loops of the design can

be controlled by the user by means of loop unrolling and loop pipelining. All

the loops in the original C source code of the LCE algorithm are carefully

analysed, in such a way that it is ensured that the number of iterations in the

loop is known, which is mandatory for CatapultC to be able to schedule it

correctly. In those cases where it is impossible to determine the exact number

of iterations, the number of iterations is set to the maximum possible value.

In general, the strategy followed to optimize loops aims at unrolling them

whenever it is possible and, in those cases where the data dependencies make

unrolling impossible, use pipelining with II = 1, maximizing the throughput

with the goal of obtaining one compressed sample per clock cycle.

We present next the strategy followed to optimize three of the loops in the en-

tropy coding stage of the LCE algorithm, namely: the loop which computes

the Golomb parameter, the loop for calculating the exponential Golomb

codeword; and the loop for calculating the Golomb codewords. Our primary

motivation for describing these procedures is that we consider they are good

example of code optimization for CatapultC, for those cases where there

are loops in the source code where the maximum number of iterations is

unknown a priori. Although the strategies shown are designed and applied

specifically to the LCE algorithm, the main ideas might be employed for

138 Chapter 4. Lossy hyperspectral compression on an FPGA

the HLS hardware implementation of other sample-adaptive entropy coders,

which are widely used for data compression.

Loop for calculating the Golomb parameter

The Golomb parameter is calculated using the one-liner operator:

for (k = 0; (J � k) <= Rj ; k++)

where Rj is a running count of the sum of the magnitude of the last 32 un-

mapped residuals of the block. J is the number of values used for computing

Rj and k is the desired Golomb parameter.

Taking into account the maximum possible bit width of the unmapped pre-

diction residuals, the maximum number of iterations of this loop is set to 32.

It is also decided to fully unroll the loop with CatapultC, what is equivalent

to obtaining the 32 possible values of (J�k) and detect which is the smallest,

which is greater than Rj .

Loop for calculating the exponential Golomb codeword

The exponential Golomb codeword is obtained originally with the loop:

while (((1� n)− 1) < M1) n++;

The obtained codeword consists of n− 1 zeros concatenated with the n least

significant bits of M1. The loop has an unknown number of iterations and

hence some changes are applied. We observe that iterating can be avoided

by obtaining n as n = log2M1. To compute the logarithm, a function which

finds the leading one in M1 with a dichotomic search is created. The di-

chotomic search can be fully unrolled with CatapultC, and the loop virtually

disappears from the design.

Chapter 4. Lossy hyperspectral compression on an FPGA 139

Loop for calculating the Golomb codewords

The Golomb codeword is a concatenation of a specific number of ones, a zero

and a remainder. It is computed in the original C source code as:

- Unary coding:

for (j = 0; j < (M � k); j++) write file(1);

- Zero:

write file(0);

- Remainder:

write file(M &((1� k)− 1) using k bits);

where k is the Golomb parameter and M the value to be encoded. In the

original C implementation, the number of iterations of the loop is unknown

and the values are saved directly to a file, which cannot be implemented in

hardware.

The Golomb parameter is adaptive according to the data entropy. Perform-

ing a worst-case analysis, it is observed that the maximum possible number

of iterations of the unary coding loop can become really high. It is not advis-

able to set constraints in CatapultC so that it generates a design for such a

high number of iterations, since that would mean adding hardware resources

for a worst-case scenario which would take place only in a few occasions

during the compression of a real image.

We present next a strategy to solve this issue and modify the C source code

to avoid this loop.

The number of ones to be written can be easily calculated as (M � k).

However, the resulting codeword has to be saved to the 32 bits buffer pp and

140 Chapter 4. Lossy hyperspectral compression on an FPGA

then saved to memory, and the result of (M � k) can be much greater than

32 for some codewords.

It is proposed to initialize the output memory, which stores the compressed

block, with ones. Therefore, when (M � k) is greater than 32, it is not

necessary to write the ones to memory. It is enough to save the value of the

remainder to the bit packing buffer pp. A variable is used to indicate the

memory position where the next word has to be written to memory. This

variable can be easily updated taking into account the total number of ones

in the codeword.

Figures 4.6 and 4.7 show how the codewords are saved in a memory when

it is not initialized and how it is saved in an initialized memory, avoiding

having to loop an unknown number of iterations.

ones

X X X X X X X X

X X X X X X X X

X X X X X X X X

ones

ones

ones-zero-remainderones-zero-remainder

input

The remainder cannot be saved
until all ones are in memory.

Not initialized memory

Figure 4.6: Saving the codewords to a memory which is not initialized

We note that initializing the output memory implies introducing an addi-

tional loop in the design. The number of values to initialize is set to 128× 32

bits. With a dual port memory, 32 bits wide, the initialization can be done in

Chapter 4. Lossy hyperspectral compression on an FPGA 141

ones

ones

onesones-zero-remainder
input

The remainder can be saved
directly in its final position.

Initialized memory

Figure 4.7: Saving the codewords to a memory which has been initialized
with all ones

64 cycles, increasing the time necessary for the first sample to be compressed,

but producing a negligible effect in the throughput, as it is explained later

in Section 4.4.1.

Since we will reference the loops during the rest of this Chapter, the most

significant are described in Table 4.7. We also reference which loops solve

the equations of the LCE presented in Section 3.2.

4.4 Results of the FPGA implementation of the

LCE algorithm with CatapultC

After optimizing the C language source code of the LCE algorithm for a

CatapultC implementation, the modified code is verified by utilizing the

original LCE software implementation as golden reference. Afterwards, the

modified C code is introduced in CatapultC University Version Release 2010a

142 Chapter 4. Lossy hyperspectral compression on an FPGA

Table 4.7: Description of the loops in the design

Band Loop No. of Description Equations

iterations in LCE

0 INIT 128 Initializes the output memory
with ones.

PRED2D 256 Performs the 2D prediction,
mean value of the pixels in the
current block and the entropy
coding for the first and.

3.1, 3.6

> 0 INIT 128 Initializes the output memory
with ones.

MEAN 64 Computes the mean value of
the pixels in the current block
for bands other than the first.

EST 256 Estimate αN and αD 3.3, 3.4

LS 7 Compute the quantized gain
parameter α and dequantize it.

3.2

CALCPERR 256 Calculate predictor and predic-
tion error. Calculate distor-
tion incurred to decide if the
zero block option is raised.

3.5, 3.6, 3.7

ZEROB 256 Calculate ref block in case of
zero block decision.

3.8

MID ENTR 256 Calculate ref block when
zero block is not triggered.
Entropy coding of the predic-
tion errors.

3.9

to obtain a hardware implementation on an FPGA. It has to be noted that

the University Version limits part of the possible optimizations of the design.

The source code is first compiled in CatapultC and the top design and the

global hardware constraints are established. The target technology is set to

a Virtex 5VFX130, since it has an equivalent radiation-tolerant chip, and

it is particularly interesting for space applications. We establish the clock

frequency at 80 MHz and select the function pred1block() to be the top design

function, as it was stated in Section 4.3.

After setting the global constraints, the architectural hardware constraints

are specified. At this step, we confirm that CatapultC has correctly identified

Chapter 4. Lossy hyperspectral compression on an FPGA 143

the top design, and the inputs and outputs of the top function are interpreted

by the tool as expected.

Furthermore the loop optimization constraints are set, i.e. it is specified if

loops are unrolled and pipelined. A summary of the constraints utilized to

optimize each loop is shown in Table 4.8. The parameters U and II show

how many times the loop is unrolled and the selected initiation interval for

pipelining, respectively. The number of cycles necessary to complete each

loop is also presented as well as the latency, defined as the number of cycles

before the first sample is processed; and the throughput, defined as the

number of samples processed per cycle after the latency cycles. We consider

this particularly useful to understand the final results provided by CatapultC

and to explore further optimizations.

CatapultC, performs the scheduling of the design and generates the RTL.

Afterwards, Mentor Precision Synthesis 2009a is employed in order to syn-

thesize the design in the target FPGA. Once the synthesis is finished, the

placement and routing (P&R) is performed. The results after P&R are sum-

marized in Table 4.9 and Table 4.10.

As a result of the scheduling process, CatapultC provides information in

terms of latency and throughput of the implemented design, which can be

used, together with the P&R results to create Table 4.11, where we present

the number of latency cycles and the amount of samples per clock cycle and

samples per second obtained after the latency. We also indicate the number

of cycles it takes to process the 16× 16 samples in a block in a specific band

and finally we calculate the average number of samples/second as:

MegaSamples/sec = 10−6 × Number of samples in a block

total cycles× (clock frequency)−1
(4.1)

144 Chapter 4. Lossy hyperspectral compression on an FPGA

T
a
b
l
e
4
.8
:

O
p

tim
iza

tio
n

o
f

th
e

lo
o
p

s
in

th
e

d
esig

n

B
a
n

d
L

o
o
p

N
o
.

o
f

U
n

r
o
ll

A
r
e
a

L
a
te

n
c
y

T
h

r
o
u

g
h

p
u

t
C

y
c
le

s
to

S
la

c
k

ite
r
a
tio

n
s

P
ip

e
lin

e
(g

a
te

s)
(c

y
c
le

s)
(sa

m
p

le
s/

c
y
c
le

)
c
o
m

p
le

te
(n

s)

0
IN

IT
1
2
8

U
=

2
5
7
.1

7
1

2
/
1

6
5

9
.6

7

II
=

1

P
R

E
D

2
D

2
5
6

U
=

0
3
9
8
5
.2

9
5

1
/
7

1
7
9
7

0
.1

4

II
=

7

>
0

IN
IT

1
2
8

U
=

2
5
3
.1

7
1

2
/
1

6
5

9
.6

7

II
=

1

M
E

A
N

6
4

U
=

0
2
8
3
.7

0
2

1
/
1

6
6

5
.2

5

II
=

1

E
S

T
2
5
6

U
=

0
1
8
7
.5

2
1

1
/
1

2
5
7

7
.3

2

II
=

1

L
S

7
U

=
0

3
3
8
8
.0

8
3

1
/
1
7

1
7

2
.9

4

II
=

2

C
A

L
C

P
E

R
R

2
5
6

U
=

2
3
0
6
0
.9

3
6

2
/
1

1
3
4

2
.6

9

II
=

1

Z
E

R
O

B
2
5
6

U
=

0
9
1
.9

8
1

1
/
1

2
5
7

7
.4

9

II
=

1

M
ID

E
N

T
R

2
5
6

U
=

0
3
9
5
6
.6

6
1
3

1
/
1

2
6
9

2
.1

2

II
=

1

Chapter 4. Lossy hyperspectral compression on an FPGA 145

Table 4.9: Utilization results after P&R

Virtex 5VFX130

Resources Total %

BUFGs 1 out of 32 3

DSP48Es 17 out of 320 5

Number of RAMB18X2s 4 out of 298 1

Number of slices 2951 out of 20480 14

Number of Slice Registers 4208 out of 81920 5

Number of Slice LUTS 7836 out of 81920 9

Number of Slice LUT-Flip Flop pairs 8886 out of 64000 10

Table 4.10: Timing results after P&R

Virtex 5VFX130

Minimum period Maximum frequency

12 ns 80 MHz

Table 4.11: Number of samples processed per second for each band

Band Latency Throughput MSamples/sec Total MSamples/sec

cycles samples/cycles (After latency) cycles (Average)

0 72 1/7 11.5 1862 11.0

> 0 808 1/1 80.2 1064 19.2

Analysing these results, we observe that CatapultC, it did not schedule the

execution of different loops in parallel when the data dependencies make it

possible. Therefore, there is still room for optimization in order to improve

the design throughput.

4.4.1 Manual scheduling of the design

In order to explore how much the aforementioned CatapultC results can

be improved, a study of the data dependencies between the loops and the

possible scheduling of the compression of the different bands is performed, to

146 Chapter 4. Lossy hyperspectral compression on an FPGA

Table 4.12: Number of samples processed per second for each band with
a manual scheduling of the design

Band Latency Throughput Total cycles Mega samples/sec

cycles samples/cycles (Average)

0 72 1/7 1862 11.0

1 421 1/1 677 30.3

> 1 164 1/1 420 48.8

have an idea of the amount of parallelism which can be gained. The results

are shown in Figure 4.8, where the arrows indicate data dependencies and

the loops which are drawn in the same column can be executed in parallel.

It can be observed that the INIT loop is parallelized with other operations

for bands greater than the first, hiding most of the latency introduced by

adding it to the design. The average throughput with a manual scheduling

of the design is presented in Table 4.12.

INIT
(65)

PRED2D
(1797)

MEAN
(66)

EST
(257)

CALCPERR
(134)

MID_ENTR
(269)

ZEROB
(257)

INIT
(65)

EST
(257)

MEAN
(66)

LS
(17)

band 0

band 1

band 2

Figure 4.8: Manual scheduling of the loops in the LCE compressor

To obtain this potential improvement, a different design methodology is pro-

posed, namely, a modular approach consisting of dividing the C source code

Chapter 4. Lossy hyperspectral compression on an FPGA 147

Table 4.13: Functional units identified in the modular approach

Unit Name Description

init output Output memory initialization.

mean Computation of the mean of the sam-
ples in the block.

pred 2D 2D prediction and entropy coding for
the first band.

estimation ls Computation, quantization and de-
quantization of the gain factor (α)

calc perr Prediction error computation; rate-
distortion relationship and zero block
decision.

zero block Computation of the reference samples
when the zero block flag is triggered

ad golomb code perr Computation of the reference samples,
when block is not zero, and entropy
coding of the prediction errors.

in different processing units, obtaining the VHDL description with Cata-

pultC and manually scheduling the units to obtain a schedule similar to the

one shown in Figure 4.8. The downside of this approach is that it is manda-

tory to manually write VHDL code. This strategy would make it possible to

hide latency for bands other than the first one, yielding a gain in the average

throughput. The results with this approach are presented in Section 4.12.

4.4.2 Implementation of the LCE algorithm using a modular

approach

In this approach, the different stages of the LCE algorithm are identified

in the C language source code and split in independent files. An RTL de-

scription of each of them is obtained with CatapultC, and a finite-state

machine (FSM) is then manually written in VHDL to control the behaviour

of the different modules. Seven different modules are identified, as can be

seen in Table 4.13

148 Chapter 4. Lossy hyperspectral compression on an FPGA

Table 4.14: Occupancy modular approach against non-modular ap-
proach

Virtex 5VFX130 Modular ap-
proach

Non-modular
approach

Resources Available Used % Used %

DSP48Es 320 17 5 25 8

Number of RAMB18X2s 298 4 1 4 1

Number of slices 20480 2951 14 1935 10

Number of Slice Registers 81920 4208 5 5995 7

Number of Slice LUTS 81920 7836 9 7738 10

Table 4.15: Throughput of the modular approach against the non-
modular approach

Virtex 5VFX130

Modular approach Non-modular approach

Max.Frequency (MHz) 86 80

Throughput (Msamples /sec) 27.7 16.7

Table 4.14 and 4.15 show the results of the aforementioned approach in

comparison with the non-modular approach.

4.4.3 Comparison with the FPGA implementation of a near-

lossless algorithm

Finally, we compare our results with those shown in [56] for the FPGA im-

plementation of a lossless to near-lossless image compression algorithm. Like

the LCE algorithm, it is based on a prediction plus adaptive entropy coding

scheme. For the sake of comparison, we provide an implementation with Cat-

apultC targeting an FPGA from the Virtex IV family, namely 4VLX200. We

select the same constraints and settings used for the Virtex 5 implementa-

tion with CatapultC. The results of the LCE and the lossless to near-lossless

implementation after P&R are shown in Table 4.16.

Chapter 4. Lossy hyperspectral compression on an FPGA 149

Table 4.16: Implementation comparison

Virtex IV 4VLX200 LCE Lossless to

CatpultC near-lossless

Used LUT 9283 (5%) 10306 (5%)

RAM 16s 4 (1%) 21 (6%)

DSP48 25 (26%) 9 (9%)

Max. Frequency 75 MHz 81 MHz

We observe that the LCE algorithm shows better results than the lossless to

near-lossless algorithm in terms of frequency and LUT and memory resources

requirements. However, the LCE uses more DSPs, which is reasonable be-

cause of the mathematical operations involved in a lossy algorithm.

4.5 Performance comparison: FPGA, GPU, CPU

With the results obtained in this Chapter, it is possible to make a perfor-

mance comparison between the throughput that can be obtained with the

different technologies utilized to implement the LCE compressor: FPGA,

CPU, and GPU. We calculate the number of samples compressed every sec-

ond for the AVIRIS, MODIS and AIRS hyperspectral images. In the case

of the CPU and GPU, we calculate the throughput taking into account the

dimensions of the images and the execution times as:

Throughput GPU and CPU

(MSamples/sec)

= 10−6 × Nz ×Ny ×Nx
total execution time(sec.)

(4.2)

In the case of the FPGA implementation, we calculate the throughput of

every image taking into account the dimensions of the image, the maximum

150 Chapter 4. Lossy hyperspectral compression on an FPGA

Table 4.17: Throughput of the FPGA implementation of the LCE for
the hyperspectral images under evaluation

Image Throughput modular approach (Msamples /sec)

MODIS 27.9

AVIRIS 27.7

AIRS 24.6

frequency and the number of clock cycles necessary to perform the compres-

sion with the non-modular implementation obtained with CatapultC, using

the formula:

Throughput FPGA

(MSamples/sec)

= 10−6 × Nz ×Ny ×Nx
total cycles× (clock frequency)−1

(4.3)

The obtained results can be seen in Table 4.17. To calculate these results,

we consider that we only implement one instance of the compressor in the

FPGA. Nevertheless, taking into account the low occupancy and the fact

that the compression of blocks are independent, we note that it is possible to

multiply this throughput by implementing more than one LCE compressor

core per FPGA.

The comparative results of the performance of the three implementations of

the LCE compression algorithm: GPU, CPU, and FPGA is shown in Figures

4.9, 4.10, and 4.11.

The GPU and FPGA implementations of the LCE algorithm yield better

performance than the CPU. Comparing GPU and FPGA, the GPU provides

the best performance with about 5-6 times more samples computed per sec-

ond, when compared with an FPGA implementation of a LCE compression

module for one image block of 16×16 samples. Nevertheless, if we take into

Chapter 4. Lossy hyperspectral compression on an FPGA 151

Figure 4.9: Comparison of the throughput of the GPU, CPU and FPGA
implementations of the LCE algorithm for the MODIS image

Figure 4.10: Comparison of the throughput of the GPU, CPU and FPGA
implementations of the LCE algorithm for the AVIRIS image

152 Chapter 4. Lossy hyperspectral compression on an FPGA

Figure 4.11: Comparison of the throughput of the GPU, CPU and FPGA
implementations of the LCE algorithm for the AIRS image

account that the compression of the image blocks is independent, we can ob-

serve that it is possible for the FPGA implementation to reach the through-

put of the GPU by instantiating more than one compression module, which

is perfectly feasible, due to the low occupancy of the algorithm in the FPGA

(around 14% of a Virtex 5VFX130). We note that, the power consumption

of the GPU is dramatically higher than that of an FPGA implementation,

and should also be considered when comparing both technologies. The Tesla

C2075 used in the experiments of this Chapter has a power consumption

of up to 225 W TDP, whereas the FPGA implementation generated with

CatapultC shows a consumption of to 2.679 W.

Although GPUs achieve a very high throughput, they are not suited to oper-

ate on-board. They are not radiation-tolerant and their power consumption

is too high for on-board usage. FPGAs are more amenable to be used on-

board, exhibiting a similar throughput but a much lower power consumption.

Chapter 4. Lossy hyperspectral compression on an FPGA 153

Nevertheless, GPUs provide very flexible implementations, and the design

flow is much shorter than that of the FPGA and requires less resources.

From all this facts, we conclude that it makes sense to continue investigating

on GPUs for space, and the biggest efforts should be made towards reducing

their power consumption.

Chapter 5

Implementation of the

CCSDS standard for lossless

hyperspectral image

compression on a

space-qualified FPGA

This Chapter describes the implementation of the recent CCSDS 123 stan-

dard for multispectral and hyperspectral compression on a space-qualified

FPGA from the Microsemi RTAX family. The main objective is to design a

hardware architecture with low resource occupancy and high performance,

which is suitable for on-board use in current and future space missions.

Part of this work has been funded by Thales Alenia Space España S.A.

(TASE) under a collaboration agreement with the Institute For Applied Mi-

croelectronics (IUMA) and are subject to copyright (TASE/IUMA-12.016).

155

156 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

5.1 Outline

As it has been exposed in the previous Chapters of this Thesis, the com-

pression of hyperspectral images on-board satellites is at the same time a

challenge and a necessity whose importance is currently growing as the res-

olution of the sensors tend to increase. The images are captured in several

different wavelengths, which can range from tens to hundreds, and therefore

represent a huge amount of data which has to be reduced in order to meet

the available on-board storage and transmission bandwidth requirements.

Consequently, hyperspectral image compression has become a very popular

research topic, which has motivated the proposal of different compression

algorithms with diverse compression efficiency and complexity. On-board

compression algorithms have to meet additional requirements which are spe-

cific to the space environment such as low complexity and error resilience.

The available processing power on a satellite is limited, and most usual data

compression algorithms used on ground cannot be applied to space data

systems. Nevertheless, to actually benefit from on-board compression, not

only efficient algorithms are needed; it is also essential to provide physical

implementations of those algorithms, which can operate on-board.

Recently, the CCSDS, which represents the major space agencies in the

world, has issued a recommendation for lossless multispectral and hyper-

spectral data compression, the CCSDS 123 [25]. The CCSDS 123 compres-

sor is based on the FL algorithm [55] and consists of a predictor and an

entropy coder. The predictor uses adaptive linear prediction based on values

of nearby samples in a small three-dimensional neighbourhood. Afterwards,

the residuals of the prediction are mapped and entropy coded. Experimen-

tal results have demonstrated that the CCSDS standard is competitive with

other state-of-the-art algorithms, providing the best trade-off between coding

performance and computational complexity [74].

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 157

The CCSDS 123 algorithm has been already implemented in software for

its execution on CPU [74, 76] and GPU [81]. However, none of these im-

plementations are suited for on-board use. This Chapter presents a low-

complexity hardware architecture of the CCSDS 123 algorithm which can

be implemented on a space-qualified FPGA with low hardware occupancy.

The architecture is carefully designed taking into consideration the impact

in terms of compression efficiency and implementation complexity of the

different user-defined parameters allowed by the CCSDS 123 standard.

The resulting architecture is the basis of an IP core named HyLoC, which

is described at RTL level using VHDL, and then implemented on the space-

qualified RTAX1000S FPGA. HyLoC is fully compliant with the CCSDS

123 standard, allows the adjustment of the user-defined parameters and is

technology independent. Finally, the HyLoC VHDL description is validated

on a Xilinx prototyping board with a Virtex 5 FPGA, which provides further

evidences of the benefits of the proposed implementation.

We note that an FPGA implementation of the FL algorithm was already

presented in [32]. Although the FL algorithm has a lot in common with the

CCSDS 123, the architecture presented here is drawn up with a different

approach, making it fully compliant with the standard and considering the

different combinations of user-defined parameters, which are not part of the

FL algorithm.

5.2 The CCSDS 123 standard for lossless multi-

spectral and hyperspectral image compression

overview

The CCSDS 123 algorithm performs lossless compression of multispectral

and hyperspectral images [25]. It utilizes a scheme based on prediction and

158 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

entropy coding of the prediction residuals. Let sz,y,x be a sample located

in spatial coordinates (y, x) and band z. The predicted sample ŝz,y,x is

computed using the previously processed neighbouring samples of sz,y,x in

the current band as well as in P previous bands. Figure 5.1 illustrates the

typical neighbourhood of samples used for prediction; this neighbourhood is

suitably truncated for the samples located in the image edges. The number

of previous bands used for prediction, P , is a user-defined parameter which

can range from 0, for which no information from previous bands is utilized,

to 15. The flowchart which describes the several steps of the algorithm is

shown in Figure 5.2.

current band z

z
y

x

current sample

sz-P,y-1,x-1 sz-P,y-1,x sz-P,y-1,x+1

sz-P,y,x-1 sz-P,y,x

sz-1,y-1,x-1 sz-1,y-1,x sz-1,y-1,x+1

sz-1,y,x-1 sz-1,y,x

sz,y-1,x-1 sz,y-1,x sz,y-1,x+1

sz,y,x-1 sz,y,x

P previous
bands

Figure 5.1: Current sample and neighbours used for computing the local
sums and local differences

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 159

Predicted sample value

Compress
sample

Local sum
Local

differences

Weigths

Prediction error = -

Map

Golomb entropy coder

Figure 5.2: Flowchart of the CCSDS 123 algorithm

5.2.1 Prediction

First, a local sum, σz,y,x, of the neighbouring samples of sz,y,x in the current

band is computed. A user-defined parameter is employed to select between

two possible configurations for the local sum computation: column-oriented

and neighbour-oriented. The neighbours utilized by each configuration are

shown in Figure 5.3.

160 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

The column-oriented local sum is computed using the neighbour on top of

the current sample, sz,y−1,x; on the other hand, the neighbour-oriented local

sum is calculated using 4 neighbouring samples, namely: sz,y−1,x−1, sz,y−1,x,

sz,y−1,x+1 and sz,y,x−1. The equations for computing the local sum are shown

in Table 5.1.

z
y

x

sz,y-1,x-1 sz,y-1,x sz,y-1,x+1

sz,y,x-1 sz,y,x

sz,y-1,x-1 sz,y-1,x sz,y-1,x+1

sz,y,x-1 sz,y,x

(a) (b)

neighbour-oriented column-oriented

Figure 5.3: Current sample and neighbours used for computing the di-
rectional local sum

z
y

x

sz,y-1,x-1 sz,y-1,x sz,y-1,x+1

sz,y,x-1 sz,y,x
central

NNW

W

Figure 5.4: Current sample and neighbours used for computing the di-
rectional local differences

The local sums are used to calculate the central local differences values dz,y,x

and the directional local differences: dNz,y,x, dWz,y,x and dNWz,y,x (see Figure 5.4).

The user can choose to perform prediction in full or reduced mode by se-

lecting the appropriate parameter. Under reduced mode, the prediction is

computed from a weighted sum of the central local differences calculated in

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 161

Table 5.1: Equations for calculating the local sum

Local sum σz,y,x of sample sz,y,x

Neighbour oriented Column oriented

sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1 4sz,y−1,x

P preceding bands. The directional local differences are not utilized under

reduced mode and therefore do not need to be calculated. On the other hand,

under full prediction mode, the prediction depends not only on the central

local differences in the P previous bands, but also on the weighted sum of

the directional local differences in the current band. The weight values are

updated adaptively according to the resulting prediction residual.

The central local differences in the P previous bands together with the 3

directional local differences conform a vector, Ux,y,z, whose elements are

computed according to the selected configuration as it is shown in Table 5.2.

The prediction is calculated by computing the inner product, d̂, between the

local difference vector Uz,y,x and the weight vector Wz,y,x:

d̂ = W T
z,y,x · Uz,y,x (5.1)

The weight vector has the same amount of components of the local differ-

ences vector, and measures the effectiveness of each component of the local

differences vector in predicting the sample being coded. The scaled predicted

sample value, s̃z,y,x, is computed from d̂ and used to calculate the scaled

prediction error as:

ez,y,x = 2sz,y,x − s̃z,y,x (5.2)

The components of the weight vector, Wz,y,x, are adaptively updated based

on the sign of ez,y,x. The rate at which the weight vector adapts changes

over time, following a schedule which is determined by three user-defined

162 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Table 5.2: Equations for calculating the elements of the local differences
vector Uz,y,x

Local differences vector Uz,y,x
F

U
L

L
P

R
E

D
IC

T
IO

N

D
IR

E
C
T
IO

N
A
L

L
O
C
A
L

D
IF

F

dNz,y,x = 4sz,y−1,x − σz,y,x

dWz,y,x = 4sz,y,x−1 − σz,y,x

dNWz,y,x = 4sz,y−1,x−1 − σz,y,x

C
E
N
T
R
A
L

L
O
C
A
L

D
IF

F

dz−1,y,x = 4sz−1,y,x − σz−1,y,x

R
E

D
U

C
E

D
P

R
E

D
IC

T
IO

N

dz−2,y,x = 4sz−1,y,x − σz−1,y,x

...

dz−P,y,x = 4sz−P,y,x − σz−P,y,x

parameters: the weight update scaling exponent initial parameter (νmin),

the weight update scaling exponent final parameter (νmax) and the weight

update scaling exponent change interval (tinc). The larger the weight incre-

ments, the faster the adaptation to the source statistics, but the worse the

steady-state prediction.

The predicted sample value, ŝz,y,x, is computed as:

ŝz,y,x = b s̃z,y,x
2
c (5.3)

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 163

and it is used to compute the prediction residual, ∆z,y,x = sz,y,x − ŝz,y,x,

which is then mapped to positive integer values, δz,y,x.

Subsequently, the mapped prediction residuals, δz,y,x, are sequentially en-

coded in the order selected by the user: band-sequential (BSQ) or band-

interleaved (BI). This encoding order specifies likewise the order in which

the encoded samples are arranged in the compressed file.

5.2.2 Entropy coding

The CCSDS 123 standard allows the selection between a sample-adaptive

entropy coder and a block-adaptive entropy coder. For the implementation

presented in this Thesis work, only the sample-adaptive entropy coder option

is considered. Under this approach, the mapped prediction residuals δz,y,x

are encoded using a Golomb power-of-two variable-length binary codeword.

The codes are adaptively selected based on statistics which consist of an

accumulator and a counter which are updated after each sample is encoded,

and reset periodically according to an interval set by the user-defined pa-

rameters. The final codeword is composed by U zeros followed by a 1 and

the k most significant bits of δz,y,x, as shown in Figure 5.5.

5.3 Design methodology

Unlike the lossy hyperspectral compression algorithm FPGA implementation

described in Chapter 4, we consider that high-level synthesis (HLS) is not

the most appropriate methodology for obtaining an RTL description of the

CCSDS 123 algorithm which is suitable for an implementation on a space-

qualified FPGA and which would meet our objectives of low-occupancy at

the same time. Using HLS has been proven to shorten the design times

by generating RTL descriptions from C-language working implementations.

164 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

01010101

01011101

01101010

01010001

Accumulator &
Counter Update

GOLOMB
power of two

Compressed
file

Mapped
prediction
residuals

Codewords

RescalePrevious

1 least significant bits ofzeros

zeros binary representation of

Codeword generation

Figure 5.5: Sample-adaptive codeword generation.

However, in the case of the CCSDS 123 algorithm, we did not have a working

and verified C-language implementation of the algorithm that we could use

as input for the HLS tool. Besides, we wanted to design the FPGA imple-

mentation in such a way that we could ensure low-complexity for any com-

bination of the algorithm’s user-defined parameters, keeping in mind that

the final target would be a space-qualified FPGA. The Microsemi space-

qualified FPGA for which we design the implementation of the CCSDS 123

algorithm cannot be set as a target for implementation in our HLS tool, Cat-

apultC. This fact does not prevent the tool from generating the VHDL code,

however, it cannot guarantee that the design will fit in the desired FPGA

or meet the timing constraints. In order to accomplish our goals of achiev-

ing low-complexity and the resulting implementation being able to operate

on-board, it was decided to write the VHDL code from scratch, making it

possible to design the hardware architecture carefully, and be able to control

the behaviour of each single module in the compressor.

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 165

We present next the architectural description and FPGA implementation

of the CCSDS 123 algorithm, which is designed according to the following

methodology. We first perform simulations and study the results in [104], in

order to establish which of the user-defined parameters have a greater impact

in the compression ratio. Afterwards, the impact of these parameters in the

complexity of the resulting hardware implementation is studied and several

architectural options are proposed and compared, with the goal of selecting

the one that provides low area utilization, low power and high throughput.

5.4 Impact of the user-defined parameters in the

compression efficiency

The CCSDS 123 standard allows the user to set several parameters which

permit to control the performance and behaviour of the compressor. Before

designing the hardware architecture of the compressor, we study the effect of

these parameters, in order to establish which of them have a greater impact

in the compression ratio. To accomplish this, we perform the compression of

several multispectral and hyperspectral images with the CCSDS 123 stan-

dard, with a software called Empordá, developed in Universitat Autònoma

de Barcelona (UAB) under an ESA contract. The referred software is open-

source and can be downloaded from [105]. The hyperspectral images used as

a target for compression are summarized in Table 5.3, where Nx represents

the number of image samples in the spatial direction x; Ny represents the

number of samples in direction y and Nz is the number of bands

The 3MI-VNIR(9) and 3MI-VNIR(21) images are created to be represen-

tative of a hyperspectral image acquired by the visible and near infrared

(VNIR) sensor of the 3MI instrument, which is planned to be part of the

Metop-SG satellites (Eumetsat Polar System Second Generation missions)

[106]. The images are created from the uncalibrated AVIRIS Yellowstone

166 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Table 5.3: Hyperspectral images used to assess the effect of the user-
defined parameters of the CCSDS 123 standard

Sensor Area Nz Ny Nx Image
type

Pixel
bit
width

Name
in
legend

AVIRIS Indian
Pines
(subset)

220 256 256 calibrated 16 INDIAN
PINES

MODIS - 17 2300 1354 raw 12 MODIS

AIRS - 1504 135 90 raw 14 AIRS

AVIRIS Yellowstone
Scn0

224 512 677 raw 16 RAW
YEL-
LOWS

AVIRIS Yellowstone
Scn0

224 512 680 calibrated 16 CAL
YEL-
LOWS

3MI-VNIR(9) Yellowstone
Scn0

9 512 677 raw 16 3MI-
VNIR(9)

3MI-VNIR(21) Yellowstone
Scn0

21 512 677 raw 16 3MI-
VNIR(21)

Scene0, by selecting the wavelengths which would be acquired by the afore-

mentioned sensor.

In order to characterize the CCSDS 123 compressor based on its user-defined

parameters, the Empordá compression software is initially configured with

the default parameters. The selection of the default settings for Empordá is

based on the developer’s experience [74, 104]. Each parameter is then varied

in its allowed range, while the rest are kept in their default values. The

parameters studied, their range and their default values and description are

summarized in Tables 5.4 and 5.5.

We calculate then the compression achieved by the different configurations

by computing the number of bits per pixel of the compressed images as:

Bit rate (bpppb) =
Size of compressed file (bits)

Nz ×Ny ×Nx
(5.4)

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 167

Table 5.4: Parameters studied for the prediction characterization

Parameter Range Default in
Empordá

Description

Number of bands for pre-
diction (P)

[0− 15] 15 Number of previous
bands used to perform
the prediction.

Prediction mode [full,
reduced]

full Indicates if the direc-
tional local differences
are used in the predic-
tion calculation.

Local sum mode [neighbour,
column]

neighbour Defines the neighbour-
hood used to compute
the local sums.

Register size [32− 64] 32 Size of the register used
in the prediction calcu-
lation.

Weight component resolu-
tion (Ω)

[4− 19] 13 Determines the num-
ber of bits used to rep-
resent the weight vec-
tor components, which
is calculated as Ω + 3.

Weight update scaling
exponent change interval
(tinc)

[4− 11] 6 Sets the interval at
which the weight up-
date scaling exponent
increments.

Weight update scaling ex-
ponent initial parameter
(νmin)

[−6− νmax] -1 Determines the initial
rate at which the
prediction adapts the
weight vector to the
input samples.

Weight update scaling
exponent final parameter
(νmax)

[νmin − 9] 3 Determines the final
rate at which the
prediction adapts the
weight vector to the
input samples.

168 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Table 5.5: Parameters studied for the entropy coder characterization

Parameter Range Default in
Empordá

Description

Initial count exponent (γ0) [1− 8] 1 Sets the initial counter
value.

Accumulator initialization
constant (k′z)

[4− 9] 6 Sets the initial accumu-
lator value.

Rescaling counter size (γ∗) [4− 9] 6 Determines the inter-
val between the rescal-
ing of the counter and
accumulator.

Unary length limit (Umax) [8− 32] 16 Limits the maximum
length of any encoded
sample.

Afterwards, Figures like 5.6 are obtained for each of the described param-

eters. In this document, we only show the results of the influence of the

number of bands used for prediction and the weight component resolution

because of their particular relevance. We observe that initially the com-

pression improves as P becomes higher, but it becomes almost stable for

P > 3. Hence, we can conclude that setting P > 3 does not yield a signif-

icant improvement in the compression ratios. Furthermore, it can be seen

that the weight component resolution, Ω, also affects the compression in a

significant way, producing smaller compressed images for higher values of

Ω. Regarding the local sums and prediction modes, we note that reduced

mode in combination with column-oriented local sums yields higher com-

pression for raw (uncalibrated) input samples from pushbroom imagers that

exhibit significant along-track streaking artifacts. On the other hand, full

mode in combination with neighbour-oriented local sums is better suited for

whiskbroom, frame imagers and calibrated imagers.

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 169

0 3 6 9 12 15

4

6

8

10

12

Bi
t

ra
te

 (
b
p
p
p
b
)

4 6 8 10 12 14

4

6

8

10

12

Bi
t

ra
te

 (
b
p
p
p
b
)

INDIAN PINES

MODIS

AIRS

RAW YELLOWS

CAL YELLOWS 3MI−VNIR(21)

3MI−VNIR(9)

(a) (b)
Number of bands for prediction () Weight component resolution ()

Figure 5.6: Influence of the user-defined parameters in the compression
ratio. (a) Number of bands used for prediction (P); (b) Weight component

resolution (Ω)

Tables 5.6 and 5.7 summarize the main conclusions about the effect of all the

user-defined parameters of the CCSDS 123 algorithm in the compression ra-

tio. We note that a similar study was performed in UAB, which corroborates

our conclusions [104].

5.5 Architectural design considerations

As we have described in the previous Section, the CCSDS 123 standard

allows a fair amount of user-defined parameters which can be set by a po-

tential user to optimize the compression ratio according to his needs or the

characteristics of the image sensor. When a hardware architecture is to be

conceived, the effect of these parameters in the complexity of the design must

be additionally taken into consideration.

170 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Table 5.6: Influence of the user-defined parameters of the predictor in
the compression ratio

Parameter Default in
Empordá

Conclusions

Number of bands for pre-
diction (P)

15 Higher P yields better compres-
sion, however setting P > 3 does
not show improvement.

Prediction mode full Raw images → Reduced+Column;

Local sum mode neighbour Calibrated images →
Full+Neighbour

Register size 32 Doest not have a significant im-
pact. It has to be large enough to
prevent overflow.

Weight component resolu-
tion (Ω)

13 Has a noticeable impact. A large
Ω yields more compression.

Weight update scaling
exponent change interval
(tinc)

6 Does not have a significant impact.

Weight update scaling ex-
ponent initial parameter
(νmin)

-1 Does not have a significant impact.

Weight update scaling
exponent final parameter
(νmax)

3 Has a moderate impact. In
general, better compression is
achieved for higher νmax.

Table 5.7: Influence of the user-defined parameters of the entropy coder
in the compression ratio

Parameter Default in
Empordá

Conclusions

Initial count exponent (γ0) 1 Does not have a significant impact.

Accumulator initialization
constant (k′z)

6 Does not have a significant impact.

Rescaling counter size (γ∗) 6 Does not have a significant impact.

Unary length limit (Umax) 16 Does not have a significant impact.

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 171

In this research work, our main goal is to design a low-complexity architec-

ture which is flexible enough to allow the setting of most of the parameters

included in the standard, without significant changes in the hardware occu-

pancy or performance. It is worth mentioning that the selected parameters

are expected to be chosen and maintained for a specific application, and thus

the potential user is expected to set them before the design synthesis.

It is observed in Section 5.4 as well as in [104] that not all the user-defined

parameters in the CCSDS 123 standard have an important impact in its

compression performance. For instance, most of the parameters of the en-

tropy coder do not have a significant effect in the compression ratio, nor in

the hardware complexity. However, the setting of some of the parameters

in the predictor, in particular the number of bands used for prediction P ,

the prediction mode and the local sum mode, are important to optimize the

performance in terms of compression efficiency and final hardware imple-

mentation complexity. Next, the design considerations taken into account

regarding these parameters are summarized. The encoding order will only

affect the compression ratio when the block-adaptive entropy coder is uti-

lized. However, in this research work, we only consider the implementation

of the sample-adaptive coder. Despite the encoding order not having a real

effect in the compression ratio, it is critical when a hardware architecture is

to be designed. Therefore, its influence is also considered.

5.5.1 Encoding order

As it was already mentioned, the samples can be encoded in band-sequential

(BSQ) or band-interleaved (BI) order. In BSQ order, all the samples in a

particular band are compressed in raster order before the compression of

the following band. On the other hand, in BI order, a particular sample is

compressed in all spectral channels (or a subframe of channels) before the

compression of the next sample in raster order.

172 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Although the encoding order and the prediction order can be different ac-

cording to the CCSDS 123 standard, the samples should be predicted in the

same order as they are encoded, if low-complexity of the implementation is

desired. The encoding order defines how the input samples are read and

therefore it has an important impact in the architectural design. We assume

that the raw samples are stored in an external mass memory which features

burst reading and we design 5 architectures with different encoding orders

and study their complexity, as it is shown in Section 5.5.4.

5.5.2 Local sum mode and prediction mode

As it was aforementioned, the local sum can be obtained from one previously

processed neighbour (column-oriented) or from four neighbours (neighbour-

oriented). Furthermore, the user can also select between full or reduced

prediction modes.

Regarding the compression ratio, we saw that the use of reduced mode in

combination with column-oriented local sums tends to yield smaller com-

pressed image data volumes for raw (uncalibrated) input samples, while the

use of full mode in combination with neighbour-oriented local sums tends to

yield smaller compressed image data volumes for calibrated imagery.

With respect to the hardware complexity, we observe that for any combina-

tion of these parameters the previously processed neighbouring samples of

sz,y,x are necessary for its compression. These previously processed neigh-

bours can be stored in a set of FIFOs at the compressor’s input, in order

to reduce the number of accesses to the external input memory. The size

of these FIFOs can be reduced if for every sample to be compressed, not

only sz,y,x is read, but also the top right neighbour sz,y−1,x+1 is read, as it

is illustrated with more detail in Section 5.5.4.

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 173

5.5.3 Number of bands for prediction

The number of bands used for prediction P is one of the parameters with

the greatest impact in the compression ratio as well as in the computational

complexity.

It is observed in Section 5.4 and in [104] that the higher P , the higher the

compression efficiency. Nonetheless, it is also illustrated that P > 3 does

not yield a significant improvement in the compression ratio. The presented

architectural design is optimized taking this fact into consideration. In order

to study the impact of P in the computational complexity of the compressor,

we consider how it affects the necessary internal memory storage and the

number of operations in the compression process.

Parameter P and the prediction mode define the size of the local differences

vector Uz,y,x. We define Cz as the size of the local differences vector. Cz = P

if reduced prediction mode is selected and Cz = P + 3 under full prediction

mode. As it was explained in Section 5.2, the weighted sum of vector Uz,y,x

is necessary to perform the prediction of the current sample, therefore Cz

is proportional to the number of multiplications and accumulations needed

to perform the prediction. The weights conform a vector, Wz,y,x, which has

the same length as Uz,y,x and is updated after the prediction of every sample

sz,y,x.

Furthermore, if we consider BSQ encoding order, we note that when sample

sz,y,x is going to be compressed, the local differences vector of sample sz−1,y,x

has to be available. In order to meet this requirement, two approaches are

possible: one is to store all the local differences vectors of all the samples in

the current band, so that they are available when processing next band (Op-

tion STORE). The alternative is to re-calculate the local differences vector

for all the co-located samples in the P previous bands (Option CALCU-

LATE). The complexity of both options is compared in Table 5.13, in terms

174 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Table 5.8: Effect of parameter P in the computational complexity

Option STORE Option CALCULATE

Elements stored for lo-
cal differences vectors.

P × (Nx ×Ny − 1) + Cz Cz

Elements stored for the
weight vector.

Cz Cz

Number of operations
per sample to compute
predictor.

Cz (×) + Cz (+) Cz (×) + Cz (+)

Number of operations
to compute the local
differences vector.

4 (+) Cz × 4 (+)

of the hyperspectral image dimensions, Nz, Ny and Nz. Symbols (+) and

(×) stand for addition and multiplication operators respectively.

As it is observed, Option STORE requires a fair amount of memory storage,

which is proportional to the spatial size of the image. As it will be demon-

strated in Section 5.5.4, the amount of storage can be easily higher than the

internal storage available on an FPGA. On the other hand, re-calculating

the local differences as suggested in Option CALCULATE avoids the stor-

age but increases the number of operations needed per compressed sample

proportionally to Cz.

5.5.4 Hardware complexity estimation

Finally, 5 different architectures combining the aforementioned options are

designed and compared. For all the options it is considered that the un-

compressed samples are stored in an external input memory. Table 5.9

summarizes the different architectural options and determines for each of

them the selected encoding order, if the local differences vector is stored or

re-calculated and if the top right neighbour sz,y−1,x+1 is read together with

the current sample sz,y,x.

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 175

Table 5.9: Summmary of the proposed architectural options

Option Encoding
order

Local differences vector Samples read

1 BSQ STORE Current

2 BI STORE Current and top right

3 BSQ CALCULATE IN PARALLEL Current

4 BSQ CALCULATE IN PARALLEL Current and top right

5 BSQ CALCULATE SERIALLY Current and top right

We assess the complexity of each option in terms of the user-defined pa-

rameters, in particular those which affect the most, which are the number

of bands used for prediction (P) and the weight component resolution (Ω).

With respect to the type of local sums and prediction mode, we assume for

all the following estimations that neighbour-oriented local sums and full pre-

diction are utilized, since this configuration is relatively more complex. If a

different configuration is selected for the local sum and prediction mode, the

user will just experience a slightly less complex implementation, as will be

demonstrated during the experimental results (Section 5.7).

Option 1

In this architectural option, the samples are read in BSQ order. A FIFO

is used to store the Nx + 1 previously processed samples in an image line,

so that the necessary neighbours to perform the prediction of the samples

in the following line can be easily obtained. The P elements of the local

differences vector are stored for every sample in a specific band. For each

compressed sample, all the elements of the local differences vector have to

be computed.

Option 2

We now consider that the samples are read in BI order. When BI order

is utilized, only one element of the local differences vector, Uz,y,x, has to

be updated after the compression of a sample. As in Option 1, a FIFO

176 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

is used at the input to store the previously processed samples. In order

to reduce the size of this input FIFO, it is decided to read the top right

neighbour, sz,y−1,x+1 together with the current sample to be compressed,

sz,y,x. The read samples are appropriately arranged in the input FIFOs, in

such a way that they become the necessary neighbour for the compression

of the subsequent samples. This implies that, for neighbour-oriented local

sums, three neighbours have to be saved in the FIFOs for each band.

Option 3

The samples are read in BSQ order, as in Option 1. However, in this case,

instead of storing the local differences vector, all the elements of the vector

are re-calculated in parallel for each compressed sample. As a consequence,

the input FIFOs will store not only the Nx+1 previously processed samples,

but also the co-located samples in the P previous bands. This way, the

necessary neighbours for computing the local sum and the local differences

in the current and the previous bands, which will be used to calculate Uz,y,x,

can be easily obtained.

Option 4

The samples are read in BSQ order, as in Option 3, but we now focus on

reducing the size of the input FIFOs. To accomplish this, the current sample

sz,y,x is read from the input memory together with the top right neighbour

sz,y−1,x+1 in the current band and in the P previous ones. The local differ-

ences vector, as in Option 3, is re-calculated in parallel for every sample.

Option 5

The samples are read likewise in BSQ order and the current sample sz,y,x

is read together with the top right neighbour sz,y−1,x+1 for the current and

the P previous bands. In order to reduce the amount of resources needed in

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 177

Option 4, the elements of the local differences vector are calculated serially

instead of in parallel.

5.5.4.1 Comparison and complexity estimation

A comparison of the necessary internal memory storage, hardware resources

and number of accesses to the external memory is performed for each of the

architectural options.

To compute the amount of memory needed we take into account the size of

the input FIFOs as well as the storage of any other data which is necessary

to perform the compression of a sample, such as the local differences vector

or the weight vector. Table 5.10 shows an estimation of the memory storage

needed by every option, expressed as a function of the following factors:

� The number of bands, Nz, lines, Ny and columns, Nx in the image.

� The bit-width of the input samples, D.

� The bit-width of the weight components, WCR = Ω + 3, which is a

function of the weight component resolution.

� The number of bands used for prediction, P .

� The number of elements in the local differences and weight vectors, Cz

� The bit-width of the entropy coder accumulator and counter, AccR

Afterwards, a subset of 3D remote sensing images compiled by the CCSDS is

utilized as examples of possible compression targets, since as we have seen,

the size of the image is also associated with the final hardware complexity.

Table 5.11 summarizes the multispectral and hyperspectral images used for

evaluation as well as their size and the bit width of the pixel samples. This

178 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Table 5.10: Estimation of the memory storage (bits) needed by the
proposed architectural options.

Option Estimated memory storage (bits)

1 (Nx+1)·D+Nx·Ny·P ·(D+4)+3·(D+4)+Cz·WCR+2·AccR

2 3 ·Nz ·D + Cz · (D + 4) +Nz · Cz ·WCR+ (Nz + 1) ·AccR

3 (P + 1) ·Nx ·D + Cz · (D + 4) + Cz ·WCR+ 2 ·AccR

4 5 · (P + 1) ·D + Cz · (D + 4) + Cz ·WCR+ 2 ·AccR

5 3 · (P + 1) ·D + 2 ·D + Cz · (D + 4) + Cz ·WCR+ 2 ·AccR

Table 5.11: Target images used to evaluate the complexity of the pro-
posed architecture

Image Nz Nx Ny Pixel
bit
width

SPOT5 3 1024 1024 8

PLEIADES 4 224 2456 12

LANDSAT 6 1024 1024 8

MSG 11 3712 3712 10

MODIS1 14 1354 2030 12

CASI 72 405 2852 12

AVIRIS 224 680 512 16

SFSI 240 496 140 12

HYPERION 242 256 1024 12

AIRS 1501 90 135 14

IASI 8461 66 60 12

information is extracted from the data in [74]. We assume the most complex

configuration of local sum and prediction mode, i.e. neighbour oriented local

sum and full prediction. As it was aforementioned, P > 3 does not yield a

significant improvement in the compression ratio, therefore the number of

previous bands used for prediction is set to P = 3, as an example of a typical

use, and to P = 15 as a worst-case scenario in terms of complexity.

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 179

T
a
b
l
e
5
.1
2
:

In
te

rn
a
l

m
em

o
ry

st
or

a
ge

(K
b

it
s)

n
ee

d
ed

b
y

th
e

p
ro

p
o
se

d
a
rc

h
it

ec
tu

re
s

Im
a
g
e

O
p

ti
o
n

1
O

p
ti

o
n

2
O

p
ti

o
n

3
O

p
ti

o
n

4
O

p
ti

o
n

5

P
=

3
P

=
1
5

P
=

3
P

=
1
5

P
=

3
P

=
1
5

P
=

3
P

=
1
5

P
=

3
P

=
1
5

S
P

O
T

5
3
7
7
5
8

3
7
7
5
8

1
1

3
3

3
3

1
1

1
1

P
L

E
IA

D
E

S
2
6
4
1
0

3
5
2
1
3

1
1

1
2

1
4

1
1

1
1

L
A

N
D

S
A

T
3
7
7
5
8

7
5
5
0
6

2
2

3
3

5
8

1
1

1
1

M
S

G
5
7
8
7
5
3

2
1
2
1
9
9
5

2
4

1
4
9

4
4
6

1
2

1
1

M
O

D
IS

1
1
3
1
9
5
1

6
1
5
7
0
8

3
6

6
6

2
4
5

1
2

1
2

C
A

S
I

5
5
4
4
8

2
7
7
2
2
0

1
2

2
6

2
0

7
9

1
2

1
2

A
V

IR
IS

2
0
9
0
1

1
0
4
4
6
0

4
0

8
3

4
4

1
7
5

1
2

1
2

S
F

S
I

3
3
4
0

1
6
6
7
2

4
0

8
6

2
5

9
6

1
2

1
2

H
Y

P
E

R
IO

N
1
2
5
8
7

6
2
9
1
9

4
0

8
7

1
3

5
0

1
2

1
2

A
IR

S
6
5
8

3
2
8
3

2
5
6

5
4
4

6
2
1

1
2

1
2

IA
S

I
1
9
2

9
5
2

1
3
8
8

3
0
1
3

4
1
4

1
2

1
2

180 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Table 5.13: Differences in terms of hardware resources needed by the
proposed architectures

Options 1, 2 and
5

Options 3 and 4

Operation #Adders # Multipliers # Adders # Multipliers

Computing lo-
cal sum

3 0 3× P 0

Computing lo-
cal differences

4 0 4× Cz 0

Computing
predictor

1 1 Cz Cz

The results in terms of internal memory storage are shown in Table 5.12.

We observe that Option 1 takes significantly more storage resources than the

rest, which might be higher than what is available in many FPGA models.

This fact would force the addition of an external data memory to store the

local differences values. Options 4 and 5 take significantly less resources.

Table 5.13 shows the main differences of the proposed architectures in terms

of computational complexity. It is observed that Options 3 and 4 have a

higher complexity, which is proportional to the number of bands used for

prediction P . As it was already mentioned, Cz = P if reduced prediction

mode is selected and Cz = P + 3 under full prediction mode.

Finally, we consider the number of memory accesses per compressed sample

for the different architectural options. The results are summarized in Table

5.14. As it was mentioned, for all the options, we assume that the uncom-

pressed samples are stored in an input memory. However, for the particular

case of Option 1 it is considered that the P local differences are stored in

an additional external data memory, considering the data displayed in Table

5.12.

Taking into account the aforementioned results and the initial goal of achiev-

ing low complexity, we find that the best trade-off between hardware utiliza-

tion and external memory accesses is found in Option 5, since it makes it

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 181

Table 5.14: External memory accesses per compressed sample for the
different architectures

Option Accesses per compressed sample

1 1 + P

2 2

3 1

4 2× (P + 1)

5 2× (P + 1)

possible to compress any of the images without the need of an additional

external data memory to store the local differences values, and features also

the lowest complexity in terms of the necessary logic to compute the math-

ematical operations at the prediction stage. The fact that it requires more

accesses to the input memory per sample than the alternative options can

yield an increased latency for high values of P . However, considering that it

is demonstrated that there are no benefits in terms of compression ratio if

P > 3, we find that it is possible to mask any possible reading latency if the

external input memory features burst reading and the sensed samples are

appropriately allocated in it, in such a way that the necessary samples are

obtained in a single read operation. The latency can be further avoided if

obtaining new samples from the external input memory is overlapped with

the compression operations.

5.6 HyLoC Hardware architecture description

Once Option 5 has been selected as the most convenient architectural option

(see Section 5.5.4.1), the schematic of the HyLoC compressor is created,

as shown in Figure 5.7 and each module is then described in VHDL. The

behaviour of the compressor is explained with more detail next.

182 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

WEIGHT
VECTOR
STORAGE

OUTPUT
BUFFER

LOCAL SUM

LOCAL
DIFFERENCES

WEIGHT
UPDATE

MAP

OUTPUT
BIT

PACKER

PREDICTOR

INPUT FIFOs
FOR CURRENT AND

NEIGHBOURING SAMPLES

LOCAL
DIFF

STORAGE

CREATE
CODEWORD

UPDATE
STATISTICS

CREATE
CODEWORD

Mapped
predition
residuals

Prediction
error

Predictor

Sample-adaptive entropy coder

Sensed
uncompressed

image

Compressed
image

Figure 5.7: HyLoC schematic

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 183

According to what it was established in the selected architectural option, the

samples are compressed in BSQ order, as it is specified by the following set

of nested loops:

1: for(z = 0; z < Nz; z + +)

2: for(y = 0; y < Ny; y + +)

3: for (x = 0; x < Nx; x+ +)

4: compress (sz,y,x)

First, the necessary raw samples are read from the input memory. For the

compression of each sample sz,y,x, the following data have to be obtained:

� The current sample to be compressed, sz,y,x.

� The co-located samples in P previous bands, sz−1,y,x ... sz−P,y,x.

� The top right neighbour of the current sample, sz,y−1,x+1.

� The top right neighbours of the current sample in P previous bands,

sz−1,y−1,x+1 ... sz−P,y−1,x+1.

The read samples are stored in the input FIFOs and arranged in such a way

that they can be easily accessed for the compression of the following samples,

with the scheme shown in Figure 5.8.

Once the neighbouring and current samples are available, the local sum and

local differences in the current and previous bands are calculated and utilized

to compute the prediction. The weights are then updated according to the

prediction results. Finally, the prediction errors are mapped and encoded,

as specified by the CCSDS 123 standard.

The described architecture is implemented at RTL level. The resulting IP

core is referred to as HyLoC and described in VHDL for its implementation

184 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

sz,y-1,x+1sz-P,y-1,x+1 sz-P-1,y-1,x+1 sz-1,y-1,x+1

sz,y,x+1sz-P,y,x+1 sz-P-1,y,x+1 sz-1,y,x+1

EXTERNAL
INPUT
MEMORY

sz-P,y,x+1

sz-P-1,y,x+1

sz-1,y,x+1

sz,y,x+1

sz-P,y,x-1

sz-P-1,y,x-1

sz-1,y,x-1

sz,y,x-1

sz-P,y,x+1

sz-P-1,y,x+1

sz-1,y,x+1

sz,y,x+1

sz-P,y-1,x

sz-P-1,y-1,x

sz-1,y-1,x

sz,y-1,x

sz-P,y,x+1

sz-P-1,y,x+1

sz-1,y,x+1

sz,y,x+1

sz-P,y-1,x-1

sz-P-1,y-1,x-1

sz-1,y-1,x-1

sz,y-1,x-1

H
y
L
o
C

C
o
m
p
r
e
s
s
o
r

I
P

FIFO TOP RIGHT

FIFO CURRENT

FI
FO

 L
E
FT

FI
FO

 T
O

P

FI
FO

 T
O

P
 L

E
FT

Figure 5.8: HyLoC input buffers to arrange current samples and neigh-
bours

on a space-qualified FPGA. The obtained VHDL source code is completely

independent from the implementation technology, and therefore can be uti-

lized to implement the design in any FPGA or as an ASIC. The top module

of the HyLoC compressor is shown in Figure 5.9.

As it has been explained, HyLoC accepts uncompressed data and generates

the compressed bit stream according to the CCSDS 123 standard algorithm.

Two FIFOs are used to interface with the external input memory (FIFO TOP

RIGHT and FIFO CURRENT in Figure 5.8). These FIFOs store the read

samples (the current sample to be compressed and its top right neighbour)

and make them available for the compressor. A simple handshake protocol

is utilized to indicate the compressor that the necessary data are available

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 185

HyLoC

Top Module

s

s_request

s_top_right

s_top_right_request

start

available

clk

rst_n

last

stop

compressed_data_out

compressed_data_valid

request

Figure 5.9: HyLoC top module

in the FIFOs. Finally, a flag is utilized to validate the output of the HyLoC

compressor.

5.6.1 HyLoC verification and validation

The HyLoC IP core is simulated and extensively verified using ModelSim

targeting several real calibrated and uncalibrated hyperspectral images and

a wide combination of configuration parameters. A testbench is designed,

following the schematic from Figure 5.10. The original uncompressed sam-

ples are sent to the HyLoC compressor, and afterwards, the resulting com-

pressed bit streams are compared bit by bit with those obtained for the same

hyperspectral images utilizing the Empordá as golden reference software im-

plementation of the CCSDS 123 algorithm [105].

Finally, a demonstrator of the HyLoC IP core is created in order to validate

the correct behaviour of the compressor when it is running on a real FPGA.

We do not consider creating a prototype by using a the space-qualified anti-

fuse FPGAs of the RTAX family, since they are one-time programmable and

expensive. Instead, a commercial development board is selected, namely the

186 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

HyLoC

Top Module
start

available

clk_a
rst_n

last
stop

request

co
m

p
ressed

_d
ata_o

u
t

co
m

p
ressed

_d
ata_valid

EXTERNAL
RAM WITH INPUT

SAMPLES

MEMORY CONTROL
AND ADDRESS
GENERATION

FIFO CURRENT

FIFO TOP RIGHT

clk_a
rst_n

clk_b

data
control

Figure 5.10: HyLoC testbench schematic

ML507 from Xilinx. We opted for this prototyping board because it was the

one available at the moment this demonstrator was designed and because

it gives the possibility of having a working implementation on an FPGA

in a relatively short time. The ML507 includes a Virtex 5 FPGA, with

an embedded PowerPC. This makes it possible to simplify the execution of

some of the operations, in particular the interfaces with the external input

memory, by performing them in software. The downside of this decision is a

potential loss in performance, because the input and output operations are

expected to be slower than the compression itself. However, the purpose of

the demonstrator is to validate the HyLoC compressor at work, and verify

that, once implemented on an FPGA, it exhibits the same behaviour which

had been observed in the simulations.

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 187

The development board and its several components are shown in Figures

5.11 and 5.12. The demonstrator is designed as shown in the schematic of

Figure 5.13. All the components communicate through the Processor Local

Bus (PLB). The raw hyperspectral image samples and the corresponding

compressed bit streams generated with the golden reference software Em-

pordá are stored in the CompactFlash card. The PowerPC processor takes

care of copying the images to the SDRAM, from which they are read and

sent to the HyLoC compressor. The resulting compressed stream is sent to

the SDRAM via the PLB bus and from there read by the PowerPC and

compared with the reference compressed bit stream.

22

23

1

1

22

23

XC5VFX70T
- Embedded PowerPC440
- HyLoC copmpressor

JTAG programming
interface

RS-232 serial port

Figure 5.11: Development board used in the HyLoC demonstrator (I)

Three different images, shown in Figure 5.14 were successfully compressed in

the HyLoC demonstrator, with two different configuration options, a baseline

configuration and a less complex one. The number of bands for prediction,

local sum mode and prediction mode were tuned as follows:

� Baseline configuration: P = 3, neighbour-oriented local sum, full pre-

diction.

188 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

25

24
4

25

System ACETM
CompactFlash

DDR2 SODIMM
256 MB

Figure 5.12: Development board used in the HyLoC demonstrator (II)

HyLoC

PLB bus (50 MHz)

SDRAM
controller

CF card
controller

PowerPC
(400 MHz)

Read uncompressed data from CF and store it
in SDRAM.
Send data to HyLoC.
Receive compressed data from HyLoC.
Compare with reference bit stream.

V
IR

T
E
X

5
 F

P
G

A

Store uncompressed
file and reference
bit streams.

Store uncompressed
and compressed
data.

Compress data.

Figure 5.13: Schematic of the HyLoC demonstrator

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 189

� Less complex configuration: P = 1, column-oriented local sum, re-

duced prediction.

MODIS
7 x 303 x491

(~1 Mbyte)

Aviris Yellowstone Scn0
21 x 512 x 512
(~11 Mbytes)

AVIRIS Indian Pines
220 x 145 x 145

 (~9 Mbytes)

Figure 5.14: Hyperspectral images used in the HyLoC demonstrator.
The dimensions are given in Nz ×Ny ×Nx

5.7 Experimental results

The designed hyperspectral compressor IP is finally synthesized on a space-

qualified RTAX1000S FPGA from Microsemi.

HyLoC is configured to compress a hyperspectral image from the AVIRIS

sensor, specifically the Yellowstone Uncalibrated Scene 0 whose samples are

represented with 16 bits unsigned integers. It comprises 224 bands and con-

tains 512 lines and 680 pixels per line. In order to explore how the different

user-defined parameters affect the hardware complexity, we synthesize 4 dif-

ferent configurations for the local sum and prediction mode, particularly all

the possible combinations between column oriented and neighbour oriented

local sums and full and reduced prediction. We set the number of previ-

ous bands used for prediction to P = 3. The synthesis results in terms of

hardware occupancy and maximum frequency are shown in Table 5.15.

190 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Table 5.15: HyLoC synthesis results on an RTAX1000S

Number of bands used for prediction P = 3

Reduced prediction Full prediction

Neighbour Column Neighbour Column

Combinational 4354 4166 3971 3713

cells (36%) (34%) (34%) (34%)

Sequential 1490 1485 1344 1233

cells (36%) (34%) (34%) (34%)

I/O cells 75 75 75 75

Max. Frequency 43.4 MHz 43.9 MHz 43.0 MHz 43.4 MHz

Table 5.16: HyLoC synthesis results on an RTAX1000S for the most
complex conguration

Number of bands used for prediction P = 15

Neighbour oriented and full prediction

Combinational 5162

cells (43%)

Sequential 2688

cells (44%)

I/O cells 75

Max. Frequency 43.3 MHz

We explore next a worst-case scenario by setting the configuration param-

eters to those which would result in the highest hardware complexity, i.e.

neighbour oriented local sum, full prediction and P = 15. Table 5.16 il-

lustrates the resulting hardware occupancy and maximum frequency. We

observe the hardware occupancy increases significantly, from 34% to 44%.

The maximum throughput depends likewise on the selected configuration

parameters. In particular, since the local differences are calculated serially,

the number of cycles necessary to compress a sample will increase with P .

The rest of the parameters only affect the maximum frequency of the design,

as Tables 5.15 and 5.17 show. For the most complex configuration and P =

15, the throughput is 28 Mbits/sec, which is around half of the throughput

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 191

Table 5.17: Maximum throughput for different configurations of HyLoC

Number of bands used for prediction P = 3

Reduced prediction Full prediction

Neighbour Column Neighbour Column

Max. Throughput (Mbits/sec) 69 70 57 58

achieved with P = 3. These results reinforce even more the rationale for

keeping P ≤ 3, because the opposite increases the hardware complexity and

lowers the throughput without a significant gain in compression ratio.

We note finally, that the RTAX1000S implementation of HyLoC exhibits

very low power consumption, estimated at 93 mW.

5.8 Comparison of hardware technologies for the

implementation of hyperspectral image com-

pression algorithms

As part of this research work, described in Chapters 3, 4 and the present

one, several technological options have been studied for the implementation

of a lossy and a lossless prediction-based algorithm for hyperspectral image

compression, namely the LCE and the CCSDS 123 standard. We provide a

comparison of the results obtained with the technologies explored, in partic-

ular GPU and FPGA, with references to relevant work of the state-of-the-art

found in the available literature (see Chapter 2).

In all the results presented in what follows, we consider that the target for

compression is the AVIRIS Scn0 raw image, which comprises 512 lines, 680

columns and 224 bands. For the HyLoC compressor, which implements the

CCSDS 123 standard algorithm, we set the configuration for all the presented

results to the baseline configuration settings: full prediction and neighbour

192 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

oriented local sums; number of bands for prediction, P , is set to 3; the rest

of the parameters are set to the default values established in Section 5.4.

The implementations presented in this Section are compared in terms of the

available metrics, depending on the specific technology considered includ-

ing: hardware occupancy, power consumption and throughput. The latter

is calculated depending on the technology as:

Throughput FPGA

(MSamples/sec)

= 10−6 × Nz ×Ny ×Nx
total cycles× (clock frequency)−1

(5.5)

Throughput GPU and CPU

(MSamples/sec)

= 10−6 × Nz ×Ny ×Nx
total execution time(sec.)

(5.6)

The throughput is also given in Mega-bits per second (Mbps), and is obtained

by just multiplying the number of Mega-samples per second by the number

of bits in an image sample. In all the tables that follow NDA stands for “No

Data Available”.

5.8.1 Implementations on GPUs

An additional assessment of the results obtained with the algorithms which

are subject of study for this Thesis, namely the LCE and the CCSDS 123

algorithm, is presented next. We consider the acceleration which can be

obtained with the hardware technologies considered for this work: GPUs and

FPGA. The comparison is performed in terms of throughput, considering

the best results that have been reported in the literature or obtained as part

of this research work. For the particular case of the GPU implementation of

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 193

Table 5.18: Hardware technologies with the best reported throughput
for the LCE and CCSDS 123 algorithms

Technology LCE CCSDS 123

CPU Intel Xeon W5580 3.19
GHz

Intel Core i7 2.4 GHz

GPU Nvidia Tesla C2075 NVidia GeForce 560M
GTX

FPGA Virtex 5VFX130 Virtex 5VFX130

the CCSDS 123 algorithm, we consider the throughput results obtained in

[81]. For the sake of comparison, we also include the throughput obtained

when the algorithms are executed on single-threaded CPUs.

The technologies where the best results have been obtained in terms of

throughput for each algorithm are summarized in Table 5.18.

Finally, the comparison of the best achieved throughput figures are shown

in Figure 5.15. This, together with the results presented in Chapters 3 and

4, shows that GPUs exhibit a superior performance in terms of throughput

at the expense of a significantly higher power consumption.

5.8.2 Implementations on FPGA

We implement the HyLoC IP core on a Virtex 5 (5VFX130) in order to

make a comparison with the FPGA implementation of the lossy compres-

sion algorithm for hyperspectral images LCE presented in Chapter 4. The

aforementioned algorithm is also prediction-based, but introduces losses by

quantization and rate-distortion optimization. As part of this research work,

it was implemented on an FPGA using high-level synthesis (HLS) tools.

The comparative results in terms of hardware occupancy can be seen in

Table 5.19. We explore as well the throughput and the maximum frequency

194 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

Figure 5.15: Throughput of the different technologies. Best achievable
cases for the LCE and the CCSDS 123 algorithm on CPU, GPU and FPGA

Table 5.19: Occupancy lossy LCE and lossless HyLoC (CCSDS 123) on
a Virtex 5

Virtex 5VFX130 LCE HyLoC

Resources Available Used % Used %

BUFGs 32 1 3 1 3

DSP48Es 320 25 8 1 1

Number of RAMB18X2s 298 4 1 0 0

Number of slices 20480 1935 10 842 4

Number of Slice Registers 81920 5995 7 1535 1

Number of Slice LUTS 81920 7738 10 2342 2

and power consumption for the FPGA implementations of the LCE and the

HyLoC compressor on the aforementioned Virtex 5VFX130. The results can

be observed in Table 5.20.

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 195

Table 5.20: Throughput of the lossy LCE and lossless HyLoC (CCSDS
123) on a Virtex 5

Virtex 5VFX130

LCE HyLoC

Max.Frequency (MHz) 86 134

Throughput MSamples /sec 27.7 11.30

Throughput Mbps 443 180

Total Power (mW) 2679 2354

We observe in Table 5.19 that the hardware occupancy of the LCE algorithm

is higher than that of HyLoC. This is due to the mathematical operations

involved in the quantization and rate-optimization stages of the LCE algo-

rithm. The prediction in the LCE algorithm is simpler than that in HyLoC,

in the sense that a smaller amount of previous samples are necessary. This

makes it possible for the LCE to achieve a higher throughput due to the pres-

ence of less data dependencies. Besides, the LCE algorithm operates on in-

dependent blocks, what means that the throughput can be further increased

by synthesizing more than one core. This is perfectly feasible, considering

the presented hardware occupancy results. The HyLoC core, on the other

hand, is meant to compress the entire image without dividing it into blocks.

Nevertheless, the CCSDS 123 standard permits to partition the image also

in independent blocks for compression. The effects of partitioning the image

in the compression efficiency are not discussed in the standard, nor as part

of this research work. The power consumption of HyLoC is around 15 % less

than the LCE algorithm.

196 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

5.8.2.1 Comparison with state-of-the-art FPGA implementations

of hyperspectral compression algorithms

The FL algorithm, presented in [55], is the basis of the CCSDS 123 stan-

dard. Both algorithms perform the same operations, however they have

some differences. The CCSDS 123 allows more parameters and the use of

the block-predictor entropy coder, which is not considered by the FL algo-

rithm. An FPGA implementation of it is described in [55]. In particular, the

implementation target is a commercial Virtex IV. The FL algorithm utilizes

3 previous bands for prediction, which is the same number of bands set in the

selected HyLoC configuration. However, the described FPGA implementa-

tion of the FL algorithm considers that the samples are read and compressed

in BI order, while HyLoC compresses the image in BSQ order. As it was

observed in the architectural discussion presented in Section 5.5.4, the use of

BI has the potential to require more hardware resources in terms of storage

and at the same time yield a higher throughput.

The comparison in terms of resource usage, frequency and throughput is

shown in Table 5.21. In order to make a fair comparison, the RTL de-

scriptions of HyLoC is synthesized for the same FPGA utilized for the FL

implementation in [55].

The FL algorithm achieves more throughput than HyLoC, partly due to the

use of BI compression order, for which less data dependencies are present.

Regarding the resource usage we observe that, HyLoC requires considerably

less than the implementation of the FL. Power consumption is likewise

slightly lower for HyLoC.

We provide next a comparison of with the near-lossless prediction-based

algorithm presented in [56]. This algorithm is similar to the LCE algorithm,

and performs basically the same operations, except for the rate-optimization

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 197

Table 5.21: Virtex IV LX160 device utilization of the FL algorithm and
HyLoC

Virtex IV LX160

Resource FL HyLoC

Slice 67584 (5%) 1788 (2%)

FIFO/RAMB16 9 (3%) 0 (0 %)

DSP48 6 (6%) 0 (0 %)

Max. Frequency (MHz) 33 133

Throughput (Msamples/sec) 33 11.2

Throughput (Mbps) NDA 179

Power (mW) 1700 1488

Table 5.22: Virtex IV LX200 comparison lossless and near-lossless, LCE,
HyLoC

Virtex IV LX200

Resource Lossless
to
near-
lossless

LCE HyLoC

Used LUT 10306 (5%) 9283 (5%) 2907 (1%)

RAMB16S 21 of 336 (6%) 4 of 336 (1%) 0 (0%

DSP48 9 of 96 (9%) 25 (26%) 1 (1%)

Max. Frequency (MHz) 81 75 116

Throughput (Msamples/sec) 70 23.8 9.7

Throughput (Mbps) NDA 380 115

Power (mW) NDA NDA 1806

phase, which is included in the LCE algorithm, but is not part of the lossless

to near-lossless approach.

The results can be observed in in Table 5.22, where we also include the

those obtained for the HyLoC IP core which implements the CCSDS 123

algorithm. All algorithms are implemented on the same Virtex IV model, in

order to make a fair evaluation.

198 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

The HyLoC implementation takes considerably less hardware resources, how-

ever it also yields a considerably smaller throughput. The lossless to near-

lossless approach and the LCE display similar results, with a slightly higher

occupancy for the LCE algorithm due to the increased amount of mathe-

matical operations involved.

5.8.3 Implementations on space-qualified FPGAs

We compare now the implementation of the LCE algorithm and HyLoC

(CCSDS 123 standard) on space-qualified FPGAs. Although the results

presented for HyLoC in 5.7 are those obtained for an RTAX1000S from

Microsemi, we present now results on an RTAX2000S for the sake of com-

parison and due to its increased amount of hardware resources, which are

needed since the LCE algorithm does not fit in the RTAX1000S.

The comparative results in terms of occupancy can be seen in Table 5.23.

We include also the results of the FPGA implementation of the CCSDS 122

standard for satellite image compression presented in [88].

The CCSDS 122 algorithm was also conceived for satellite data compression

and, unlike the LCE algorithm and the CCSDS 123 standard, is transform-

based and targets only bi-dimensional images. The work presented in [88]

shows an implementation of this algorithm on an RTAX2000S space-qualified

FPGA for two different configurations of the algorithm, which meet the

requirements of the EnMap and PROBA-V missions.

In the presented results we can observe that the LCE has a significantly

higher occupancy than the others, which suggests that a more careful de-

sign of the RTL description of the quantization and rate-optimization stages

might be still necessary. HyLoC requires less hardware resources than the

Chapter 5. CCSDS lossless standard on a space-qualified FPGA 199

Table 5.23: Implementation on an RTAX2000S FPGA: CCSDS 122,
LCE and HyLoC (CCSDS 123)

Resource CCSDS 122 LCE HyLoC

Proba-V EnMap

Combinational
C-Cells

8455 (39%) 9772 (45%) 18101(84%) 4282 (13%)

Sequential R-
Cells

7125 (66%) 7620 (71%) 10752 (53 %) 1438 (18%)

Total Cells 15580 (48%) 17392 (54%) 23834 (73%) 5720 (18%)

Block RAMs 54 of 64 58 of 64 7 (25 %) 0 (0%)

Max. Frequency
(MHz)

50 90 18 41

Throughput
(Msamples/sec)

NDA NDA 5.7 3.5

Throughput
(Mbps)

90 130 91 56

Power (mW) NDA NDA 1171 1124

CCSDS 122 algorithm, which was expected taking into account that transform-

based algorithms are in general more complex than the ones based on pre-

diction. The CCSDS 122 algorithm presents moreover a higher throughput

than HyLoC. This suggests that it is interesting to explore the possibility of

implementing two cores of HyLoC which would operate at the same time,

in such a way that the throughput is potentially doubled. Despite the hard-

ware occupancy being also doubled, it would still be lower than that of the

implementations of the CCSDS 122 algorithm. The most important chal-

lenges that appear if more than one HyLoC core are expected to be used

at the same time are, on one hand, the possible loss in the compression ef-

ficiency caused by compressing parts of the same image independently; and

on the other hand, the difficulty of creating a single bit-stream representa-

tive of the complete compressed image, what would require the inclusion of

side-information for the decompressor, as well the definition of additional bit

packing operations.

200 Chapter 5. CCSDS lossess standard on a space-qualified FPGA

From the presented comparison, we can drive the conclusion that, as ex-

pected, both GPUs and FPGAs yield higher throughput than the CPU

counterparts. This confirms that compression algorithms can be more ef-

ficiently executed in technologies that allow more data parallelization. The

GPU provides significantly higher performance results, nevertheless, FPGAs

offer the possibility to scale and replicate the cores in order to achieve higher

throughput, what makes them potentially as efficient as GPUs at a much

lower cost in terms of power consumption. Therefore efforts should be put in

making GPU radiation-hardened and reduce their power consumption with-

out significantly reducing their performance. With respect to the FPGAs we

note the important advantages in performance and flexibility of the SRAM-

based FPGA over the anti-fuse ones. Technological developments in the

near-future should promote the use of SRAM-based FPGAs in space, by

making them more reliable, which would significantly reduce the cost of mis-

sions, providing flexibility, high-performance and low power consumption.

Chapter 6

Conclusions

This Chapter summarizes the main contributions of the Thesis, with special

emphasis in their relevance to the topic it covers: hardware technologies for

on-board multispectral and hyperspectral image compression. Furthermore

it proposes further research topics, which are expected to complement and

enhance the future developments of this work.

201

202 Chapter 6. Conclusions

On-board multispectral and hyperspectral compression is necessary in order

to meet the bandwidth and storage limitations in the current space mis-

sions. At the same time, it is an important challenge, due to the difficulty of

handling the high amount of data captured by the sensors in the hardware

technologies available. The computational power of the hardware operating

on-board satellites is limited, because it has to meet several requirements to

be able to operate in space, including low power consumption and tolerance

to sun radiation, among others. This has motivated industries and research

centres in the space sector to dedicate efforts in order to design new compres-

sion algorithms that are able to reduce the data volume substantially, and

at the same time are of low-complexity, so that they can efficiently operate

on-board satellites.

As part of the Thesis work, an extensive study of the available literature

has been performed, characterizing the current trends in the development

of new algorithms for hyperspectral image compression, and the most usual

hardware technologies utilized for their implementation. Besides, we have

identified the main requirements of both, algorithms and their physical im-

plementations on-board satellites. It was observed that there is a fair amount

of lossless and lossy compression algorithms for hyperspectral image com-

pression specifically designed to operate in space, with different degrees of

complexity and compression performance figures. However, it is hardly ever

demonstrated how well the algorithms perform in the available on-board

hardware, nor it is assessed which technology suits the algorithm better or

which strategies are necessary in order to implement the algorithm in such

a way that it can achieve a high throughput. This Thesis aims at filling the

aforementioned gaps, contributing to the development of hardware technolo-

gies for on-board hyperspectral image compression. In particular, two hard-

ware technologies are considered, namely graphics processing units (GPUs)

and field-programmable gate arrays (FPGAs), and the performance of sev-

eral compression algorithms on them is evaluated.

Chapter 6. Conclusions 203

Several implementation solutions have been explored for on-board lossy com-

pression compression of hyperspectral images, in particular the Lossy Com-

pression for Exomars (LCE) algorithm [33] has been implemented on a GPU

and an FPGA. The main difficulties found when parallelizing the LCE al-

gorithm have been addressed, and several solutions have been proposed and

implemented in order to overcome them, including strategies to achieve par-

allelization of typically sequential operations, like the ones involved in the

entropy coding stage of the algorithm. An evaluation of the suitability of

GPUs for hyperspectral image compression has been performed, by creat-

ing and executing a GPU implementation the LCE algorithm, using Nvidia’s

parallel architecture (CUDA). The designed implementation yields very high

speedups, of up to 15.41 when compared with a single-threaded central pro-

cessing unit (CPU) execution. The performance in terms of throughput is

likewise high, being able to compress between 100 and 140 MegaSamples per

second for the hyperspectral images under evaluation.

We perform also the implementation of the decompressor on a GPU. The

performance gains obtained with the GPU decompressor are lower than that

of the compressor, because of the format of the compressed file, which makes

it impossible to identify the independent elements that can be processed in

parallel. In this exploration, this issue is solved by introducing additional

information in the compressed file, specifically in the form of a header.

Nowadays it is not possible to employ GPUs for on-board satellite image

compression, due to their lack of tolerance to sun radiation and intolerable

power consumption for space missions. However, the research work accom-

plished in this Thesis demonstrates that high performance and very flexible

implementations can be obtained when GPUs are used for satellite data com-

pression, and contribute to justify and motivate further research in this field,

making efforts towards the development of space qualified GPUs.

204 Chapter 6. Conclusions

After implementing the LCE compressor and decompressor on a GPU, the

potential benefits and challenges of FPGAs for on-board hyperspectral image

compression have been assessed by implementing the LCE compressor on an

FPGA. This work enables to compare the performance of both FPGAs and

GPUs in the execution of the same algorithm. The FPGA implementation of

the LCE has been obtained with the high-level synthesis tool CatapultC. As

a result, the low-complexity of the LCE algorithm has been demonstrated,

providing an FPGA implementation with low area requirements. This, to-

gether with the fact that the algorithm compresses independent blocks of

data, offers the possibility of dramatically increasing the throughput by con-

figuring more than one instance of the developed core on the same FPGA.

A comparison between three different physical implementations options, namely

CPU, GPU and FPGA, of the LCE algorithm has been carried out, show-

ing that the GPU yields the highest throughput. However, it is also the

technology with the highest power consumption, which is 225 W thermal

design power (TDP) for the Tesla C2075 GPU used in our experiments. The

FPGA implementation can potentially achieve a similar throughput to that

of the GPU by instantiating more than one compression core, at a much

lower cost in terms of power. In fact, the power consumption of the FPGA

implementation of the LCE algorithm is lower than 3 W, which is a much

more reasonable figure for space applications.

The work accomplished for the implementation of the LCE algorithm on a

GPU and an FPGA makes it furthermore possible to compare the design

methodologies followed to obtain the presented implementations. We have

observed that it is possible to program a GPU in a relatively short time,

with the flexibility of any software implementation and with much more

ease than that of an FPGA development. With respect to the FPGA im-

plementation, we have utilized high-level synthesis (HLS) with CatapultC in

order to shorten the design times. We can conclude that CatapultC is useful

Chapter 6. Conclusions 205

for obtaining a synthesizable VHDL description of a complex system as it

is the case of the LCE compression a algorithm. However, in order to port

the C code to register-transfer level (RTL) code in a highly optimized way,

many substantial changes had to be performed in the original C source code,

with the consequent impact in the development times.

We further demonstrate the benefits of FPGA for on-board hyperspectral

image compression by implementing the Consultative Committee for Space

Data Systems (CCSDS) standard for lossless multispectral and hyperspec-

tral image compression (CCSDS 123) [25] on a space-qualified FPGA. The

presented implementation serves also as a case of use demonstrator, which

could be employed nowadays in a real space mission. An architectural study

of the effect of the different configuration parameters of the CCSDS 123 stan-

dard has been performed, in such a way that we were able to identify which

parameters have a greater effect in the compression ratio and the hardware

complexity. We have proposed 5 different architectural option, and selected

the one which exhibits the best trade-off between flexibility to choose be-

tween the desired parameters, and low-complexity. The RTL description of

the selected option is created by writing VHDL code from scratch, constitut-

ing an IP core named HyLoC. HyLoC was implemented on a space qualified

FPGA, particularly on an RTAX1000S, and it was demonstrated that the

goal of of low-complexity has been achieved, with a hardware occupancy of

34% for a typical compressor configuration. The presented implementation

exhibits also the advantage of having very low power consumption, estimated

at 93 mW. The architectural study presented is an additional contribution of

this work, which is useful for future developments and improvements HyLoC,

or to adapt it to the specific needs of future space missions. To the date,

there are no other implementations of the CCSDS 123 in the state-of-the-art

which achieve lower occupancy or power consumption than the presented

implementation of HyLoC.

206 Chapter 6. Conclusions

This Thesis provides finally a comparison of the results obtained with the

explored hardware technologies, i.e. GPUs and FPGAs, with references and

comparisons to the most relevant work of the state-of-the-art available in the

literature.

We can conclude that both the CCSDS 123 and LCE algorithms good can-

didates for on-board compression on FPGAs, showing lower or similar hard-

ware occupancy and comparable throughput to other algorithms of the state-

of-the-art. Despite the LCE algorithm exhibiting a higher FPGA hardware

occupancy, due to the mathematical operations involved in the inclusion of

losses in the algorithm, it is perfectly feasible to implement it on a space-

qualified FPGAs, in particular we implemented it on the RTAX2000S from

Microsemi.

Regarding the throughput of the different hardware technologies which have

been used to implement the LCE and the CCSDS 123 algorithms, we ob-

served that, as expected, both GPUs and FPGAs yield higher throughput

than the CPU counterparts, demonstrating that the technologies that allow

data parallelization are better suited for the implementation of hyperspec-

tral image compression algorithms. While GPUs exhibit significantly better

throughput results, their high power consumption and the fact that they are

not radiation-tolerant, makes it infeasible to use them in space missions at

the moment. On the other hand, FPGAs offer the possibility of scaling and

replicate the compression cores in order to achieve higher throughput, what

makes them potentially as efficient as GPUs at a much lower cost in terms

of power consumption.

With the accomplished research work, the main objectives of this Thesis have

been achieved. New solutions for accelerating hyperspectral compression al-

gorithms on GPUs and FPGAs have been proposed, and the improvements

obtained by the mentioned technologies have been evaluated and compared

Chapter 6. Conclusions 207

in terms of computational performance, the cost of the solution and the flex-

ibility of the implementation. Moreover, the algorithms have been deeply

studied and characterized, and the validity of the proposed implementation

solutions have been demonstrated. During the implementation of the algo-

rithms we have been able to compare different design methodologies, includ-

ing high-level synthesis solutions. Finally, we have identified the common

difficulties which appear when trying to parallelize hyperspectral compres-

sion algorithms, and provided solutions to solve data dependencies which can

be generalized to other algorithms of the same kind. All these contributions

are expected to be useful to reduce the cost and improve the performance of

future satellite missions in which multispectral and hyperspectral on-board

data compression will play a critical role.

6.1 Further research work

Several topics are proposed which might be part of future research work in

order to achieve more efficient implementations of hyperspectral compression

algorithms for on-board use.

Regarding the parallelization of the LCE algorithm on a GPU, it is still

possible to improve the speedup achieved by both the compressor and the

decompressor, by applying some optimizations. The efforts should be put in

reducing the latency of the GPU - CPU data transactions, by parallelizing

these transactions with the kernel executions. On the decompressor side,

specifically regarding the attachment of a header, other strategies should be

studied in the future in order to optimize the trade-off between the amount

of parallelization obtained and the impact in the compression ratio of adding

the necessary side information.

On the FPGA implementation side, further improvements are being carried

out at this moment, working towards latency reduction, by fully exploiting

208 Chapter 6. Conclusions

the parallelization features of the LCE algorithm with an optimized schedul-

ing of the design, implementing the data control in a highly parallel way.

Further optimizations of the quantization and rate-distortion optimization

stages can reduce the hardware occupancy of the design, which is relevant if

it is desired to implement it on a space-qualified anti-fuse FPGA.

From the point of view of the LCE algorithm itself, we have observed that

changing the entropy coder can help to speedup the execution on both the

GPU and the FPGA. As it was explained, the Golomb entropy coder used

by the LCE algorithm adapts to the statistics of the image. However, in

the presence of outliers, the entropy coder adapts badly, and might produce

codewords which are represented with more bits than the original data with-

out encoding. Hence, it would be convenient to impose limit on the size of

the generated Golomb codewords, what would potentially reduce the size of

the compressed file and also reduce the number of iterations needed to gener-

ate the codewords, with the consequent positive impact in the performance

of the algorithm on the GPU as well as on the FPGA.

Although the implementation of CCSDS 123 algorithm on a space-qualified

FPGA requires few hardware resources and power, it would be worth to

explore strategies which can yield a higher throughput without a significant

impact in the hardware occupancy. A first approach can be to adapt the

architecture to operate in band-interleaved order, what would eliminate some

data dependencies and hence allow more data parallelization and reduce

the amount of clock cycles necessary to compress an image sample. The

possibility of dividing the hyperspectral image in blocks and compressing

each block independently with the CCSDS 123 algorithm should be also

explored, in order to evaluate how the partitioning affects the compression

ratio; and allow the possibility of increasing the throughput by implementing

more than one core of the CCSDS 123 on the same FPGA.

Chapter 6. Conclusions 209

We have demonstrated that the CCSDS 123 algorithm provides efficient

compression at low complexity. However, it is a lossless compression, and

in the future it is expected for lossy compression to become more popular,

since space missions are expected to require even more reduction of the data

volume on-board. For this purpose, it would be useful to count also on a

standard for lossy on-board hyperspectral image compression. Two main

lines of action are possible: to introduce losses in the CCSDS 123 or to

adapt the CCSDS 122 2D image compression standard to operate on three-

dimensional data.

Regarding the GPU as a technological option for on-board hyperspectral im-

age compression, it is evident that technological developments are mandatory

in order to make them radiation-tolerant and qualify them for space. The

biggest challenge in this sense is to reduce their power consumption, while

keeping their high performance capabilities. Of all the technologies stud-

ied, GPUs yield the highest throughput, however their power consumption

is prohibitive for space-missions.

With respect to the FPGAs, we have shown the important advantages in

performance and flexibility of the SRAM-based FPGA over the anti-fuse

ones. Technological developments in the near-future should promote the

use of SRAM-based FPGAs in space, by making them more reliable, which

would significantly reduce the cost of missions, providing flexibility, high-

performance and low power consumption.

Appendix A

Sinopsis en español

Se presenta en este Caṕıtulo una visión general del trabajo de investigación

realizado en esta Tesis Doctoral, poniendo especial interés en las contribu-

ciones en el campo de las implementaciones sobre FPGAs y GPUs de algo-

ritmos para compresión de imágenes hiperespectrales a bordo de satélites.

211

212 Appendix A. Sinopsis en español

A.1 Introducción

Las imágenes multiespectrales e hiperespectrales se forman captando la ener-

ǵıa reflejada o emitida por objetos terrestres en un gran número de longi-

tudes de onda, dando como resultado un cubo de datos que contiene cientos

de bandas. Son capturadas a bordo de un satélite o avión y transmitidas

posteriormente a una estación terrena para ser procesadas. Actualmente, los

sensores hiperespectrales cuentan con una gran resolución, de manera que

el volumen de los datos capturados es muy alto. Sin embargo, la capacidad

de almacenamiento y los anchos de banda de transmisión son limitados, lo

que hace que en numerosas ocasiones sea indispensable la compresión de la

imagen hiperespectral antes de ser enviada a la estación terrena.

Tradicionalmente se han aplicado técnicas de compresión sin pérdidas para

reducir la cantidad de información de la imagen hiperespectral. Estas técnicas

eliminan ciertas redundancias innecesarias de la imagen, pero permiten re-

construir los datos originales de manera exacta a partir de la imagen com-

primida. Por otro lado, también existen las técnicas de compresión con

pérdidas, las cuales permiten obtener mayor compresión de la imagen a

costa de eliminar definitivamente determinada información. En consecuen-

cia, la imagen recuperada no es idéntica a la original, pero conserva calidad

suficiente para poder ser procesada posteriormente. Cuando las imágenes

hiperespectrales son captadas por un satélite, la compresión debe realizarse

con los equipos y recursos disponibles a bordo, que son limitados en términos

de capacidad de computación y potencia, en comparación con los equipos que

acostumbramos a utilizar en el sector terreno. Con el fin de cumplir con es-

tos requisitos técnicos, existe un creciente interés en el desarrollo de nuevas

técnicas espećıficas para la compresión de imágenes hiperespectrales. Estas

técnicas se han de caracterizar por ser sencillas y consumir pocos recursos,

ya que los algoritmos y estándares de propósito general actuales tienden a

ser demasiado complejos para ser utilizados a bordo de un satélite.

Appendix A. Sinopsis en español 213

Los algoritmos de compresión constan generalmente de tres etapas princi-

pales: eliminación de redundancias, o decorrelación; cuantificación y codi-

ficación entrópica. En el caso de imágenes hiperespectrales es posible en-

contrar redundancias tanto en el domino espacial como en el dominio es-

pectral. La cuantificación consiste en asignar los valores de entrada a una

serie de valores discretos, produciendo consecuentemente pérdidas de infor-

mación. La codificación entrópica consiste en explotar la probabilidad de los

śımbolos, asignando palabras de código más cortas a los śımbolos más pro-

bables y palabras más largas a los menos probables. En cuanto a la etapa

de decorrelación, actualmente, los algoritmos de compresión de imágenes

hiperespectrales están basados principalmente en técnicas de transformada

o en técnicas predictivas. Las técnicas de transformada consisten en aplicar

una modificación a los datos para eliminar la correlación entre ellos y poder

aśı representarlos con una cantidad menor de śımbolos. Por otro lado, las

técnicas predictivas se fundamentan en predecir el valor de la muestra com-

primida actual a través de los valores de muestras vecinas que han sido

procesadas previamente. El error de predicción, es decir, la diferencia entre

la muestra predicha y la actual, se codifica finalmente con un codificador

entrópico.

Tal es la importancia de la compresión a bordo de satélites, que el Comité

Consultivo para los Sistemas de Datos Espaciales (en inglés, Consultative

Committee for Space Data Systems (CCSDS)), que está formado por los

representantes más relevantes de las agencias y la industria espacial, ha de-

sarrollado tres estándares para impulsar y facilitar el uso de algoritmos para

reducir el volumen de datos en las misiones espaciales: un compresor univer-

sal sin pérdidas, conocido como CCSDS-121 [24]; un estándar de compresión

con pérdidas o sin pérdidas para imágenes bidimensionales, el CCSDS-122

[34]; y un estándar de compresión sin pérdidas para imágenes multiespec-

trales o hiperespectrales, el CCSDS-123 [25]. Todos estos estándares cumplen

con los requisitos impuestos a los algoritmos que han de a ser ejecutados en el

214 Appendix A. Sinopsis en español

hardware disponible a bordo de los satélites: alta eficiencia en la compresión

y baja complejidad.

Existen asimismo otros algoritmos, espećıficamente diseñados para la com-

presión de imágenes hiperespectrales a bordo de satélites, en la literatura

cient́ıfica disponible actualmente. Entre ellos, cabe destacar por su relevan-

cia en el trabajo presentado en esta Tesis Doctoral, el algoritmo para com-

presión con pérdidas conocido como Lossy Compression for Exomars (LCE).

Este algoritmo está basado en técnicas de predición, e introduce pérdidas

de información combinando la técnica de cuantificación y una técnica que

ajusta el ratio de compresión. Este ajuste permite que la distorsión en la

imagen reconstruida no exceda un determinado umbral seleccionado por el

usuario.

No solamente es importante desarrollar nuevos algoritmos para la compresión

de imágenes hiperespectrales a bordo de satélites. También es necesario con-

siderar el soporte f́ısico (hardware) en que se van a ejecutar, ya que debe

cumplir con ciertos requisitos, entre los que destacan la tolerancia a la ra-

diación solar y un bajo consumo de potencia. Generalmente, los algoritmos

se implementan en procesadores de a bordo (on-board processor), proce-

sadores digitales de señal (digital signal processor, DSP), circuitos integra-

dos de aplicación espećıfica (application-specific integrated circuit, ASIC),

o field programable gate array (FPGA). Una FPGA es un dispositivo que

contiene bloques de lógica programable cuya interconexión y funcionalidad

puede ser configurada. Recientemente, las FPGAs han alcanzado gran po-

pularidad para la implementación de aplicaciones en el sector aeroespacial,

principalmente debido a su alto rendimiento, bajo consumo y la posibilidad

de ser reprogramadas. Además, existen versiones en el mercado tolerantes a

la radiación y, por lo tanto, aptas para operar en un satélite.

Aparte de los soportes f́ısicos previamente enumerados, en el ámbito de

la computación de altas prestaciones se ha popularizado recientemente la

Appendix A. Sinopsis en español 215

programación de propósito general en tarjetas gráficas (graphics processing

unit (GPU)), conocidas como GPU por sus siglas en inglés. Inicialmente,

las GPUs se hicieron populares en la industria de los videojuegos por su alta

capacidad para el procesamiento masivo de datos en paralelo. En los últimos

años se ha ido extendiendo su uso hacia la computación de propósito general,

gracias en parte a la aparición de entornos y directivas para la programación

de estos dispositivos, como es el caso de Computer Unified Device Archi-

tecture (CUDA), desarrollado para la programación de tarjetas gráficas de

NVidia. Una GPU consiste en un conjunto de multiprocesadores que traba-

jan en paralelo en modo SIMD (del inglés Single Instruction, Multiple Data,

en español: “una instrucción, múltiples datos”). A diferencia de los proce-

sadores de próposito general o CPUs, las GPUs dedican la mayor parte de

sus componentes al cómputo en vez de al control y la memoria, por lo que

consiguen acelerar sustancialmente los algoritmos caracterizados por su alto

paralelismo a nivel de datos. Tal es el caso de los algoritmos de compresión

de imágenes hiperespectrales, que bien podŕıan utilizar esta tecnoloǵıa para

reducir sus tiempos de cómputo. En este sentido, uno de los objetivos de

este trabajo de Tesis será estudiar cómo de convenientes son las GPUs para

acelerar los algoritmos de compresión de imágenes hiperespectrales. A pesar

de que actualmente las GPUs no están cualificadas para trabajar en el es-

pacio, debido a su elevado consumo de potencia y por no ser tolerantes a la

radiación solar, tienen un elevado potencial. Por lo tanto, no se descarta que

en un futuro se lleven a cabo los desarrollos tecnológicos necesarios para ha-

bilitarlas para ser utilizadas para la compresión de datos a bordo de satélites

en misiones espaciales.

A.2 Objetivos y metodolǵıa de trabajo

Se espera que los sensores hiperespectrales en el futuro capturen cada vez

más volumen de datos, mientras que los anchos de banda de transmisión y la

216 Appendix A. Sinopsis en español

cantidad de almacenamiento disponible se mantendrán relativamente esta-

bles. Como resultado, la compresión de datos a bordo se hará indispensable.

En este sentido, una compresión eficiente dependerá, tanto del algoritmo

utilizado, como de la tecnoloǵıa f́ısica en que se ejecute dicho algoritmo. La

meta principal de este trabajo de Tesis es aportar nuevas soluciones para

la implementación f́ısica y ejecución de algoritmos de imágenes hiperespec-

trales a bordo de satélites. Este trabajo de investigación ayudará a mejorar

los actuales resultados de las implemetaciones hardware existentes dentro del

estado del arte, estableciendo además directrices para los futuros trabajos

de investigación en este ámbito. A continuación se enumeran los objetivos

de esta Tesis:

� Caracterizar los algoritmos de compresión de imágenes hiperespec-

trales.

� Proponer soluciones para acelerar dichos algoritmos en distintas tec-

noloǵıas hardware, en concreto GPUs y FPGAs.

� Comparar las soluciones en ambas tecnoloǵıas en cuanto a su rendimiento,

coste de la solución, flexibilidad de la implementación y consumo de

potencia.

� Validar las soluciones propuestas, mostrando el correcto funcionamiento

de las implementaciones resultantes.

Para la consecución de estos objetivos se realiza la implementación de dos al-

goritmos, diseñados espećıficamente para la compresión de imágenes hiperes-

pectrales a bordo de satélites, en dos tecnoloǵıas hardware: FPGAs y GPUs.

Ambas tecnoloǵıas son capaces de acelerar algoritmos que permiten el proce-

sado de datos en paralelo, pero presentan múltiples diferencias en cuanto

a sus metodoloǵıas de diseño, consumo de potencia y tolerancia a la ra-

diación solar. En concreto, se diseña la implementación en GPU y FPGA

Appendix A. Sinopsis en español 217

de un algoritmo de compresión sin pérdidas de imágenes hiperespectrales, lo

que permite hacer una comparativa en términos de rendimiento entre am-

bas alternativas tecnológicas. Finalmente, se realiza la implementación del

algoritmo estándar, el CCSDS para compresión sin pérdidas de imágenes

hiperespectrales, en una FPGA cualificada para el espacio. Este trabajo

sirve para evaluar la viabilidad de la utilización del estándar CCSDS 123 en

misiones espaciales actuales, y es a su vez, sirve como ejemplo de caso de

uso. Se realizará una comparativa entre los dos algoritmos estudiados y las

tecnoloǵıas hardware consideradas, aśı como con otras soluciones del estado

del arte.

A.3 Compresión con pérdidas en GPU y FPGA

Con el objetivo de estudiar las posibles implementaciones hardware para

la compresión de imágenes hiperespectrales, a bordo de satélites, se propo-

nen en este trabajo diferentes soluciones. En concreto, se realiza la imple-

mentación del algoritmo LCE en una GPU y una FPGA.

El algoritmo LCE es particularmente relevante, ya que fue diseñado es-

pećıficamente para ser ejecutado a bordo de satélites. Por lo tanto, cumple

con determinados requisitos que son cruciales para poder realizar la com-

presión a bordo de un satélite, como son: baja complejidad, alta eficiencia,

tolerancia a fallos y sencillez de cara a la implementación en dispositivos

hardware. El algoritmo comprime la imagen por bloques independientes

de 16 × 16 ṕıxeles con todas sus bandas. Consta de una primera etapa de

predicción en la que se obtienen los errores de predicción, los cuales se codifi-

can mediante un codificador entrópico. Las palabras de código obtenidas se

empaquetan en un fichero que representa la imagen comprimida. La técnica

de compresión por bloques hace que el LCE sea tolerante a fallos, ya que un

error en la transmisión de un bloque no impide la decodificación del resto de

218 Appendix A. Sinopsis en español

bloques, una vez la imagen sea recibida. La división de la imagen en bloques

se hace como se muestra en la Figura A.1.

16x16
block
(0,0)

16x16
block
(0,1)

16x16
block
(1,0) sz,y,xNy

Nx

Nz

z

y

x

Nz

z

m

n

16

16

sz,m,n

Hyperspectral image Block

Figure A.1: División de la imagen hiperespectral en bloques independi-
entes

Al inicio de este trabajo, se contaba con una implementación software del

algoritmo LCE descrito en lenguaje de programación C, que es posible eje-

cutar en cualquier PC o estación de trabajo. Este software sirve como base

para desarrollar tanto la implementació en GPU como la implementación

en FPGA, y además se utiliza como referencia para validar los resultados

obtenidos con ambas tecnoloǵıas.

Appendix A. Sinopsis en español 219

A.3.1 Implementación del algoritmo LCE en una GPU

Se realiza una evaluación de la viabilidad de las GPUs para ejecutar la com-

presión de imágenes hiperespectrales, a través de una paralelización y eje-

cución del algoritmo LCE en una GPU de Nvidia utilizando CUDA . Du-

rante la paralelización, se adapta el algoritmo a las abstracciones de CUDA,

diseñando un kernel paralelo para la ejecución de cada una de las etapas

del algoritmo. Esto implica aplicar diferentes estrategias para identificar

qué datos pueden procesarse independientemente, y qué dependencias de

datos es posible eliminar. Además, se utilizan estrategias para la redución

de iteraciones en los bucles en que las dependencias de datos son inevita-

bles. Todo esto se realiza teniendo en cuenta la arquitectura hardware de

la GPU seleccionada, de modo que pueda maximizarse la utilización de los

multiprocesadores presentes en ella.

La implementación diseñada muestra una alta aceleración, hasta 15.41 ve-

ces más rápida que la ejecución del mismo algoritmo en una CPU. El

rendimiento, definido como el número de muestras procesadas por unidad

de tiempo, es igualmente muy alto. El algoritmo LCE es capaz de com-

primir entre 100 y 140 muestras cada segundo cuando se ejecuta en una

GPU.

Las dificultades y cuellos de botella más importantes encontrados a la hora

de realizar la paralelización del LCE se han identificado como parte de este

trabajo. Destaca principalmente la gran cantidad de tiempo empleado en el

env́ıo de la imagen hiperespectral sin comprimir a la GPU para que pueda ser

procesada. Se proponen ĺıneas de trabajo futuras para superar este problema

y optimizar el rendimiento de la implementación.

Teniendo en cuenta las similitudes entre el compresor LCE y el correspon-

diente decompresor, se considera conveniente relizar también una imple-

mentación en GPU de dicho decompresor. La paralelización del decompresor

220 Appendix A. Sinopsis en español

supone dificultades adicionales, que hacen que el rendimiento obtenido por

la GPU sea más bajo que el que se obtuvo para el compresor. En con-

creto, el principal problema con que se encuentra el decompresor es el for-

mato de la imagen comprimida, que impide la identificación de los elementos

independientes que es necesario extraer para poder realizar las tareas de de-

compresión en paralelo. En este trabajo de Tesis se propone una solución

parcial a este problema, que consiste en añadir una cabecera al archivo com-

primido con información relativa a la ubicación de los elementos indepen-

dientes en el archivo comprimido. La inclusión de esta cabecera permite

procesar más datos en paralelo, pero a su vez aumenta el tamaño del archivo

comprimido, reduciendo por tanto el ratio de compresión. Se estudian dis-

tintos formatos de cabecera, eligiendo aquel que permite obtener la mejor

relación entre la cantidad de elementos que se descomprimen en paralelo y

el tamaño de la cabecera.

Como ya se ha comentado anteriormente, hoy en d́ıa no es posible utilizar

las GPU para la compresión a bordo de satélites, ya que no son tolerantes

a la radiación y presentan consumos de potencia demasiado elevados. Sin

embargo, este trabajo de investigación es útil pra demonstrar que es posible

obtener implementaciones eficientes y flexibles cuando se utilizan las GPUs

para la compresión de datos de imágenes hiperspectrales, y contribuye a

justificar y motivar la investigación en este campo, de manera que se hagan

esfuerzos para desarrollar GPUs cualificadas para el espacio en un futuro.

A.3.2 Implementación del algoritmo LCE en una FPGA

Se realiza además una implementación del algoritmo LCE para compresión

de imágenes hiperespectrales con pérdidas a bordo de satélites sobre una

FPGA. Para realizar dicha implementación se utiliza la herramienta de

Appendix A. Sinopsis en español 221

śıntesis automática CatapultC, que genera los ficheros de descripción hard-

ware a partir de código escrito en lenguaje de programación C. Esto hace

posible obtener implementaciones en un tiempo reducido.

La metodoloǵıa de trabajo en CatapultC consta de varias etapas. La primera

de ellas es la optimización y verificación del código en lenguaje C. Seguida-

mente se establecen las restricciones globales del hardware, indicando la fre-

cuencia de reloj, el comportamiento de la señal de reset y la tecnoloǵıa en

que se va a realizar la implementación final. Se debe indicar en este paso qué

función dentro del código C representa el bloque más alto de la jerarqúıa. A

continuación se establecen restricciones concretas de la arquitectura, reali-

zándose, entre otras tareas, la optimización de bucles, que pueden ser de-

senrrollados (unrolling) o segmentados (pipeline). Finalmente, CatapultC

realiza la planificación temporal del diseño y genera la descripción en VHDL

del código. Ésta es válidada antes de ser ser introducida en herramientras

de śıntesis, como Mentor Graphis Precision o Synplify. Estas herramientas

generan los archivos necesarios para programar la FPGA con el diseño final.

Las modificaciones realizadas al código C original del compresor LCE fueron

tanto sintácticas como funcionales. Las modificaciones sintácticas se centran

en eliminar aquellos elementos del lenguaje C no reconocibles por la herra-

mienta CatapultC, ya que no son realizables en hardware; como puede ser

el alojamiento de memoria de forma dinámica. También se realizan modifi-

caciones funcionales, cambiando el algoritmo para evitar realizar computa-

ciones que en hardware requieren un alto consumo de recursos, como puede

ser una división de dos variables enteras. Una vez realizadas las modifica-

ciones en el código C, se procede a optimizar la configuración en la herra-

mienta CatapultC para obtener el resultado deseado en términos de área y

latencia.

El módulo implementado realiza la compresión de un bloque de 16 × 16

muestras. Sus entradas y salidas se representan en la Figura A.2. Además

222 Appendix A. Sinopsis en español

Table A.1: Ocupación en la FPGA del LCE

Virtex 5VFX130 Modular ap-
proach

Non-modular
approach

Resources Available Used % Used %

DSP48Es 320 17 5 25 8

Number of RAMB18X2s 298 4 1 4 1

Number of slices 20480 2951 14 1935 10

Number of Slice Registers 81920 4208 5 5995 7

Number of Slice LUTS 81920 7836 9 7738 10

de la implementación de este módulo con CatapultC, se realiza una im-

plementación modular del mismo algoritmo LCE, generando la descripción

VHDL de los distintos bloques funcionales con CatapultC y diseñando el

control y flujo de datos entre los módulos manualmente con el objetivo de

mejorar el rendimiento del diseño.

LCE
compressor

ym

filecountfilecount

pp

mm

block_out
RAM

ref_block
RAM

cur_block
RAM

Figure A.2: Módulo de compresión y sus interfaces de entrada/salida

La ocupación de recursos, frecuencia máxima y rendimiento de la imple-

mentación del LCE en la FPGA, utilizado las mencionadas estrategias, se

muestran en las Tablas A.1 y A.2

Appendix A. Sinopsis en español 223

Table A.2: Muestras comprimidas por segundo de la implementación
sobre FPGA del LCE

Virtex 5VFX130

Diseño modular Diseño no modular

Max.Frecuencia (MHz) 86 80

Mega-Muestras/seg 27.7 16.7

Los resultados demuestran la validez del algoritmo LCE para compresión a

bordo de satélites, y prueban que es posible implementarlo con una baja uti-

lización de recursos y baja potencia en una FPGA. Asimismo, puede obser-

varse que, la implementación modular ha conseguido mejorar el rendimiento

del diseño, manteniendo resultados similares de ocupación de la FPGA.

Se realiza finalmente una comparativa de las implementaciones realizadas del

compresor LCE en términos de rendmiento (número de muestras procesadas

por unidad de tiempo). Los resultados correspondientes a la compresión de

una imagen del sensor AVIRIS de 220 bandas mediante el algoritmo LCE

sobre CPU, GPU y FPGA se muestran en la Figura A.3. En la citada figura

se muestran el número de muestras procesadas por segundo en función del

tamaño espacial de la imágen (número de ĺıneas por número de columnas).

Aunque la GPU es capaz de procesar mayor número de muestras por unidad

de tiempo, actualmente no es posible utilizarlas en el espacio y, por lo tanto,

de momento no pueden considerarse una alternativa viable a las FPGA.

Además, es posible acelerar aún más la implementación presentada en la

FPGA, realizando la implementación de más de un módulo compresor en

el mismo dispositivo, y haciendo que trabajen en paralelo. De este modo,

podŕıa conseguirse un rendimiento comparable al obtenido en la GPU, mien-

tras que el consumo de potencia seŕıa notablemente inferior en la FPGA.

224 Appendix A. Sinopsis en español

Figure A.3: Comparasión del rendimiento de la implementación del LCE
en CPU, GPU and FPGA cuando se comprime una imagen de AVIRIS.

A.4 Compresión sin pérdidas en FPGA

Recientemente, el CCSDS, que representa las más importantes agencias espa-

ciales del mundo, ha publicado un estándar para la compresión de imágenes

hiperespectrales sin pérdidas, conocido como

CCSDS 123 [25]. Este algoritmo consiste en una etapa de predición, seguida

de un codificador entrópico. La predicción se hace de forma adaptativa te-

niendo en cuenta los valores de las muestras vecinas en la banda actual y en

las bandas anteriores. Los errores de predicción se codifican posteriormente

con un codificador entrópico.

El CCSDS 123 hab́ıa sido implementado, previamente a este trabajo de Tesis,

para su ejecución en una CPU [74, 76] y GPU [81]. Sin embargo, ninguna de

estas implementaciones puede utilizarse a bordo de un satélite. Se presenta

a continuación una implementación del CCSDS sobre una FPGA cualificada

para el espacio, que presenta además una baja ocupación de los recursos

Appendix A. Sinopsis en español 225

hardware. La arquitectura del compresor se diseña teniendo en cuenta el

impacto de los diferentes parámetros de configuración del CCSDS 123 en

la eficiencia de la compresión y en la complejiidad de la implementación

resultante.

A.4.1 Algoritmo CCSDS 123

El algoritmo CCSDS 123 realiza la compresión sin pérdidas de imágenes mul-

tiespectrales e hiperespectrales. Utiliza un esquema basado en la predicción

seguida de un codificador entrópico.

Dentro de cada banda espectral, el predictor computa una suma local de las

muestras de valores vecinos. Cada suma local es empleada para calcular la

diferencia local. Para el cómputo de la suma local el usuario puede elegir

una configuración orientada a columnas u orientada a vecinos. Para la dife-

rencia local de cada banda espectral, el usuario puede escoger entre el modo

reducido y el modo completo. El valor de la muestra predicha se calcula

empleando la suma local de la banda espectral actual y una suma ponderada

de la diferencia local de la banda actual y las P bandas espectrales anteriores.

Los pesos empleados son actualizados de manera adaptativa. Cada residuo

predicho, es decir, la diferencia entre una muestra dada y su correspondiente

valor predicho se mapea en un entero sin signo que posteriormente se codifica

mediante un código de Golomb.

El número de bandas previas usadas para la predicción puede tener valores

entre 0 y 15. Este parámetro, junto con el tipo de suma local, el modo de

cálculo de las diferencias locales y el número de bits utilizado para representar

los pesos, representan los parámetros que más impacto tienen en el ratio de

compresión obtenido y la complejidad de la implementación hardware del

algortimo CCSDS 123.

226 Appendix A. Sinopsis en español

A.4.2 Implementación del CCSDS 123 sobre una FPGA cuali-

ficada para el espacio

Se realiza la implementación del algortimo CCSDS 123 sobre una FPGA

cualificada para el espacio siguiendo la siguiente metodoloǵıa. En primer

lugar, se realiza un estudio de cómo los parámetros de configuración del

CCSDS 123 afectan al ratio de compresión. Seguidamente, se identifica

cuáles de esos parámetros tienen un impacto en la complejidad de la imple-

mentación hardware. Como resultado, se observa que los parámetros más

relevantes son: el número de bandas previas utilizadas para la predicción P ,

que puede variar entr 0 y 15; el tipo de suma local, orientada a columnas u

orientada a vecinos; el modo de cálculo de las diferencias locales, reducido

o completo; y el número de bits utilizado para representar los pesos. Una

observación importante en este punto es que, si bien aumentar número de

bandas previas utilizadas en la predicción favorece la compresión, ésta no

mejora significativamente cuando el número de bandas utilizadas es superior

a tres (P = 3).

Una vez identificados estos parámetros se proponen cinco opciones arquitec-

turales distintas, que se comparan en función de su complejidad, requisitos

de memoria y número de accesos a la memoria externa. Se selecciona fi-

nalmente la opción arquitectural que permite obtener el mejor compromiso

entre flexibilidad para variar la configuración del algortimo, y menor comple-

jidad de implementación. Se realiza la descripción de la arquitectura elegida

en código VHDL, creándose aśı un módulo IP al que se denomina HyLoC.

HyLoC se implementa en una FPGA cualificada para el espacio, en concreto

la RTAX1000S de Microsemi. Los resultados de la implementación para dis-

tintas configuraciones del compresor en cuanto a la ocupación de recursos y

el rendimiento se resumen en las Tablas A.3 y A.4

Appendix A. Sinopsis en español 227

Table A.3: Resultados de la śıntesis de HyLoC en una RTAX1000S para
distintas configuraciones

Número de bandas utilizadas para la predicción P = 3

Predicción reducida Predicción completa

Vecinos Columnas Vecinos Columnas

Combinational 4354 4166 3971 3713

cells (36%) (34%) (34%) (34%)

Sequential 1490 1485 1344 1233

cells (36%) (34%) (34%) (34%)

I/O cells 75 75 75 75

Max. Frecuencia 43.4 MHz 43.9 MHz 43.0 MHz 43.4 MHz

Table A.4: Rendimiento de las distintas configuraciones de HyLoC

Número de bandas utilizadas para la predicción P = 3

Predicción reducida Predicción completa

Vecinos Columnas Vecinos Columnas

Rendimiento (Mbits) 69 70 57 58

Puede observarse que se ha conseguido el objetivo de baja complejidad, con

una ocupación hardware en torno al 34% para una configuración t́ıpica del

compresor. La implementación presentada tiene además un muy bajo con-

sumo de potencia, que se estima en torno a 93 mW. Además, el estudio ar-

quitectural presentado como parte de este trabajo puede ser útil como base

para futuros desarrollos y mejoras de HyLoC, o para adaptarlo a requisitos

espećıficos de futuras misiones espaciales.

A.5 Conclusiones

Tras la finalización del trabajo previamente descrito, se han estudiado diferen-

tes opciones tecnológicas para la implementación de algortimos de com-

presión de imágenes hiperespectrales con pérdidas y sin pérdidas. En con-

creto, se consideran las GPUs y FPGAs como dispositivos hardware para

228 Appendix A. Sinopsis en español

la implementación de los algoritmos LCE y el estándar CCSDS 123. Los

resultados obtenidos se comparan también con implementaciones similares

que han sido publicadas en la literatura cient́ıfica reciente.

Es posible concluir que los dos algoritmos estudiados, LCE y CCSDS 123

son buenos candidatos para la realización de compresión de imágenes hiper-

espectrales a bordo de satélites. La ocupación de recursos hardware cuando

se implementan sobre FPGAs es muy reducida, similar o inferior a las en-

contradas para otros algoritmos comparables del estado del arte.

En cuanto al rendimiento, expresado como número de muestras comprimi-

das por unidad de tiempo, se observa que tanto las GPUs como las FPGAs

mejoran el rendimiento de las implementaciones en procesadores de propósito

general, CPUs, demonstrándose aśı que las tecnoloǵıas que permiten la par-

alelización de datos son más idóneas para la implementación de los algoritmos

de compresión de imágenes hiperespectrales.

Las GPUs ofrecen de rendimiento significativamente superiores, sin embargo,

su elevado consumo de potencia junto con el hecho de que no son tolerantes

a la radiación solar, hacen que no puedan ser utilizadas hoy en d́ıa en mi-

siones espaciales. Por otro lado, las FPGAs ofrecen la posibilidad de escalar

y replicar los módulos de compresión para obtener un mayor rendimiento,

lo que las hace potencialmente igual de eficientes que la GPUs, con un con-

sumo de potencia significativamente inferior. El consumo de potencia de las

implementaciones en FPGA presentadas en este trabajo es siempre inferior

a 3 W, mientras en que las especificaciones de la GPU utilizada se estima su

consumo en 225 W.

Appendix B

Publications

229

230 Appendix B. Publications

B.1 Journals

[1] Santos, L., Lopez, S., Callico, G. M., López, J. F., and Sarmiento,

R. (2012). Performance Evaluation of the H.264/AVC Video Coding

Standard for Lossy Hyperspectral Image Compression. Selected Topics

in Applied Earth Observations and Remote Sensing, IEEE Journal of,

5 (2), 451–461.

[2] Santos, L., Magli, E., Vitulli, R., López, J. F., and Sarmiento, R.

(2013). Highly-Parallel GPU Architecture for Lossy Hyperspectral Im-

age Compression. Selected Topics in Applied Earth Observations and

Remote Sensing, IEEE Journal of, 6 (2), 670–681.

[3] Santos, L., Magli, E., Vitulli, R., Núñez, A., López, J. F., and Sarmiento,

R. (2013). Lossy hyperspectral image compression on a graphics pro-

cessing unit: parallelization strategy and performance evaluation. Jour-

nal of Applied Remote Sensing, 7(1), 074599-074599.

B.2 International Conferences

[1] Santos, L., López, S., Callicó, G. M., López, J. F., and Sarmiento,

R. (2011). Hyperspectral image compression with a H.264/AVC base-

line encoder. In Conference on Design of Circuits and Integrated Sys-

tems (DCIS 2011).

[2] Santos, L., López, S., Callicó, G. M., López, J. F., and Sarmiento, R.

(2011). Lossy hyperspectral image compression with state-of-the-art

video encoder. In Proceedings of SPIE (Vol. 8183, 81830).

Appendix B. Publications 231

[3] Santos, L., Vitulli, R., López, J. F., and Sarmiento, R. (2012). GPU

implementarion of a lossy compression algorithm for hyperspectral im-

ages. In IEEE Workshop on Hyperspectral Image and Signal Processing

– Evolution in Remote Sensing (WHISPERS) 2012.

[4] Santos, L., Vitulli, R., López, J. F., and Sarmiento, R. (2012). CUDA

based GPU implemenmtation of a parallelized algorithm for lossy hy-

perspectral image compression. In On Board Payload Data Compres-

sion Workshop – OBPDC 2012.

[5] Santos, L., Vitulli, R., López, S., Marrero, G. M., López, J. F., and

Sarmiento, R. (2012). Accelerating lossy hyperspectral image compres-

sion on a GPU. In Conference on Design of Circuits and Integrated

Systems (DCIS 2012).

[6] Santos, L., Lopez, J. F., Sarmiento, R., and Vitulli, R. (2013). FPGA

implementation of a lossy compression algorithm for hyperspectral im-

ages with a high-level synthesis tool. In Adaptive Hardware and Sys-

tems (AHS), 2013 NASA/ESA Conference on (pp. 107–114).

[7] Garćıa, A., Santos, L., López, S., Callicó, G.M., López, J.F., Sarmiento,

R. (2013) High level modular implementation of a lossy hyperspectral

image compression algorithm on a FPGA. In IEEE Workshop on Hy-

perspectral Image and Signal Processing Evolution in Remote Sensing

(WHISPERS), 2013

[8] Garćıa, A., Santos, L., López,, S., Callicó, G. M., Lopez, J. F., and

Sarmiento, R. (2014). Efficient lossy compression implementations of

hyperspectral images: tools, hardware platforms, and comparisons. In

SPIE Sensing Technology+ Applications (pp. 912408-912408)

References

[1] National Aeronautics and Space Administration (NASA). Landsat

science, 2014. URL http://landsat.gsfc.nasa.gov/.

[2] Centre National d’Etudes Spatiales (CNES). Spot earth observation

mission. eyes in space., 2013. URL http://smsc.cnes.fr/SPOT/.

[3] Indian Space Research Organisation (ISRO). Indian remote sensing

(irs) satellite system, 2008. URL http://www.isro.org/scripts/

currentprogrammein.aspx#IRS.

[4] National Aeronautics and Space Administration (NASA). Airborne

visible/infrared imaging spectometer (aviris), 2014. URL http://

aviris.jpl.nasa.gov/.

[5] Alexander FH Goetz. Three decades of hyperspectral remote sensing

of the earth: A personal view. Remote Sensing of Environment, 113:

S5–S16, 2009.

[6] Peg Shippert. Introduction to hyperspectral image analysis. On-

line Journal of Space Communication, 3, 2003. URL http://

spacejournal.ohio.edu/pdf/shippert.pdf.

[7] William F Belokon, Spectral Imagery Training Center, and Logicon

Geodynamics. Multispectral imagery reference guide. Logicon Geody-

namics, 1997.

233

http://landsat.gsfc.nasa.gov/
http://smsc.cnes.fr/SPOT/
http://www.isro.org/scripts/currentprogrammein.aspx#IRS
http://www.isro.org/scripts/currentprogrammein.aspx#IRS
http://aviris.jpl.nasa.gov/
http://aviris.jpl.nasa.gov/
http://spacejournal.ohio.edu/pdf/shippert.pdf
http://spacejournal.ohio.edu/pdf/shippert.pdf

234 References

[8] Centre National d’Etudes Spatiales (CNES). URL http://smsc.

cnes.fr/PLEIADES/.

[9] European Space Agency (ESA). Proba missions, 2014. URL http:

//www.esa.int/Our_Activities/Technology/Proba_Missions.

[10] J Bioucas-Dias, Antonio Plaza, Gustavo Camps-Valls, Paul Scheun-

ders, N Nasrabadi, and JOCELYN Chanussot. Hyperspectral remote

sensing data analysis and future challenges. Geoscience and Remote

Sensing Magazine, IEEE, 1(2):6–36, 2013.

[11] Antonio Plaza, Jon Atli Benediktsson, Joseph W Boardman, Jason

Brazile, Lorenzo Bruzzone, Gustavo Camps-Valls, Jocelyn Chanussot,

Mathieu Fauvel, Paolo Gamba, Anthony Gualtieri, et al. Recent ad-

vances in techniques for hyperspectral image processing. Remote Sens-

ing of Environment, 113:S110–S122, 2009.

[12] J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Qian Du,

P. Gader, and J. Chanussot. Hyperspectral unmixing overview: Ge-

ometrical, statistical, and sparse regression-based approaches. Se-

lected Topics in Applied Earth Observations and Remote Sensing,

IEEE Journal of, 5(2):354–379, April 2012. ISSN 1939-1404. doi:

10.1109/JSTARS.2012.2194696.

[13] N. Keshava and J.F. Mustard. Spectral unmixing. Signal Processing

Magazine, IEEE, 19(1):44–57, Jan 2002. ISSN 1053-5888. doi: 10.

1109/79.974727.

[14] David A Landgrebe. Signal Theory Methods in Multispectral Remote

Sensing. Wiley, Newark, NJ, 2005.

[15] G. Shaw and D. Manolakis. Signal processing for hyperspectral im-

age exploitation. Signal Processing Magazine, IEEE, 19(1):12–16, Jan

2002. ISSN 1053-5888. doi: 10.1109/79.974715.

http://smsc.cnes.fr/PLEIADES/
http://smsc.cnes.fr/PLEIADES/
http://www.esa.int/Our_Activities/Technology/Proba_Missions
http://www.esa.int/Our_Activities/Technology/Proba_Missions

References 235

[16] Stefania Matteoli, Marco Diani, and Giovanni Corsini. A tutorial

overview of anomaly detection in hyperspectral images. Aerospace and

Electronic Systems Magazine, IEEE, 25(7):5–28, 2010.

[17] David WJ Stein, Scott G Beaven, Lawrence E Hoff, Edwin M Winter,

Alan P Schaum, and Alan D Stocker. Anomaly detection from hy-

perspectral imagery. Signal Processing Magazine, IEEE, 19(1):58–69,

2002.

[18] Dimitris Manolakis and Gary Shaw. Detection algorithms for hyper-

spectral imaging applications. Signal Processing Magazine, IEEE, 19

(1):29–43, 2002.

[19] A. Plaza M. Ciznicki, K. Kurowski. Gpu implementation of jpeg2000

for hyperspectral image compression. In SPIE - The International

Society for Optical Engineering, volume 8183, 2011.

[20] L. Santos, S. Lopez, G.M. Callico, J.F. Lopez, and R. Sarmiento. Per-

formance evaluation of the h.264/avc video coding standard for lossy

hyperspectral image compression. Selected Topics in Applied Earth

Observations and Remote Sensing, IEEE Journal of, 5(2):451 –461,

april 2012. ISSN 1939-1404. doi: 10.1109/JSTARS.2011.2173906.

[21] D.A. Huffman. A method for the construction of minimum-redundancy

codes. Proceedings of the IRE, 40(9):1098–1101, Sept 1952. ISSN 0096-

8390. doi: 10.1109/JRPROC.1952.273898.

[22] S. Golomb. Run-length encodings (corresp.). Information Theory,

IEEE Transactions on, 12(3):399–401, Jul 1966. ISSN 0018-9448. doi:

10.1109/TIT.1966.1053907.

[23] R. Rice and J. Plaunt. Adaptive variable-length coding for efficient

compression of spacecraft television data. Communication Technology,

IEEE Transactions on, 19(6):889–897, December 1971. ISSN 0018-

9332. doi: 10.1109/TCOM.1971.1090789.

236 References

[24] Lossless data compression recommended standard CCSDS 121.0-B-2.

The Consultative Committee for Space Data Systems, 2012.

[25] Lossless multispectral and hyperspectral image compression recomm-

mended standard CCSDS 123.0-B-1. The Consultative Committee for

Space Data Systems, 2011.

[26] C. E. Shannon. A mathematical theory of communication. SIGMO-

BILE Mob. Comput. Commun. Rev., 5(1):3–55, January 2001. ISSN

1559-1662. doi: 10.1145/584091.584093. URL http://doi.acm.org/

10.1145/584091.584093.

[27] W Schober, F Lansing, K Wilson, and E Webb. High data rate instru-

ment study. JPL publication, pages 99–4, 1999.

[28] R. Trautner. Esa’s roadmap for next generation payload data proces-

sors. In Proceedings of DASIA 2011 Conference, 2011.

[29] European Space Agency (ESA). Euclid mission, 2014. URL http:

//sci.esa.int/euclid/.

[30] A.M. Di Giorgio, S.J. Liu, G. Giusi, and G. Palamara. Euclid visible

imager on-board lossless data compression: Performance assessment

trade-off activities. In Proceedings of 2012 ESA workshop on Onboard

Payload Data Compression (OBPDC), 2012.

[31] C.M. Hartzell, L.C. Graham, T.S. Tao, H.R. Goldberg, J. Carpena-

Nunez, D.M. Racek, C.E. Taylor, and C.D. Norton. Data system de-

sign for a hyperspectral imaging mission concept. In Aerospace confer-

ence, 2009 IEEE, pages 1–21, March 2009. doi: 10.1109/AERO.2009.

4839507.

[32] N. Aranki, A. Bakhshi, D. Keymeulen, and M. Klimesh. Fast and

adaptive lossless on-board hyperspectral data compression system for

http://doi.acm.org/10.1145/584091.584093
http://doi.acm.org/10.1145/584091.584093
http://sci.esa.int/euclid/
http://sci.esa.int/euclid/

References 237

space applications. In Aerospace conference, 2009 IEEE, pages 1–8,

2009. doi: 10.1109/AERO.2009.4839534.

[33] A. Abrardo, M. Barni, and E. Magli. Low-complexity predictive lossy

compression of hyperspectral and ultraspectral images. In Acous-

tics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on, pages 797 –800, may 2011. doi: 10.1109/ICASSP.2011.

5946524.

[34] Image data compression recommended standard CCSDS 122.0-B-1.

The Consultative Committee for Space Data Systems, 2005.

[35] M.J. Weinberger, G. Seroussi, and G. Sapiro. The loco-i lossless im-

age compression algorithm: principles and standardization into jpeg-ls.

Image Processing, IEEE Transactions on, 9(8):1309–1324, 2000. ISSN

1057-7149. doi: 10.1109/83.855427.

[36] Xiaolin Wu and N. Memon. Context-based, adaptive, lossless image

coding. Communications, IEEE Transactions on, 45(4):437–444, 1997.

ISSN 0090-6778. doi: 10.1109/26.585919.

[37] S. Hunt and L.S. Rodriguez. Fast piecewise linear predictors for loss-

less compression of hyperspectral imagery. In Geoscience and Remote

Sensing Symposium, 2004. IGARSS ’04. Proceedings. 2004 IEEE In-

ternational, volume 1, pages –312, 2004. doi: 10.1109/IGARSS.2004.

1369023.

[38] Xiaolin Wu and N. Memon. Context-based lossless interband

compression-extending calic. Image Processing, IEEE Transactions

on, 9(6):994–1001, 2000. ISSN 1057-7149. doi: 10.1109/83.846242.

[39] B. Penna, T. Tillo, E. Magli, and G. Olmo. Transform coding tech-

niques for lossy hyperspectral data compression. Geoscience and Re-

mote Sensing, IEEE Transactions on, 45(5):1408 –1421, may 2007.

ISSN 0196-2892. doi: 10.1109/TGRS.2007.894565.

238 References

[40] Bruno Aiazzi, Luciano Alparone, and Stefano Baronti. Quality issues

for compression of hyperspectral imagery through spectrally adap-

tive dpcm. In Bormin Huang, editor, Satellite Data Compression,

pages 115–147. Springer New York, 2011. ISBN 978-1-4614-1182-

6. doi: 10.1007/978-1-4614-1183-3 6. URL http://dx.doi.org/10.

1007/978-1-4614-1183-3_6.

[41] Chulhee Lee, Sangwook Lee, and Jonghwa Lee. Effects of lossy com-

pression on hyperspectral classification. In Bormin Huang, editor,

Satellite Data Compression, pages 269–285. Springer New York, 2011.

ISBN 978-1-4614-1182-6. doi: 10.1007/978-1-4614-1183-3 13. URL

http://dx.doi.org/10.1007/978-1-4614-1183-3_13.

[42] F. Garcia-Vilchez, J. Muñoz-Mari, M. Zortea, I. Blanes, V. Gonzalez-

Ruiz, G. Camps-Valls, A. Plaza, and J. Serra-Sagrista. On the im-

pact of lossy compression on hyperspectral image classification and

unmixing. Geoscience and Remote Sensing Letters, IEEE, 8(2):253–

257, 2011. ISSN 1545-598X. doi: 10.1109/LGRS.2010.2062484.

[43] Q. Du, N. Ly, and J.E. Fowler. An operational approach to

pca+jpeg2000 compression of hyperspectral imagery. Selected Top-

ics in Applied Earth Observations and Remote Sensing, IEEE Journal

of, PP(99):1–9, 2013. ISSN 1939-1404. doi: 10.1109/JSTARS.2013.

2274527.

[44] Jarno Mielikainen. Lookup-table based hyperspectral data compres-

sion. In Bormin Huang, editor, Satellite Data Compression, pages

169–184. Springer New York, 2011. ISBN 978-1-4614-1182-6. doi:

10.1007/978-1-4614-1183-3 8. URL http://dx.doi.org/10.1007/

978-1-4614-1183-3_8.

[45] D.S. Taubman and M.W. Marcellin. JPEG2000: Image Compression

Fundamentals, Standards, and Practice. Kluwer, 2001.

http://dx.doi.org/10.1007/978-1-4614-1183-3_6
http://dx.doi.org/10.1007/978-1-4614-1183-3_6
http://dx.doi.org/10.1007/978-1-4614-1183-3_13
http://dx.doi.org/10.1007/978-1-4614-1183-3_8
http://dx.doi.org/10.1007/978-1-4614-1183-3_8

References 239

[46] L. Chang, Ching-Min Cheng, and Ting-Chung Chen. An efficient adap-

tive klt for multispectral image compression. In Image Analysis and

Interpretation, 2000. Proceedings. 4th IEEE Southwest Symposium,

pages 252–255, 2000. doi: 10.1109/IAI.2000.839610.

[47] Pengwei Hao and Q. Shi. Reversible integer klt for progressive-to-

lossless compression of multiple component images. In Image Process-

ing, 2003. ICIP 2003. Proceedings. 2003 International Conference on,

volume 1, pages I–633–6 vol.1, 2003. doi: 10.1109/ICIP.2003.1247041.

[48] B. Penna, T. Tillo, E. Magli, and G. Olmo. Progressive 3-d coding

of hyperspectral images based on jpeg 2000. Geoscience and Remote

Sensing Letters, IEEE, 3(1):125–129, 2006. ISSN 1545-598X. doi:

10.1109/LGRS.2005.859942.

[49] N.R.M. Noor and T. Vladimirova. Parallelised fault-tolerant integer klt

implementation for lossless hyperspectral image compression on board

satellites. In Adaptive Hardware and Systems (AHS), 2013 NASA/ESA

Conference on, pages 115–122, 2013. doi: 10.1109/AHS.2013.6604234.

[50] Qian Du and J.E. Fowler. Hyperspectral image compression using

jpeg2000 and principal component analysis. Geoscience and Remote

Sensing Letters, IEEE, 4(2):201 –205, april 2007. ISSN 1545-598X.

doi: 10.1109/LGRS.2006.888109.

[51] Wei Zhu, Qian Du, and JamesE. Fowler. Hyperspectral image compres-

sion using segmented principal component analysis. In Bormin Huang,

editor, Satellite Data Compression, pages 233–251. Springer New York,

2011. ISBN 978-1-4614-1182-6. doi: 10.1007/978-1-4614-1183-3 11.

URL http://dx.doi.org/10.1007/978-1-4614-1183-3_11.

[52] A. Karami, M. Yazdi, and G. Mercier. Compression of hyperspectral

images using discerete wavelet transform and tucker decomposition.

Selected Topics in Applied Earth Observations and Remote Sensing,

http://dx.doi.org/10.1007/978-1-4614-1183-3_11

240 References

IEEE Journal of, 5(2):444–450, 2012. ISSN 1939-1404. doi: 10.1109/

JSTARS.2012.2189200.

[53] Kiely A. and Klimesh M. The icer progressive wavelet image compres-

sor. In Interplanetary Network Progress Report 42-155, pages 1–46,

2003.

[54] Kiely A. and Klimesh M. Preliminary image compression results from

the mars exploration rovers. In Interplanetary Network Progress Report

42-156, pages 1–8, 2004.

[55] M. Klimesh. Low-complexity lossless compression of hyperspectral im-

agery via adaptive filtering. The Interplanetary Network Progress Re-

port, 2005.

[56] Andrea Abrardo, Mauro Barni, Andrea Bertoli, Raoul Grimoldi, En-

rico Magli, and Raffaele Vitulli. Low-complexity approaches for lossless

and near-lossless hyperspectral image compression. In Bormin Huang,

editor, Satellite Data Compression, pages 47–65. Springer New York,

2011. ISBN 978-1-4614-1182-6. doi: 10.1007/978-1-4614-1183-3 3.

URL http://dx.doi.org/10.1007/978-1-4614-1183-3_3.

[57] J. Teuhola. A compression method for clustered bit-

vectors. Information Processing Letters, 7(6):308–

311, 1978. URL http://www.scopus.com/inward/

record.url?eid=2-s2.0-0018020596&partnerID=40&md5=

8cc387e5be31644a5a6b9d049dee69f8.

[58] A. Gersho. Adaptive filtering with binary reinforcement. Information

Theory, IEEE Transactions on, 30(2):191–199, 1984. ISSN 0018-9448.

doi: 10.1109/TIT.1984.1056890.

[59] E. Magli, G. Olmo, and E. Quacchio. Optimized onboard lossless and

near-lossless compression of hyperspectral data using calic. Geoscience

http://dx.doi.org/10.1007/978-1-4614-1183-3_3
http://www.scopus.com/inward/record.url?eid=2-s2.0-0018020596&partnerID=40&md5=8cc387e5be31644a5a6b9d049dee69f8
http://www.scopus.com/inward/record.url?eid=2-s2.0-0018020596&partnerID=40&md5=8cc387e5be31644a5a6b9d049dee69f8
http://www.scopus.com/inward/record.url?eid=2-s2.0-0018020596&partnerID=40&md5=8cc387e5be31644a5a6b9d049dee69f8

References 241

and Remote Sensing Letters, IEEE, 1(1):21–25, 2004. ISSN 1545-598X.

doi: 10.1109/LGRS.2003.822312.

[60] J. Mielikainen and P. Toivanen. Clustered dpcm for the lossless com-

pression of hyperspectral images. Geoscience and Remote Sensing,

IEEE Transactions on, 41(12):2943–2946, 2003. ISSN 0196-2892. doi:

10.1109/TGRS.2003.820885.

[61] F. Rizzo, B. Carpentieri, G. Motta, and J.A. Storer. Low-complexity

lossless compression of hyperspectral imagery via linear prediction. Sig-

nal Processing Letters, IEEE, 12(2):138–141, 2005. ISSN 1070-9908.

doi: 10.1109/LSP.2004.840907(410)12.

[62] S.R. Tate. Band ordering in lossless compression of multispectral im-

ages. In Data Compression Conference, 1994. DCC ’94. Proceedings,

pages 311–320, 1994. doi: 10.1109/DCC.1994.305939.

[63] P. Toivanen, O. Kubasova, and J. Mielikainen. Correlation-based band-

ordering heuristic for lossless compression of hyperspectral sounder

data. Geoscience and Remote Sensing Letters, IEEE, 2(1):50–54, 2005.

ISSN 1545-598X. doi: 10.1109/LGRS.2004.838410.

[64] Jing Zhang and Guizhong Liu. An efficient reordering prediction-based

lossless compression algorithm for hyperspectral images. Geoscience

and Remote Sensing Letters, IEEE, 4(2):283–287, 2007. ISSN 1545-

598X. doi: 10.1109/LGRS.2007.890546.

[65] M. Slyz and D. Zhang. A block-based inter-band lossless hyperspectral

image compressor. In Data Compression Conference, 2005. Proceed-

ings. DCC 2005, pages 427–436, 2005. doi: 10.1109/DCC.2005.1.

[66] Euroepan Space Agency. Robotic exploration of mars, 2013. URL

http://exploration.esa.int/mars/.

http://exploration.esa.int/mars/

242 References

[67] A. Abrardo, M. Barni, E. Magli, and F. Nencini. Error-resilient and

low-complexity onboard lossless compression of hyperspectral images

by means of distributed source coding. Geoscience and Remote Sens-

ing, IEEE Transactions on, 48(4):1892–1904, 2010. ISSN 0196-2892.

doi: 10.1109/TGRS.2009.2033470.

[68] E.J. Candes and M.B. Wakin. An introduction to compressive sam-

pling. Signal Processing Magazine, IEEE, 25(2):21–30, 2008. ISSN

1053-5888. doi: 10.1109/MSP.2007.914731.

[69] G. Coluccia, S.K. Kuiteing, A. Abrardo, M. Barni, and E. Magli. Pro-

gressive compressed sensing and reconstruction of multidimensional

signals using hybrid transform/prediction sparsity model. Emerging

and Selected Topics in Circuits and Systems, IEEE Journal on, 2(3):

340–352, 2012. ISSN 2156-3357. doi: 10.1109/JETCAS.2012.2214891.

[70] A. Abardo, Barni M., Carretti C.M., Magli E., Kuiteing Kamdem S.,

and Vitulli R. Compressed sensing techniques for hyperspectral image

recovery. In Proceedings of 2010 ESA workshop on Onboard Payload

Data Compression (OBPDC), 2010.

[71] Magli E., Barni M., Barducci A., Guzzi D., and Pippi I. Technological

issues in compressive sensing. In Proceedings of 2012 ESA workshop

on Onboard Payload Data Compression (OBPDC), 2012.

[72] Rice Robert F., Yeh Pen-Shu, and Miller Warner H. Algorithms for

high speed universal noiseless coding. In Proceedings of AIAA Com-

puting in Aerospace, IX, 1993. doi: 10.2514/6.1993-4541.

[73] A.G. Villafranca, S. Mignot, J. Portell, and E. Garcia-Berro. Hardware

implementation of the fapec lossless data compressor for space. In

Adaptive Hardware and Systems (AHS), 2010 NASA/ESA Conference

on, pages 164–170, 2010. doi: 10.1109/AHS.2010.5546264.

References 243

[74] J.E. Sanchez, E. Auge, J. Santalo, I. Blanes, J. Serra-Sagrista, and

A. Kiely. Review and implementation of the emerging ccsds recom-

mended standard for multispectral and hyperspectral lossless image

coding. In Data Compression, Communications and Processing (CCP),

2011 First International Conference on, pages 222–228, 2011. doi:

10.1109/CCP.2011.17.

[75] Carole Thiebaut and Roberto Camarero. Cnes studies for on-board

compression of high-resolution satellite images. In Bormin Huang, ed-

itor, Satellite Data Compression, pages 29–46. Springer New York,

2011. ISBN 978-1-4614-1182-6. doi: 10.1007/978-1-4614-1183-3 2.

URL http://dx.doi.org/10.1007/978-1-4614-1183-3_2.

[76] European Space Agency (ESA). Ccsds 123.0-b-1 multispectral and

hyperspectral lossless data compression, 2013. URL http://www.esa.

int/TEC/OBDP/SEM069KOXDG_2.html.

[77] European Space Agency (ESA). Whitedwarf data compression evalua-

tion tool, 2013. URL http://www.esa.int/TEC/OBDP/SEM069KOXDG_

2.html.

[78] European Space Agency (ESA). Esa onboard computing and data

handling - microprocessors, 2012. URL http://www.esa.int/TEC/

OBCDH/SEM1IZEURTG_0.html.

[79] Nvidia Corporation. Dspace project - new digital signal processor for

space application, 2013. URL http://www.dspace-project.eu/.

[80] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink. How

a single chip causes massive power bills gpusimpow: A gpgpu power

simulator. In Performance Analysis of Systems and Software (IS-

PASS), 2013 IEEE International Symposium on, pages 97–106, 2013.

doi: 10.1109/ISPASS.2013.6557150.

http://dx.doi.org/10.1007/978-1-4614-1183-3_2
http://www.esa.int/TEC/OBDP/SEM069KOXDG_2.html
http://www.esa.int/TEC/OBDP/SEM069KOXDG_2.html
http://www.esa.int/TEC/OBDP/SEM069KOXDG_2.html
http://www.esa.int/TEC/OBDP/SEM069KOXDG_2.html
http://www.esa.int/TEC/OBCDH/SEM1IZEURTG_0.html
http://www.esa.int/TEC/OBCDH/SEM1IZEURTG_0.html
http://www.dspace-project.eu/

244 References

[81] B. Hopson, K. Benkrid, D. Keymeulen, and N. Aranki. Real-time ccsds

lossless adaptive hyperspectral image compression on parallel gpgpu

amp; multicore processor systems. In Adaptive Hardware and Systems

(AHS), 2012 NASA/ESA Conference on, pages 107–114, 2012. doi:

10.1109/AHS.2012.6268637.

[82] LPGPU Consortium. Low-power gpu (lpgpu), 2013. URL http://

lpgpu.org/.

[83] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk

Stroobandt. An overview of today’s high-level synthesis tools. Design

Automation for Embedded Systems, 16(3):31–51, 2012. ISSN 0929-

5585. doi: 10.1007/s10617-012-9096-8. URL http://dx.doi.org/

10.1007/s10617-012-9096-8.

[84] Guoxia Yu, Tanya Vladimirova, and Martin N. Sweeting. Image

compression systems on board satellites. Acta Astronautica, 64

(9–10):988 – 1005, 2009. ISSN 0094-5765. doi: http://dx.doi.org/

10.1016/j.actaastro.2008.12.006. URL http://www.sciencedirect.

com/science/article/pii/S0094576508004062.

[85] Xilinx. Xilinx chips enable world’s first ”on-the-fly” reconfigurable

satellite, 2003. URL http://www.xilinx.com/prs_rls/design_win/

0317satellite.htm.

[86] J.L. Nunez-Yanez, Xiaolin Chen, N. Canagarajah, and Raffaele Vitulli.

Statistical lossless compression of space imagery and general data in a

reconfigurable architecture. In Adaptive Hardware and Systems, 2008.

AHS ’08. NASA/ESA Conference on, pages 172–177, 2008. doi: 10.

1109/AHS.2008.9.

[87] B. Osterloh, H. Michalik, S.A. Habinc, and B. Fiethe. Dynamic par-

tial reconfiguration in space applications. In Adaptive Hardware and

http://lpgpu.org/
http://lpgpu.org/
http://dx.doi.org/10.1007/s10617-012-9096-8
http://dx.doi.org/10.1007/s10617-012-9096-8
http://www.sciencedirect.com/science/article/pii/S0094576508004062
http://www.sciencedirect.com/science/article/pii/S0094576508004062
http://www.xilinx.com/prs_rls/design_win/0317satellite.htm
http://www.xilinx.com/prs_rls/design_win/0317satellite.htm

References 245

Systems, 2009. AHS 2009. NASA/ESA Conference on, pages 336–343,

2009. doi: 10.1109/AHS.2009.13.

[88] L. Li, B. Fiethe, H. Michalik, and O. Björn. Efficient implementation

of the ccsds 122.0-b-1 standard on space-qualified fpgas. In Proceed-

ings of 2012 ESA workshop on Onboard Payload Data Compression

(OBPDC), 2012.

[89] C. Egho, Tanya Vladimirova, and M.N. Sweeting. Acceleration of

karhunen-loeve transform for system-on-chip platforms. In Adaptive

Hardware and Systems (AHS), 2012 NASA/ESA Conference on, pages

272–279, 2012. doi: 10.1109/AHS.2012.6268662.

[90] Kiely A., Klimesh M., Xie H., and Aranki N. Icer-3d: A progressive

wavelet-based compressor for hyperspectral images. In Interplanetary

Network Progress Report 42-164, pages 1–21, 2006. URL http://tmo.

jpl.nasa.gov/progress_report/42-164/164A.pdf.

[91] G.J. Sullivan. On embedded scalar quantization. In Acoustics, Speech,

and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE Inter-

national Conference on, volume 4, pages iv–605 – iv–608 vol.4, may

2004. doi: 10.1109/ICASSP.2004.1326899.

[92] Khronos Group. The open standard for parallel programming of het-

erogeneous systems, 2014. URL http://www.khronos.org/opencl.

[93] Nvidia Corporation. Cuda technology, 2006. URL http://www.

nvidia.com/CUDA.

[94] E. Kandrot J. Sanders. CUDA by example. Addison Wesley, 2011.

[95] Nvidia Corporation. Cuda documents, 2012. URL http://http://

docs.nvidia.com/cuda/index.html.

http://tmo.jpl.nasa.gov/progress_report/42-164/164A.pdf
http://tmo.jpl.nasa.gov/progress_report/42-164/164A.pdf
http://www.khronos.org/opencl
http://www.nvidia.com/CUDA
http://www.nvidia.com/CUDA
http://http://docs.nvidia.com/cuda/index.html
http://http://docs.nvidia.com/cuda/index.html

246 References

[96] Nvidia Corporation. Nvidia’s next generation cuda compute ar-

chitecture fermi, 2009. URL http://www.nvidia.com/content/

PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_

Whitepaper.pdf.

[97] M. Harris. Optimizing cuda. Supercomputing conference, Reno, NV,

2007.

[98] M. Harris and M. Garland. Optimizing parallel prefix operations for

the fermi architecture, 2011.

[99] A. Balevic. Parallel variable-length encoding on gpgpus. In Proceedings

of Euro-Par’09 Int. Conf. on Parallel Processing, pages 26–35, 2009.

[100] Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel

prefix sum (scan) with cuda. GPU gems, 3(39):851–876, 2007.

[101] Catapult R© C Synthesis User’s and Reference Manual - University Ver-

sion - Release 2010a. Mentor Graphics Corporation, 2010.

[102] Sangchul Kim, Hyunjin Kim, Taeil Chung, and Jin-Gyeong Kim. De-

sign of h.264 video encoder with c to rtl design tool. In SoC Design

Conference (ISOCC), 2012 International, pages 171–174, 2012. doi:

10.1109/ISOCC.2012.6407067.

[103] T. Damak, I. Werda, N. Masmoudi, and S. Bilavarn. Fast prototyping

h.264 deblocking filter using esl tools. In Systems, Signals and Devices

(SSD), 2011 8th International Multi-Conference on, pages 1–4, 2011.

doi: 10.1109/SSD.2011.5767375.

[104] J.E. Sanchez, Augé E., Kiely A., Blanes I., and J. Serra-Sagristà.

Performance impact of parameter tuning on the ccsds-123 lossless

multi- and hyperspectral image compression standard. In Proceed-

ings of 2012 ESA workshop on Onboard Payload Data Compression

(OBPDC), 2012.

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

References 247

[105] Group on Interactive Coding of Images Universitat Autonoma de

Barcelona. Emporda software (a ccsds-123 implementation), 2013.

URL http://gici.uab.es/GiciWebPage/emporda.php.

[106] Eumetsat. Eumetsat polar system - second generation, 2014.

URL http://www.eumetsat.int/website/home/Satellites/

FutureSatellites/EUMETSATPolarSystemSecondGeneration/

index.html.

http://gici.uab.es/GiciWebPage/emporda.php
http://www.eumetsat.int/website/home/Satellites/FutureSatellites/EUMETSATPolarSystemSecondGeneration/index.html
http://www.eumetsat.int/website/home/Satellites/FutureSatellites/EUMETSATPolarSystemSecondGeneration/index.html
http://www.eumetsat.int/website/home/Satellites/FutureSatellites/EUMETSATPolarSystemSecondGeneration/index.html

	Abstract
	Resumen
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	Table of Contents
	1 Introduction
	1.1 Outline
	1.2 Preliminary concepts
	1.2.1 Multispectral and hyperspectral images
	1.2.2 Instruments and sensors for hyperspectral data collection
	1.2.3 Applications of hyperspectral images
	1.2.4 Hyperspectral image compression
	1.2.4.1 Lossless versus lossy compression

	1.3 Motivation of research
	1.3.1 Importance of on-board hyperspectral image compression
	1.3.2 Limitations and difficulties of the on-board hardware

	1.4 Research goals
	1.5 Organization of this document

	2 On-board hyperspectral image compression algorithms and hardware implementations
	2.1 Outline
	2.2 Algorithms for on-board hyperspectral image compression
	2.2.1 Requirements and limitations of an on-board hyperspectral image compression algorithm
	2.2.2 Transform-based compression algorithms for hyperspectral images
	2.2.3 Prediction-based compression algorithms for hyperspectral images
	2.2.4 Recent research on hyperspectral image compression algorithms
	2.2.5 CCSDS Standard algorithms for satellite data compression

	2.3 Physical implementations for on-board compression of hyperspectral images
	2.3.1 On-board hardware technology requirements
	2.3.2 Software implementations
	2.3.2.1 Implementations on general-purpose CPUs
	2.3.2.2 Implementations on DSPs
	2.3.2.3 Implementations on GPUs

	2.3.3 Hardware implementations
	2.3.3.1 Hardware design flow
	2.3.3.2 Implementations on ASICs
	2.3.3.3 Implementations on FPGAs

	3 Implementation of a lossy compression algorithm for hyperspectral images on a GPU
	3.1 Outline
	3.2 LCE algorithm description
	3.2.1 Prediction
	3.2.2 Rate-distortion optimization
	3.2.3 Quantization and mapping
	3.2.4 Entropy coding
	3.2.5 File format
	3.2.6 LCE compression efficiency

	3.3 Software implementation of the LCE algorithm
	3.3.1 Generation of the compressed file
	3.3.2 Configuration parameters

	3.4 GPU architecture and NVidia CUDA
	3.4.1 CUDA abstractions
	3.4.2 CUDA memory spaces
	3.4.3 Nvidia TESLA C2075 GPU

	3.5 Parallelization of the LCE compressor with CUDA
	3.5.1 Allocation of the image data in the GPU
	3.5.2 Prediction, quantization and mapping
	3.5.3 Entropy coding
	3.5.4 Bit packing

	3.6 Parallelization of the LCE decompressor
	3.6.1 Preliminary considerations
	3.6.2 Header design
	3.6.3 Decoding the blocks
	3.6.4 Inverse quantization and prediction

	3.7 Experimental results
	3.7.1 Validation
	3.7.2 Impact of adding a header
	3.7.3 Profiling
	3.7.4 Speedup
	3.7.5 Throughput
	3.7.6 Effect of the configuration parameters in the performance of the GPU implementation of the LCE compressor

	4 Implementation of a lossy compression algorithm for hyperspectral images on an FPGA
	4.1 Outline
	4.2 CatapultC design flow
	4.3 Adapting the C language source code of the LCE algorithm for CatapultC
	4.3.1 Identification of the top function and inputs and outputs of the design
	4.3.2 Configuration parameters
	4.3.3 Reducing the complexity of the mathematical operations to calculate the gain factor
	4.3.4 Loop optimization

	4.4 Results of the FPGA implementation of the LCE algorithm with CatapultC
	4.4.1 Manual scheduling of the design
	4.4.2 Implementation of the LCE algorithm using a modular approach
	4.4.3 Comparison with the FPGA implementation of a near-lossless algorithm

	4.5 Performance comparison: FPGA, GPU, CPU

	5 Implementation of the CCSDS standard for lossless hyperspectral image compression on a space-qualified FPGA
	5.1 Outline
	5.2 The CCSDS 123 standard for lossless multispectral and hyperspectral image compression overview
	5.2.1 Prediction
	5.2.2 Entropy coding

	5.3 Design methodology
	5.4 Impact of the user-defined parameters in the compression efficiency
	5.5 Architectural design considerations
	5.5.1 Encoding order
	5.5.2 Local sum mode and prediction mode
	5.5.3 Number of bands for prediction
	5.5.4 Hardware complexity estimation
	5.5.4.1 Comparison and complexity estimation

	5.6 HyLoC Hardware architecture description
	5.6.1 HyLoC verification and validation

	5.7 Experimental results
	5.8 Comparison of hardware technologies for the implementation of hyperspectral image compression algorithms
	5.8.1 Implementations on GPUs
	5.8.2 Implementations on FPGA
	5.8.2.1 Comparison with state-of-the-art FPGA implementations of hyperspectral compression algorithms

	5.8.3 Implementations on space-qualified FPGAs

	6 Conclusions
	6.1 Further research work

	A Sinopsis en español
	A.1 Introducción
	A.2 Objetivos y metodolgía de trabajo
	A.3 Compresión con pérdidas en GPU y FPGA
	A.3.1 Implementación del algoritmo LCE en una GPU
	A.3.2 Implementación del algoritmo LCE en una FPGA

	A.4 Compresión sin pérdidas en FPGA
	A.4.1 Algoritmo CCSDS 123
	A.4.2 Implementación del CCSDS 123 sobre una FPGA cualificada para el espacio

	A.5 Conclusiones

	B Publications
	B.1 Journals
	B.2 International Conferences

	References

