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Abstract This paper presents a combination of R packages—user contributed

toolkits written in a common core programming language—to facilitate the

humanistic investigation of digitised, text-based corpora. Our survey of text analysis

packages includes those of our own creation (cleanNLP and fasttextM) as well as

packages built by other research groups (stringi, readtext, hyphenatr, quanteda, and

hunspell). By operating on generic object types, these packages unite research

innovations in corpus linguistics, natural language processing, machine learning,

statistics, and digital humanities. We begin by extrapolating on the theoretical

benefits of R as an elaborate gluing language for bringing together several areas of

expertise and compare it to linguistic concordancers and other tool-based approa-

ches to text analysis in the digital humanities. We then showcase the practical

benefits of an ecosystem by illustrating how R packages have been integrated into a

digital humanities project. Throughout, the focus is on moving beyond the bag-of-

words, lexical frequency model by incorporating linguistically-driven analyses in

research.
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1 Introduction

Textual data has long been a privileged form of evidence for argumentation within

many humanities disciplines. Traditional research methods for historians, literary

scholars, theologians, and other humanities scholars include travelling between and

exploring within institutional and governmental archives. These archives are filled

with newspapers, letters, memos, and other files of printed text. Extensive work by

archivists and librarians, along with technological advances and declining hardware

costs, have allowed many archives to offer searchable, digital archives directly to

researchers on their own computer. The increase in access afforded by digital

archives helps to democratise the field, accelerate research, and cross-pollinate ideas

across both national and disciplinary boundaries. The digitization of archival

materials provide potential benefits to many scholars. However, the fundamental

process of building humanistic arguments remains unchanged for most researchers.

Evidence in the form of quotations or direct line references to specific passages in

primary and secondary textual sources is used to challenge, support, or extend

scholarship.

Digital humanities, an emerging set of methods that applies computational

techniques to questions in the humanities, offers a fundamentally different way of

engaging with digitised documents (Berry 2011). Due to the large scale of available

materials, traditional humanities methods, most commonly referred to as close

reading, can only uncover a small portion of a given archive or corpus at once. The

selection process unavoidably privileges a preselected canon of works at the

expense of the rest of the corpus or forces humanists to pick evidence from a set of

sources. Digital humanists address this concern by looking for patterns over a much

larger collection of texts. When combined with traditional methods, this distant
reading approach has the potential to both challenge old assumptions and uncover

new patterns (Underwood 2017). In order to apply distant reading techniques and to

share results with other scholars, new digital tools are needed to extend traditional

research workflows in the humanities.

Modern linguists also deal with large corpora of digitised texts and have

developed software for exploring and extracting information from them. Concor-

dancers, for example, allow linguists to quickly search for complex linguistic

constructs and to see where these occur within a given text. Parallel concordancer

tools extend this to multiple texts that have been matched together, such as the

translation of a text and its original format. Other corpus linguistic tools, such as

Iramuteq (Camargo and Justo 2013), TRAMEUR (Fleury and Zimina 2014), TMX

(Heiden 2010) and SketchEngine (Kilgarriff et al. 2014), compute statistical

averages to describe broader trends over and within a corpus, while maintaining

deep links to the text itself. Tools meant for corpus linguistics have often been

provided as either stand-alone applications or served through a web-browser.

Natural language processing (NLP), which sits at the intersection of linguistics and

computer science, has its own set of tools for working with a textual corpus. These

generally take the form of compiled software libraries. While the core of most

libraries require running scripts in a terminal, many user friendly front-ends also
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exist for the most popular libraries. NLP software such as OpenNLP (Morton et al.

2005), CoreNLP (Manning et al. 2014), spaCy (Honnibal and Johnson 2015), and

NLTK (Bird 2006) tend to focus on the automated estimation of annotations. At a

low level this would include tokenisation, part of speech tagging and building

dependency trees. Higher level semantic annotations such as sentiment analysis and

named entity recognition use these building blocks to perform automatic annotation,

which can in turn retrieve information usable for metadata collection (like

placenames or authors derived from named entity recognition, see Sect. 6). In this

respect, this type of more elaborated annotations gives a cutting-edge as opposed to

standard corpus linguistic tools, where named entity recognition is not typically

performed. The needs of digital humanists working with text intersect with those of

corpus linguistics and natural language processing. Humanists care deeply about

interacting with their raw text; indeed, traditional methods in the humanities chiefly

work by closely studying short snippets of text. At the same time, distant reading is

fundamentally a study of textual metadata. The ability to extract and study metadata

is therefore an important feature in a digital humanist’s toolbox. Given this, there is

a potential to share many tools and methods from linguistics with the burgeoning

field of digital humanities. However, aspects of the tools from these two disparate

fields need to be joined together in order to offer the desired functionalities.

In this paper, we present a set of interoperable libraries within the R

programming environment that allow for the study of large corpora simultaneously

at several levels. These packages promote the loading, cleaning, annotating,

searching, and visualizing textual data within a single tool. As R is also a general

purpose programming language, this additionally has the benefit of allowing for the

application of cutting edge statistical models even when they fall outside of text-

specific applications. New R libraries such as rmarkdown (Allaire et al. 2017),

knitr (Xie 2014), and shiny (Chang et al. 2017) allow digital humanists to share

their results with colleagues unfamiliar with digital methods. This is achieved by the

automated building of websites that share results over the web without requiring any

special tools on the recipient’s machine.

R is already an increasingly popular tool in digital humanities and there have

been mature text mining tools available for at least the past decade. The novelty of

our argument rests on specific benefits of a particular ecosystem of libraries we are

calling for digital humanists to integrate into their workflow. Two of these—

cleanNLP and fasttextM—are of our own creation. The others are contributed by

other independent research groups. All of the packages are built around a newly

established, common text interchange format. In this paper we argue and

demonstrate how such a common format drastically changes the power of using

R for the study of textual corpora within digital humanities. Also, while most R text

libraries pull from the tradition of NLP-based tools, our specific libraries also

incorporate features from corpus linguistics, with a specific focus on discourse

analysis.

The remainder of the article is organised as follows. We will first give a brief

history of tools for working with textual data from both corpus linguistics and

digital humanities. We then discuss former and existing strategies for text mining

with R. Next, we discuss our own approach to working with humanistic texts by
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using a specific ecosystem of packages. This is framed as being in conversation with

the tidy data approach and our own work in the field. We conclude by showing

several case-studies illustrating how our ecosystem can be used to extract

meaningful insights from cultural material.

2 A brief history of tools for textual exploration

2.1 Corpus linguistics software

Concordancers are probably the most well-known tools of analysis in corpus

linguistics. These pieces of software allow for the search and visualisation of a word

and its context, understood as the words appearing before and after that particular

word; a query commonly known as ’key words in context’ (KWIC). The first

generation of concordancers appeared between the 1960s and the 1970s. Mainly

designed to work in English, these tools could process the ASCII characters and

performed very basic tasks, such as the so-called KWIC searches. During the 1980s

and 1990s, concordancers incorporated a few other functions such as counting the

number of words or generating word lists. A third generation of concordancers

includes well-known pieces of software, such as WordSmith (Scott 1996) or

AntConc (Anthony 2004), that are still widely used. These concordancers can deal

with considerable amounts of data, and thanks to the development of the Unicode

system, most languages are supported (Anthony 2013). Broadly speaking, third

generation concordancers include keyword search, frequency lists and part-of-the-

speech (POS) frequency lists, n-grams queries, as well as user-friendly statistical

analysis of texts. This newer wave of tools also includes those specifically designed

for statistical exploration of corpora, known as lexicometric tools, such as Lexico3

(Lamalle et al. 2003) and Le Trameur (Fleury and Zimina 2014). These tools

usually offer similar features as traditional concordancers, plus more advanced

statistical treatment of vocabulary.

Another useful tool in corpus linguistics specifically designed to create, filter and

manipulate a corpus, is Le Gromoteur (Gerdes 2014). This piece of software is

actually a ’web crawler’, a program that can download websites following user’s

preferences, converting them in Unicode and storing them into a database within the

Gromoteur. Once the corpus has been compiled from different websites or imported

by the user in txt, pdf, or html, classical KWIC searches can be performed. Le

Gromoteur also includes a tool called Nexico, based on Lexico3, that computes

specificity indices and word co-occurrences based on the cumulative hypergeomet-

ric distribution. Graphs of these co-occurrences are automatically generated and

easily exported.

2.2 Web-based tools

In the classification proposed by McEnery and Hardie (2011), there is also a fourth

generation of concordancers corresponding to web-based tools. Although their

functions are similar to those implemented in concordancers of the third generation,
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these web-based tools store information online, and appear as an alternative for the

treatment of larger corpora that cannot be stored in personal computers. Examples

of fourth generation concordancers are, among others, Wmatrix (Rayson 2009) or

the Sketch Engine (Kilgarriff et al. 2014). Wmatrix, for instance, includes CLAWS

part-of-speech tagging (CLAWS 7 tagset), as well as a semantic tagger (SEMTAG),

allowing for searches in key semantic domains. Wmatrix also contains 11 different

statistical tests that assess the strength of the association of these collocations, such

as the Mutual Information Cubed, the log-likehood or the Chi-Square test. Similarly,

The Sketch Engine (Kilgarriff et al. 2014) also processes parsed corpora, that is,

annotated corpora that contains information about syntactic relations between

words. Dependency-based corpora are fully-supported. If the corpus has not been

previously parsed, Sketch Engine also offers the possibility to define grammatical

relationships manually, mostly with regular expressions, creating a ‘grammatical

relation set’. Then this set would be used to parse the rest of the corpus. It contains

400 corpora in more than 90 languages, that can be used for comparison purposes.

The Sketch Engine also provides aligned parallel corpora, useful for the

identification of native-like word combinations in translation. Although both

Wmatrix and Sketch Engine are powerful and more sophisticated tools than the

previous generation of concordancers and they contain in-built corpora, they are not

freely available for the public.

We do not make the claim that state-of-the-art technologies should only be

limited to commercial solutions. If anything, we suggest that the current frontier

separates shallow parsing and deep parsing. Most concordancers can now analyse

POS-tagged linguistic data, but the most important breakthrough in NLP has been

achieved by parsing syntax with dependency models. Several libraries have been

developed implementing dependency parsing (or constituency parsing). For

example, the Stanford NLP suite of tools, includes a part-of-speech (POS) tagger,

a named entity recogniser (NER), a parser, a coreference resolution system,

sentiment analysis, bootstrapped pattern learning, and the open information

extraction tools. Sentences can be processed through an online API or using a

command line program. CoreNLP (Manning et al. 2014) exist as a java library that

can be used as backend for several tools developed by corpus linguists, allowing the

various parameter files to be downloaded according to users’ needs. Cases in point

are CESAX (Komen 2011) or UAM Corpus Tools (O’Donnell 2008)

2.3 Digital humanities tools

While the early history of textual analysis in the humanities closely followed

developments in corpus linguistics, today the research questions and corresponding

tools for digital humanists frequently diverge from those of linguistics. This has lead

to many PC- and web-based tools that are specifically designed to investigate texts

in the spirit of Digital Humanities. Many of these tools, however, continue to

making the most of state-of-the-art corpus linguistics, namely fully searchable

linguistic corpora, such as the Brown corpus.

One of the earliest DH-focused tools for textual analysis is the Text-Analysis

Computing Tools (TACT) programming suite (Lancashire et al. 1996), which was
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in turn built out of the early frameworks proposed by Bradley and Rockwell (1992).

Out of this early work a large collection of tools has emerged from the DH

landscape. A case in point of a downloadable tool is the #LancsBox: Lancaster

University corpus toolbox (Brezina et al. 2015). Voyant tools, which share a history

with TACT, provide a corresponding set of web-based DH tools for text analysis

(Sinclair et al. 2016). Recent collected volumes focused entirely on a survey of tools

for DH text analysis illustrate the size of the current field and breadth of tool-based

options available for analysis (Schreibman et al. 2015). Numerous project examples

in Digital Humanities signal how these tools have changed the landscape of

research. Prominent examples include the work of Jockers (2013), Bécue-Bertaut

and Lebart (2018), and Goldstone and Underwood (2014).

The presence of point-and-click tools for large scale textual analysis in both

corpus linguistics and Digital Humanities has made it possible for many scholars to

quickly access computational methods to analyze large textual corpora. In the

remainder of this article, however, we argue that programming based solutions offer

a compelling framework for moving beyond the functionality of one-off tools. Most

notably, moving from resource constrained web-based tools allows for the

application of methods that go beyond the tokenisation and term-frequency based

techniques that are currently popular in both corpus linguistics and Digital

Humanities. Accessing more complex features of the text, such as part of speech

tags and dependency structures, allows for a nuanced view that the bag-of-words

model often hides. The limited usage of such methods in Digital Humanities, such

as the work of Klaussner et al. (2015), signals the power of such an approach. Our

article here explore how programming tools make such an analysis possible.

3 R-based tools for textual data

3.1 The R programming language

R is a high-level programming language specifically geared towards the analysis of

data (Ihaka and Gentleman 1996). First appearing in 1993, it is an open-source

implementation of the S programming language (Becker and Chambers 1984). To

run analyses in the language, users write instructions in plain-text code and then

enter these into the R interpreter. Output is presented as either plain text, new files,

or graphics. While not mandatory, many users of R work within a integrated

development environment (IDE)—a standalone application specifically built for

writing and running R code. Figure 1 shows an example of the RStudio IDE

(RStudio Team 2017). Code is written and saved in one window, run in another, and

output is displayed in a third.

There are many benefits to using a programming language in place of stand-alone

tools for the analysis of data. By writing procedures in code, we have a complete

record of exactly how someone went from raw input to final results.1 This allows for

1 The environment can be saved so that the research may still be reproduced even after packages are

discontinued and R versions have changed; for details on doing this see Ushey et al. (2016).
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the creation of reproducible research that can be validated and understood by other

scholars (Peng 2011). Also, using general purpose code allows users, in theory, to

conduct any analysis of their data they would like to perform. The choices are not

limited to those directly supplied by a particular tool. This is particularly important

for scholars working with multimodal data where no particular tool is able to

analyse an entire dataset from a plurality of standpoints. Finally, general purpose

programming languages benefit from large communities of users. The community

around R, for example, has produced hundreds of books and online tutorials to assist

new users in learning the language.2 The active engagement also ensures that the

language will be persistently updated and maintained.

While programming languages allow users to built a limitless number of custom

analyses and outputs this does not mean that every task must be implemented from

scratch. A particular strength of the R programming language is its collection of

over eleven thousand packages as of 2017. These packages are open-source, user

contributed sets of data and functions for solving particular tasks. Some offer

thousands of functions to extend the core language in novel ways with entirely new

frameworks. Others provide only a small number of new functions that implement a

specific model or feature. Packages are published on the Comprehensive R Archive

Network and can be downloaded and installed automatically from within an R IDE

such as RStudio (Hornik 2017b). Throughout the remainder of this article we will

discuss several packages designed specifically for the analysis of textual data.

2 A press release from Oracle in 2012, http://www.oracle.com/us/corporate/press/1515738, estimates that

at there were at least 2 million users of R. By metrics such as Google searches, downloads, and blog posts,

this number has continued to grow over the past 5 years (Hornik et al. 2017).

Fig. 1 The RStudio environment. Code is written in the upper left-hand corner of the screen and run in
the lower left-hand corner. Graphs and current datasets are shown in panels on the right-hand side
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3.2 Textual frameworks for R

From the earliest releases of the R language there have been basic tools for working

with objects containing text. These include functions for reading and writing textual

objects to files. There is also basic support for working with regular expressions.

Regular expressions in R can be used to filter data, extract particular substrings of an

input, or to replace matched substrings with a new value.3 The primary use case of

this functionality was to work with short sections of text from a particular variable

in a dataset such as place names, titles, or URLs.

The NLP (Hornik 2017a) and tm (Feinerer et al. 2008) packages were among the

earliest attempts to provide functions specifically built for the analysis of textual

corpora. Together they describe a self-contained framework for working with text.

Functions such as VCorpus create ‘corpus objects’; dozens of other functions

provide the ability to plot, print, and save the resulting corpus. A corpus object can

be converted into other objects: a DocumentTermMatrix, a TextDocument,

or a TaggedTextDocument. Each of these, in turn, has its own custom functions

for printing, saving, and other required interactions. New packages have provided

additional functionality and frameworks on top of these. The koRpus package

(Michalke 2017) provides links to openNLP to the OpenNLP library (Hornik 2016),

and qdap to tools for working with transcripts and conducting discourse analysis

(Rinker 2013). These packages have been instrumental in allowing users to do

meaningful textual analyses with the R language. However, the complex object

hierarchies and individual frameworks for each object type become hard to use and

integrate into a larger research pipeline. In Sect. 4, we show a modern re-

implementation of text analysis tools without the need for the object-oriented

structure supplied by NLP and tm. With several books and custom-built packages,

R has become an important tool within the field of linguistics. Harald Baayen has

long been advocating the use of R for linguistic analysis (Baayen 2008). Keith

Johnson, a phonetician by trade, has also shown the benefits of R for many linguistic

domains (Johnson 2008). Stefan Gries, possibly one of the most adamant linguists to

push for the use of R in linguistics, has written extensively regarding the use of R

for concordance analysis. Examples of Gries’ work include the textbooks

Quantitative Corpus Linguistics with R (Gries 2009) and Statistics for Linguistics
with R (Gries 2013). These serve to introduce the R language and to explain the

basic principles or corpus analysis. Recent texts by Levshina (2015) further show

how to apply modern statistical algorithms in R to the study of corpus linguistics.4

The benefits of R in corpus linguistics become particularly clear when working with

many data sources or while building complex analysis. R largely avoids the issues

of stand-alone tools, as Wiedemann and Niekler describe: ‘‘Especially when

combining several text mining methods in a complex workflow, struggling with data

conversion to achieve interoperability between tools undoubtedly creates severe

dissatisfaction and even can be a deal breaker for their use at all.’’ (Wiedemann and

3 Stefan Gries devised an R script, implementing the function exact.matches(), that literally turns R into a

concordancer (Gries 2009).
4 See (Ballier forthcoming).
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Niekler 2017). R-based methods for text analysis from within the linguistic

community have recently extended to related fields such as the computational social

sciences (Wiedemann 2016) and, as we now discuss, the digital humanities.

3.3 R and the digital humanities

The R language has acquired considerable support within the Digital Humanities.

As it has with corpus linguistics, the programming language has begun to compete

with field-specific tools such as Gephi (Bastian et al. 2009) and Voyant (Sinclair

et al. 2016). R has been taught at various levels during annual workshops such as

Humanities Intensive Learning and Teaching (HILT), the Digital Humanities

Summer Institute (DHSI), and the European Summer University (ESU). The journal

Programming Historian has published tutorial articles such as ‘Correspondence

Analysis for Historical Research with R’ (Deschamps 2017), ‘Data Wrangling and

Management in R’ (Siddiqui 2017), and ‘R Basics with Tabular Data’ (Dewar

2016). These range from teaching the basic principles of the R language to

illustrating very particular humanities-oriented applications. Research articles in

digital humanities publications may even centre on the creation of new humanities-

focused R packages, such as the recent Digital Humanities Quarterly article

describing the gender package (Blevins and Mullen 2015). The popularity of R in

digital humanities points to fact that the work of digital humanists is primarily data

analysis, the exact task that R was primarily built to support. Digital humanists often

work with unstructured data in multiple formats, including spatial data, raw text,

and networks. One benefit of using a programming language such as R is that

packages exist for dealing with all of these data types within a single environment.

This is a central theme in our text Humanities Data in R: Exploring Networks,
Geospatial Data, Images, and Text (Arnold and Tilton 2015). We illustrate

packages for working with these four data types, all of which have rich ecosystems

akin to the text packages shown in Sect. 3.2. Having one tool for all of these data

types is particularly important when working with a corpus that has different data

types intermingled together such as textual captions tagged to image data. Explicit

case studies illustrating the flexibility of R to work with multimodal data are shown

in Sect. 6.

With the prevalence of textual sources in the humanities, there has been a

particular concentration of R-based tools for text analysis in the digital humanities.

Matthew Jockers, for example, shows how to use R for text analysis in his book,

aptly titled, Text analysis with R for students of literature (Jockers 2014). David

Mimno wrote an R wrapper to the popular topic modelling software MALLET

(Mimno 2013). The R-based stylo tool provides a self-contained environment for

the study of writing style, with a focus on applications to literature (Eder et al.

2016).

There is clear interest and investment in using R within the digital humanities.

Differences exist in the current scholarship regarding whether we should teach R as

a general purpose programming language or whether it should be presented as a

collection of useful packages. The choice between these two has obvious

pedagogical implications (see Ballier and Lissón (2017)). It also influences whether
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we should focus on building large, all-inclusive frameworks or if R developers

should create tools that do one particular task very well. In the following sections

we present an ecosystem of packages in R that allows us to capture the benefits of

both approaches by creating tools that work with rather than against the core R

programming language. Within this ecosystem users are able to quickly produce

interesting analyses, but will be able to iteratively build up to more intricate models

as they learn more about the R language itself.

4 An R pipeline for text analysis

Within these guidelines, we specifically chose packages that extend the lexical

frequency paradigm—the simple counting of token occurrences from tokenised

documents—with cutting edge NLP techniques. This distinguishes our approach

most dramatically from other ecosystems of text packages in R.

Our workflow for working with a corpus of textual data involves stitching

together an analysis using a set of interoperable R packages. Packages in our toolkit

include general purpose libraries for reading (readr), cleaning (tidyr, dplyr), and

graphing (ggplot2) data. We also use a set of packages specifically built for the

study of textual data. The set of core packages consists of a particular subset of tools

for textual exploration that we have chosen which fulfil the following guidelines:

• store data in tabular forms

• specific to textual data

• where applicable, respect the text interchange format

• limit overlapping duplication of functionality

• sufficiently generic to be applicable to a majority of text analysis problems

• relatively easy to learn

The text interchange format is a set of flexible guidelines for how textual data

should be structured within R (Arnold and Benoit 2017). These were developed by a

committee at the Text Analysis Package Developers’ Workshop, held at the London

School of Economics in April, 2017. There are three distinct formats to capture

different levels of analysis:

• corpus—a corpus object is described by a table with the full, raw text stored as a

single column and a single id of the text stored as another column; other

metadata (e.g., author, year, place of publication) may be added as well, with no

specific requirements or restrictions on what these may contain

• term-frequencies—a term frequency object is stored as a (sparse) matrix, with

terms given as columns, documents given as rows, with term counts filled in the

individual cells

• annotations—an annotation object is a table with one row per object type and a

specific column linking back to the corpus table; rows most frequently

correspond to tokens, but can be a smaller (ex. syllable) or larger (ex. sentence)

linguistic unit
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These guidelines were chosen to closely match the way that many R packages were

already processing text. Several maintainers of text packages have since adapted

their code to fit within these guidelines.

The packages in our core ecosystem are described in Table 1. Included are the

low-level tools stringi (Gagolewski 2017) and readtext (Benoit and Obeng 2017)

that assist in loading and cleaning raw textual data. Arnold’s cleanNLP package,

which could be considered the core within our proposed set of packages, takes raw

text and returns a set of linguistic annotations (Arnold 2017). Annotations include

tokenisation, lemmatisation, part of speech tagging, dependency tagging, named

entity recognition, and coreferences. These tasks are available for a number of

natural languages and are provided by internally calling one of two cutting-edge

NLP libraries: the Java-based CoreNLP or the Python-based spaCy. Our core set of

packages is completed by tools that take tokenised text and return additional

information or annotations. We can find spelling errors and potential corrections

using hunspell (Ooms 2017), predict hyphenation patterns with hyphenatr (Rudis

et al. 2016), and produce multilingual word embeddings with fasttextM (Arnold

et al. 2017).

How does our proposed pipeline differ from other approaches to textual analysis

in R? As described in Sect. 3.2, much of the functionality is also offered in package

ecosystems such as stylo (Eder et al. 2016) and the suite of R scripts provided by Th

Gries and Hilpert (2008). These ecosystems provide a single point of reference that

is able to accomplish many common tasks in textual analysis. For research projects

that only require the tools within a particular framework—particularly for users with

less experience using the R programming language—this can be a time-saving and

beneficial approach. However, it is much more difficult to integrate other packages

into analysis because the results within stylo and the Gries scripts are wrapped in

package-specific classes and formats rather than interoperable formats that can be

easily passed to other visualization and modeling functions. The flexibility

described by our pipeline is particularly important for scholars in DH because

textual approaches are often only part of the computational work done with a

corpus. Other methods, such spatial and network analysis or the construction of

Table 1 R packages forming our core ecosystem for textual analysis

Package name Functionality Authorship

stringi Locale specific string manipulation Others

readtext Load text from various file times Others

cleanNLP Annotate text; create term frequencies TA

fasttextM Apply bilingual word embeddings TA; NB, PL

hyphenatr Prescribe hyphenation patterns to text Others

hunspell Check spelling and suggest changes Others

All are provided under an open source license and are available on the Comprehensive R Archive

Network (CRAN)
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interactive visualizations, are often needed before addressing research questions of

interest.

As mentioned throughout Sect. 3, a primary benefit of doing textual analysis in R

is the access it gives to other graphical and modelling functionalities developed by a

large community of statisticians and data scientists. Our goal in this section is not to

give an exhaustive list of models that have been implemented in R. Instead, we

focus on a small set of models that have been particularly influential in our own

work.

Topic modelling involves the discovery and description of abstract themes within

a corpus. A Bayesian model, latent Dirchlet allocation (LDA), is a very popular

method for conducting topic modelling. While originally used to describe theme in

texts, there is nothing specific in the mathematical model restricting it to textual

data. Recent applications have used it in other application domains including topic

LDA over images, sound, and space (Wang and Grimson 2008; Lienou et al. 2010).

In some fields, such as within the humanities, LDA has such a dominant presence

that it is often erroneously described as the way to do topic modelling. The

topicmodels package in R provides a fast implementation of LDA (Grün and

Hornik 2011). Many tuning parameters and tweaks of the basic model are included;

complementary packages such as LDAtools provide nice visualizations of the

output (Sievert and Shirley 2015).

A common representation of textual data is a term-frequency matrix. This is a

table with one row per document and one column per token. Even with aggressive

filtering rules, such a table can easily exceed over 1000 columns. Including all

tokens over a large corpus can quickly lead to a term-frequency matrix with several

million columns. Within statistics, tables with a large number of columns are

described as ‘high-dimensional’. Tables with many columns occur in fields such as

genetics, image analysis, and sound studies. One simple problem that arises in the

study of high-dimensional data is how to build exploratory plots summarizing the

data. Even with clever uses of colour, shape, and facets, typical plots can show at

most six variables at once. A solution to this problem is to conduct dimensionality
reduction, where many variables are synthesised by a small set of algorithmically

generated summary statistics. Principal component analysis (PCA) is one common

way of doing this, and is provided for small datasets by functions in R without the

need for external packages (Wold et al. 1987). The irlba package gives access to

significantly faster algorithms for PCA over sparse matrices, such as those resulting

from term-frequency matrices (Baglama et al. 2017). A more complex dimension-

ality reduction scheme is given by the tsne package (Donaldson 2016). While

requiring a longer runtime, the results generally produce more interesting summary

statistics compared to PCA.

In text mining, users typically have a metadata variable of interest associated

with each document in a corpus. In authorship detection this would be a key

describing the writer of each piece and in sentiment analysis it would be a score

describing the mood of each document. Typically the goal is to figure out which

combination of terms in the corpus are associated with each output. The high-
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dimensionality of the term-frequency matrix once again causes a problem for

many traditional predictive modelling algorithms. The elastic net, provided by

the glmnet package in R, offers a solution to this issue (Simon et al. 2011). As

with traditional regression models, it finds a linear model that minimises the sum

of squared residuals, but also penalises models for including too many large

regression coefficients. The output, when given a high-dimensional model,

returns a linear regression where most of the slope coefficients are set to exactly

zero. The resulting model is therefore useful from both a predictive standpoint

and also as an exploratory technique for indicating which tokens (or any other

linguistic elements included in the data matrix) are most associated with a given

response.

5 Using the R text analysis pipeline

The description of our R package ecosystem for text analysis has so far been

relatively abstract. While this article is not meant as a tutorial on R or the

specific packages in our ecosystem, we find it instructive to offer a brief

demonstration of a potential workflow in order to best demonstrate the

potential benefits to researchers working with textual corpora.5 In the following

code snippets any text following the ‘greater than’ symbol (>) or plus sign (?)

is code meant to be typed or copied into the R interpretor. Output from R is

given without such a prefix. Here, we will use a verbose calling scheme to

make clear which package each function is being pulled from. The package

name is given first followed by the function name, along with two separating

colons (::) to distinguish each.

The example here shows how to use R to perform information extraction. The

specific task is to extract the capital cities of the 28 member nations currently in the

European Union. This task requires extending the lexical frequency paradigm to

include information about dependencies and named entity recognition. As a corpus

to use for this task, we take the English language Wikipedia country pages.6 While

R was used to grab the raw data from the web, for simplicity here we assume that

the text files are already downloaded and saved within a directory named

wiki_eu_en_GB.

The first step in our workflow is to use readtext to load a corpus object, stored as

a data table, into R.

5 A full set of code and data for replication can be found at https://github.com/statsmaths/beyond-lexical-

frequencies.
6 In this case, Wikipedia includes an infobox at the top of the page listing the country’s capital city. Our

analysis ignores this box, using only the raw text to illustrate how information can be extracted from

completely unstructured text.
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Notice that results are given as a data frame along with some additional

attributes. Unlike corpus objects in older packages such as NLP and tm, we can

choose to treat this object as a normal data frame. As per the text interchange format

specifications, readtext has produced a corpus object with one row per document

and columns for a document id and another containing the raw text.

Next, we need to preprocess the text before running it through our annotation

engine. While HTML tags have already been removed in the download process,

Wikipedia-style references still exist. These consist of either the phrase ‘citation

needed’ in square brackets or a number contained in square brackets. We use the

stringi package to replace both of these with an empty string. The functions from

stringi that we use all accept vectors (a single column from a table) as inputs and

return a new vector of the same length as an output.

Here, we manually set the locale to illustrate that stringi has the ability to

properly parse text in non-Latin scripts. After running these lines of code, the text

now contains only the written material itself.

Our next step is to create an annotation object, with one row for every token in the

original text. We set up cleanNLP to internally use the spaCy library for text parsing.
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The output now has split the text into tokens and assigned learned annotations to

each row. The default view in R hides some columns in order to fit the table in the

output, but these can be viewed when running the code interactively in RStudio or

selecting a subset of the columns.

The first step in performing information extraction about the capital cities in this

dataset is to filter the annotation dataset to include only those sentences containing

the lemma ‘‘capital’’.

With this reduced dataset, the next step is to determine exactly which rows

correspond to the name of the capital city. We will do those by making use of both

the dependencies and named entity recognition annotations produced by the

cleanNLP package. The algorithm we use to identify capital cities applies the

following rules to identify cities:

• the word must be tagged as a spaCy entity type that is not an organization name

• the word has an apostrophe dependency with the lemma ‘capital’ or ‘city’, or
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• the word is a direct object, attribute, or subject of the verb form ‘be’ or

‘make’.

Additionally, we throw away any cities with the same name as the country and,

when multiple cities match the same city, prefer the construction ‘capital is [city]’

over ‘the capital [city]’ as the first is more explicit. To encode these rules we create

a new table that describes all of the possible combinations of the variables that

should be filtered for:

With this table, we now filter the data cc to include only those rows that match

the object df_match.

Ties are broken using the rank variable in the matching table and duplicates are

removed.

The results of our information extraction routing are reasonably accurate, as we

can see by printing out the country and city pairs.
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There are only two false positive. One is Milan (Italy), which is caused because

of a sentence stating that Milan is one of the ‘‘main fashion capitals’’. Bulgaria is

erroneously linked to the historic capital of Preslav. Two countries are missing from

the list: Luxembourg and Portugal. The capital of Luxembourg is Luxembourg City,

and therefore gets filtered out when we remove cities with the same name as the

country. For Portugal, the only sentence that describes the capital is this one:

Portugal has been a semi-presidential representative democratic republic since

the ratification of the Constitution of 1976, with Lisbon, the nation’s largest

city, as its capital.

The spaCy parser correctly parses this sentence, but the grammatical relationship

between Lisbon and capital are too far up the dependency tree to be found by our

relatively simple algorithm.

This simple algorithm implements linguistic queries resting on a very limited set of

syntactic constructions. The ’Lisbon’ example shows that apposition was underesti-

mated and in our simplified detection algorithm. Our simple example shows the

perspectives opened for Digital Humanities by this kind of R-based implementations of

queries relying on linguistic knowledge which can be informed with discourse analysis.

6 Case study—photogrammar

Photogrammar is a digital humanities project under the direction of two of the

present paper’s authors, Taylor Arnold and Lauren Tilton, and Laura Wexler. The

project’s main object of study is a collection of 170 thousand photographs taken

under the direction of the Historic Division of the United States Farm Security

Administration and then Office of War Information between 1935 and 1945 (Levine
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1988). The archive of study is often referred to as the FSA photographic collection,

in reference to the two organizations that housed the Historic Division. There are

two distinct aspects to the Photogrammar project. A public-facing website,

photogrammar.org, presents interactive visualisations and faceted search

mechanisms for the the photographic corpus. It has received over half a million

visitors in the past 3 years and has been featured in publications such as LeMonde,

Slate, and BBC News. The project also engages in an active research agenda using

computational tools to make novel insights in the collection.

While the FSA–OWI archive is first and foremost about visual material, there is

also a substantial amount of textual data. In this section, we present three examples

where we have used our core R ecosystem for textual analysis to study the FSA–

OWI archive. These examples are particularly illustrative of why digital humanists

are interested in both the raw textual sources as well as the associated textual

metadata. In the interest of brevity only short code snippets are included to describe

the main aspects of each application. The full datasets and replication scripts are

available as supplemental materials.

In the 1960’s, the Archives of American Art conducted oral interviews with

many of the staff photographers that had worked for the Photographic Division. We

have acquired audio files and text transcripts of these and integrated them into the

public-facing Photogrammar website. The material from the interviews has also

influenced our research into the collection. While nowhere as massive in scale as the

photographs themselves or the Federal Writer’s project documents, the collection of

interviews spans over 12 hours of audio material. Our goal was to create ways of

better navigating, close reading, and understanding the interviews. This required a

deeper analysis of the corpus than available through lexical frequency counts.

We used topic models in order to understand the main themes within and across each

interview. As a preprocessing step, we split the interviews up into individual segments.

Each segment includes 7 questions by the interviewer and 7 response by each

photographer. This was done in R through manipulation of the raw transcripts using the

stringi package. We were able to split apart questions and answers using the coded

metadata in the input. These segments were then annotated using cleanNLP and filtered

to include only nouns and verbs. With the annotated data, we then created a term

frequency matrix and decomposed this using the irlba package using the following code:
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The output of the top_words vector describe the most representative words

from each of the 8 topics in our model:

In Table 2, we see the number of segments from each topic associated with a give

interview. By linking together segments from different interviewers categorised by

the same dominant topic, we can compare how different photographers felt about

similar aspects of their work.

At the macroscopic level, we also see interesting patterns in the overall counts and

subject matters of the learned topics. Walker Evans, the photographer most associated

with the art world, has a majority of segments focused on the art and painting topic. The

one interview with a non-photographer, Roy Stryker, who headed the Historic Division,

is dominated by the topic ‘guy; man; office; job’. We also see the prominence and lasting

memories for the photographers around the difficulties of covering dust storms.

As a final task for the interviews, we wanted to create automated links from the

interviews to guide users to third-party sites explaining concepts that might be

unfamiliar to them. During the interviews, the photographers often reference people,

places, and events that are likely unfamiliar to many modern readers. The references

are also often subtle enough that a simple web search might not be helpful enough

Table 2 Primary topic using SVD topic modelling from interview segments

AR BS DL JC JV MPW RT RS WE

Art; artist; painting; painter 3 6 2 3 0 0 5 7 48

Book; county; month 0 4 3 1 2 3 0 9 15

Camera; approach; assignment 10 5 5 12 2 2 0 12 7

County; problem; place; country 2 6 14 1 2 3 5 12 8

Dust; storm; county; community 3 2 3 1 3 2 0 0 9

File; kind; photography; project 11 20 19 20 9 14 20 44 24

Guy; man; office; job 0 8 4 0 1 5 2 78 16

Storm; dust; story; photography 2 3 5 0 2 2 0 17 11

Segments were defined as occurring after every 8 questions asked by the interviewer. Interviewees are

Arthur Rothstein (AR), Ben Shahn (BS), Dorothea Lange (DL), John Collier (JC), John Vachon (JV),

Marion Post Wolcott (MPW), Rexford Tugwell (RT), Roy Stryker (RS), and Walker Evans (WE). Topics

are described by the top most influential words within each topic
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(e.g., a town name without a state or a relatively common last name without a first

name or title). We rectified this issue by passing the entire interview through the

cleanNLP package and extracting named entities. We filtered entities referencing

people, places and events, constructed a look-up table of unique occurrences, and

exported this to a .csv file. In a spreadsheet program, we manually went through the

entities and linked them to related Wikipedia pages. Finally, we read this sheet back

into R and reconstructed the original text with the entities. For example, here is an

excerpt of the interview with Gordon Parks coded with related HTML links:

Well, other photographers were very helpful. < a href¼‘https://en.wikipe-

dia.org/wiki/Russell_Lee_(photographer)’>RussLee</a> was marvelous. < a

href=‘https://en.wikipedia.org/wiki/John_Vachon’> John Vachon</a> prob-

ably turned out to be my very best friend and still is, although we never see

each other.

Users can now click on the links referencing each photographer and be directed to

the appropriate page for more information about them. We were able to easily

reconstruct the text from the annotated text and embed links into the output using

the cleanNLP package in combination with stringi. Figure 2 shows how the

formatted HTML is rendered the public website.

7 Federal writers project

The Federal Writers Project (FWP) was another project of the United States Federal

government that ran from 1935 to 1943. Like the Photographic Division, its broad

goal was to document and capture the stories of Americans across the country.

Fig. 2 Portion of a transcript of the Archives of American Art interview with the FSA–OWI
photographer Gordon Parks. The highlighted text has been hyperlinked to secondary materials to assist
readers in understanding the context of the interviews. The time marker on the left was add as well to give
a deep link to the specific part of the audio file referenced by the transcript
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Where the FSA–OWI captured this primarily through photography, the FWP

documented life stories through written transcripts of oral interviews. Given the

overlap in time periods and goals, both our research agenda and the public-facing

website has begun to include references to the FWP in addition to the FSA–OWI

collection. At the moment, our focus has been on a specific subset of the FWP: the

life histories produced by the Southern Life History Program. Here, for simplicity,

we will show just the collection from the state of Virginia.

The Federal Writers project conducted 84 oral history interviews in the state of

Virginia. Our dataset consists of a short 1–2 sentence description of the interview as

well as a digitised version of the interview text. There was no additional structured

metadata associated with the interviews. A primary research interest we have about

the collection is the presentation and representation of place and space in the

interviews. As a first step, we wanted to know where the interviews occurred.

Almost all of the summary descriptions list this information and we were able to

quickly grab all 84 locations by looking for locations mentioned in the description

of each text. With only a few exceptions, which were dealt with manually, this

yielded a clean textual description of locations where interviews were given.

Knowing that all interviews were given in Virginia and because almost every listing

gave both a city and county name, looking up the few unique locations and adding

the longitude and latitude to the data was straightforward.

Next, we wanted to find all locations referenced by the interviewee in the text.

This task was much more complex than grabbing locations from the descriptions. In

this case, there was far too much text to fall-back on manual methods when

automated approaches failed. Also, we did not have a consistent description of

location with city and county information nor did we know that all locations should

be in Virginia. As with the photogrammar example, the task requires more than

counting lexical frequencies with the text. To address these issues we built a

workflow around our core text packages and one additional R package specifically

created for working with geospatial data. The first step involved running all of the

text through cleanNLP and extracting all named entities referring to locations. After

inspecting the list, several common false positives were removed (primarily terms

of the era such as ‘Negro’). With the remaining locations, we had R identify and

remove locations that were more fully referenced with other locations in a given

interview. For example, if an interview referred to the location ‘Wise’ and latter

mentioned ‘Wise County’, we included only the more specific reference. Those

most complete references made up our final list of locations.

The textual references to locations, even after removing shortened forms, rarely

gave a complete, unambiguous place name. There is, for example, a Wise County in

both Virginia and Texas. Our solution to this was to use a geolocation service to find

the most likely coordinates referenced by all locations mentioned in the texts in

three different ways: in the raw form given in the text, with the state ‘Virginia’

added on to the string, and with the country ‘USA’ added on to the string. The

geolocation was done within R using the ggmap package (Kahle and Wickham

2013). For 72% of locations, the same result showed up in all three searches and this
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was considered an accurate estimate of what a text was referencing.7 When there

was disagreement, we used the Virginia result if one existed and the USA result

otherwise. Ten interviews were manually checked using this logic. We found no

falsely determined or located places, but did uncover 6 locations that were missed

by the named entity recognition algorithm and 2 that were not found by the

geolocation service.

In Fig. 3, we show both the locations where interviews in Virginia occurred as

well as locations that were mentioned in the text. The plots were produced in R

using the plotting functions in the ggmap package. In addition, nearly 200 points

referencing other locations across the United States are excluded in the zoomed in

version shown here. From the plot we see that restricting our understanding of the

Fig. 3 Locations associated with Federal Writers Project interviews conducted in the state of Virginia, as
learned from text extraction from the interview texts

7 Interestingly, this was not always in Virginia. When the original string was, for example, ‘Dallas,

Texas’ all three locations pointed to the Dallas in Texas regardless of what was tacked onto the end.
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FWP in Virginia to only those locations where interviews were conducted is a

misrepresentation of the cultural coverage of those interviews. While interviews

were mostly given in dense areas of concentration—such as Richmond, Norfolk,

and Harrisonburg—many of the oral interviews discuss rural locations such as the

Blue Ridge Mountains in the western half of the state and the large farmland region

along the border with North Carolina.

8 Challenges and conclusions

We have presented a potential ecosystem of R packages for text analysis and

demonstrated how it is able to perform meaningful analyses of humanities data.

There are, however, still some challenges and questions that remain to be addressed.

Currently available R packages on CRAN lack several functions that would be

helpful for the analysis of text in DH. One particular challenge is the lack of full

support for most natural languages. Good models exist for English, Spanish, French,

Chinese, and a handful of other languages. Outside of these, tokenisation is often the

best that is supported by general purpose libraries.8 This is not a particular problem

of a lack in R support but a general issue with all NLP libraries. There is also need

for more tools to work with parallel texts, a common feature of corpus linguistics

that has not been fully implemented in R. Nevertheless, bilingual copora can be

analysed with R, see the R-based analysis of the bilingual corpus INTERSECT

(Salkie 1995) in Gries and Wulff (2012). Their regression analysis uses the two

subsets of the corpus which are loaded separately in the analysis. Text specific add-

ons for the shiny package, which allows users to create dynamic websites from

within, are also lacking. The ability to share analyses over the web is particularly

important in the humanities where many non-DH scholars are not otherwise familiar

with how to run code examples. As we mentioned in Sect. 4, our privileged set of

packages is not uniquely defined by our criteria for choosing packages. Other

collections of packages could provide very similar functions while still maintaining

the interoperability described by the text interchange format. For instance, we could

replace cleanNLP with a combination of quanteda (Benoit et al. 2017), spacyr
(Benoit and Matsuo 2017) and tidytext. A tutorial-oriented paper describing an

alternative set of related tools is, for example, given in Welbers et al. (2017). At a

larger level, most of our arguments for the use of our R ecosystem could also apply

to a collection of modules within the Python programming language. Our goal has

been to describe a specific example of a text analysis pipeline for the digital

humanities rather than weighing the specific technical benefits of our particular

approach compared to other alternative choices.

Finally, while clearly there are benefits of working with a programming language

over one-off tools, there is also an added up-front cost in learning how to code. The

extent to which digital humanists, and humanities scholars in general, should be

expected to program is a hotly debated topic (O’Sullivan et al. 2015). Our argument

8 In the past year the udpipe package has done an admirable job of extending lemmatisation and

dependency parsing to a larger set of target languages (Wijffels 2018).
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here has been to show the benefits of programming in the context of text analysis. It

is not our position here to specifically argue for whom these benefits outweigh the

need to learn new skills. Point and click tools may be the right choice for many

humanities scholars; we only hope to illustrate the kinds of nuanced analysis

precluded by this approach. Despite these open questions and challenges, we feel

that our ecosystem of R packages provides an excellent starting point for moving

beyond the lexical-frequency paradigm of analysis with the digital humanities.9

Using these tools, digital humanists can build both straightforward and complex

analyses using data sources involving components with raw text. Our suggested

ecosystem balances the ability to easily run some common analyses with little effort

with the ability to extend the core functionality to arbitrarily complex workflows.

This flexibility, in fact, makes our ecosystem an excellent tool for researchers across

the computational social sciences. We expect future work extending the work

presented here will further enable scholars from many backgrounds to make novel

discoveries and arguments from raw, unstructured textual-based corpora.
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Klaussner, C., Nerbonne, J., & Çöltekin, Ç. (2015). Finding characteristic features in stylometric analysis.

Digital Scholarship in the Humanities, 30(suppl 1), i114–i129.

Komen, E. R. (2011). Cesax: Coreference editor for syntactically annotated xml corpora. Reference
manual Nijmegen. Nijmegen: Radboud University Nijmegen.

Lamalle, C., Martinez, W., Fleury, S., Salem, A., Fracchiolla, B., Kuncova, A., & Maisondieu, A. (2003).

Lexico3–outils de statistique textuelle. manuel d’utilisation. SYLED–CLA2T, Université de la
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