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Abstract: Additive manufacturing technologies such as directed energy deposition use powder as
their raw material, and it must be deposited in a precise and controlled manner. Venturi injectors
could be a solution for the highly precise transport of particulate material. They have been studied
from different perspectives, but they are always under high-pressure conditions and mostly fed by
gravity. In the present study, an optimization of the different dimensional parameters needed for
the manufacturing of a Venturi injector in relation to a particle has been carried out to maximize the
amount of powder capable of being sucked and transported for a specific flow in a low-pressure
system with high precision in transport. For this optimization, simulations of Venturi usage were
performed using the discrete element method, generating different variations proposed by a genetic
algorithm based on a preliminary design of experiments. Statistical analysis was also performed
to determine the most influential design variables on the objective, with these being the suction
diameter (D3), the throat diameter (d2), and the nozzle diameter (d1). The optimal dimensional
relationships were as follows: a D3 34 times the particle diameter, a d2 26.5 times the particle diameter,
a d1 40% the d2, a contraction angle alpha of 18.73◦, and an expansion angle beta of 8.28◦. With these
proportions, an 85% improvement in powder suction compared to the initial attempts was achieved,
with a maximum 2% loss of load.

Keywords: additive manufacturing; directed energy deposition; venturi; discrete elements modeling;
genetic algorithms; powder transport

1. Introduction

Additive manufacturing has been considered an important and growing form of
manufacturing for many years. The standard ISO/ASTM 52900:2021 [1] defines it as the
process by which, starting from the data of a 3D model, a part is manufactured layer by
layer. However, the way to comply with this definition is extremely varied and depends
on different technologies. This standard divides these technologies into seven categories,
but only four of them can directly use their raw material in powder form: binder jetting,
directed energy deposition, material extrusion, and powder bed fusion.

The materials used in these technologies can be metallic, polymeric, or ceramic, but all
have in common their high quality and consequent cost.

Taking directed energy deposition as an example, this technology uses a combination
of inner gas (normally argon) as a clean atmosphere to avoid oxidation, feeding material
(metallic or polymeric powder [2]), and a power source to melt the powder in a controlled
manner (a laser or electron beam). A schematic of a DED powder system is shown in
Figure 1.
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Figure 1. A schematic diagram of a DED system with a laser and powder feedstock. 

This technology divides the powder feed into three moments [3]: metering, convey-
ance, and delivery. Each moment has different possible methods (mechanical, pneumatic, 
vibration-assisted, or gravitational methods, for example), all of them with different con-
trol necessities. However, a high accurate spray control is needed because part of the 
sprayed powder is not used [4]. This manufacturing system could have multiple nozzles, 
being able to mix different materials to obtain Functionally Graded Materials (FGMs) [5,6]. 

Analyzing the three moments in the powder feed, a novel solution could be the use 
of Venturi injectors, which allow the powder to be sucked from one point and pushed to 
where it is needed in a controlled manner, unifying the metering and conveyance systems. 

From analyzing the solutions on the market that use these technologies, it can be seen 
that the raw materials in powder format tend to have very small particle sizes and are 
available in all densities. These characteristics can greatly influence the design of Venturi 
injectors and must therefore be taken into account when sizing them. 

The most studied point in the literature is the net efficiency of the Venturi injector, its 
mean, and the lowest possible pressure drops. In this direction, Zerpa et al. [7] studied the 
geometry effects of the divergent and convergent sections in classical injectors, as did also 
Almeida [8], but this one with the aim of improving the propulsion of the fluid at the 
injector outlet. Zhang [9] focused on studying how the dimensional parameters affect the 
pressure distribution inside the injector, concluding that the throat length does not affect 
the pressure distribution inside the injector. Also analyzing these variables, in [10], aspect 
ratios were established that sought the maximum allowable differential pressure for the 
injector to operate at the maximum flow rate of the injector. However, Park [11] estab-
lished a maximum differential pressure criterion as a function of Reynolds number. 

A typical effect sought in the use of Venturi injectors is the generation of vacuum, but 
at a certain point the depression can produce cavitation, and given the importance of this 
effect, Shi et al. and Bermejo et al. [12,13] studied how this cavitation affects and its possi-
ble uses. One of these uses is fluid mixing; thus, Shi and Nikrityuk [14,15] studied how 
this cavitation affects the mixing process. 

O’Hern et al. [16] established a method for the design of these injectors, while So-
benko et al. [17] proposed a model for predicting the performance of a Venturi injector, in 
addition to analyzing the flow pressure ratios that generated the highest level of instability 
in the Venturi injector. 

On the other hand, there are studies focused on powder transport or injection. This 
use of Venturi injectors has been well established for many years [18], but progress is still 
being made in understanding the internal phenomena of the injector. When powder is 
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This technology divides the powder feed into three moments [3]: metering, con-
veyance, and delivery. Each moment has different possible methods (mechanical, pneu-
matic, vibration-assisted, or gravitational methods, for example), all of them with different
control necessities. However, a high accurate spray control is needed because part of the
sprayed powder is not used [4]. This manufacturing system could have multiple nozzles,
being able to mix different materials to obtain Functionally Graded Materials (FGMs) [5,6].

Analyzing the three moments in the powder feed, a novel solution could be the use
of Venturi injectors, which allow the powder to be sucked from one point and pushed to
where it is needed in a controlled manner, unifying the metering and conveyance systems.

From analyzing the solutions on the market that use these technologies, it can be seen
that the raw materials in powder format tend to have very small particle sizes and are
available in all densities. These characteristics can greatly influence the design of Venturi
injectors and must therefore be taken into account when sizing them.

The most studied point in the literature is the net efficiency of the Venturi injector, its
mean, and the lowest possible pressure drops. In this direction, Zerpa et al. [7] studied
the geometry effects of the divergent and convergent sections in classical injectors, as did
also Almeida [8], but this one with the aim of improving the propulsion of the fluid at the
injector outlet. Zhang [9] focused on studying how the dimensional parameters affect the
pressure distribution inside the injector, concluding that the throat length does not affect
the pressure distribution inside the injector. Also analyzing these variables, in [10], aspect
ratios were established that sought the maximum allowable differential pressure for the
injector to operate at the maximum flow rate of the injector. However, Park [11] established
a maximum differential pressure criterion as a function of Reynolds number.

A typical effect sought in the use of Venturi injectors is the generation of vacuum, but
at a certain point the depression can produce cavitation, and given the importance of this
effect, Shi et al. and Bermejo et al. [12,13] studied how this cavitation affects and its possible
uses. One of these uses is fluid mixing; thus, Shi and Nikrityuk [14,15] studied how this
cavitation affects the mixing process.

O’Hern et al. [16] established a method for the design of these injectors, while Sobenko
et al. [17] proposed a model for predicting the performance of a Venturi injector, in addition
to analyzing the flow pressure ratios that generated the highest level of instability in the
Venturi injector.

On the other hand, there are studies focused on powder transport or injection. This
use of Venturi injectors has been well established for many years [18], but progress is still
being made in understanding the internal phenomena of the injector. When powder is
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introduced both in virtual tests [19] as well as in real tests [20], it should be noted that the
requirements for fluid transport are different from those for powder transport, and so the
design of injector geometry continues to be studied and advanced, as did by Xu et al. [21].
Of course, it is necessary to study how the sprayed powder behaves depending on its
use [22,23].

In the case of powder transport, it must also be taken into account how particle
morphology affects injector performance [24].

In terms of injector optimization, Expósito et al. [25] established a procedure applied to
classical injectors focused on fluid mixing by using genetic algorithms, and Wang et al. [26]
performed another optimization, also applying it to fluid mixing, but using a somewhat dif-
ferent Venturi injector design and machine learning algorithms as the optimization method.

In all the above studies, no work can be found that focuses on the design of an optimal
Venturi with a view to maximizing powder transport as a priority. It is also noted that
the powder transport studies focus on Venturi injectors that feed powder by gravity, not
by suction.

In addition, if the DED manufacturing process requires an inert gas (normally at high
pressure), the powder feed needs to be at lower pressure to guarantee the fast cleaning of
the atmosphere. Thus, the transport of powder at atmospheric pressure is a good option,
but no studies have been found that focus on the design of low-pressure Venturi injectors
(less than 100 kPa) [18].

Based on these detected shortcomings, this study optimized the different dimensional
parameters of a Venturi injector to maximize the amount of powder capable of suction
and transport for a specific flow in a range of low pressures and with high transport
precision for the development of a mixing powder device for Functionally Graded Additive
Manufacturing.

2. Materials and Methods

This work presents a methodology for optimizing the dimensions of Venturi injectors
with low pressure for the transportation of powder with high accuracy. To achieve this,
this section presents the description of the problem and the main dimensions of Venturi
injectors; then, the modeling of the problem (both from the point of view of the flow, CFD,
particle interaction, DEM, and coupling between them); and finally, the optimization tools
used to obtain the optimal design. Alongside this, the final section explains the statistical
tools used to determine the significance of variables with the results obtained. This process
follows the flowchart shown in Figure 2.

2.1. Problem Description

The objective of this work is to establish a sizing methodology for optimized Venturi
injectors, using particle and flow characteristics as a reference.

The mean particle diameter of the powder to be conveyed and the flow velocity were
used as reference constants.

In this case, a powder named Powder-ID256-Scale_1.00 was used, which can be
found in the database of representative but not real calibrated powders in Altair Edem
software® (2022 version) and has the characteristics presented in Table 1. For the flow rate,
a volumetric flow rate of 0.01 m3/s was considered.

Table 1. Particle data.

Particle properties

Average diameter 1 mm
Standard deviation of diameter 0.15 mm

Poisson’s ratio (ν) 0.25
Solid density (ρ) 490 kg/m3

Shear modulus (G) 1.00 × 107 Pa
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Table 1. Cont.

Particle–particle interactions

Coefficient of restitution 0.3
Coefficient of static friction 0.1

Coefficient of rolling friction 1

Particle–wall interactions

Coefficient of restitution 0.1
Coefficient of static friction 0.5

Coefficient of rolling friction 0.1
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Since it is not entirely clear which factors influence powder suction, the dimensional
variables shown in Table 2 were taken as the objects of our study. These variables are
depicted in Figure 3.

Table 2. Venturi injector design variables and their constraints.

Variable Range of Action

Venturi inlet diameter (D1) 101–200% of d1 or 34 mm
Mixing chamber inlet nozzle diameter (d1) 40–100% of d2 or 34 mm

Venturi outlet diameter (D2) 101–200% of d2 or 34 mm
Mixing chamber outlet diameter (d2) 10–33 times the particle diameter in mm
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Table 2. Cont.

Variable Range of Action

Suction pipe diameter (D3) 10–34 times the particle diameter in mm
Percentage of the length of the mixing chamber

where the nozzle is introduced (PRi) 1–75% of the length of the mixing chamber

Venturi throat length (Lt) 1–50 mm
Input convergence angle (α) 1–30 degrees

Exit divergence angle (β) 1–10 degrees
Mixing chamber diameter (Dmc), dependent on and limited by the largest of the variables D1, D2, and D3 in each
case (not the design variable). Mixing chamber length (Lmc), dependent on and limited by the greater of the
variable D3 in each case (not the design variable). Length corresponding to Lmc multiplied by PRi (Lni).
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Figure 3. Venturi injector design section and its variables.

Due to the physical constraints of possible laboratory manufacture, although the
variables D1, d1, and D2 have a percentage relationship with other variables, if the result of
this relation is greater than 34 mm, this value will be taken as the dimension.

2.2. Modeling the Problem

To carry out this study, a simulated environment was developed. For these simulations,
3 interactions must be taken into account: the fluid, the particle–particle interaction, and
the interaction between the fluid and the particles. In addition, the simulation interval time
must be the minimum possible with the objective of reducing the computational time, but
enough to guarantee powder ejection from the Venturi. In this study, that time was 2 s.

2.2.1. Modeling the Fluid Motion

For fluid modeling, the fluid was taken as a continuous element and was governed by
the Navier–Stokes continuity equations. In general, applying the conservation of mass to a
control volume, the equation in differential form corresponds to Equation (1):

∂ρ

∂t
+∇ ·

(
ρ
→
u
)
= 0 (1)

where ρ is the density of the fluid; t is the time; and
→
u is the flow velocity vector.

In turn, the conservation of motion quantity equation is obtained by applying New-
ton’s second law to the same control volume, where Equation (2) governs it, and its
components can be viscous, pressure, gravity, centrifugal forces, Coriolis forces, etc.:

ρ
∂
→
u

∂t
+
(

ρ
→
u · ∇

)→
u = −∇p + ρg +∇ · τ (2)
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where p is the pressure; g is the gravity; and τ is the viscous stress vector corresponding

to Equation (3), where the vector
→
u is decomposed in the

→
i ,

→
j , and

→
k directions with the

following subscript:

τij = µ f

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
µδij

∂uk
∂xk

(3)

where µ f is the dynamic viscosity of the fluid.
In addition, the Spalart–Allmaras turbulent flow model [27] was added, which is

governed by Equation (4):

∂(ρυ̂)

∂t
+

∂
(
ρυ̂uj

)
∂xj

=
1
σ

(
∂

∂xj

[(
µ f + ρυ̂

) ∂υ̂

∂xj

]
+ ρCb2

∂υ̂

∂xj

∂υ̂

∂xj

)
+ P + D (4)

where σ = 2/3 and Cb2 = 0.622. Also, P and D are the production and destruction terms
of the modified turbulent viscosity, corresponding to Equations (5) and (9), respectively:

P = ρCb1Ŝυ̂ (5)

with
Ŝ =

√
2ΩijΩij +

υ̂

κ2d2 fv2 (6)

Ωij =
1
2

(
∂ui
∂xj

−
∂uj

∂xi

)
(7)

fv2 = 1 − x
1 + xFv1

(8)

where Ωij is the rotation tensor; d is the distance from the nearest wall; κ is the Von Karman’s
constant (0.41); and Cb1 = 0.1355.

D = −ρCw1Fw

(
υ̂

d

)2
(9)

with

Fw = g

(
1 + C6

w3

g6 + C6
w3

)1/6

(10)

g = r + Cw2

(
r6 − r

)
(11)

r =
υ̂

Ŝκ2d2
(12)

Moreover, for the modeling of the turbulent viscosity, Equation (13) was used:

mt = ρυ̂Fv1 (13)

with

Fv1 =
x3

x3 + C3
v1

(14)

x =
υ̂

ν
(15)

This model was completed with the coefficients Cw1 = Cb1
κ2 + 1+Cb1

σ2 , Cw2 = 0.3,
Cw3 = 2.0, and Cv1 = 7.1.
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2.2.2. Modeling of Particle Interaction

Different mathematical models can be used for particle modeling, depending on the
particle characteristics.

When talking about polymeric particles, it is assumed that they have a certain level of
elasticity. This means that when the particles interact with the walls, they undergo some
form of deformation; in the case of particle-to-particle interactions, this deformation causes
the distance between their centers to be reduced due to what is considered an overlap
between the two particles Figure 4b.
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Figure 4. Representation of the interaction between particles (a) and of the overlap at the point of
contact (b).

In Figure 4a, these interactions are represented at the point of contact of two particles
by a parallel connection between a spring and a damper.

Depending on the mathematical model used, the energy transferred by these interac-
tions is represented to a greater or lesser extent in the equations of motion. An example of
this is shown in Figure 5, where the contact force–motion functions are depicted: Figure 5a
is the representation of the most basic contact model (Hert–Mindlin contact model) [28–32],
and Figure 5b depicts the Edinburgh Elasto-Plastic Adhesion contact model.
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The equations governing the Hert–Mindlin (no slip) model are summarized in Table 3 [33].
Although each of these models is more complete than the previous one, the complexity

of these models results in a high computational cost, so it is not always more effective to
choose the most complete model.

In the case of the present work, the Hert–Mindlin (no-slip) model was used for the
particle–wall interactions, and the Edinburgh Elasto-Plastic Adhesion model was employed
for the interaction between particles.

When two particles come into contact, the force is distributed into two components
called the normal force (FN) and tangential force (FT), as can be seen in Figure 4b. The
definition of each of these forces depends on the model.
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Table 3. Hert–Mindlin equation (no-slip) model.

Normal force FN = − 4
3 Eeq

√
Req − δ3/2

n

Tangential force FT = −min{ST , δT ,µs|FN |}·t

Normal and tangential damping force Fd
N,T = −2

√
5
6

ln e√
ln2 e + π2

√
KN,Tmeqvrel

N,T

Normal and tangential stiffness KN = 2Eeq
√

ReqδN ; KT = 8Geq
√

ReqδN

Equivalent Young’s modulus 1
Eeq

=
(1 − v2

i )
Ei

+
(1 − v2

j )

Ej

Shear modulus Geq =

[
2(2 − vi)(1 + vi)

Ei
+

2(2 − vj)(1 + vj)
Ej

]−1

Equivalent radius 1
Req

= 1
Ri

+ 1
Rj

Equivalent mass meq =
(

1
mi

+ 1
mj

)−1

Rolling friction τ = −µrFN R
The subscripts N and T stand for normal and tangential, respectively; i and j correspond to each of the interacting
particles; e is the coefficient of restitution; µs represents the coefficient of sliding friction; µr is the rolling coefficient;
and v denotes the relative velocity of the corresponding particle.

In the case of the Edinburgh Elasto-Plastic Adhesion model, some factors are added to
account for particle plasticity. The governing equations are summarized in Table 4 [34].

Table 4. The Edinburgh Elasto-Plastic Adhesion model.

Normal and tangential force FN =
(

fhys + Fd
N

)
u ; FT = fts + FTd

Normal overlap contact force
fhys =


f0 + K1δn si K2

(
δn − δn

p

)
≥ K1δn

f0 + K2

(
δn − δn

p

)
K1δn > K2

(
δn − δn

p

)
> −kx

adh

f0 − kx
adh si kx

adh > K2

(
δn − δn

p

)
Normal and tangential damping force

f d
N,T =


βLv

→
rel
N,T si n = 1

−2
√

5/6βNL

√
KN,Tmv

→
rel
N,T si n > 1

Linear and non-linear damping coefficients βL =
√

4meqK1

1 + ( π
ln e )

2 ; βNL = ln e√
ln 2e + π2

Tangential spring force fts = fts(n−1) + ∆ fts

Increase of tangential spring force ∆ fts = kTδT

Tangential stiffness kT = ζtm

{
k1 si n = 1

8Geq
√

ReqδN si n > 1

Rolling friction τi = −r fhysRiϖi

u is the unit vector at the center of the particle; ζtm represents the stiffness factor; and ϖi denotes the angular
velocity at the point of contact.

2.2.3. The Particle Flow Coupling Model

To study the behavior of the particles in the fluid in motion, a joint computational fluid
dynamics (CFD) and discrete element method (DEM) simulation was carried out, using
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the models explained above, in each simulation time step. For this purpose, the software
tools Altair Edem® (2022 version) and Altair Hyperworks CFD® (2022 version) were run
together, following the workflow shown in Figure 6.
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In this way, the workflow starts in the Hyperworks CFD tool, which calculates the
volume fractions, forces, and moments of the fluid; it then updates the information for that
time step and transfers it to the EDEM tool.

In the EDEM tool, the forces and contacts of the particles are calculated; the posi-
tion and velocity of the particles are updated; and this information is transferred to the
Hyperworks CFD tool.

This cycle was repeated with each time step until the end of the set test time.
To obtain an accurate calculation of the trajectory of these particles, it is necessary

to use a mathematical entrainment model that transfers the information between the two
phases of the test (fluid and powder). In this study, a model [35,36] that combines the
Ergun [37] and Wen-Yu [38] models was used to evaluate the tensile force, FD, according to
Equation (16):

FD =
βVi|u − vi|(u − vi)

(1 − ε)
(16)

where

β =


βErgun = 150 (1−ε)2

2εR + 1.75(1 − ε)
ρ

2R |u − vi| ε < 0.8

βWen−Yu = 3
4 CDρε−1.65(1 − ε)|u − vi| ε ≥ 0.8

(17)

Re =
2Rρε|u − vi| (18)

CD =


24
Re Re ≤ 0.5

24
Re

(
1 + 0.15Re0.687

)
0.5 < Re ≤ 1000

0.44 Re > 1000

(19)

where u is the gas velocity vector; Vi is the volume of particle I; vi corresponds to the solid
velocity vector; and ε is the free volume fraction.

2.3. Optimization Using Genetic Algorithms

A process for choosing what variable is modified and the measure of this change is
needed. In this study, the process selected is the use of genetic algorithms.

Genetic algorithms are a mathematical assimilation of the law of natural selection in
nature [39,40]. In this case, 100 generations with 100 individuals each were applied. A
tournament selection was applied by selecting two random individuals and comparing
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the fitness function value (using the Kriging metamodel interpolation method to esti-
mate the possible responses [41,42]) to store the best one in the intermediate population
(100 tournaments until obtaining an intermediate population of 100 individuals). Half of
the intermediate population (50% crossover rate) was randomly selected and combined
to obtain offspring (arithmetic crossover), while the other half of the intermediate popu-
lation was maintained. Additionally, a 60% mutation rate was applied, as well as elitism
(the worst individual of the new populations was always replaced by the best one of the
previous populations). To create these metamodels, the results previously obtained in a
design of experiments were used as a reference.

The Kriging metamodel uses an exponential correlation model and a polynomial
regression model. However, polynomial regression is able to change the order from 0 to
2, depending on the recorded data. When you have a lower-order polynomial, it requires
fewer reference values and is easier to calculate, but it has less precision. For this, the
algorithm starts by trying to make use of a second-order regression model to predict each
response; if this fails, it will automatically use a first-order regression model, and if this
fails, it will go back down using a zero-order regression model. This automatic order
change ensures that you are always using the best possible regression model with the data
you have.

The modified Latin hypercube algorithm is used to generate a set of initial cases for
initial interpolations [39]. First, a combination is generated with all the variables at the
minimum of their range, another combination with all variables at the midpoint of their
range, and another combination with all the variables at their maximum point, which
implies 3 designs. Subsequently, the Latin hypercube algorithm is applied to add “n”
points, where “n” is the number of design variables. Therefore, this algorithm divides
the range of each variable into equal parts, selects a random value for each variable, and
eliminates the corresponding range for each of the variables from the list of possible values
to be used in the next combination of variables. This process is repeated until “n” points
are added. This means that the optimization will start with a total of 3+n combinations,
which in this study means a total of 12 initial combinations.

Since the Kriging metamodel interpolation method gives better results interpolating
than extrapolating, the Latin hypercube algorithm was modified so that all generated
values corresponding to the first or last rank of each variable are modified and set to the
minimum or maximum value, respectively. In this way, these data are shifted to the contour
of the search space, promoting data interpolation over extrapolation.

In this study, the Venturi design variables explained in Section 2.1 were used as the
variables to be optimized, while the mass of powder discharged in two seconds (Obj1)
and the pressure drop produced between the inlet and the outlet of the Venturi injector
(Obj2) are the response variables to maximize and minimize, respectively. To achieve this
in a mono-objective approach, the objective function was chosen to transform the scale of
the powder discharge and pressure drop results by normalizing them. For this purpose,
Equation (20) transforms the minimum value of each variable into 0 and the maximum
value into 1, scaling the rest of the results. This transformation is called normalization.

xnorm = (x − min(x))/(max (x)− min (x)) (20)

Thus, the objective function will be the maximization of Equation (21):

Obj1normalised − Obj2normalised (21)

The mean absolute percentage error (also known as MAPE) was used as a stopping
criterion in each iteration [41], which measures, in percentage terms, the absolute error
committed by the response variables as a whole. This indicator responds to Equation (22):

M =
1
n

n

∑
t=1

|(At/Ft)/At| (22)
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where n is the number of response variables to optimize; At is the reference value (those
obtained in the simulations to check); and Ft is the value to be compared (those given
by the algorithm as an estimated value according to the data available for training the
Kriging metamodel).

When this criterion is below 4%, the optimization will be considered good since
the subsequent numerical simulation of the solution proposed by the genetic algorithm
approximately matches (MAPE < 4%) the estimated results of the algorithm. However,
if the iteration reaches 4% but better results have been obtained in previous iterations, it
continues iterating until the objective function is the best of all cases studied while the
maximum MAPE criterion allowed is met. Sometimes the stopping criterion is not reached
after many iterations. In these cases, every 10 iterations without reaching the stopping
criterion, the results of the MAPE are analyzed. If the trend of these results is towards 4%,
10 more iterations are performed. In case the results start to fluctuate with no improving
trend, the best result of the objective function in the last 10 iterations will be assumed as
the optimum.

The duty cycle for each iteration can be seen in Figure 7.
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2.4. Determination of Significance of Variables

In order to study the relative importance, from a statistical point of view, of the differ-
ent design variables considered, a multiple linear regression analysis with standardized
coefficients was carried out to model the behavior of powder discharge.
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2.4.1. Multiple Linear Regression

The objective of regression analysis is to mathematically model the behavior of a
response variable (Y) as a function of one or more independent or predictor variables
(X1, X2, . . . , Xk).

The multiple linear regression model can be written in matrix notation as follows:

Y = Xβ + ε (23)

where

Y =


y1
y2
...

yn

, X =


1 x11 x21 · · · xk1
1 x12 x22 · · · xk2
...

...
... · · ·

...
1 x1n x2n · · · xkn

, β =


β0
β1
...

βk

 and ε =


ε1
ε2
...

εn

 (24)

The vector β contains the coefficients of the model, where β0 is the ordinate at the
origin and β j, 1 ≤ j ≤ k is the average effect that a one-unit increase in the predictor variable
Xj has on the dependent variable Y, when all the other regressor variables are held fixed or
constant. The vector ε contains the errors or residuals, where εi is the difference between the
observed value and the value estimated by the model. In addition, εi ≈ N(0, σε), 1 ≤ i ≤ n.

Since the magnitude of each regression coefficient depends on the units in which the
predictor variable to which it corresponds is measured, in order to determine the impact of
each variable on the model, standardized coefficients were used, which were obtained by
standardizing (subtracting the mean and dividing by the standard deviation) the predictor
variables prior to the model’s fitting.

Multiple linear correlation models require the following conditions:

• Linearity between the independent variables of the model and the response variable.
• Normality of the residuals: It is assumed that the residuals are normally distributed

with a zero mean. This is usually checked by means of graphical methods (histograms,
box-and-whisker plots, or quantile–quantile (Q–Q) plots) as well as normality hy-
pothesis tests such as, for example, the Shapiro–Wilk test, which is applicable when
analyzing small samples (composed of less than 50 elements) or the Anderson–Darling
test, which is a non-parametric test on sample data (with more than 7 elements) coming
from a specific distribution.

• Homogeneity of the variance of the residuals (homoscedasticity): To check this, the
residuals are plotted. If the variance is constant, they are randomly distributed with
the same dispersion and without any specific pattern. One can also resort to ho-
moscedasticity tests such as the Breusch–Pagan test, which only detects linear forms
of heteroscedasticity, or the Goldfeld–Quandt test, which compares the variances of
two sub-models separated by a specified break point and rejects if the variances differ.

• The residuals are independent of each other: The Durbin–Watson test allows for the
diagnosis of the presence of a correlation between consecutive residuals ordered in
time, which is a possible manifestation of a lack of independence.

• There are no outliers with a high influence. That is, the regression model is not strongly
influenced by one or more outlier data points because this would raise doubts about
the adequacy of the model and the reliability of the data in some cases. Cook’s distance
allows for detecting outliers with a high influence. For a sample of n elements and
a model of k independent variables, a Cook’s distance greater than the median of an
F-distribution with p and n − p degrees of freedom, with p = k + 1, is considered
of concern.

• Uncorrelated predictors: In multiple linear models, the predictors must be indepen-
dent, meaning there must be no collinearity between them. Tolerance and the variance
inflation factor (VIF) are two parameters that quantify the same thing (one is the
inverse of the other). The reference limits that are usually used are: VIF = 1: ab-
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sence of collinearity; 1 < VIF < 5: regression may be affected by some collinearity;
5 ≤ VIF ≤ 10: cause for concern; and VIF > 10: serious collinearity.

• Parsimony: This term refers to the fact that the best model is the one that can most
accurately explain the variability observed in the response variable using the least
number of predictors.

Good models are those that meet the most criteria for goodness-of-fit. There will
always be circumstances where failure to meet any of the criteria will not necessarily make
the model unfeasible from a practical point of view [42].

2.4.2. Choice of Predictors to Generate the Best Model

When selecting the predictors to be part of the model, several methods can be followed,
among them the so-called stepwise methods, which consist of iteratively adding and/or
removing predictors in the regression model in order to find the subset of variables in the
dataset that results in a model that reduces the prediction error. There are three stepwise
regression strategies:

• Forward selection, which starts with no predictors in the model, iteratively adds
the most contributing predictors, and stops when the improvement is no longer
statistically significant.

• Backward selection (or backward elimination), which starts with all predictors in the
model (full model), iteratively eliminates the least contributing predictors, and stops
when you have a model in which all predictors are statistically significant.

• Stepwise selection (or sequential substitution), which is a combination of the forward
and backward selections. You start with no predictors and sequentially add the most
contributing predictors (as in forward selection). After each new variable is added,
any variable that no longer provides an improvement in model fit (as in backward
selection) is removed.

The step-by-step method requires some mathematical criteria to determine whether
the model gets better or worse with each addition or removal. There are several parameters
or metrics that can be used, the most important of which are: R2

adjusted, Mallows’ Cp, the
Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC) [43].

When there are terms in the model that do not contribute significantly to the model,
R2

ajusted tends to be smaller than R2. Therefore, it is desirable to refine the model. In general,

to speak of a model that has a satisfactory fit, it is necessary that the coefficients R2 and
R2

ajusted have values greater than 0.7. However, when comparing different models for the
same dataset, a lower AIC/BIC score is better.

2.4.3. The Lack-of-Fit Test

The F-test is useful for checking that the model as a whole performs better than chance.
If a regression model does not produce a significant F-test result, then you probably do not
have a very good regression model (or, quite possibly, you do not have very good data).
However, while failing this test is a fairly strong indicator that the model has problems,
passing the test (i.e., rejecting the null hypothesis) does not imply that the model is good.

Most computer programs specialized in statistics include procedures to perform both
simple and multiple regression analyses and usually include variable selection techniques.
In this work, we used the free software Jamovi [44] based on the statistical language
R [45,46].

3. Results
3.1. Optimization of Variables

Given the limits for each variable explained in Section 2.1 and applying the modified
Latin hypercube algorithm, a total of 12 initial cases were obtained, which can be seen in
Table 5 (design variables). One example of the simulation is depicted in Figure 8, which
corresponds to the beginning (Figure 8a) and the end (Figure 8b) of the TSV2 simulation.
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Table 5. List of initial cases.

Venturi No. D3 (mm) d2 (mm) d1 (%) D1 (%) D2 (%) Lt (mm) PRi (%) α (◦) β (◦)

TSV1 10 10 40 101 101 1 1 1 1
TSV2 22 21.5 70 150.5 150.5 25.5 38 15.5 5.5
TSV3 34 33 100 200 200 50 75 30 10
TSV4 23.3 18.9 67.4 101.0 175.8 29.3 19.8 30.0 3.5
TSV5 23.5 33.0 53.9 200.0 155.7 41.4 1.0 14.5 2.6
TSV6 13.4 10.0 88.0 183.6 136.8 38.1 30.0 1.0 5.2
TSV7 16.7 13.5 52.7 147.4 117.5 10.6 58.1 7.0 6.9
TSV8 29.8 15.9 84.9 126.1 161.7 18.0 36.5 11.8 7.9
TSV9 34.0 26.9 40.0 135.1 124.0 28.1 75.0 18.7 8.8

TSV10 27.4 29.5 62.1 113.2 101.0 14.7 49.7 7.5 1.0
TSV11 10.0 22.8 79.1 163.3 200.0 50.0 13.2 21.5 4.2
TSV12 19.2 22.7 100.0 170.3 179.5 1.0 66.0 24.2 10.0
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Each of these cases was drawn in CAD, and joint CFD-DEM tests were carried out.
These gave the results shown in Table 6. As a reference, some examples of these design
configurations are shown in Figure 9.

Table 6. Results of cases generated by the modified Latin hypercube.

Measured Normalized

Venturi No. Powder Discharge (kg) ∆pi-o (Pa) Powder Discharge ∆pi-o

TSV1 0.0481 112,787 0.53240 1.00000
TSV2 0.0487 2332 0.53864 0.02183
TSV3 0.0000 47 0.00000 0.00160
TSV4 0.0672 −133 0.74264 0.00000
TSV5 0.0349 1548 0.38593 0.01489
TSV6 0.0131 46,164 0.14454 0.41000
TSV7 0.0780 56,104 0.86294 0.49803
TSV8 0.0092 2359 0.10196 0.02207
TSV9 0.0904 7017 1.00000 0.06332

TSV10 0.0225 203 0.24879 0.00298
TSV11 0.0086 1064 0.09498 0.01060
TSV12 0.0000 377 0.00000 0.00452

The direct measurements from the tests can be seen in columns 2 and 3, along with
the normalized values in columns 4 and 5.

These data were fed into the optimization algorithm, as explained in Section 2.3,
following the cycle of optimization iterations up to a total of 13 times.
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For each combination, the genetic algorithm shows, as a result, a possible optimal
variable combination and the predicted objective function result. Those optimal design
variables obtained by the algorithm after each execution are shown in Table 7.

Table 7. Combinations of variables in the optimization process.

Venturi No. D3 (mm) d2 (mm) d1(%) D1 (%) D2 (%) Lt (mm) PRi (%) α (◦) β (◦)

Op1 34.00 10.00 40 200 200 50.0 75.00 30.00 1.00
Op2 34.00 10.00 40 200 101 50.0 54.83 30.00 10.00
Op3 10.05 10.96 40 101 200 50.0 75.00 30.00 9.12
Op4 34.00 19.67 40 107 200 1.0 75.00 11.02 5.19
Op5 34.00 10.00 40 101 200 1.0 75.00 1.00 7.25
Op6 34.00 33.00 40 106 200 1.0 75.00 1.00 10.00
Op7 10.35 19.62 40 101 200 1.0 75.00 30.00 1.00
Op8 34.00 26.33 40 101 126 28.2 75.00 18.67 8.28
Op9 34.00 26.39 40 101 125 28.2 75.00 18.69 8.33
Op10 34.00 26.48 40 101 125 28.2 75.00 18.72 8.28
Op11 34.00 26.42 40 101 125 28.2 75.00 18.83 8.27
Op12 34.00 26.50 40 101 126 28.0 74.99 18.72 8.29
Op13 34.00 26.50 40 101 126 28.0 75.00 18.73 8.28

Table 8 shows the simulation results (both measured and normalized) obtained for
every combination in Table 7 (optimal designs). It can be seen how the value of the objective
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function, given by Equation (21), increases as the optimal point is approached. A deeper
analysis of these results is made in Section 3.2.

Table 8. Results of the optimization process.

Measured Normalized

Powder Discharge (kg) ∆pi-o (Pa)
Powder

Discharge
(Obj1

normalized)

∆pi-o
(Obj2

normalized)
Objective Function

(Obj1
normalized − Obj2

normalized)

Op1 0.1534 570,583 1.70 5.05 −3.36
Op2 0.1141 507,955 1.26 4.50 −3.24
Op3 0.0732 96,261 0.81 0.85 −0.04
Op4 0.1353 9069 1.50 0.08 1.41
Op5 0.2044 634,533 2.26 5.62 −3.36
Op6 0.0018 2150 0.02 0.02 0.00
Op7 0.0454 6284 0.50 0.06 0.45
Op8 0.1524 2716 1.69 0.03 1.66
Op9 0.1510 1855 1.67 0.02 1.65

Op10 0.1600 2398 1.77 0.02 1.75
Op11 0.1533 2898 1.70 0.03 1.67
Op12 0.1616 2260 1.79 0.02 1.77
Op13 0.1674 2179 1.85 0.02 1.83

With each iteration, the predictions of the algorithm results were noted down to apply
the stopping criterion. Table 9 shows, for each optimal design, the normalized response
variables (powder discharge and pressure drop) according to the simulations (first column)
and the same response variables predicted by the genetic algorithm (second column). The
MAPE between the estimated and simulated results is depicted in the last sub-column (M).
As the number of data points increases, the estimates of the genetic algorithm are more
accurate, consequently reducing the MAPE (compared to the simulation results).

Table 9. MAPE stop criterion results.

Normalized (Simulated) Normalized Estimates by the GA

Powder Discharge
(Obj 1normalized)

∆pi-o
(Obj 2normalized)

Powder Discharge
(Obj 1normalized)

∆pi-o
(Obj 2normalized) M (%)

Op1 1.70 5.05 3.46 0.74436 94.5
Op2 1.26 4.50 2.38 −0.00001 94.4
Op3 0.81 0.85 1.50 0.00048 92.5
Op4 1.50 0.08 1.08 0.00005 63.9
Op5 2.26 5.62 1.48 0.00000 67.2
Op6 0.02 0.02 1.40 0.00000 3598.6
Op7 0.50 0.06 1.09 0.00000 108.7
Op8 1.69 0.03 0.83 0.00032 74.8
Op9 1.67 0.02 1.65 0.00182 45.4

Op10 1.77 0.02 1.66 -0.00019 53.5
Op11 1.70 0.03 1.73 0.02784 2.9
Op12 1.79 0.02 1.74 0.01459 17.0
Op13 1.85 0.02 1.78 0.02007 2.9

After a total of 13 iterations, the results of the proposed optimization algorithm can be
considered good since the results estimated by it and those resulting from evaluating this
combination of variables through the simulations are less than 4% apart, fulfilling the con-
dition of having the best result of the objective function up to that iteration. It is noteworthy
that the optimal result discharges 85% more powder (Obj 1normalized) with only a 2% pres-
sure drop (Obj 2normalized) compared to all cases studied during the optimization process.

In this iteration 13, the variables obtained were those depicted in Table 10.
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Table 10. Final optimized dimensions result.

D3 (mm) d2 (mm) d1 (%) D1 (%) D2 (%) Lt (mm) PRi (%) α (◦) β (◦)

34.00 26.50 40 101 126 28.0 75.00 18.73 8.28

A CAD representation of the optimal Venturi proportions is shown in Figure 10.
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It is worth mentioning that the dimensions of Table 10 are the optimized ones for a
1 mm particle diameter, but they have a proportional relationship with the particle diameter.
Therefore, the optimized dimensions could be explained as follows: D3 and d2 are 34 and
26.5 times the particle diameter, respectively; d1 is 40% of d2; D1 is 101% of d1; D2 is 126%
of d2; and PRi is 75% of D3. The Lt, α, and β are fixed. Nevertheless, the statistical analysis
depicted in Section 3.2 reveals that the most significant design variables of a Venturi injector
to maximize the powder discharge are D3, d1, and d2.

On the other hand, since the final goal of the optimization of the Venturi injector is to
obtain an accurate powder transport system for directed energy deposition, the optimal
Venturi injector with a 40 mm D1 and D2 configuration was analyzed using different inlet
flow values. This 40 mm D1 and D2 configuration was selected to facilitate standardization
and future experimental implementation. Figures 11 and 12 show the results obtained,
where a linear relationship between powder discharge and the pressure drop with inlet
flow can be observed, respectively.

3.2. Determination of the Significance of Variables

A statistical analysis of the powder discharge results is now carried out in order to find
out to what extent each of the variables used in the design of the Venturi injector affects
the results.

The first thing to carry out is to group all the results together to see the dispersion of
the results. Figure 13a shows that the results are not very dispersed. However, when the
results of the randomly generated variations (TSV) are separated from the results of the
optimizations (Op), it is clear that the optimizations tend to be upward (Figure 13b).

3.2.1. Multiple Linear Regression

For the construction of the models, a backward selection based on the p-value was
first used to establish an order of inclusion of the variables by blocks (one by one) in the
Model Builder of the Linear Regression library of the jmv Module in Jamovi software (2.3.28
version) [46].
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Bearing in mind that it is of interest to have R2 and R2
adjusted coefficients greater

than 0.7 and low AIC and BIC values, with a p-value for the overall model test as small
as possible, it was decided to choose Model 5 to study the relative importance, from a
statistical point of view, of the different design variables considered as it fulfills more
criteria of the quality of fit (see Table 11).

Table 11. Statistical results for each regression model.

Measures of Model Fit
Global Model Test

Model R R2 R2 Adjusted AIC BIC RMSE F gl1 gl2 p-Value

1 0.7112 0.5059 0.4844 −77.87 −74.21 0.04522 23.547 1 23 <0.001
2 0.8006 0.641 0.6084 −83.86 −78.98 0.03854 19.643 2 22 <0.001
3 0.8443 0.7128 0.6718 −87.44 −81.34 0.03447 17.376 3 21 <0.001
4 0.8527 0.7271 0.6725 −86.71 −79.39 0.0336 13.32 4 20 <0.001
5 0.8694 0.7558 0.6916 −87.49 −78.96 0.03178 11.763 5 19 <0.001
6 0.8736 0.7631 0.6842 −86.25 −76.5 0.03131 9.665 6 18 <0.001
7 0.8759 0.7672 0.6713 −84.68 −73.71 0.03104 8.003 7 17 <0.001
8 0.8788 0.7723 0.6585 −83.24 −71.05 0.03069 6.784 8 16 <0.001
9 0.8793 0.7732 0.6372 −81.34 −67.93 0.03063 5.683 9 15 0.002

In Model 5, the most significant variables are D3, d1, and d2 (in that order), all of them
with a p-value of less than 0.05 (see Table 12). Furthermore, the values of the standard
estimators and the corresponding 95% confidence interval show that, if the other variables
of the model are kept constant, the higher the value of D3, the higher the powder discharge
increases, and the higher the values of d1 and d2, the powder discharge decreases in
both cases.

Table 12. Results of standard estimators and confidence intervals at 95%.

Model 5
95% Confidence Interval

Predictor Estimator EE t p-Value Standard
Estimator Inferior Top

Constant 0.158285 0.039635 3.994 0.00078
d1 −0.001301 4.64 × 10−4 −2.806 0.01128 −0.413 −0.72107 −0.10494
D3 0.00373 9.22 × 10−4 4.044 0.00069 0.5413 0.26117 0.82149
d2 −0.002835 0.001071 −2.647 0.0159 −0.3434 −0.61495 −0.07187
D1 −4.61 × 10−4 2.72 × 10−4 −1.694 0.16617 −0.2735 −0.61142 0.06444
Lt 7.61 × 10−4 5.09 × 10−4 1.496 0.15109 0.2046 −0.08166 0.49083

Regarding the Cook’s distance (see Table 13), as the number of sample data is n = 25 and
the number of independent variables is k = 5 (p = k + 1), we obtain qf(0.50, p, n-p) = 0.9238,
where qf(p, df1, df2) is a quantile function for the F distribution with df1 and df2 degrees of
freedom of the R Stats Package [45].

Table 13. Cook’s distance of Model 5.

Cook’s Distance
Tour

Average Median DE Min Max

0.0694 0.01458 0.1152 3.08 × 10−4 0.4368

Consequently, as the maximum Cook’s distance does not exceed this value, no outliers
with high influence are detected, as can be seen in Figure 12.
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3.2.2. Checking Assumptions

The verification tests explained in Section 2.4 were carried out, and the results that
were obtained are shown in Tables 14 and 15.

Table 14. Normality and heteroscedasticity tests.

Statistic p-Value

Normality tests Shapiro–Wilk 0.9304 0.089
Anderson–Darling 0.5628 0.13

Heteroscedasticity tests
Breusch–Pagan 5.333 0.377

Goldfeld–Quandt 2.998 0.101
Harrison–McCabe 0.3547 0.174

Note. Additional results provided by more tests [44].

Table 15. Autocorrelation test.

Durbin–Watson Autocorrelation Test
Autocorrelation DW Statistic p-Value

0.03302 1.868 0.594

Since in all the tests the p-value is greater than 0.05, there is no reason to assume that
the assumptions of normality, homogeneity of variance, and independence of residuals
are violated.

In the Q-Q plot (Figure 14), the points are quite close to the line, thus corroborating
the normality of the residuals.
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Finally, a collinearity study of the variables was carried out, the results of which can
be seen in Table 16.

In this case, as the VIF values are closer to one than to five, it can be concluded that
although the regression may be affected by some level of collinearity, this is not a cause for
concern, as indicated in Section 2.4.1.
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Table 16. Study of the collinearity of the variables.

Collinearity Statistics
VIF Tolerance

d1 1.686 0.5932
D3 1.394 0.7172
d2 1.310 0.7635
D1 2.028 0.4930
Lt 1.455 0.6871

4. Conclusions

After evaluating the different combinations of the dimensional variables required
for the manufacture of low-velocity Venturi injectors using combined CFD and DEM
simulations, a genetic algorithm was used to achieve an optimal combination of variables
for sizing a Venturi injector based on mean particle diameter and flow rate.

From analyzing these results, it can be seen that, by aiming for the lowest possible
pressure drop, the Venturi convergence and divergence angles (α and β) are within the
ranges of the standard for the manufacture of classic Venturi injectors. Therefore, they can
be considered valid.

Furthermore, from the statistical study, it can be concluded that the variables that most
significantly affect powder suction are D3, d1, and d2 (in that order), which makes it clear
that d1 and d2 are important because they are the two variables on whose size the vacuum
generated in the mixing chamber depends, and at equal pressure, the larger the suction
diameter (D3), the more physical space there is for the particles to rise.

This suggests that the switching variables D1 and D2 can act independently, allowing
them to be adapted to the system where the injector is to be installed.

It is also confirmed that throat length does not affect powder deposition [9], thus
making it possible to reduce the size of the injector. Additionally, the position of the nozzle
inside the mixing chamber is similar to that demonstrated by Xu et al. [21].

On the other hand, the simulations of the optimal Venturi configuration with different
inlet flow demonstrated a good linearity between inlet flow and powder discharge, which
means that it is possible to control the mass flow and, consequently, the powder discharge.
With this approach, different Venturi injectors could be integrated for the development of
accurate mixing powder devices intended for Functionally Graded Additive Manufacturing.
However, this linearity was only demonstrated for flow rates lower than the one used for
optimization (0.01 m3 ⁄s), so the optimal parameters should be recalculated for higher flow
rates. Since the objective of this study is the use of this optimized injector for a DED system,
the recommendation is to optimize the injector for the maximum flow rate required in each
case. In this optimization process, we found better ranges of pressure drop than observed
by Zerpa et al. [7], and better linearity than observed by Almeida et al. [8] about the press
drop–flow relationship. We also demonstrated that, in the case of powder transportation,
the relation between the nozzle and throat diameters is above the found in the bibliography.
Comparing our results with those obtained by Wang et al. [26] using machine learning, we
can see how, while the input and outlet angles are similar, the proportional dimensions of
the nozzle and the throat are different, confirming that the optimization is not the same
when the feed process is by gravity or suction.

It should be noted that the mathematical models used in this work are fully validated
according to the literature. However, future research will be carried out to experimentally
validate these results. On the other hand, this optimization procedure is based on the
particle diameter, so, in future research, it remains to be seen its effectiveness when applied
to particles with different properties such as density, cohesivity, or diameters, even opening
the possibility to study a range of optimal dimensions for more than one powder in the
same injector.

Having demonstrated that it is possible to use Venturi injectors to unify the metering
and conveyance in DEM systems, it has the following advantages over traditional systems:
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being a unified system whose implementation should be easier and cheaper; easy instal-
lation of more nozzles, thus increasing the possibilities of Functionally Graded Materials;
and easy change of materials (cleaning and feeding). In view of the results obtained, the
use of Venturi injectors could be studied in other technologies such as material extrusion or
powder bed fusion, changing the feeding method, and giving the possibility to work with
Functionally Graded Materials in different ways.
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