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Abstract

Can sentence comprehension impairments in aphasia be explained by difficulties arising from

dependency completion processes in parsing? Two distinct models of dependency completion difficulty

are investigated, the Lewis and Vasishth (2005) activation-based model and the direct-access model

(DA; McElree, 2000). These models’ predictive performance is compared using data from individuals

with aphasia (IWAs) and control participants. The data are from a self-paced listening task involving

subject and object relative clauses. The relative predictive performance of the models is evaluated using

k-fold cross-validation. For both IWAs and controls, the activation-based model furnishes a somewhat

better quantitative fit to the data than the DA. Model comparisons using Bayes factors show that,

assuming an activation-based model, intermittent deficiencies may be the best explanation for the cause

of impairments in IWAs, although slowed syntax and lexical delayed access may also play a role. This

is the first computational evaluation of different models of dependency completion using data from

impaired and unimpaired individuals. This evaluation develops a systematic approach that can be used

to quantitatively compare the predictions of competing models of language processing.
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1. Introduction

Understanding a sentence requires the comprehender to access lexical representations

of words from memory, link these with upcoming words, build up the structure of the

sentence, and compute the meaning of the sentence. Consider example (1):

(1) The lawyer who came to the office yesterday was looking for some documents.

To understand this sentence, the hearer needs to work out who came to the office,

when, and why that happened, and who was looking for what. In the sentence processing

literature, the process of linking up words that are linguistically related is known as

dependency completion. In sentence (1), an example of a dependency is the one between

lawyer and was looking. A widely held assumption in sentence processing research (Gib-

son, 2000; Just & Carpenter, 1992; Lewis, Vasishth, & Van Dyke, 2006) is that depen-

dencies require access to the working memory system in order to work out the

relationships between words.

Several theories have been developed that spell out the mechanisms that may be

involved in the resolution of long-distance dependencies (Gibson, 2000; Just & Carpenter,

1992; McElree, 2000; McElree, Foraker, & Dyer, 2003; Van Dyke & Lewis, 2003).

Among these, one class of accounts is referred to as cue-based retrieval theory (Engel-

mann, Jäger, & Vasishth, 2019; Lewis et al., 2006; Vasishth, Nicenboim, Engelmann, &

Burchert, 2019). One core assumption here is that words and phrases are stored in mem-

ory as a bundle of feature–value pairs. For example, the word lawyer is represented in

memory as an attribute–value matrix (Pollard & Sag, 1994). Some of the relevant fea-

ture–value pairs are shown below:

innominal�yes

animate�yes

subject�yes

singular�yes

0
BBB@

1
CCCA

Cue-based retrieval theory assumes that dependencies are resolved via a content-ad-

dressable search in memory. For example, in sentence (1), to resolve the dependency

between lawyer and was looking, the comprehender needs to retrieve a mental repre-

sentation of the noun lawyer from memory. Upon encountering the words was look-
ing, a retrieval is assumed to be triggered that seeks out a subject noun that has

specific features such as [nominal: yes, animate: yes, subject: yes, singular: yes]. We

will therefore refer to was looking as the retrieval site, that is, the point at which the

retrieval of the co-dependent is triggered, and to the lawyer as the target of the retrie-

val. The features that are used to carry out the search and retrieval of a given co-

dependent in memory are called retrieval cues. Notice that in this case, it is assumed
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that was looking is a multi-word unit encoded in memory with a single matrix of fea-

ture–value pairs.

One reason that sentence comprehension difficulty arises is when multiple items in

memory match the retrieval cues set by the trigger at the retrieval site. This is known as

similarity-based interference (Van Dyke & Lewis, 2003; Van Dyke & McElree, 2006).

To illustrate, we consider the object relative (OR) clause shown in (2b) along with the

baseline condition, the subject relative (SR) clause (2a):

(2) a. The man who scratched the boy pushed the girl.

b. The man who the boy scratched pushed the girl.

In (2b), the comprehender needs to work out who scratched whom, and who pushed

whom. When the verb scratched is encountered, the retrieval of its corresponding subject

(boy) is triggered, using retrieval cues such as [nominal: yes, animate: yes, subject: yes,

singular: yes]. At the moment of retrieval, there are two nouns available in memory that

match these retrieval cues: man and boy. However, man is not the subject of the relative

clause (RC) verb scratched. Following the literature (Jäger, Engelmann, & Vasishth,

2017), we will refer to man as the distractor. Cue-based retrieval theory predicts that pro-

cessing difficulty increases when both a target and a distractor have features that match

the retrieval cues. Processing difficulty arises because these nouns become difficult to dis-

tinguish from each other; this phenomenon is called the fan effect in memory research in

cognitive psychology (Anderson et al., 2004).

In summary, in (2b) processing is assumed to be more difficult at the verb scratched
compared to the baseline condition (2a), where the cues used to access the subject of

scratched only match the subject man (Lewis & Vasishth, 2005). Grodner and Gibson

(2005) present data from a self-paced reading study on ORs and SRs in English that is

consistent with this prediction. The increased processing difficulty at the verb scratched
is predicted to lead to longer reading times in (2b) versus (2a), and to occasional misre-

trievals of the incorrect noun from memory. This is the signature effect that is referred to

as similarity-based interference (Gordon, Hendrick, Johnson, & Lee, 2006; Jäger et al.,

2017; Jäger, Mertzen, Van Dyke, & Vasishth, 2020; Van Dyke & McElree, 2006, 2011;

Vasishth et al., 2019).

Two distinct instantiations of cue-based retrieval theory are the Lewis and Vasishth

(2005) model of sentence processing (henceforth, LV05) and the direct-access model

(henceforth, DA) developed by McElree (2000). The two models share the assumption

that retrieval is driven by a cue-based mechanism, and both predict that a distractor dis-

rupts the retrieval of the target when the retrieval cues match the distractor and the target.

Despite these similarities, the two models assume fundamentally different underlying pro-

cesses for the access of representations in memory. In the LV05 model, retrieval time for

an item depends on the activation of the item in memory, with reduced discriminability

of an item leading to lower activation and therefore longer retrieval times. By contrast, in
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the DA model, retrieval time is assumed to be constant, and reduced discriminability only

affects the probability of correct retrieval of the target.

Nicenboim and Vasishth (2018) were the first to formally implement these two com-

peting models and compare their relative predictive performance. Using self-paced read-

ing data from a number interference experiment in German (Nicenboim, Vasishth,

Engelmann, & Suckow, 2018), Nicenboim and Vasishth implemented the LV05 and DA

models in a Bayesian framework. They showed that (a) the DA has better predictive per-

formance than the activation-based model, but (b) the activation-based model yields a

comparable performance to the DA when the variance of the retrieval times is allowed to

be different for correct and incorrect retrievals. The computational implementations of

the two competing models of retrieval make it possible, for the first time, to investigate

their relative performance using a broader range of experimental data.

Both LV05 and DA are meant to account for retrieval processes in sentence compre-

hension in unimpaired populations. An open question is whether these models, which

have until now only been investigated in connection with unimpaired processing, can also

characterize retrieval difficulty in impaired populations. That is, can the models account

for impaired processing through parametric variation? And if they can, what do the

changes in the parameters tell us about the impairments? In this paper, we focus on an

important and under-studied problem, the underlying nature of retrieval difficulty in indi-

viduals with aphasia (IWAs).

Aphasia is an acquired neurological condition caused by brain injury that affects lan-

guage production and comprehension. One question we seek to answer is: Given the two

competing models of retrieval processes, which one better characterizes processing diffi-

culty in IWAs? As data, we use the largest dataset currently in existence on sentence

comprehension in IWAs. This dataset, reported in Caplan, Michaud, and Hufford (2015),

provides listening times (LTs) and picture-selection accuracies from IWAs and matched

unimpaired controls. The full dataset involves a range of syntactic constructions and

methods, but in this paper, we focus on self-paced listening data on the SR versus OR

clause construction, which is a very well-studied construction in psycholinguistics.

The present paper is structured as follows. We begin by reviewing prior work on mod-

eling retrieval processes in aphasia. Next, we present the data, our implementation of

LV05 and DA, the results of the model comparisons, and a Bayes factors (BFs) analysis.

1.1. Modeling retrieval processes in aphasia

There are several theories about why language processing deficits arise in IWAs. In

this paper we focus on processing deficit theories that can be implemented within the

framework of cue-based theory and that are of relevance for our modeling work.1 In par-

ticular, we focus on the following accounts: delayed lexical access (Ferrill, Love, Walen-

ski, & Shapiro, 2012), slow syntax (Burkhardt, Avrutin, Piñango, & Ruigendijk, 2008),

resource reduction (Caplan, 2012), and intermittent deficiencies (Caplan et al., 2015).

The delayed lexical access theory claims that lexical access is delayed in IWAs, and

this can cause a slowdown in the formation of a syntactic dependency. Evidence
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supporting this theory comes from a series of cross-modal lexical priming studies, which

combine a listening comprehension and a lexical decision task. Love, Swinney, Walenski,

and Zurif (2008) and Ferrill et al. (2012) (inter alia) found that IWAs showed slower lex-

ical activation relative to controls. Some cross-modal lexical priming studies have also

revealed that IWAs build syntactic dependencies at a slower-than-normal speed. This has

been taken as support for the slow syntax theory (Burkhardt et al., 2008; Burkhardt,

Piñango, & Wong, 2003), which posits that a slowdown in syntactic structure building

can cause a delayed interpretation or a failure to interpret the sentence. Under this

account, the impairment is at the level of syntactic structure formation.

Caplan, Waters, DeDe, Michaud, and Reddy (2007) and Caplan et al. (2015) present

online and offline data that support the hypothesis that IWAs have a deficit in the

resources used in parsing, what they refer to as resource reduction (Caplan, 2012). Com-

plex sentences demand more resources, such as a higher memory load or attention, and

therefore, IWAs are more likely to misinterpret complex sentences. Finally, Caplan,

Michaud, and Hufford (2013) argue that in addition to a resource reduction, IWAs may

exhibit intermittent breakdowns in the parsing system, a theory known as intermittent
deficiencies.

Some of these accounts have been implemented in the framework of LV05. Patil,

Hanne, Burchert, De Bleser, and Vasishth (2016) developed several LV05-based models

that implement theories of processing deficits in aphasia. They found that IWAs’ process-

ing was better characterized by a model that combined the implementation of slowed pro-

cessing (understood as a “pathological slowdown in the processing system”) and

intermittent deficiencies, relative to models that included only one of these deficits. Build-

ing on the conclusions of Patil et al. (2016), Mätzig, Vasishth, Engelmann, Caplan, and

Burchert (2018) investigated variability among IWAs by implementing slowed process-

ing, intermittent deficiencies, and resource reduction within the LV05 model. The range

of parameters estimated for IWAs showed a broad variability, whereas the parameters for

control participants were closer to the default parameters of the original LV05 model and

displayed a smaller range of variability. These results imply that IWAs are very variable

in the extent and nature of their deficits along these three hypothesized dimensions (slo-

wed processing, intermittent deficiencies, and resource reduction). The broader conclusion

here is that deficits may lie on a continuum, and along different dimensions.

Although Patil et al. (2016) only modeled data from seven IWAs, and Mätzig et al.

(2018) modeled offline measures (accuracies), both studies showed that LV05 can account

for IWAs’ behavior by modifying specific parameters that can be mapped onto theoreti-

cally informed assumptions. By doing so, they derived quantitative predictions under the

assumptions of theories of deficits in aphasia. However, whether the LV05 model can

account for the different hypothesized deficits in a larger dataset with online measures

remains to be tested.

As discussed in the previous section, there exists another competing model of retrieval

processes, the DA. The crucial difference between these two models is that they assume

different underlying mechanisms for the access of items in memory. Yet the relative pre-

dictive performance of the activation model and of the DA has never been compared

P. Lissón et al. / Cognitive Science 45 (2021) 5 of 38
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using data from both unimpaired and impaired populations. By comparing these two mod-

els’ predictions with data from IWAs, we aim to investigate the following questions: (a)

Can the direct-access mechanism of retrieval also account for sentence processing in

IWAs? (b) How do the different parameters of these two models relate to theories of pro-

cessing deficits in IWAs? (c) Which model provides a better fit to data from IWAs and

controls? Investigating these questions would provide new insight into the nature of the

dependency completion process in impaired and unimpaired populations.

The Caplan et al. dataset makes such a model comparison possible. Below, we begin

by revisiting the characteristics of the subset of the Caplan et al. dataset that we use in

this paper.

2. The Caplan et al. dataset: Self-paced listening times in relative clauses

The empirical data we consider here consist of LTs and picture-selection accuracies

from 33 IWAs and 46 controls matched by age and years of education. The original data-

set reported in Caplan et al. (2015) included 56 IWAs, but we discarded data from eight

IWAs because they were in the early post-acute phase (less than 4 months post-stroke),

and from 15 other individuals who had been classified as IWAs but showed no symptoms

of aphasia in the Boston Diagnostic Aphasia Exam (Goodglass, Kaplan, & Barresi,

2001).

Out of the 11 sentence types in the dataset, we selected the SR and OR constructions

(see examples 3a and 3b). This choice was motivated by the fact that RCs have been

extensively studied in psycholinguistics, and a great deal is known about RC processing.

In English and many other languages, ORs have been uniformly found to be more diffi-

cult to process than SRs (Grodner & Gibson, 2005). Moreover, IWAs are known to expe-

rience difficulties in the comprehension of OR clauses (Caramazza & Zurif, 1976; Hanne,

Sekerina, Vasishth, Burchert, & De Bleser, 2011), especially when the thematic roles of

the nouns can be reversed, as in the sentences shown below.

(3) a. Subject Relative (SR): The girl who chased the mother hugged the boy.

b. Object Relative (OR): The girl who the mother chased hugged the boy.

In the experiment reported by Caplan et al. (2015), participants listened to sentences

presented word by word, and pressed a computer key whenever they were ready to hear

the next word. This yielded an online measure of comprehension: LTs per segment, in

milliseconds. At the end of the sentence, participants had to choose which of two pictures

displayed on the screen matched the meaning of the sentence they had just heard. This

choice yielded accuracy data (correct/incorrect response). An example of the pictures

shown in the picture-selection task is displayed in Fig. 1. These pictures correspond to

the sentences (3a) and (3b).

6 of 38 P. Lissón et al. / Cognitive Science 45 (2021)
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Of the 20 items corresponding to the SR and OR conditions in Caplan et al. (2015),

we only used items 11–20 for our data analysis and modeling. The modeling is limited to

these items because it was only in these items that the pictures in the picture-selection

task tested the participant’s understanding of the meaning of the verb inside the RC (e.g.,

who chased whom in 3a and 3b). For cue-based retrieval theory, in RCs, the retrieval of

the agent of the action expressed by the verb within the RC is the first and key retrieval

event (Lewis & Vasishth, 2005).

In English, the verb of the subordinate clause (chased in 3a and 3b) does not appear in

the same position in SR and OR clauses, and therefore the LTs corresponding to the verb

region are not directly comparable. To make the two sentences comparable, we followed

the procedure in Traxler, Williams, Blozis, and Morris (2005) and added up the LTs of

the noun phrase (“the mother”) and the verb (“chased”) inside the SR/OR clause. Trials

with LTs shorter than 200 ms were discarded (around 2% of the data).

In the following section we present descriptive statistics and a Bayesian analysis of the

data used for modeling. We analyze the data using the Bayesian framework because this

allows us to quantify uncertainty about the estimates of interest (e.g., the difference in

LTs for SR and OR clauses). Our statistical inferences are based on 95% credible inter-

vals and means of the estimates; the credible intervals show the range over which plausi-

ble values of the parameter lie with 95% probability, given the data and the model.

3. Bayesian analysis of the Caplan et al. (2015) relative clause listening time data

The mean accuracy for controls and IWAs across the two conditions is shown in

Fig. 2. For controls, accuracy is above 90% in both conditions, whereas for IWAs accu-

racy in SRs is 75%, and 63% in ORs. Fig. 3 shows the mean LTs across conditions and

groups. IWAs are slower than controls in both conditions. For both IWAs and controls,

responses in the OR condition are slower relative to responses in the SR condition.

Fig. 1. Example of the images shown in the picture-selection task. In the subject relative condition, the pic-

ture on the right is the target, whereas the picture on the left is the foil. In the object relative condition, the

picture on the left is the target, and the one on the right is the foil.

P. Lissón et al. / Cognitive Science 45 (2021) 7 of 38
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We fit a Bayesian hierarchical model with a lognormal likelihood to the LTs and a

Bayesian logistic mixed model to the accuracy data. The analyses were carried out with

correct and incorrect trials pooled. We used R (R Core Team, 2020) and the package

brms (Bürkner, 2017), which is a front-end for Stan (Carpenter et al., 2017). For both

models, the factors group (controls/IWAs), condition (SR/OR), and their interaction were

60

70

80

90

100

SR OR
Condition

%

group

Controls

IWAs

Mean accuracy

Fig. 2. Mean accuracy across conditions and groups. Error bars show the standard error of the mean.

1000

1500

2000

2500

SR OR
Condition

m
s

group

Controls

IWAs

Listening times

Fig. 3. Mean listening times across conditions and groups. The listening times correspond to the sum of the lis-

tening times for the verb and noun phrase of the relative clause. Error bars show the standard error of the mean.
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fit as fixed effects. These factors were sum-coded (Schad, Vasishth, Vasishth, Hohenstein,

& Kliegl, 2020): SR were coded as −1 and OR as +1; controls as −1 and IWAs as +1.
Random intercepts by subjects and items were included, a slope by item was added to

the group effect, and a slope by subject was added to the effect of condition. The varying

intercepts and slopes were allowed to be correlated.

We used so-called regularizing priors, which allow a broad range of parameter values

but disallow implausible (or impossible) values. The priors for the model of the accura-

cies, listed in Eq. 1, are on the logit scale, whereas the priors for the LTs model, listed in

Eq. 2, are on the log scale. In the prior specification for the residual standard deviation

(σ), the subscript + in the normal distribution prior stands for a normal distribution trun-

cated at 0 (reflecting the fact that standard deviations can never be less than 0). For the

correlation matrix of the random effects, we used the so-called LKJ prior (Lewandowski,

Kurowicka, & Joe, 2009) with parameter 2; this parameter disfavors extreme correlations

like �1 (Carpenter et al., 2017). The models were fit with four chains and 2,000 itera-

tions, of which 1,000 were warm-up iterations.

α ∼ normal 0, 1ð Þ
β1,...,3 ∼ normal 0, 0:5ð Þ
σ ∼ normalþ 0, 0:5ð Þ

(1)

α ∼ normal 7:5, 0:6ð Þ
β1,...,3 ∼ normal 0, 0:5ð Þ
σ ∼ normalþ 0, 0:5ð Þ

(2)

Fig. 4 shows the posterior distributions of the parameters of interest. In a Bayesian

model, the posterior distribution indicates the most likely parameter values given the data

and the model. We report the mean estimate for each effect of interest, as well as their

corresponding 95% credible interval (CrI). This interval represents the range over which

we are 95% certain that the effect lies, given the data and the model.

Fig. 4A shows the posterior distributions of the fixed effects for the analysis of the

accuracy data. The data show an effect of group and condition: The estimated effect for

group is of −24% CrI: [−29, −18], indicating that IWAs have more incorrect responses

than controls. The effect of condition, −5% CrI: [−9, −2] suggests that more incorrect

responses are given in the OR condition. No indication for an interaction is seen, −1%
CrI: [−5, 3].

In LTs, large effects for group and condition were found: ORs yield longer LTs (effect

of condition: 323 ms CrI: [227, 422]), and IWAs are slower than controls (effect of

group: 647 ms CrI: [309, 1003]). The interaction (−85 ms CrI: [−182, 9]) suggests that

the effect of condition could be stronger for controls, but since the CrI overlaps with 0,

strong conclusions cannot be drawn from this estimate.

Having summarized the inferences that can be made from the data, we now turn to a

description of the two models, and the models’ evaluation and comparisons.

P. Lissón et al. / Cognitive Science 45 (2021) 9 of 38
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4. The activation-based model

In cognitive psychology, response selection in simple choices is often modeled using

accumulation of evidence (Heathcote & Love, 2012; Ratcliff, 1978). Evidence accumula-

tion models assume that when facing a speeded decision, people accumulate noisy sam-

ples of information about the different choices that are available, until they have enough

evidence to choose one of them (Forstmann, Ratcliff, & Wagenmakers, 2016).

Language processing can be seen as a similar process: When listening to a sentence,

the comprehender samples evidence from the linguistic input that unfolds over time. Once

the retrieval site is encountered, comprehenders have to retrieve an item from memory.

Nicenboim and Vasishth (2018) argued that the retrieval process assumed in LV05 is con-

ceptually similar to a race model (Rouder, Province, Morey, Gomez, & Heathcote, 2015;

Usher & McClelland, 2001), in which each choice is represented with an accumulator of

evidence. The speed of the process of sampling evidence in a race of accumulators can

be equated to the activation in LV05: The item in memory with the faster rate of accu-

mulation (equivalent to the higher activation in LV05) will be the item retrieved, and the

rate of accumulation will determine the latency of the retrieval.

RC × group

group

RC

−30 −20 −10 0
Effect estimates (%)

(A) Accuracy

RC × group

group

RC

0 400 800
Effect estimates (ms)

(B) Listening times

Fig. 4. Posterior probability distributions of the different effect sizes for the effect of group (controls/IWA),

condition (SR/OR), and their interaction. The dot corresponds to the mean of the distribution, the thick lines

are 80% credible intervals, and the thin lines show 95% credible intervals. The dashed line stands for an

effect size of zero.
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In the Caplan et al. (2015) data, the LTs at the RC verb and the second noun phrase

serve as a measure of the speed of accumulation of evidence for the retrieval. Because

there are two possible interpretations (SR or OR clause), we assume that there are two

accumulators racing against each other. For instance, consider again the OR clause (3b),

repeated here for convenience as (4):

(4) The girl who the mother chased hugged the boy.

When the comprehender reaches the verb chased, they need to retrieve a subject

that matches the verb. If the comprehender understands the sentence correctly, they

should have retrieved mother as the subject of the verb. An alternative possibility is

that they accidentally misretrieve girl as the subject of the verb. Under these assump-

tions, the model has two accumulators: One accumulates evidence for the retrieval of

the target (which corresponds to the correct OR interpretation in this example), and

the other one accumulates evidence for the retrieval of the distractor girl (which cor-

responds to the incorrect SR interpretation in this example). The accumulator that fin-

ishes faster represents the interpretation chosen. We also assume that, when selecting

one of the pictures during the picture-selection task, participants are choosing the

interpretation that corresponds to the chunk retrieved from memory at chased (i.e.,

mother or girl in 4).

4.1. Implementation of the activation-based model

Following Nicenboim and Vasishth (2018), the activation-based model is implemented

as a Bayesian lognormal race of accumulators. The Bayesian framework was chosen for

two reasons. First, because modern probabilistic programming languages like Stan (Car-

penter et al., 2017) make it possible to flexibly define any assumed generative process

while including taking individual differences into account. Second, the Bayesian approach

to parameter estimation allows the researcher to directly take the uncertainty of the esti-

mates into account (Lee & Wagenmakers, 2014).

The model was implemented in Stan. For each trial i, the finishing times FT for the

interpretation of a sentence as SR or OR are sampled from two lognormal distributions

with scale σ, see Eq. 3.2 The noise component (σ) is assumed to be different for controls

and IWAs.3 The accumulator with the faster (i.e., lower) FT will represent the winning

interpretation, and its sampled value will become the estimated LT for that particular trial

i, as shown in Eq. 4.

SR accumulator

FTSRi
∼ lognormal μSR, σð Þ

ORaccumulator

FTORi
∼ lognormal μOR, σð Þ

(3)

P. Lissón et al. / Cognitive Science 45 (2021) 11 of 38
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LTi¼ min FTSRi
,FTORi

ð Þ (4)

The complete hierarchical model for the two accumulators is presented in Eq. 5. The

terms u and w are the by-participant and by-item adjustments to the fixed effects terms;

these are the familiar varying intercepts and slopes in linear mixed models (Bates,

Maechler, Bolker, & Walker, 2015). All the parameters (which, given the lognormal like-

lihood, are on the log scale) have regularizing priors, listed in Eq. 6.4 In the specific con-

text of psycholinguistics, prior specification in hierarchical models is discussed at length

in Sorensen, Hohenstein, and Vasishth (2016), Nicenboim and Vasishth (2016), Vasishth,

Nicenboim, Beckman, Li, and Kong (2018), and Schad, Betancourt, Betancourt, and

Vasishth (2020). The level labeled group had contrast coding −1 for controls, and +1 for

IWAs; and the level labeled relative clause type (rctype) was coded such that SRs were

represented as −1 and ORs as +1.

SR accumulator

μSR¼ α1þuα1 þwα1 þ β1þwβ1

� ��group

þ β3þuβ3
� �� rctypeþβ5�group� rctype

OR accumulator

μOR¼ α2þuα2 þwα2 þ β2þwβ2

� ��group

þ β4þuβ4
� �� rctypeþβ6�group� rctype

Noise parameter

σ¼ σ0þβ7�group

(5)

α1,2 ∼ normal 7:5, 0:6ð Þ
β1,...,7 ∼ normal 0, 0:5ð Þ
σ0 ∼ normalþ 0, 0:5ð Þ

(6)

The varying intercepts and slopes for subject, u¼huα1 , uα2 , uβ3 , uβ4i, come from a

multivariate normal distribution with four dimensions, abbreviated as MVN4; and

the varying intercepts and slopes for items, w¼hwα1 , wα2 , wβ1 , wβ2i, also come from

a multivariate normal distribution with four dimensions, MVN4. In the equations

below, 0 is a column vector of zeros with the four (participants) or four (items)

dimensions. The ∑ are the variance–covariance matrices of the multivariate normal

distributions.

u¼MVN4 0, Σuð Þ (7)

w¼MVN4 0, Σwð Þ (8)

The fixed effects β have the following interpretations:

12 of 38 P. Lissón et al. / Cognitive Science 45 (2021)
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• β1, β3, β5 are the effects of group, RC type, and the group × RC type interaction,

respectively, in the accumulator for the SR interpretation.

• β2, β4, β6 are the effects of group, RC type, and the group × RC type interaction,

respectively, in the accumulator for the OR interpretation.

• β7 is the effect of group in the σ parameter.

Of interest in this model are the distributions of finishing times in the SR and OR

accumulators, in the SR and OR conditions, and in the different population groups (con-

trols vs. IWAs). These are generated in milliseconds once the posterior distributions of

all the parameters in the model are estimated. The finishing times for each one of the

accumulators in each condition and for each group are estimated taking into account the

abovementioned terms β1,. . .,7 and the adjustments by item and by participant listed in

Eq. 5.

4.2. Predictions

In the activation-based model the parameter σ and the finishing times of the accumula-

tors have a theoretically meaningful interpretation. We expect these parameters to show

different patterns across groups. The different σ reflect the assumption that for IWAs, the

rate of accumulation of evidence can be noisier. A larger estimated σ for IWAs would be

consistent with the intermittent deficiencies theory (Caplan et al., 2007), which claims

that there are intermittent breakdowns in the parsing system of IWAs. However, the

effects of crucial interest are on the finishing times: When the mean finishing time of the

incorrect interpretation is similar to the finishing time of the correct interpretation, misre-

trievals become more likely. We therefore expect that compared to controls, IWAs should

have more similar mean finishing times in the two accumulators; controls should have a

bigger difference between the mean finishing times of the two accumulators. We also

expect both accumulators to be slower for IWAs than for controls because IWAs may

need more time than controls to retrieve items from memory and to build the depen-

dency. Such a slowdown could be due to a lexical access deficit (Love et al., 2008) and/

or to slow syntax (Burkhardt et al., 2008).

5. The direct-access model

The DA (McElree, 2000) assumes that items (i.e., traces of words or phrases, such as

the girl) in memory are accessed via a content-based, direct-access mechanism. That is,

the cues set at the retrieval site enable direct access to matching items in memory. The

retrieval process is subject to interference and decay: Increasing distance between the tar-

get and the retrieval site, or competing items in the sentence can lower the quality of the

representation of the target item in memory. In the DA, the probability of retaining a

memory representation at the retrieval site is known as the availability of a given item.

Crucially, proponents of the DA argue that interference and decay have an impact on the

availability of items in memory, but not on retrieval latencies. That is, whereas the

P. Lissón et al. / Cognitive Science 45 (2021) 13 of 38
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probability of retrieving an item decreases as a function of the complexity of a sentence,

complexity does not affect retrieval times. The DA has been developed and tested within

the speed-accuracy tradeoff paradigm (SAT) by McElree and colleagues (Martin & McEl-

ree, 2008, 2011; McElree et al., 2003), inter alia. They consistently found that the asymp-

tote of the SAT function (which assesses successful retrieval of the target and/or quality

of the retrieved representation) decreased as a function of sentence complexity. By con-

trast, the intercept and the rate of the SAT function (which assess processing speed) did

not show a significant effect of complexity. Based on these findings, McElree and col-

leagues argue that interference and/or decay affect the probability of retrieving the target,

but not the retrieval speed. In addition, it is assumed that low availability can cause a

failure in parsing or the retrieval of a distractor item. On some trials, this initial failure

could be followed by a reanalysis process (Martin & McElree, 2008; McElree, 1993;

McElree et al., 2003; Van Dyke & McElree, 2011).

5.1. Implementation of the direct-access model

We follow Nicenboim and Vasishth (2018) by implementing the DA as a two-compo-

nent Bayesian mixture model. The key assumptions of the DA are thus that retrieval cues

enable direct access to the item’s memory representation at the retrieval site, and that the

retrieval of an item takes an average time tda. Differences in availability can lead to an

initial incorrect retrieval of the distractor item. McElree and colleagues assume that on a

certain proportion of trials, after a failure in parsing, comprehenders could engage in a

“costly reanalysis process” (Martin & McElree, 2008). We formalize this assumption with

two main parameters: Pb, which is the probability of backtracking (what McElree and

colleagues call reanalysis), and δ, which is the extra time needed for backtracking. This

extra time is independent of the retrieval time tda. Notice that these two parameters (Pb

and δ) are not part of the SAT paradigm, and they constitute an implementation of McEl-

ree and colleagues’ assumption of reanalysis. The model is shown schematically in Fig. 5.

The parameter θ is the probability of correctly retrieving an item on the first retrieval

attempt. This probability is allowed to vary across conditions, as it is assumed by McEl-

ree et al. (2003) that sentence complexity can have an impact on the availability of the

items, and therefore on their retrieval probability. If an initial misretrieval or failure in

parsing occurs at the retrieval site, a backtracking process is initiated with probability Pb

that, by assumption, always results in correct retrieval of the target (McElree, 1993).

There are four fixed-effects parameters that have to be estimated in this model. For the

parameter θ we define varying intercepts by participants and by items, and varying slopes

for the effect of RC type (by participants) and group type (by items). The parameter µ
represents the estimated log mean LTs at the critical region. Since the DA assumes that

the retrieval time of an item takes on average tda log ms and is not affected by sentence

complexity, RC type was not included as a fixed effect for the parameter µ. However, we
assume that IWAs, given their impairment, could have a higher µ compared to controls

and therefore add a main effect of group. That is, we assume that IWAs may differ in

14 of 38 P. Lissón et al. / Cognitive Science 45 (2021)
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the average time they need to process the critical region relative to controls. Notice that

tda is a latent variable that is part of µ, since we cannot directly compute tda from the

observed LTs. The probability of backtracking, Pb is also not assumed to vary across

conditions, and thus only has an adjustment for group and a varying intercept by-partici-

pants because we assume that IWAs could have a different Pb relative to controls. The

parameter δ is the cost of backtracking, that is, the time (in log ms) that the backtracking

process takes, and has an adjustment for group. The standard deviation σ also has a main

effect of group. As in the activation-based model, the terms u and w are the by-partici-

pant and by-item adjustments to the fixed effects terms. As with the activation-based

model, all the parameters (which are on the logit scale for probabilities and on the log

scale for LTs) have regularizing priors, listed in Eq. 11. The level group had contrast

coding −1 for controls, and +1 for IWAs; and rctype was coded −1 for SR clauses and

+1 for ORs. The complete hierarchical model for all the parameters is shown in Eqs. 9

and 10. The mixture process is shown in Eq. 9, and the parameters and their priors are

defined in Eq. 10.

Fig. 5. Graphical representation of how retrieval probabilities work in the direct-access model. An initially

wrong retrieval can lead to backtracking (with probability Pb), and backtracking leads to the retrieval of the

target.

P. Lissón et al. / Cognitive Science 45 (2021) 15 of 38
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LT ∼
lognormal μ, σð Þ, retrieval succeeds, probability θ

lognormal μþδ, σð Þ, retrieval fails initially, probability 1�θ

� �
(9)

μ ¼ μ0þuμ0þwμ0þβ1�group

θ ¼ αþuαþwαþ β2þuβ2
� �� rctype

þ β3þwβ3

� ��groupþβ4�group� rctype

P ¼ γþuγþβ5�group

δ ¼ δ0þβ6�group

σ ¼ σ0þβ7�group

(10)

α ∼ normal 1, 0:5ð Þ
β1,...,7 ∼ normal 0, 0:5ð Þ
μ0 ∼ normal 7:5, 0:6ð Þ
γ ∼ normal �1, 0:5ð Þ
δ0 ∼ normal 0, 0:1ð Þ
σ0 ∼ normal 0, 0:5ð Þ

(11)

In Eq. 10, the varying intercepts and slopes for subject, u¼huμ0 , uα, uβ2 , uγi, come

from a multivariate normal distribution with four dimensions, abbreviated as MVN4; and

the varying intercepts and slopes for items, w¼hwμ0 , wα, wβ3i, come from an MVN3 dis-

tribution. In the equations below, 0 is a column vector of zeros with the four (partici-

pants) or three (items) dimensions.

u¼MVN4 0, Σuð Þ (12)

w¼MVN3 0, Σwð Þ (13)

The fixed effects β have the following interpretations:

• β1 is the effect of group on the average time needed to listen to the critical region.

• β2, β3, β4 are the effects of RC, group, and the group × RC interaction, respec-

tively, on the probability of a first correct retrieval.

• β5 and β6 are the effect of group on the probability of backtracking and on the

estimated backtracking time, respectively.

• β7 is the effect of group on σ.

Consider the three possible scenarios according to the DA, and their corresponding

paths shown in Fig. 5.

Case (i): The target is retrieved through a direct-access mechanism based on the cues

set at the retrieval site, with probability θ. In this case, LTs are assumed to be drawn

from a lognormal distribution with mean µ and standard deviation σ:
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LT ∼ lognormal μ, σð Þ:

Case (ii): The distractor is initially retrieved, but backtracking leads to the target being

retrieved, with probability (1 − θ) × Pb. Once θ (the probability of initial correct retrie-

val) has been estimated, (1 − θ) yields the probability of an initial incorrect retrieval.

The probability of backtracking is assumed to be independent of θ. Thus, multiplying Pb

with (1 − θ) yields the probability of correctly retrieving the target after an initial misre-

trieval and subsequent backtracking. In this case, the LTs are drawn from a lognormal

distribution with mean µ + δ, which is the cost of backtracking, and standard deviation σ:

Case (iii): The distractor is initially retrieved and there is no backtracking, with proba-

bility 1�θð Þ� 1�Pbð Þ. In this case, we multiply the probability that the first retrieval is

incorrect with the probability that there is no backtracking. Here, the LTs are drawn from

a lognormal distribution with mean µ and standard deviation σ: LT ∼ lognormal μ, σð Þ, and
a misretrieval is predicted.

Notice that incorrect answers without backtracking in case (iii) are expected to have

similar LTs to correct answers without backtracking, case (i), whereas in case (ii), longer

LTs should be observed due to the extra time needed for backtracking. As such, in this

model, the distribution of LTs associated with correct responses is a mixture of initially

retrieved targets (i), and initial misretrievals plus backtracking (ii).

5.2. Predictions

The parameters θ, µ, Pb, δ, and σ have a group adjustment because they are expected

to differ between controls and IWAs. We present here a short theoretical explanation of

the interpretation of these parameters.

We expect a lower estimate of the probability of correct initial retrieval, θ, for IWAs,

in OR clauses. This would be in line with resource reduction. Complex sentences are

assumed to require more processing resources, because additional linguistic operations

need to be carried out and more material has to be kept in working memory (Caplan,

2012). This suggests that IWAs should show a lower probability of initial correct retrieval

in ORs relative to SRs. The different µ for controls and IWAs reflect the assumption that

IWAs may need more time for parsing. This assumption can be linked to slowed process-
ing theories, which would explain the slowdown in terms of lexical access (Love et al.,

2008) or syntactic processing (Burkhardt et al., 2008). We expect IWAs to have a lower

probability of backtracking: If the model predicts IWAs to backtrack, but not as often as

controls, this could also be in line with the resource reduction hypothesis (Caplan, 2012).

In unimpaired sentence comprehension, the DA model assumes that backtracking is a

mechanism used on a certain proportion of trials when the initial interpretation of the sen-

tence fails. If IWAs show a lower probability of backtracking, this could mean that even

though they can backtrack, they do not do it as often as controls because the mechanism

is disrupted. Alternatively, the Pb parameter could also be linked to intermittent deficien-
cies, because the process of backtracking could be intermittently disrupted. In addition,

we expect the cost of backtracking, δ to be higher for IWAs. This would reflect delayed

P. Lissón et al. / Cognitive Science 45 (2021) 17 of 38
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syntactic processing (Burkhardt et al., 2008). Finally, a larger σ would imply more noise

in the retrieval mechanism for IWAs. This would be consistent with the intermittent defi-
ciency hypothesis (Caplan et al., 2007) that postulates that IWAs suffer from intermittent

reductions in the resources used in parsing.

6. Results

6.1. Results of the activation-based race model

We used the rstan package (Stan Development Team, 2020) to fit the models, with

three chains, 6,000 iterations, and a warm-up of 3,000.5 The chains were plotted and

visually inspected for convergence. An additional metric of convergence is the so-called

Rhat statistic (the ratio of between-to-within chain variance); when the sampler has con-

verged, the Rhat statistic is close to 1 (Gelman et al., 2014). We checked that Rhats were

always near 1. Two tuning parameters, delta and the tree depth,6 were adapted when nec-

essary for achieving convergence. Following Gelman et al. (2014), we also made sure

that the parameters of the model could be recovered using simulated data (see the online

supplementary materials).

The activation-based model assumes that for each trial, LTs are drawn from the two

accumulators, and the accumulator with the fastest LT wins the race. The two distribu-

tions of finishing times (i.e., the finishing time of each one of the accumulators for each

trial) can be plotted against each other, so as to assess the precise predictions of the

model. For example, Fig. 6 shows the distribution of finishing times for the correct and

the incorrect interpretation for each of the two groups, and across the two conditions.

Fig. 6a,b displays the accumulators for controls, while 6c and 6d stand for IWAs’ accu-

mulators.

Fig. 6a displays the distribution of finishing times associated with the accumulator for

the correct interpretation (SR) in dark gray, and for the incorrect interpretation (here OR)

in light gray, for controls. The distribution for SR is clearly faster: The mean of the fin-

ishing times for the SR accumulator is 1,204 ms, whereas the mean finishing time for the

OR accumulator is around 4,000 ms. In Fig. 6b, finishing times for the correct interpreta-

tion (OR, in light gray) are faster on average (1,655 ms) than the finishing times for the

incorrect interpretation (SR, in dark gray, 4,647 ms). Therefore, Fig. 6a,b indicates that

controls tend to choose the correct interpretation, since the distributions associated with

the correct interpretations have faster finishing times.

Fig. 6c shows that IWAs also tend to choose the right interpretation in SRs. The mean

of the accumulator for SR in the SR condition is 2,694 ms, whereas the mean of the OR

accumulator is 4,717 ms. However, Fig. 6d indicates that it is difficult for IWAs to differ-

entiate between the two interpretations in the OR condition (6d), where the two distribu-

tions show greater overlap. On average, the accumulator for the correct interpretation is

faster: The estimated mean for the OR accumulator in the OR condition is 3,573 ms,

whereas the estimated mean for the SR accumulator in the OR condition is 4,553 ms. But
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the overlap between the two distributions shows that the accumulator for the incorrect

interpretation is sometimes as fast as the one for the correct interpretation. Therefore, the

model predicts a difficulty for IWAs in distinguishing between the correct and interpreta-

tion in ORs.

Fig. 6 shows that the model exhibits the predicted patterns: The means for the finishing

times across conditions are slower for IWAs than for controls. For IWAs, the mean fin-

ishing times of the accumulator in the OR condition are more similar than for controls.

We also predicted IWAs to have a higher σ because we assumed that their rate of accu-

mulation could be noisier, and the model estimates reflect this prediction, as displayed in

Fig. 7.

6.1.1. Posterior predictive checks
In order to evaluate the performance of the model, we compared the empirical data

against the posterior predictive distributions estimated by the model (Gelman et al.,

2014), a procedure that is known as posterior predictive checks (PPCs). We present the

PPCs graphically, with violin plots, where the dots represent the mean of the empirical
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Fig. 6. Accumulators of evidence. The figure presents the distribution of finishing times associated with each

accumulator in the activation-based model, across groups and conditions. The x-axis stands for finishing times

(in milliseconds). The dashed lines represent the mean finishing time for the object relative clause interpreta-

tion (in light gray) and the subject relative clause interpretation (in dark gray).
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data. This is a way to inspect whether the data could have been generated by the models:

If the mean of the empirical data is predicted by the model, that is, if the dot lies within

the violin plots, the model could have generated the data. If the model is unable to reflect

the distribution of the data, that implies a bad fit.

Fig. 8 shows the PPCs for the activation-based model in the picture-selection accura-

cies. In general, the activation-based model predicts the observed accuracies for both

groups and conditions. Fig. 9 shows the PPCs corresponding to the LTs. The model can

correctly estimate the LT distribution of the data across conditions and groups, although

it tends to overestimate the LT for controls in incorrect responses.

6.2. Results of the direct-access model

The DA was fit with three chains and 7,000 iterations, and a warm-up of 3,500. The

chains were visually inspected, and we verified that all the Rhats were close to 1. Delta

and the tree depth parameters were adapted when necessary, and we made sure that the

parameters of the model could be recovered using simulated data.

The DA model has three critical parameters: the probability of initial correct retrieval,

θ, the probability of backtracking if the initial retrieval is not correct, Pb, and δ, which is

the time taken for backtracking. We turn now to assess the posterior distributions for

these parameters across groups and conditions.

The posterior distribution of θ (Fig. 10a) indicates that in SRs, controls initially

retrieve the target 83% of the time, whereas IWAs have a lower probability of initial cor-

rect retrieval, 69%. However, in ORs, the probability of initial correct retrieval is 41%

for controls, and 53% for IWAs. We discuss this surprising outcome below.
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Parameter estimate
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Posterior distribution of σ

Fig. 7. Posterior distribution of the σ parameter for both groups, in log scale. The dashed lines show the

mean of the distributions.
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Regarding the probability of backtracking, the posterior distribution of the parameter

Pb (Fig. 10b) indicates that controls perform backtracking around 82% if they initially

retrieve the distractor, whereas IWAs backtrack 21% of the time. Notice that the parame-

ters θ (Fig. 10a) and Pb (Fig. 10b) are interrelated, and they should be interpreted

together. The interpretation of both parameters shows that:

a. Controls initially carry out a retrieval that leads to the correct interpretation most

of the time in SRs (83%), and 41% in ORs. If the first retrieval was incorrect,

they backtrack and get the correct interpretation in 82% of the cases.

b. IWAs are estimated to retrieve the correct interpretation without backtracking for

SRs about 69% of the time and for ORs 53% of the time. However, IWAs back-

track only 21% after an incorrect first retrieval. Therefore, misretrievals are more

likely for IWAs than controls, especially in ORs.

Fig. 11 shows the estimated time needed for backtracking. The posterior of δ shows

that backtracking takes less time for controls, with a mean centered around 546 ms. By

contrast, IWAs’ estimate for δ is higher, around 678 ms.

We predicted IWAs to have a lower probability of backtracking relative to controls,

and Fig. 11 shows that the model confirms our prediction. We also predicted controls to

have higher values for µ and σ. The model estimates are in line with these predictions

(see Fig. 12). However, the model’s estimates contradict our prediction about θ: We had

assumed that due to resource reductions, IWAs should have a lower probability of initial

correct retrieval in ORs. This surprising outcome in the DA is an inherent shortcoming of

the model, at least under the assumptions made here. We discuss alternative explanations

in Section 9.
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Fig. 8. Violin plots depicting the PPCs for the activation-based model corresponding to the accuracy

responses split by group and condition. The black dots represent the mean proportions of responses in the

data and the corresponding error bars show 95% confidence intervals, and the violin plots display the poste-

rior predicted distributions from the model. Note that the controls’ confidence intervals are not visible

because variability is low in this group.
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6.2.1. Posterior predictive checks
As with the activation-based model, we graphically compare the distribution of the

empirical data with the estimated posteriors of the model. Fig. 13 shows the PPCs corre-

sponding to the picture-selection accuracies. In general, the model correctly predicts the

qualitative pattern of the observed accuracies. Fig. 14 shows that the model estimates the

LTs across conditions and groups, but it tends to underestimate the LTs for incorrect

responses, and overestimate the correct responses in the SRs condition for IWAs.

7. Quantitative comparison of the activation model and the direct-access model

Although PPCs offer a visual way to assess the descriptive adequacy of the models, a

more quantitative way of model assessment is required, in order to measure which model

fits the data better. We compared the predictive accuracy of the models using 10-fold

cross-validation (Vehtari, Gelman, & Gabry, 2017). Cross-validation in the Bayesian
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Fig. 9. Violin plots depicting the PPCs of the activation-based model for listening times split by group and

condition. The listening times correspond to the sum of the listening times for the verb of the subordinate

clause plus the listening times of the second noun phrase. The horizontal bars represent the mean of the data

and the vertical bars are the standard error of the mean. The dots represent the mean of the posterior

distribution.
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framework allows for comparisons of models that assume different generative processes

for the data, such as the two models in this study. A 10-fold cross-validation involves

splitting the dataset into 10 subsets of balanced data (balanced here means that each par-

ticipant contributes approximately the same amount of data). One of the subsets is held

out, and the model is fit to the nine remaining subsets. The posterior distributions of the

parameters of this model are used to compute predictive accuracy on the subset of held-

out data. This procedure is then repeated 10 times, one for each subset of held-out data.

The difference between predicted and observed held-out data points is used to compute a

measure of predictive accuracy: the expected log point-wise predictive density, or delpd.
When comparing two models, the model with the higher delpd value is the model that rep-

resents a better fit to the data. The standard deviation of the sampling distribution ofdelpddiff , the difference in delpd, can also be computed, and has the standard frequentist

interpretation: delpddiff �2�SE can be interpreted as a 95% confidence interval.

The delpd values yielded a difference of 115 (SE = 69) in favor of the activation-based

model. This suggests that the activation-based model shows a somewhat better fit for our

SR OR

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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 (A) Probability of correct initial retrieval
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(B) Probability of backtracking

Fig. 10. Posterior distribution for the probability of initial correct retrieval and backtracking in the direct-ac-

cess model. This figure shows the estimated probability of initial correct retrieval across groups and condi-

tions in the upper panel, and the estimated probability of backtracking across groups in the lower panel. The

dashed lines stand for the means of their respective distributions.
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data ( delpdact = −12,515, SE = 49 and delpdDA = −12,630, SE = 52). However, the rela-

tively large standard error means that the difference in the predictive performance of the

models is not decisive. Table 1 details the difference in delpd by condition and group, and

their corresponding SE. Although the activation-based model consistently shows an

advantage across conditions and groups, the standard errors indicate that the differences

are not decisive.

In this section, the relative performance of the models was assessed. We turn now to

assess the relative importance that the individual parameters within each model have, in

terms of explaining the data from IWAs.

8. Model evaluation using Bayes factors

The estimates from the activation-based model and the DA show that IWAs behave

differently from controls. As discussed in the previous sections, given our linking

assumptions, the different parameter estimates for the two groups can tell us whether the

deficits that we link to the different parameters can explain IWAs’ data. For instance, the

larger σ that IWAs have in both models (relative to controls) indicates that intermittent
deficiencies may be one of the causes of IWAs’ processing difficulties.

One question that arises is, to which extent is there evidence that these deficits are

playing a role in IWAs’ sentence comprehension? By assumption, both models had group

adjustments in all of the parameters. These adjustments reflect the difference between

IWAs and controls. However, if the group adjustment of a given parameter does not

0.000

0.001

0.002

0.003

0 1000 2000 3000
Parameter estimate

group

control

IWA

Time needed for backtracking (in ms)

Fig. 11. Posterior distributions of parameters representing the effect of backtracking (in milliseconds). The

figure shows the posterior distribution of estimated time needed for backtracking across groups.
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improve the model fit (i.e., the model would perform better if no difference was assumed

between IWAs and controls), this could mean that the processing deficit we are linking to

this parameter may not be playing a role in impaired sentence comprehension. One way

to assess whether the group adjustments improve the models’ fit is to compute a series of

BFs.

The BF quantifies the evidence against or in favor of a null model (M0) that does not

assume an effect of group (no β adjustment for the group factor), relative to a model that

assumes a group effect (M1). The BF is a ratio of marginal likelihoods (as shown in

Eq. 14), and it indicates how likely it is that the data have been generated by one model

relative to the other one. In Eq. 14, the subscript in BF10 stands for the order of the

models: Evidence of M1 over M0.

BF10¼PðDatajModel1Þ
PðDatajModel0Þ (14)

The interpretation of BF is done in terms of relative odds. For instance, a BF10 of 5

means that the odds are 5:1 in favor of M1. A BF closer to 1 is inconclusive, whereas a

BF10 larger than 1 indicates evidence in favor of M1, and BF10 below 1 indicates
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Fig. 12. Parameter distributions for the µ and σ parameters across groups, on the log scale. The dashed lines

stand for the means of their respective distributions.
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evidence in favor of M0. The BF has a continuous scale (meaning the higher the BF10,

the stronger the evidence for M1). There is no specific cutoff for the interpretation of the

strength of the evidence in favor of a model over the other one, but guidelines have been

proposed (Jeffreys, 1939/1998). In general, a BF10 larger than 100 is considered as strong

evidence in favor of M1. Conversely, a BF10 of 1/100 or smaller is considered as strong

evidence in favor of M0.

BF and cross-validation are two different ways to perform model comparisons. Cross-

validation is well suited for comparing models with different generative processes (such

as the activation-based model vs. the DA), but cross-validation may be problematic with

models that make very similar predictions. In this case, the estimated standard error might

be biased (Sivula, Magnusson, & Vehtari, 2020). Since our model evaluation at the

parameter level involves comparing nested models that are likely to make similar predic-

tions, in this section we use BFs instead of cross-validation. In what follows we perform

a BF analysis for each parameter of the two models that has an adjustment for the group

factor. For instance, for the σ parameter in both models, the M0 (null model) and M1

would be as shown in Eq. 15.

M0σ : σ0
M1σ : σ0þβ�group

(15)

Because BF is known to be sensitive to the choice of priors (Rouder, Haaf, & Vandek-

erckhove, 2018), we ran M1 with three different standard deviations for the prior of the β
of interest (the adjustment for group) in order to show how the BF changes as a function
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Fig. 13. Violin plots depicting the PPCs for the DA model corresponding to the accuracy responses split by

group and condition. The black dots represent the mean proportions of responses in the data, whereas the vio-

lin plots display the posteriors estimated by the model.
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of the prior standard deviation. The prior was always centered at 0 and the standard devi-

ations were 0.1, 0.3, and 0.5. In addition, we included the following constraints:

Controls : Interceptþ �1ð Þ�β ¼ Intercept�β
IWAs : Interceptþ þ1ð Þ�β ¼ Interceptþβ

(16)
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Fig. 14. Violin plots depicting the PPCs of the direct-access model for listening times split by group and con-

dition. The listening times correspond to the sum of the listening times for the verb of the subordinate clause

plus the listening times of the second noun phrase. The horizontal bars represent the mean of the data, and the

vertical bars are the standard error of the mean. The blue dots represent the mean of the posterior distribution.

Table 1delpd differences between the activation-based and the direct-access model across conditions and groups. A

positive difference indicates an advantage for the activation-based model

delpd Difference SE

SR, Controls 31 37

OR, Controls 42 36

SR, IWAs 28 33

OR, IWAs 14 33

P. Lissón et al. / Cognitive Science 45 (2021) 27 of 38

 15516709, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12956 by U

niversidad D
e L

as Palm
as D

e G
ran C

anaria, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



i. For the parameter µ in both models, and δ in DA, the group β in M1 was constrained

to be positive. These parameters reflect the mean LTs and the time needed for back-

tracking, respectively. Therefore, according to theory, due to slow syntax and/or de-
layed lexical access, IWAs should be slower than controls. Because the contrast coding

is +1 for IWAs and −1 for controls, a positive β would indicate that controls are faster

than IWAs, as shown in Eq. 16.

LT ∼ lognormal μþδ, σð Þ:

ii. Similarly, for the parameter σ in both models, the group β was also constrained to be

positive, since according to intermittent deficiencies, IWAs should have more noise in

the processing system.

iii. We assumed that the probability of initial correct retrieval and the probability of back-

tracking could be linked to the resource reduction hypothesis. Therefore, IWAs should

show a lower θ and Pb estimate, and the group β was thus constrained to be negative.

Since IWAs are contrast coded +1, a negative β would imply a lower estimated probabil-

ity for IWAs.

iv. In the activation-based model, a condition × group interaction is assumed on the µ
parameter. The priors for the effect of this interaction should be vague because there is

no prediction about the direction of the effect. One could assume that (a) IWAs are more

affected by the condition manipulation than controls, or (b) IWAs are less affected by

the condition manipulation than controls, because IWAs perform poorly in both condi-

tions. Therefore, the β for the interaction did not have any constraint. And similarly, the

β for the interaction in the θ parameter in DA was not constrained either.

A summary of the models that were run and their corresponding prior SD is shown in

Table 2. All the BF were computed using the bridgesampling R package (Gronau, Singmann,

& Wagenmakers, 2017) after running the models for 40,000 iterations. In addition, some of

the models were run three times in order to confirm that the number of iterations was high

enough to produce stable BF. Notice that for all parameters, M0 is the model that has no

adjustment for the group effect. Three versions of M1 were run, each with a different prior SD
for the group adjustment, as shown in Table 2. In the case of parameters with an interaction,

nine versions of M1 were run, one for each possible combination of the prior SD of the two

adjustments (the β for the group effect and the β for the interaction condition × group).

8.1. Results

8.1.1. Activation-based model
In the activation-based model there are two µ parameters, one for each accumulator of

evidence, µSR and µOR. M0µ does not include any adjustment for the effect of group or
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the interaction group × condition, for any of the two accumulators. M1µ includes an

adjustment for the effect of group and another adjustment for the interaction, for both

accumulators. This is shown in more detail in Eq. 17.

M0μ

μSR¼ α1þuα1 þwα1 þ β1þuβ1
� �� rctype

μOR¼ α2þuα2 þwα2 þ β2þuβ2
� �� rctype

M1μ

μSR¼ α1þuα1 þwα1 þ β1þwβ1

� ��group

þ β3þuβ3
� �� rctypeþβ5�group� rctype

μOR¼ α2þuα2 þwα2 þ β2þwβ2

� ��group

þ β4þuβ4
� �� rctypeþβ6�group� rctype

(17)

The BF results are summarized in Table 2. The BFs for µ in the activation-based

model are either inconclusive or yield anecdotal evidence in favor of the model that does

not assume a difference between controls and IWAs (M0µ).
7 In contrast, the BF results

for σ yield strong evidence in favor of M1σ: The model with a group adjustment for σ
provides a better fit. This suggests that the group adjustment in σ could be sufficient to

explain the differences between the two groups. Given our linking assumption, this means

that the activation-based model estimates intermittent deficiencies to be the main source

of processing deficits in IWAs.

Table 2

Summary of the BF analysis for both models. This table shows the priors used, the theories that map to each

parameter, and the BF results

Model Param. Group SD Inter. SD Theory BF10

ACT µ 0.1, 0.3, 0.5, + 0.1, 0.3, 0.5 Slow syntax, DLA 1/3 to 1

ACT σ 0.1, 0.3, 0.5, + Intermittent deficiencies >100
DA µ 0.1, 0.3, 0.5, + Slow syntax, DLA >100
DA θ 0.1, 0.3, 0.5, − 0.1, 0.3, 0.5 Resource reduction >100
DA Pb 0.1, 0.3, 0.5, − Resource reduction 2 to >100

Intermittent deficiencies

DA δ 0.1, 0.3, 0.5, + Slow syntax 1/3 to 1/11

DA σ 0.1, 0.3, 0.5, + Intermittent deficiencies >100

ACT stands for the activation-based model, and DLA stands for delayed lexical access theory. The columns

“Group SD” and “Inter. SD” show the different prior SD of the β adjustments to the effect of group and the

interaction group × condition, respectively. In the “Group SD” column, a plus sign indicates that the β for

the group adjustment was constrained to be positive, and a minus sign indicates that the β was constrained to

be negative. No constraints were applied to the β of the interactions. The column “BF10” summarizes the

range of BF results for the priors shown in the table
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8.1.2. Direct-access model
In the DA, the θ parameter also has a β for the interaction group × condition in addi-

tion to the β for the group effect. For the BF analysis, the M0θ does not have any of these

β, whereas the M1θ has both, as shown in Eq. 18.

M0θ

θ¼ αþuαþwαþ β2þuβ2
� �� rctype

M1θ

θ¼ αþuαþwαþ β2þuβ2
� �� rctype

þ β3þwβ3

� ��groupþβ4�group� rctype

(18)

Nine versions of M1θ models were run (see Table 2), such that all possible combina-

tions of prior SD for both adjustments could be considered. All BF for θ yield strong evi-

dence in favor of M1, the model that assumes that IWAs have a lower probability of

initial correct retrieval relative to controls (due to resource reductions). Irrespective of the

prior SD, the BFs for µ and σ yield strong evidence in favor of M1. The BF for Pb yields

anecdotal to strong evidence in favor of M1 depending on the priors. In general, all of

these parameters benefit from a group adjustment.

By contrast, the BF for δ yields some evidence in favor of M0, suggesting that the

group adjustment is not needed. Recall that δ is the time needed for backtracking, and

that estimated LTs for trials with backtracking are drawn from (µ + δ, σ). The BF for δ
could indicate that the group β is redundant because µ and σ (with their corresponding

group adjustments) already explain the differences between controls and IWAs. This

means that IWAs may not have an impairment in the mechanism of backtracking. That

is, IWAs perform backtracking less often than controls (as estimated in Pb), but when

they do backtrack, the mechanism is not disrupted. These results suggest that the DA

accounts for slow syntax and/or delayed lexical access in µ (mean LTs), but not in δ
(time needed for backtracking).

In conclusion, the BF analyses at the individual parameter level revealed that in the

activation-based model, an increased noise value for IWAs can explain the processing

differences between IWAs and controls, which speaks in favor of the intermittent defi-
ciencies theory. The model could also be in line with slow syntax and/or delayed lexical
access, but the BF for the parameter linked to these theories was inconclusive, so the role

of these deficits in the activation-based model remains unclear. By contrast, the DA is in

line with a mixture of slow syntax and/or delayed lexical access, resource reduction, and
intermittent deficiencies.

9. Discussion

In this study we presented a Bayesian implementation of two models of cue-based

retrieval: the activation-based model and the DA. We linked the parameters of these
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models to major theories of processing deficits in sentence comprehension in aphasia,

namely slow syntax, delayed lexical access, resource reduction, and intermittent defi-
ciencies. The predictive performance of the two models was assessed with 10-fold

cross-validation, and the quantitative and qualitative predictions of the models concern-

ing data from IWAs and controls have been discussed. A BF analysis was performed,

in order to quantify the evidence that the models had with respect to the different

processing deficits that were evaluated. In what follows we discuss some unexpected

aspects of the DA, we compare our findings to prior computational modeling work in

the field of aphasia, and we point out some limitations of the present work as well as

future directions.

9.1. Unexpected behavior of the direct-access model

The DA estimates IWAs to have a higher probability of initial correct retrieval in

ORs relative to controls, which is surprising, since ORs are generally more difficult to

process for IWAs than for controls (Caramazza & Zurif, 1976). However, this predic-

tion would be in line with studies showing that unimpaired controls have an agent-

first preference: Unimpaired controls tend to interpret the first NP of a clause as the

agent, which clashes with the actual thematic relations in some constructions (Hanne,

Burchert, De Bleser, & Vasishth, 2015; Mack, Wei, Gutierrez, & Thompson, 2016).

For instance, in an eye-tracking experiment involving a sentence–picture matching task

with active and passive sentences such as (5a) and (5b), Mack et al. (2016) found

that unimpaired controls showed initial agent-first processing followed by a thematic

reanalysis. That is, in passive sentences, controls tended to initially look at the image

in which the first noun phrase was the agent. After hearing the region that contained

the disambiguating morphological information (i.e., the verb: visiting/visited), controls

started fixating the target picture. This implies that controls, after processing the mor-

phological cues, had to reanalyze the initial agent-first interpretation. By contrast, in

the study of Mack et al. (2016), IWAs did not show signs of agent-first processing:

They looked at the target and distractor pictures equally prior to the arrival of the

disambiguating information.

(5) a. Active: The man was visiting the woman.

b. Passive: The man was visited by the woman.

Previous studies where controls showed an agent-first bias used eye-tracking and the

visual world paradigm, but our modeling suggests that the agent-first bias could also be

detected in a self-paced listening experiment. In our data, if unimpaired controls experi-

enced an initial agent-first bias in ORs, they would initially parse the sentence as an SR.

Consider sentence (6). Once they hear the disambiguating region (e.g., second noun

phrase in sentence 6), they would have to backtrack on a high proportion of trials to end

up with the right thematic interpretation. In this regard, the estimates for controls in ORs
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would be in line with an initial agent-first strategy. However, a replication of these esti-

mates would be needed, ideally with visual-world eye-tracking data, as in Hanne et al.

(2015) or Mack et al. (2016).

(6) OR: The girl who the mother chased hugged the boy.

Finally, a major issue for the DA model is the fact that the data show longer LTs for

incorrect responses. This pattern contradicts the core assumptions of the model, because

correct responses are expected, on average, to take longer due to the cost of backtrack-

ing.8 Intuitively, IWAs’ incorrect responses may be associated with longer LTs because

after backtracking IWAs may not be able to retain the retrieved representation. The slow
syntax and the resource reduction hypotheses would be compatible with this view. How-

ever, the data show that the incorrect responses of unimpaired controls are also associated

with longer LTs relative to correct responses. Therefore, the assumption that backtracking

leads to the retrieval of the target (McElree, 1993) seems incompatible with our data.

9.2. Comparison with previous computational modeling work on aphasia

Taken together, the higher delpd value in favor of the activation-based model, plus the

fact that the DA underestimates the LTs for incorrect responses in ORs, suggests that the

activation-based model is better at characterizing the processing of RCs in IWAs and

controls. The BF analysis for the activation-based model highlights the role that intermit-

tent deficiencies may be playing in an activation-based mechanism of retrieval, but slow
syntax and/or delayed lexical access should not be ruled out, since the BFs for the param-

eters associated with these theories were rather inconclusive.

Our results are consistent with previous sentence processing modeling work on aphasia.

For example, Patil et al. (2016) found that the LV05 model that included slowed processing

(understood as a slowdown in the parsing mechanism) and intermittent deficiencies showed

the best fit to data from IWAs, relative to models that included only one of these deficits. It

is also possible that IWAs may exhibit different degrees of these deficits, as suggested by

Mätzig et al. (2018), who modeled the accuracies of the Caplan et al. (2013) dataset estimat-

ing ACT-R parameters at the individual level. Interestingly, their modeling also revealed

that intermittent deficiencies was the deficit that affected most of the IWAs. Out of the 56

IWAs, 53 showed a higher noise value (relative to the default noise value in ACT-R) in OR

clauses. Unfortunately, we do not have enough LT data to get robust parameter estimates at

the individual level, but our modeling suggests that on average, IWAs are more subject to

intermittent deficiencies than to slow syntax and/or delayed lexical access.
One caveat that applies to Patil et al. (2016), Mätzig et al. (2018), and our own work,

is that the models cannot distinguish between slow syntax and delayed lexical access. In
our implementation of the activation-based model and the DA, one possibility would be

to include a shift parameter (Rouder, 2005) that accounts for lexical access, as imple-

mented in Nicenboim and Vasishth (2018). Ideally, this parameter should have a group
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adjustment (to assess whether there is a delay in lexical access in IWAs on average, tak-

ing the estimate for controls as reference), and an individual adjustment, to assess to

which extent each individual is affected by this deficit. Unfortunately, such parameter

could not be fit due to data sparsity.

Another issue to consider is that our modeling is limited to sentence comprehension.

There is important modeling work in the aphasia literature that focuses on lexical pro-

cessing (Evans, Hula, & Starns, 2019; Mirman, Yee, Blumstein, & Magnuson, 2011), the

interface between lexical access and word production (Dell, Lawler, Harris, & Gordon,

2004), and word production (Walker, Hickok, & Fridriksson, 2018), among others. Ide-

ally, a model of impairments in IWAs should account for both aphasic comprehension

and production, and disentangle the difficulties that arise from lexical and syntactic pro-

cesses. However, as we show in this study, there is no single parameter that can account

for aphasic impairments, and it is very unlikely that a computational model, even with a

larger number of parameters, could account for all the particularities of aphasic perfor-

mance, which is variable in nature. Nevertheless, we believe that more computational

modeling is needed in the field of aphasia, in order to better understand the underlying

nature of language impairments in IWAs. Computational models require researchers to

formalize hypotheses and assumptions, which is essential for theory development (Guest

& Martin, 2020).

9.3. Some limitations of the present work and future directions

An important limitation of the present work is that even though the Caplan et al.

(2015) dataset on IWAs and age-matched controls is the largest currently in existence,

the data are still relatively sparse compared to standard datasets used for similar model

comparisons in psycholinguistics, both in terms of the number of items (10) and partici-

pants (33 IWAs and 46 controls). For example, Nicenboim and Vasishth (2018) compared

the predictive performance of the activation-based model and DA from reading time data

from some 180 participants. It would be useful to revisit these model comparisons with

larger datasets in the future. Another important step will be to test the two models against

new experimental designs and with different experimental paradigms. This would allow

for a more comprehensive evaluation of the differences between the models, as well as

an assessment of their predictive ability when modeling interference effects in different

tasks, languages, and conditions. We are currently compiling a comprehensive database

containing several tasks and conditions of data from IWAs and unimpaired controls in

(Pregla, Lissón, Vasishth, Burchert, & Stadie, 2020). In future work, we intend to use this

database to further evaluate the models discussed here.

10. Conclusion

We compared the predictive performance of two competing models of cue-based

retrieval using data from IWAs and age-matched controls. We tested whether the two
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models—the activation-based model and the DA—could account for experimental data

from both IWAs and controls. This is the first study where competing models of cue-

based retrieval have been tested against data from impaired populations. We also investi-

gated the relative importance of the various parameters in both models using BFs. The

BF analyses show that in the activation-based model, intermittent deficiencies (Caplan

et al., 2015) best explains the behavioral data from IWAs, although slow syntax (Bur-

khardt et al., 2008) and delayed lexical access (Ferrill et al., 2012) may also play a role.

In the DA, the behavior of IWAs is best explained in terms of a combination of slow syn-
tax, delayed lexical access, resource reduction (Caplan, 2012), and intermittent deficien-
cies. The model comparisons show that both models have a similar performance for out-

of-sample predictions (assessed with 10-fold cross-validation), with a slight advantage for

the activation-based model.

In closing, we have presented the first-ever computational evaluation of different

models of dependency completion, using the largest available database from IWAs and

unimpaired controls that currently exists. Our work lays out a systematic workflow that

can be used to quantitatively compare the predictions of competing models of language

processing.
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Notes

1. For alternative accounts, see, for example, Grodzinsky (1995), Grillo (2009), or

Engel et al. (2018). A complete summary of the theories of processing deficits in

aphasia can be found in Caplan et al. (2015).

2. As a reviewer points out, it seems a bit confusing to talk about the interpretation of

a sentence, since we are modeling the critical region, and there are several upcom-

ing words that still have to be processed in order to finish the whole sentence.

What is meant here by interpretation of a sentence as SR is that the first noun
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phrase has been retrieved (i.e., the first noun phrase is interpreted as the agent) ver-

sus the interpretation of a sentence as OR, where the second noun phrase is

retrieved as the agent.

3. We also fit a model with different variances for correct and incorrect responses, as

introduced in Nicenboim and Vasishth (2018). However, the quantitative difference

in predictive performance between the model with a single variance and the model

with two variances was negligible. Both models show a comparable quantitative fit

to the data. Here, we report the model with a single variance for correct and incor-

rect responses.

4. The prior distributions of the main parameters are plotted in the online supplemen-

tary materials.

5. The code for both the activation-based and the direct-access models is available at

https://bit.ly/3lda7Qj.

6. The adjustment of these tuning parameters (adapt_delta, max_treedepth) leads to

the whole posterior distribution of the parameters being correctly explored by the

Hamiltonian Monte Carlo algorithm used in Stan. See the Stan manual or the short

guide on warnings for more information (https://mc-stan.org/misc/warnings).

7. A series of tables and plots showing the BF as a function of the priors for all of

the parameters in both models is available in the online supplementary materials.

8. Notice, however, that due to random noise the model estimates slower incorrect

responses in some trials, as shown in the tails of the distribution for incorrect

responses in Fig. 14.
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Burkhardt, P., Piñango, M. M., & Wong, K. (2003). The role of the anterior left hemisphere in real-time

sentence comprehension: Evidence from split intransitivity. Brain and Language, 86(1), 9–22.
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical

Software, 80(1), 1–28.
Caplan, D. (2012). Resource reduction accounts of syntactically based comprehension disorders. In C. K.

Thompson & R. Bastiannse (Eds.), Perspectives on agrammatism (pp.34–48). New York, NY: Psychology

Press.

Caplan, D., Michaud, J., & Hufford, R. (2013). Dissociations and associations of performance in syntactic

comprehension in aphasia and their implications for the nature of aphasic deficits. Brain and Language,
127(1), 21–33.

Caplan, D., Michaud, J., & Hufford, R. (2015). Mechanisms underlying syntactic comprehension deficits in

vascular aphasia: New evidence from self-paced listening. Cognitive Neuropsychology, 32(5), 283–313.

P. Lissón et al. / Cognitive Science 45 (2021) 35 of 38

 15516709, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12956 by U

niversidad D
e L

as Palm
as D

e G
ran C

anaria, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://bit.ly/3lda7Qj
https://mc-stan.org/misc/warnings


Caplan, D., Waters, G., DeDe, G., Michaud, J., & Reddy, A. (2007). A study of syntactic processing in

aphasia: Behavioral (psycholinguistic) aspects. Brain and Language, 101(2), 103–150.
Caramazza, A., & Zurif, E. B. (1976). Dissociation of algorithmic and heuristic processes in language

comprehension: Evidence from aphasia. Brain and Language, 3(4), 572–582.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J.,

Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software,
76(1), 1–32.

Dell, G. S., Lawler, E. N., Harris, H. D., & Gordon, J. K. (2004). Models of errors of omission in aphasic

naming. Cognitive Neuropsychology, 21(2–4), 125–145.
Engel, S., Shapiro, L. P., & Love, T. (2018). Proform-antecedent linking in individuals with agrammatic

aphasia: A test of the intervener hypothesis. Journal of Neurolinguistics, 45, 79–94.
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