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ABSTRACT 
In this paper, we have used Geographical Information Systems (GIS) to solve the planar 
Huff problem considering different demand distributions and forbidden regions. Most of 
the papers connected with the competitive location problems consider that the demand 
is aggregated in a finite set of points. In other few cases, the models suppose that the 
demand is distributed along the feasible region according to a functional form, mainly a 
uniform distribution. In this case, in addition to the discrete and uniform demand 
distributions we have considered that the demand is represented by a population surface 
model, that is, a raster map where each pixel has associated a value corresponding to the 
population living in the area that it covers. Taking into account the demand distribution 
and the location and size of the existing facilities, we have obtained a raster map where 
each pixel has associated the estimated capture for a new competing firm if it decides to 
locate on it. Finally, a real example is solved where the solution for the three scenarios 
is compared. 
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1 INTRODUCTION 
 
In this paper we investigate the follower competitive location problem in the leader-
follower model. A new firm wants to establish a facility in a market where other 
competing firms already exist. We suppose that each facility is characterized by its 
quality level that may combine aspects such as size, prices, parking areas, opening 
hours, accessibility, and so on. Customers make their choice according to the attraction 
or utility that they perceive from the facilities. The attraction perceived by the customers 
from the facilities has been represented mathematically by an attraction function which 
increases with respect to the quality level and decreases with respect to the distance. 
Attraction functions are used to define the customer choice rule, which represents the 
customer behaviour and the customer flow in the market.  
 
Assuming certain customer preferences, the firms, whose natural objective is the 
maximization of the market share or profit, take their location decisions, influencing 
with their actions the results and strategies of their competitor. This movement of 
individuals defines the basis of the location-spatial interaction models.  
 



The first spatial interaction models were gravity models, which assumed analogies 
between human behaviour and Newtonian gravity laws. The basic gravity formulation, 
in which the movement of individuals between two points is inversely proportional to 
the distance separating them, was applied by Reilly (1931) and Converse (1949) to 
analyze retail market areas. Later, Huff (1964) proposed an alternative model to 
overcome certain limitations of the Reilly-type approach. According to this new model, 
the probability that a customer at i buys at a facility j is given by 
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where ja  represents the size of a facility j, ijd  is the distance (or travel time) from 

demand point i to facility j, and λ is a parameter which reflects the effect of the distance 
on the consumer’s behaviour and whose value is estimated empirically. The quotient 
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d   can be interpreted as an attraction function (where the attraction felt by a customer 

at point i towards facility j is directly proportional to the size of the facility and 
inversely proportional to a power of the distance between them).  
 
The planar Huff based competitive location model, that is, the case where each point in 
the plane is a potential location for the new facility, has previously been studied. 
Drezner (1994) solved the planar problem considering Euclidean distances. In this case, 
the author considered that the demand was aggregated in a finite set of points and used 
the Weiszfeld algorithm to obtain the best location. This algorithm is a gradient based 
method that yields a local optimum, so the procedure must be run several times and the 
best solution obtained is then selected. Later, Drezner and Drezner (1997) proposed a 
problem resolution for the continuous demand case. This resolution is based on the 
assumption that the demand density function f(x,y) is known, that is, that there exists a 
known functional relationship between the coordinates (x,y) of a point and its 
population density. Due to the complexity of the procedure for the resolution of this 
problem, the authors proposed an approximation approach based on the aggregation of 
the demand. 
 
In this paper, the planar Huff problem has been solved using GIS based tools. GIS 
makes the study of spatial interrelations easier, and the combination of GIS and location 
theory will help the development and application of location models. A review of the 
connections between GIS and Location Science can be found in Church (2002), and 
more recently, in Murray (2010), where an overview and discussion about how GIS has 
contributed to location science is provided. Examples of location model integration into 
a GIS framework can be found in Spaulding and Cromley (2007), and Suárez et al. 
(2011), as well as references cited in Church (2002) and Murray (2010). 
 
Most of the papers connected with the competitive location problems consider that the 
demand is aggregated in a finite set of points. In other few cases, the models suppose 
that the demand is distributed along the feasible region according to a functional form, 
mainly a uniform distribution. In this paper, we have considered three scenarios for the 
demand distribution. In the first scenario we have considered that the demand of each 
administrative unit is aggregated at a point; in the second the demand of each 



administrative unit is uniformly distributed along its surface; and finally, a surface 
population map is considered in the third. A surface population map is a raster map 
where each pixel has associated a value corresponding to the population living in the 
area that it covers and that is calculated based on the population of the administrative 
unit and the land use associated to this point. This model has the advantage of being 
able to discriminate between populated and non-populated areas. The surface population 
models have been developed, among other considerations, to reduce the effect that the 
aggregation level of statistical information has over demographic studies. 
 
In the location literature some works focused on analysing the error due to the demand 
aggregation which can be found. See, for example, Francis et al. (2008) for an 
interesting review about the aggregation measures for a large class of location models. 
For the particular case of competitive location models, the problem has been analyzed 
by Drezner and Drezner (1997). Of course, when an aggregation process is done, a trade 
off between computational time and accuracy occurs. For certain problems, time factor 
is vital, for example, for the choice of the shortest path for an ambulance to an 
emergency, but in competitive location, accuracy is more important than computational 
time. The location of a new facility is a decision for a long range temporary horizon and 
the firms need an efficient solution rather than an instant one. 
 
The inclusion of forbidden regions, i.e. areas where the location of new facilities are not 
allowed, means an important increase in the complexity of the resolution for the 
traditional Operation Research methods (see for example McGarvey and Cavalier 
2005). The use of the GIS procedure we propose in this paper allows us to exclude these 
regions easily without considering any analytical assumption. 
 
The result of the proposed method is a raster map where each pixel of the feasible 
region has associated the estimated Huff capture for a new facility located on it. This 
solution format permits its use within a multi-criteria decision environment in 
combination with other criteria (minimization of the distance to the distribution centres 
or to the main roads, minimization of the cannibalization, etc.) as Suárez-Vega et al. 
(2011, 2012, 2014) have proposed. 
 
The rest of the paper is organized as follows. The model and the resolution method are 
explained in Section 2. In Section 3 the problem of finding the best location for a new 
hypermarket on the island of Gran Canaria (Spain) is solved and the solution obtained 
using the different demand distributions are compared. Finally, we present some 
conclusions in Section 4. 
 
2. SOLVING THE HUFF-BASED COMPETITIVE LOCATION PROBLEM ON THE 
PLANE 
 
In this paper, we are going to solve a competitive location problem using GIS based 
tools. The geographical information can be presented in two formats: vector and raster. 
In a vector layer the objects are represented by means of points, lines or polygons. Each 
layer has associated a table where, for each element, the information for different 
attributes is stored. A raster layer is a matrix of cells (named pixels) which contain 
certain value and can be represented by giving each pixel a colour with respect to its 
value. Each raster map is determined by five parameters: number of columns (ncol) and 
rows (nrow), coordinates x and y of the lower left corner (xllcorner, yllcorner) and the 



size of the pixel (cellsize). Knowing these values, it is easy to associate a pixel and its 
coordinates in the map. If a pixel P is located at row r and column c, then 
( , ) ( ( 1)* ( 1)* )x y xllcorner c cellsize yllcorner r cellsize      are the coordinates of 
the lower left corner of P. 
 
In this paper, the planar Huff problem has been solved within a raster environment. A 
new firm A wants to determine the best location for a new facility that must compete 
with the facilities that already exist in a market. Let 0x  and 0a  be the location and the 

quality level for the new facility and  1 2, ,...,p pX x x x  and  1 2, ,...,p pA a a a  the 

locations and the quality levels of the existing facilities. The attraction felt by customers 
at pixel P towards a facility j at jx  with quality level ja  is given by  
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distance between pixel P and jx . 

 
Let PM be the population map, that is, the raster map containing the demand 
distribution and let ( ) 0w P   be the population at pixel .P PM  Then, following the 

Huff model, the market share captured by a new facility with quality level 0a  located at 

point 0x  is given by 
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Therefore, the following problem must be solved to obtain the solution for our 
competitive location problem: 

0
0( ),

x F
Max M x


                                                          (2) 

where F is a raster map representing the feasible region containing all the potential 
locations for establishing the new facility. Note that under the assumption of a constant 
marginal cost, maximizing profit is equivalent to maximizing captured demand. 
 
To solve the problem we have combined a C coded program with some ArcGis 9.3® 
tools. First, the feasible region and the population maps are exported to an ASCII file. 
Then the C program calculates 0( )M x  for each 0x F  taking into account the 

coordinates of the existing facilities and their quality levels. The program stores this 
information in an ASCII file that can be imported to ArcGis in raster format. This final 
map reflects the estimated Huff capture for each pixel in the feasible region. 
Additionally, not only the best locations can be pinpointed but we can also compare the 
suitability of the different zones. 
 
The C program solves problem (1) for each pixel in F. The complexity of solving 
problem (1) is o(nrowPM*ncolPM) where nrowPM and ncolPM are the number of rows 
and columns of the population map. To solve (2) it is necessary to solve problem (1) 
nrowF*ncolF times (nrowF, ncolF are number of rows and columns of the feasible 



region). The total complexity is o(nrowPM*ncolPM* nrowF*ncolF). That means that 
the computational effort to solve our planar Huff model depends on the extent of the 
region analyzed and on the size of the pixels of both F and PM. Note that for the 
aggregate demand case, the population map PM can be substituted by a finite set of 
points resulting in a significant decrease in the complexity of problem (1). 
 
The pixel size for the feasible region may depend on the surface needed for locating the 
new service. A traditional assumption is to suppose a pixel size such that at least four 
pixels are needed to cover the area required for the new service. For example, for 
locating a hypermarket with 5000 m2 of sales surface with another 5000 m2 of parking 
area usually it is not necessary to use a pixel size smaller than 50 m. 
 
In order to reduce the computational effort it would be very interesting to consider the 
existence of forbidden regions. For example, water bodies, natural protected areas or 
zones with high slope, can be discarded from the feasible region. The incorporation of 
forbidden regions using traditional OR methods introduces an important complexity in 
the resolution methods whereas by employing GIS tools this process may be quite easy 
if the information is available in digital maps. 
 
 
3. AN APPLICATION 
 
The previous tools have been used to find the more promising locations for a new 
hypermarket on the island of Gran Canaria (Spain). According to the Law of 
Commercial Activity Regulation in the Canaries (B.O.C., 1994) a hypermarket is a 
large store which is a combination of a food store and a department store with a 
minimum sales area of 2500 m². In this application, the quality level is measured by the 
hypermarkets sales surface (m²).  
 



 
Figure 1. Population surface model and existing hypermarkets 

 
Figure 1 shows the scenario where our problem has arisen. Gran Canaria has an almost 
circular shape with a surface of 155824.43 Ha and a population of 757821 inhabitants 
(2006 Census Data). As the Figure shows, in 2007 there already existed in Gran Canaria 
twelve hypermarkets. Note that, 51.7 % of the population and 67.9 % of the sales 
surface of the island is concentrated in the capital (the north-eastern part of the island). 
The rest of the hypermarkets, and an important part of the demand, are distributed on 
the eastern and southern sides of the island. The centre and western parts of the island 
are mountainous areas with a low density of population.  
 



 
Figure 2. Uniform population distribution and aggregated demand points 

 
The population map used was elaborated by Suárez-Vega et al. (2008). In short, a 
surface model of population is a raster map that stores the population of an area. Each 
pixel on the map has associated the population of the area that it covers. A Land Uses 
map in combination with a Constructions layer was used in order to generate the 
ancillary map for the dasymetric method. The population densities of the polygons in 
the ancillary layer have been calculated taking the aggregated density of an influence 
area (independently of the administrative limits). In this case, two values for the pixel 
size of the population maps have been considered in order to analyse the effect on the 
results of this parameter. In particular, we have considered population maps with 50 and 
100 meters of pixel size, and therefore, a pixel represents a surface of 2500 and 10000 
m2, respectively. 
 
The island of Gran Canaria is distributed into 1029 population entities (the less 
aggregated administrative unit considered by the Spanish National Institute of Statistics 
(INE)). Considering these administrative units, we have considered two demand 
distributions. First we have aggregate the demand of each population entity to its 
centroid to obtain a discrete demand distribution. Second, we have uniformly distributed 
the demand of each entity along its surface. Both demand distributions are shown in 
Figure 2. To analyse the effect of the pixel size of the population map on the problem 
results, sizes of 50 and 100 m. have been used for both the surface population and the 
uniform demand distribution maps. 
  
To refine the feasible region Land Uses and Elevation maps were used. The Land Uses 
map (1/25000) from year 2002 provided by GRAFCAN (the official supplier of 
geographical information in the Canaries) was employed to discard some areas such as 
water bodies, beaches or protected areas. The elevation data were obtained from the 



Shuttle Radar Topography Mission (SRTM) and areas with slopes higher than 30 % 
were discarded from the analysis for reducing the building problems. 
 

 
Figure 3. Capture maps for a new hypermarket of 2500 m2 and  = 2 using the 

population surface model. 
 
To calculate the customers’ attraction, function   1f d d    is considered. To reflect 

different customers’ distance perceptions, three values of  (0.5, 1, 2) have been used. 
Note that, an increase of  means that customers present less disposition to travel. The 
problem has been solved considering three possible sizes for the new hypermarket, 
2500, 5000, and 7500 m2, taking a pixel size for the feasible region of 30, 50, and 60 
meters, respectively. 
 
The results obtained in each case can be plotted into a raster map where each pixel has 
associated the estimated capture for the new hypermarket if it were to be located on it. 
Note that the use of this map provides the decision maker with a broader vision of the 
problem and allows for comparisons between different alternatives in contrast to the 
traditional OR methods which only give a global optimum or, when it is not possible, a 
set of local optima.  
 
For instance, Figure 3 shows the capture map when the population surface model is 
used to locate a 2500 m2 hypermarket and the distance decay parameter is  = 2. The 
map is symbolized using the quantile method, i.e., ordering the pixels in increasing 
order with respect to the capture, and classifying them into five classes with the same 
number of elements within each one. The point with the highest capture for the new 
store is marked with a triangle. The white zones are the areas that do not belong to the 
feasible region. Note that the most promising areas for locating the new hypermarket are 



mainly in the north-west of the island, a zone where no hypermarkets exist and the 
population is dispersed.  
 
Table 1 shows the optimum values obtained by the new facility in the different 
scenarios analysed in this paper (columns four to six). Note that the optimal value is 
higher the greater the customers’ resistance to travel for shopping, and of course, the 
greater the size of the new store. We assume that the best results are the obtained by the 
surface model because it is the most realistic population distribution. So, we will 
consider the solution to this model as the best solution among the three solutions 
obtained. From this point of view, columns seven and eight show the percentage error 
achieved for the optimal values obtained by the uniform and discrete models, 
respectively, with respect to the best solution. Note that when the pixel size is 50 m, the 
error is around double that obtained for size 100 m. This means that an increase of the 
precision in the population map implies an important improvement in the solution for 
the surface population model, but not in the uniform distribution model. There is not a 
significant difference in the error obtained by the uniform model (an average error of 
2.47 %) and by the discrete model (an average error of 2.40 %). 
 

Size 
(m2)  

Pixel size 
(m2)  

Population
surface 

Uniform 
distribution

Discrete 
demand 

Uniform 
error (%) 

Discrete 
error (%) 

2500 

0.5 
100 26513.8 26264.3 26431.6 1.13 1.17 
50 27406.9 26217.6 26431.6 2.44 2.30 

1 
100 30998.3 30769.1 31035.6 1.14 1.25 
50 33869.8 30714.2 31035.6 2.34 2.27 

2 
100 50682.7 45452.1 46300.5 1.15 1.34 
50 53680.4 45385.2 46300.5 2.80 2.82 

5000 

0.5 
100 51148.2 50664.6 50849.3 1.12 1.16 
50 52785.7 50563.7 50849.3 2.43 2.29 

1 
100 58036.1 57597.9 57845.3 1.11 1.24 
50 62413.4 57491.1 57845.3 2.35 2.27 

2 
100 76817.8 75117.1 75002.3 1.18 1.39 
50 83800.5 74002.0 75002.3 2.64 2.65 

7500 

0.5 
100 74111.6 73385.7 73714.6 1.12 1.16 
50 76389.5 73311.7 73714.6 2.41 2.29 

1 
100 82462.8 81789.2 82058.0 1.14 1.23 
50 87787.4 81585.8 82058.0 2.34 2.26 

2 
100 101550.1 101047.7 100847.2 1.14 1.34 
50 109726.1 100795.7 100847.23 2.47 2.48 

Table 1. Optimum values and errors for the different scenarios solved 
 
As we have previously commented, the result of this GIS tools is a map that reflects the 
estimated Huff capture for each pixel in the feasible region. These maps can be 
compared in order to obtain error maps. Figure 4 shows a map representing the error 
resulting from the use of the discrete demand model instead of the surface population 
model (surface population capture minus discrete capture). Using this map, the high 
underestimated zones (in dark tones) and overestimated areas (in clear tones) of the 
discrete model can be clearly detected. Note that, in this case, the zones with the highest 



captures in the population surface model are underestimated by the discrete model and 
usually, the areas close to the existing facilities are overestimated. 

 
Figure 4. Error map for a new 2500 m2 hypermarket and  = 2 for the discrete model 

 
Figure 5 shows the best locations for the new store for the different scenarios. In fact the 
number of location is greater but for clarity these have been aggregated. The maximum 
distance between a best location and a point marked on the map is 180 meters. Table 2 
presents the correspondence between the location for the scenarios and the points in the 
map (columns three, four and six). The new store is always located in a zone where no 
hypermarkets already exist, 25 out of 27 are in the north-western part of the island 
around an imaginary line of about 4800 m., and two are located in the southeast. The 
distance (in meters) between the solution using the population surface model and the 
uniform and discrete population distributions are presented in columns five and seven, 
respectively. Note that in the surface model, the best locations for  = 0.5 and  = 1 
always coincide and only the location for  = 2 varies. When  = 0.5 the solutions for 
the uniform and discrete model coincide, but for the other values of  the locations 
appear interchanged (except for 2500 m2 that always coincide). The distance between 
the uniform and discrete best locations to the best location for the surface model when  
= 0.5 and  = 1 varies between 1367 and 1680 meters. The most significant differences 
occur when  = 2, especially, when the size of the new hypermarket is 2500 m2. In this 
case, the difference between the best locations is around 33 kms. 



 
Figure 5. Best locations for the new hypermarket for the different scenarios 

 
Size 
(m2)  

Population
surface 

Uniform 
distribution

Distance
PS-U (m)

Discrete 
distribution

Distance 
PS-D (m) 

 0.5 1 3 1652 3 1672 
2500 1 1 3 1493 3 1557 

 2 2 8 32984 8 32930 

5000 
0.5 1 3 1655 3 1680 
1 1 6 1367 3 1434 
2 4 3 2367 6 2151 

7500 
0.5 1 3 1588 3 1641 
1 1 7 1475 3 1445 
2 5 3 2560 7 2440 

 
Table 2. Best locations for the different scenarios 

 
Table 1 shows the difference among the different models in relation with the optimal 
values obtained. But, what happen when the firm locates the new store following a 
model that is not the best? If the new hypermarket is located using the discrete demand 
model, the firm has an expected capture of Cd, but in fact the best approximation to the 
capture at this point is that obtained using the surface population model, Csd. The 
percentage error experimented by the new firm with respect its expected capture is 

given by 100 .


 sd d
d

d

C C
e

C
 Of course, if the demand distribution chosen is the 

uniform model, the corresponding error is 100 .su u
u

u

C C
e

C


  Table 3 shows the 



percentage error that occurs when the new firm chooses either the uniform or the 
discrete demand model instead the surface population model. 
 
Note that, the average errors for the problems solved in this paper are 4.33 % and 3.59 
% for the uniform and discrete demand models, respectively. The maximum errors 
obtained are 10.67 % (for the uniform case) and 9.5 % (for the discrete case). Using 
both, the uniform and the discrete demand models, the capture is always underestimated 
with respect to the capture obtained with the surface model. 
 

Size 
(m2)  

Pixel 
size 

Cu Csu eu Cd Csd ed 

2500 

0.5 
100 26264.3 26512.2 0.944 26431.6 26509.4 0.294 
50 26217.6 27298.2 4.122 26431.6 27295.0 3.266 

1 
100 30769.1 30996.3 0.738 31035.6 30992.0 0.141 
50 30714.2 33325.4 8.502 31035.6 33275.7 7.218 

2 
100 45452.1 49720.8 9.392 46300.5 49575.8 7.074 
50 45385.2 49780.1 9.683 46300.5 49587.0 7.098 

5000 

0.5 
100 50664.6 51148.2 0.955 50849.3 51134.6 0.561 
50 50563.7 52605.8 4.039 50849.3 52596.6 3.436 

1 
100 57597.9 58036.1 0.761 57845.3 58020.7 0.303 
50 57491.1 61825.0 7.538 57845.3 61735.6 6.725 

2 
100 75117.1 75473.1 0.474 75002.3 75467.7 0.621 
50 74002.0 81894.4 10.665 75002.3 82122.2 9.493 

7500 

0.5 
100 73385.7 74111.6 0.989 73714.6 74102.1 0.526 
50 73311.7 76173.7 3.904 73714.6 76154.9 3.310 

1 
100 81789.2 82461.7 0.822 82058.0 82445.5 0.472 
50 81585.8 87140.2 6.808 82058.0 87157.9 6.215 

2 
100 101047.7 101550.0 0.497 100847.2 101544.0 0.691 
50 100795.7 107970.8 7.118 100847.2 108112.1 7.204 

Table 3. Percentage of errors with respect to the population surface models 
 
In this case, the precision of the population map (pixel size) is very important, the 
average errors when the pixel size is 50 are 6.93 % and 5.00 % (for uniform and discrete 
models, respectively) while when the pixel size is 100 these errors are 1.73 % and 1.19 
%, respectively. Finally, the table shows that the error increases when the value of 
parameter  increases, that is, when customers increase their resistance to travel for 
shopping. 
 
4. CONCLUSIONS 
 
In this paper, we have used a GIS based model to solve the planar Huff problem. The 
use of these tools allows us to improve the traditional model into two ways. First the 
inclusion of forbidden regions in the feasible region is quite easy and it does not imply 
an increase of the complexity of the problem. Second, different demand distributions are 
considered in addition to the aggregated model: the population surface model and the 
uniform demand distribution model. In these two new models the population is 
represented as a raster map where each pixel has associated a value corresponding to the 
population living in the area that it covers. In the uniform model, the demand is 



distributed uniformly along the administrative units. In the population surface model, 
the population is distributed along the inhabited areas of each administrative unit taking 
into account the different land uses. 
 
A real example is presented where a new hypermarket is located on the island of Gran 
Canaria (Spain). Different decay distance functions have been considered in order to 
take into account different customers perceptions of the distance. The study was also 
made considering three possible sizes for the new store and two precision levels for the 
population maps. 
 
For the studied example the maximum capture is higher the greater customers’ 
resistance to travel for shopping, and of course, the greater the size of the new store. 
The results obtained show that an increase of the precision in the population map 
implies an important improvement in the solution for the surface population model. The 
change of the pixel size from 100 m. to 50 m. implies that the error produced both in the 
discrete and the uniform models are doubled. There is not a significant difference in the 
error achieved by the uniform and discrete model (an average of 2.47 % and 2.40 %, 
respectively) when a pixel size of 50 m. is used.  
 
We suppose that the best approximation for the capture of the new store is obtained 
using the population surface model and we analyze what happens when the firm locates 
the new store following a model that is not the best. Then, we show how both the 
uniform and the discrete demand models always underestimate the capture, achieving a 
maximum error at the best location for these models of 10.67 % and 9.49 %, 
respectively. 
 
In most of the scenarios solved, the best location for the new store is sited around an 
imaginary line of about 4800 m. in the north-western area of the island, far from the 
existing facility. Only when a new store of 2500 m2 is located and customers present a 
low predisposition to travel to shopping, the location for the discrete and uniform 
models varies around 33 kms. from the population surface solution.  
 
Using these capture maps, not only the best locations can be pinpointed but we can also 
compare the suitability of the different zones and calculate error maps to compare the 
results obtained using different models. These maps can be used within a multi-criteria 
decision environment in combination with other criteria (minimization of the distance to 
the distribution centres or to the main roads, etc.) as Suárez-Vega et al. (2011) have 
proposed.  
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