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Abstract
Sentence comprehension requires the listener to link incoming words with short-term memory representations in
order to build linguistic dependencies. The cue-based retrieval theory of sentence processing predicts that the
retrieval of these memory representations is affected by similarity-based interference. We present the first large-
scale computational evaluation of interference effects in two models of sentence processing — the activation-
based model and a modification of the direct-access model — in individuals with aphasia (IWA) and control
participants in German. The parameters of the models are linked to prominent theories of processing deficits
in aphasia, and the models are tested against two linguistic constructions in German: pronoun resolution and
relative clauses. The data come from a visual-world eye-tracking experiment combined with a sentence-picture
matching task. The results show that both control participants and IWA are susceptible to retrieval interference,
and that a combination of theoretical explanations (intermittent deficiencies, slow syntax, and resource reduction)
can explain IWA’s deficits in sentence processing. Model comparisons reveal that both models have a similar
predictive performance in pronoun resolution, but the activation-based model outperforms the direct-access model in
relative clauses.
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Introduction

When hearing a sentence, the listener has to link incoming
words together and build up syntactic and semantic relations
in real time. For instance, verbs have to be linked with
their dependent arguments, which is commonly assumed
to require retrieval from memory (Lewis, 1999; Van Dyke
& Lewis, 2003; McElree, 2006). In a sentence like (1),
focusing on the relative clause (RC) The boy [who greeted
the girl], when the verb greeted inside the relative clause
is reached, the comprehender must retrieve the subject boy
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from memory in order to understand who greeted whom.1

(e.g., Chomsky, 1977). However, for the sake of simplicity,
and assuming that both the noun phrase and the relative
pronoun inherit the relevant retrieval features from the head
noun boy, we will refer directly to the retrieval of boy. In
linguistics, resolving who did what to whom is known as
thematic role assignment. The doer of the action expressed
by the relative clause verb greeted is the agent (boy) and the
recipient of the action is the theme (girl).

(1) The boy who greeted the girl plays with the dog.

Cue-based retrieval theory (McElree, 2000; McElree,
Foraker, & Dyer, 2003; Lewis & Vasishth, 2005; Lewis,
Vasishth, & Van Dyke, 2006; Vasishth, Nicenboim, Engel-
mann, & Burchert, 2019) posits that items are retrieved from

1In formal analyses, it is usually assumed that the syntactic
dependency within the relative clause is between the verb and the
relative pronoun who, which enters into a semantic dependency with
the noun phrase the boy in the matrix clause, to which it refers back.
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memory based on their syntactic and semantic features,2 we
refer to all the different types of cue-based retrieval accounts
as “the” cue-based retrieval theory, even though there
are important differences in the underlying latent process
assumed and the quantitative predictions of the different
variants (e.g., Nicenboim and Vasishth, 2018; Lissón et al.,
2021a). According to cue-based retrieval as implemented
computationally in Lewis and Vasishth (2005), items are
stored in memory as a bundle of feature-value pairs. In a
subject relative clause such as in (1), the embedded verb
greeted triggers the retrieval of an item in memory whose
features match the retrieval cues [+animate] and [+RC sub-
ject], which identify the agent of the relative clause. When
the relative clause verb greeted is read, the only item in
memory that matches these retrieval cues is boy. Consider
now sentence (2), which is an object relative clause.

(2) The girl who the boy greeted plays with the dog.

In this case, when the comprehender reaches the verb
greeted, there is one item in memory, boy, that matches
all the retrieval cues set by the verb, but there is also
another item, girl, that matches some of the retrieval cues
([+animate, −RC subject]). Following Jäger, Engelmann, &
Vasishth (2017), we will refer to the fully matching item
(boy) as the retrieval target, and to items with partial feature
match (girl) as distractors.

A core assumption of the cue-based retrieval theory
is that memory retrieval is subject to interference: When
a retrieval is triggered, processing difficulty is predicted
if multiple items in memory match the same retrieval
cues. Therefore, the verb greeted should be more difficult
to process in (2) than in (1). This effect is known as
similarity-based interference and is indexed by a slowdown
at the retrieval site and/or by occasional misretrievals of a
distractor item, which results in misinterpretation, such as
the girl being interpreted as the agent in (2). Similarity-
based interference has been attested in multiple linguistic
constructions across different languages (e.g., Van Dyke and
Lewis, 2003; Van Dyke & McElree, 2006, 2011; Van Dyke,
2007; Vasishth, Brüssow, Lewis, & Drenhaus, 2008; Van
Dyke & McElree, 2011; Martin, Nieuwland, & Carreiras,
2012; Jäger et al., 2017; Engelmann, Jäger, & Vasishth,
2019; Jäger, Mertzen, Van Dyke, & Vasishth, 2020; Vasishth
& Engelmann, 2022).

Within the cue-based retrieval framework, two different
models of retrieval processes have been proposed: the
activation-based model (Lewis & Vasishth, 2005) and the
direct-access model (McElree, 2000). The two models share
the assumption that retrieval cues mediate access to items
in memory. However, they make different assumptions

2Following Parker et al. (2017).

regarding the underlying latent processes that unfold in
memory retrieval.

The activation-based model was originally implemented
in the cognitive architecture ACT-R (Anderson et al., 2004).
Because the full ACT-R based model is implemented
in the programming language Lisp, it is not easily
accessible to the wider community in psycholinguistics.
Partly in response to this problem, Engelmann et al.
(2019) developed an implementation in R (R Core Team,
2020) that represents a simplified version of the full
model.3 The match between simulated data from the Lewis
and Vasishth (2005) model and human experimental data
has been studied in subject-verb and reflexive-antecedent
dependencies, negative polarity items, and other linguistic
constructions (Vasishth & Lewis, 2006; Wagers, Lau, &
Phillips, 2009; Jäger et al., 2020; Dillon, Mishler, Sloggett,
& Phillips, 2013; Jäger, Engelmann, & Vasishth, 2015;
Nicenboim & Vasishth, 2016; Patil, Vasishth, & Lewis,
2016; Parker & Phillips, 2017; Vasishth et al., 2019).

In the activation-based model implemented in Lewis
and Vasishth (2005), each memory item has a fluctuating
activation value that determines both the probability and
the latency of retrieval. When a retrieval is triggered,
the retrieval cues spread activation to all matching items
available in memory. Items with more matches accrue more
activation, making them more likely to be retrieved, and
decreasing retrieval latency. However, if the cued feature is
present on multiple items in memory, the cue’s activation
is shared across all items, so that each item receives
comparatively less activation. The reduced activation of
the target item in memory and the increased activation
of competing items are the source of similarity-based
interference.

The direct-access model, developed by McElree and
colleagues (McElree, 2000, 2006; McElree et al., 2003;
Martin & McElree, 2011), also predicts similarity-based
interference. It assumes that the availability of items in
memory — that is, the probability of successful retrieval
— decreases as a function of interference, but that retrieval
times remain unaffected. However, low availability can
lead to misretrievals and/or parsing failure: if a retrieval
fails completely, that is, if no appropriate chunk can be
retrieved to perform a syntactic attachment, words will
be left “stranded,” that is, fail to be integrated into the
syntactic structure (Lewis & Vasishth, 2005; Bartek, Lewis,
Vasishth, & Smith, 2011), and the parse will crash. If
retrieval fails or if an incorrect chunk is retrieved, in
a certain proportion of trials, a backtracking process is
initiated that requires some extra processing time (Martin

3A Shiny app provides easy access to this simplified model’s
quantitative predictions under parametric variation: https://vasishth.
github.io/RetrievalModels/.
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& McElree, 2008). Backtracking, also known as reanalysis,
is implicitly assumed to lead to the retrieval of the target
(McElree, 1993).

Nicenboim and Vasishth (2018) compared the activation-
based model and the direct-access model using self-paced
reading data from unimpaired adult readers (Nicenboim,
Vasishth, Engelmann, & Suckow, 2018). Nicenboim and
Vasishth (2018) showed that the predictive performance
of the default activation-based model implementation
was worse compared to that of the direct-access model.
However, the models had similar quantitative performance
when the activation-based model was implemented with
different variances for target and distractors. Lissón et al.
(2021a) tested the two competing models against self-
paced listening data from individuals with aphasia and
control participants (Caplan, Michaud, & Hufford, 2015).
The authors modeled the comprehension of English subject
and object relative clauses as in (1) and (2), in self-
paced listening and a sentence-picture matching task. Model
comparisons showed similar quantitative performance, but
major qualitative differences. Lissón et al. concluded that
in order to disentangle the differences between the models,
more studies using different linguistic constructions and
different experimental paradigms were needed. This is the
empirical gap that the current study aims to fill.

In the context of aphasic sentence processing, one
assumption of the direct-access model is potentially overly
constraining, namely the assumption that backtracking, if
initiated, always leads to correct retrieval of the target.
Because of this assumption, due to the added backtracking
time in some of the correct trials, the direct-access model
assumes that correct retrievals are, on average, slower than
misretrievals. However, it is known from different cognitive
tasks that “slow errors” can occur in addition to “fast errors”
(e.g., Van Maanen, Katsimpokis, & Van Campen, 2019).
The direct-access model’s assumption that correct retrievals
are on average slower than incorrect retrievals leads to
incorrect predictions when modeling data from individuals
with aphasia with the direct-access model (Lissón et al.,
2021a): Individuals with aphasia (IWA) often have slower
latencies in incorrect trials relative to correct trials (see
Hanne, Burchert, de Bleser, & Vasishth, 2015; Adelt, Stadie,
Lassotta, Adani, & Burchert, 2017, Pregla, Lissón, Vasishth,
Burchert, & Stadie, 2021).

Based on the high prevalence of “slow errors” in IWA,
Lissón et al. (2021b) implemented a modified version of
the direct-access model. In this model, there is not only a
distinction between trials in which backtracking is initiated
and trials in which it is not, but also a distinction between
trials in which backtracking is successful and trials in which
it fails. Trials with failed backtracking are slower than trials
without backtracking, but the parser is stuck with the result
of the original misretrieval. Lissón et al. (2021b) tested

the modified direct-access model and the original direct-
access model against self-paced listening data from IWA
and control participants in German (Pregla et al., 2021). The
models were compared using Bayes factors, and the result
was inconclusive. In the present study, we compare the
modified direct-access model against the activation-based
model using a larger dataset.

We model interference effects in IWA and control par-
ticipants using a subset of the data from Pregla, Vasishth,
Lissón, Stadie, & Burchert (2022). We focus on two lin-
guistic constructions in German: pronoun resolution and
relative clauses. These constructions are well-suited for
our modeling goals because IWA have difficulty pro-
cessing them (Burchert, de Bleser, & Sonntag, 2003;
Choy & Thompson, 2010; Caplan et al., 2015; Adelt
et al., 2017; Pregla et al., 2021). Furthermore, given that
cue-based retrieval is intended as a general model of sen-
tence processing, it is necessary to investigate different con-
structions and test whether the proposed implementations
are able to account for the entire range of data.

We also aim to establish links between model parameters
and prominent theories of processing deficits in aphasia.
Linking these verbally stated theories to model parameters
is crucially important, because it enables us to derive
constrained, testable predictions for each theory and to
evaluate them against the data. Finally, our study is, to
our knowledge, the first to compare two different models
of cue-based retrieval using online eye-tracking data from
the visual-world paradigm in combination with an offline
sentence-picture matching task.4

We seek to answer the following questions:

1. Which model of cue-based retrieval offers a better
account of interference effects in IWA and control
participants across pronoun resolution and relative
clauses?

2. How do the parameters of each model map onto theories
of processing deficits in IWA?

The paper is structured as follows: We begin by
summarizing the theories of processing deficits in aphasia
that we will evaluate, as well as their proposed connection
to the parameters of the activation-based and modified
direct-access models. We then introduce the two linguistic
constructions of interest, namely pronoun resolution and
relative clauses. Next, on the basis of these constructions,
we discuss the implementation of the competing models

4Patil, Hanne, Burchert, de Bleser, & Vasishth (2016) modeled visual-
world eye-tracking data from 7 IWA and 8 controls with different
versions of the Lewis and Vasishth (2005) model, but the (modified)
direct-access model has never been tested against visual-world eye-
tracking data, and never with such a relatively large-scale dataset from
IWA and controls.
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in greater detail, and link the assumed parameters to
influential theories from the aphasia literature. Finally,
we fit the models to the data and evaluate whether the
theoretical predictions are borne out. We also assess each
model’s predictive fit by repeatedly fitting the models to
subsets of the data, simulating new data and comparing the
simulated data to a different subset of the original data. To
anticipate our results, across IWA and control participants,
and across both linguistic constructions, neither of the two
implementations of cue-based retrieval performs decisively
better than the other in terms of predictive fit. However,
the parameter estimates from each of the two models are
informative with regard to the underlying deficits in IWA:
There is support in the data for slow syntax, intermittent
deficiencies, and resource reduction (see discussion below),
but less support for delayed lexical access.

Theories of Processing Deficits in Aphasia

Individuals with aphasia have difficulties processing non-
canonical sentences (e.g., Caramazza & Zurif, 1976; McAl-
lister et al., 2009; Schumacher et al., 2015) such as object
relative clauses and passives, especially when the thematic
roles are semantically reversible. That is, IWA experience
difficulties identifying the agent and theme of the verb
(who did what to whom) based on morpho-syntactic cues
alone. Similarly, IWA also experience difficulties compre-
hending binding relations, that is, pronouns and reflexives
(e.g., Justin told [Thomasi to shave himselfi]; Edwards &
Varlokosta, 2007; Choy & Thompson, 2010).

Caplan et al. (2015) discuss the different theories that
aim to explain why these constructions are challenging for
IWA5. For instance, Burkhardt, Piñango, & Wong (2003)
and Burkhardt, Avrutin, Piango, & Ruigendijk (2008) argue
that IWA compute syntactic dependencies at a slower-than-
normal pace, which can lead to comprehension failure.
According to this theory, known as slow syntax, the process-
ing deficit in IWA is specific to syntactic structure building.
By contrast, Ferrill, Love, Walenski, & Shapiro (2012), and
Love, Swinney, Walenski, & Zurif (2008) posit that delayed
lexical access causes the slowdown in the formation of
syntactic dependencies. Love, Swinney, Walenski, & Zurif
(2008) claim that when the sentence requires the reactiva-
tion of a lexical item in order to complete a dependency,
the lexical reactivation is too slow, and an extragrammatical
heuristic may be used instead, which can lead to comprehen-
sion errors. These two theories — slow syntax and delayed

5Although the slow syntax and the delayed lexical access theories were
originally proposed for Broca’s aphasia, the studies by Caplan and
colleagues (Caplan, Michaud, & Hufford, 2013, 2015) show that these
deficits could also be playing an important role in impaired sentence
comprehension in patients with other types of aphasia.

lexical access — have been tested using the cross-modal
lexical decision paradigm. However, studies using the
visual-world paradigm in aphasia do not support a delay in
lexical access or in syntactic structure building as the main
source of comprehension deficits in IWA (e.g., Dickey,
Choy, & Thompson, 2007). The data modeled in the present
work is well-suited to test the predictions of these two theo-
ries, because we consider visual-world data in combination
with reaction times and accuracies from a picture-selection
task, which require similar motor responses as in the cross-
modal lexical decision task.

Another theory, proposed by Caplan and colleagues,
argues that IWA may have an impairment in the resources
needed for parsing, such as memory capacity (Caplan,
Waters, DeDe, Michaud, & Reddy, 2007; Caplan, 2012).
Complex sentences create greater processing demands, and
therefore IWA have more difficulties in complex sentences.
This account is known as resource reduction. In addition,
Caplan et al. (2013) claim that IWA may also exhibit
intermittent deficiencies in the parsing system that block
access to parsing operations such as relating the surface and
base positions of words in the structure. The intermittent
nature of these breakdowns would explain why IWA are able
to understand complex sentences on some but not all trials.

All of these theoretical proposals can be incorporated
into computational models of retrieval. For instance, Patil,
Hanne, Burchert, de Bleser, & Vasishth (2016) modeled
the comprehension of active vs. passive sentences in a
visual-world eye-tracking experiment in German (Hanne,
Sekerina, Vasishth, Burchert, & de Bleser, 2011), using
different implementations of the Lewis and Vasishth
(2005) model. The best-fitting model for IWA was one
that assumed generally slowed processing (understood as a
combination of delayed lexical access and slow syntax), as
well as intermittent deficiencies. In another modeling study,
Mätzig, Vasishth Engelmann, Caplan, and Burchert mapped
parameters of the Lewis and Vasishth (2005) model to
slowed processing, intermittent deficiencies, and resource
reduction. The authors modeled accuracies in English sub-
ject and object relative clauses using the data from Caplan
et al. (2015). They concluded that IWA’s performance
can be explained by a combination of these three deficits,
and that slowed processing, intermittent deficiencies, and
resource reduction may affect each individual with aphasia
to a different degree. Similarly, in English relative clauses,
using self-paced listening data from Caplan et al. (2015),
Lissón et al. (2021a) also found that intermittent deficien-
cies, delayed lexical access, and slow syntax can explain
the main processing deficits in IWA.

In the current work, we focus on the role of the
proposed processing deficits in the context of the activation-
based and the direct-access models of cue-based retrieval.
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In our modeling, we follow Lissón et al. (2021a)
and Lissón et al. (2021b) and implement intermittent
deficiencies as increased stochastic noise in memory
activations/availabilities. A higher noise value in IWA
would mean more mistretrievals and presumably more
parsing failures due to failed retrievals compared to
unimpaired individuals. Delayed lexical access or slow
syntax is assumed to delay the retrieval of the target item
from memory, leading to a slowdown at the retrieval site in
the activation-based model, and/or to misretrieval in both
the activation-based and the direct-access model. In the DA
model, which assumes backtracking as a key resource in
parsing, resource reductions could disrupt this mechanism
and lead to comprehension deficits.

We fit the models to data from a picture-selection task
and a visual-world experiment that tested the comprehen-
sion of pronouns and relative clauses in German (Pregla
et al., 2022). We now introduce each linguistic construction
in turn.

Experiment 1: Pronoun Resolution

Consider sentence (3a). When the pronoun er (“he”) is
encountered, cue-based retrieval predicts that a search
for its antecedent is triggered, using the cues [+animate,
+masculine, +singular].6 The experiment makes use of the
fact that for some verbs, the implicit subject of a sentential
complement is coreferential with the main clause subject
(subject control) while for others it is coreferential with
the main clause object (object control, e.g., Chomsky,
1981; Comrie, 1985). The verb versprechen (“promise”) is
lexically specified as a subject control verb (Müller, 2002).
Even though we do not investigate control structures, we
assume that the additional retrieval cue [+subj] is set at
the pronoun, and that Peter is the retrieval target: Because
versprechen (“promise”) enforces subject control, replacing
er (“he”) with sie (“she”) to refer to Lisa in (3a) results in
unacceptability, and there is no alternative antecedent in the
discourse to which the pronoun could refer.

6The parser presumably also honors structural constraints during
retrieval, such as adherence to Binding Principle B (Chomsky, 1981),
as opposed to first retrieving and then eliminating structurally illicit
antecedents (e.g., Chow, Lewis, & Phillips, 2014). In the current
context, however, both possible antecedents are structurally available,
so that we abstract away from structural retrieval cues.

(3) a. Mismatch.

Peter+subj
+masc verspricht nun Lisa−subj

−masc, dass er{subj
masc} das kleine Lamm streichelt und krault.

Peter+subj
+masc promises now Lisa−subj

−masc, that he{subj
masc} the small lamb pets and ruffles.

‘Peter now promises Lisa that he will pet and ruffle the little lamb.’
b. Match.

Peter+subj
+masc verspricht nun Thomas−subj

+masc, dass er{subj
masc} das kleine Lamm streichelt und krault.

Peter+subj
+masc promises now Thomas−subj

+masc, that he{subj
masc} the small lamb pets and ruffles.

‘Peter now promises Thomas that he will pet and ruffle the little lamb.’

Across the two sentences, the main clause object nouns,
Lisa in (3a) and Thomas in (3b), partially match the
retrieval cues from the pronoun. Both mismatch the [+subj]
cue that the pronoun inherits from the verb, but Thomas
matches the gender cue from the pronoun, which should
lead to increased similarity-based interference. We will
refer to sentences like (3a) as mismatch conditions, because
the target noun (Peter) and the distractor noun (Lisa) do
not share the same gender, and sentences like (3b), as
match conditions.

In unimpaired populations, a processing advantage in gen-
der mismatch conditions has been observed in English by
Badecker and Straub (2002) and Runner and Head (2014),
but not by Chow et al. (2014). Laurinavichyute, Jäger,
Akinina, Roß, & Dragoy (2017) reported mixed results for
German. In the aphasia literature, Choy and Thompson
(2010) and Engel, Shapiro, & Love (2018) found that IWA

had difficulties in pronoun resolution, but these studies did
not target the gender mismatch configurations that Pregla
et al. (2022) tested, and that we model in the present work.

In Experiment 1, we model interference as a function of
the gender cue at the pronoun in the Pregla et al. (2022) data.
Based on cue-based retrieval theory, we predict a processing
advantage in gender mismatch conditions relative to the
gender match conditions. We aim to (a) compare how the
activation-based and the modified direct-access model fit these
data, and (b) evaluate the theoretical accounts of processing
deficits in aphasia by mapping them onto model parameters.
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Experiment 2: Relative Clauses

Relative clauses have been extensively studied in psycholin-
guistics. Subject relatives (SR) have been found to be easier
to process than object relatives (OR) in multiple languages
for both unimpaired controls (e.g., Grodner and Gibson,
2005; Fedorenko, Gibson, & Rohde, 2006; Gordon, Hen-
drick, Johnson, & Lee, 2006; Staub, 2010, Staub, Dillon,
& Clifton Jr, 2017) and for IWA (e.g., Caramazza & Zurif,
1976; Burchert et al., 2003; Caplan et al., 2007; Dickey &
Thompson, 2009; Caplan et al., 2013, 2015; Pregla et al.,
2021). The subject-object asymmetry in IWA and controls
has been computationally modeled in the cue-based retrieval
framework (Mätzig et al., 2018; Vasishth et al., 2019; Lissón
et al., 2021a) using self-paced listening data and offline
measures in English. The present study is the first to model
number interference in relative clauses in German, in IWA
and unimpaired controls.

Our study mainly focuses on the effect of number
interference within subject and object relative clauses rather
than on the well-studied SR/OR asymmetry. This is because
similarity-based interference alone cannot account for the
asymmetry in German relative clauses, as the retrieval point
for both SRs and ORs is the clause-final verb (see discussion
below). However, it is still informative to check if the
asymmetry can be captured by assuming changes in the
parameters of the activation-based model and the modified
direct-access model.

Consider the sentences in (4). When the verb
badet/baden (bathes/bathe) is encountered at the end of the
sentence, two retrievals are triggered, because the agent
and the theme of the action expressed by the verb need to
be identified. Our modeling focuses on the retrieval of the
agent because that is the theoretically interesting event (this
is explained below).

(4) a. SR, match

b. OR, match

c. SR, mismatch

d. OR, mismatch
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In (4a) and (4b), both noun phrases in the sentence
are singular (der Esel, der/den Tiger). This is expected
to cause similarity-based interference during the retrieval
of the subject. By contrast, in (4c) and (4d), the second
noun phrase is plural (die Tiger), which should result in
easier identification of the subject, based on the retrieval
cue from the verb ([singular] or [plural]). We will refer
to sentences like (4c) and (4d) as mismatch conditions,
because target and distractor do not share the same number,
and sentences like (4a) and (4b), as match conditions. Both
types of relative clauses should be easier to process in
mismatch configurations compared to match conditions.
Thus, (4c) and (4d) should be easier to process than (4a) and
(4b), respectively.

In German, when the head noun is masculine (such as in
our items), the morphological form of the relativizer (der
for nominative, den for accusative) provides disambiguating
information. Therefore, in our items, by the time the
comprehender reaches the relativizer, they should be able to
identify the agent or the theme of the relative clause due to
the overt case marking. Retrieval should occur at the verb,
and the number cue should facilitate processing in (4c) vs.
(4a) and (4d) vs. (4b), because in (4c) and (4d) only the
subject noun phrase matches the number cue at the verb.

Studies addressing the comprehension of subject vs.
object relatives in German with case-unambiguous relativiz-
ers (such as our items) are scarce and have mainly addressed
the SR/OR asymmetry (Friederici, Steinhauer, Mecklinger,
& Meyer, 1998; Burchert et al., 2003; Adelt et al., 2017). By
contrast, the main goals in our Experiment 2 are to compare
the performance of the activation-based and the modified
direct-access model by modeling number interference in
both types of relative clauses, and to evaluate the different
theories of processing deficits in aphasia based on the model
estimates.

Methods

The data that we model come from the experiments carried
out by Pregla et al. (2022). The participants, procedure,
and materials described here summarize the methods in
Pregla et al. (2022). By contrast, the dependent variables and
contrast coding described here are specific to the present
paper. Pregla et al. (2022) analyze the visual-world eye-
tracking data, whereas we model the reaction times from
the picture-selection task that followed the visual-world
paradigm task.

Participants and Procedure Twenty-one IWA (9 females,
mean age = 60.2 years, SD = 11.4; mean education
= 15.2 years, SD = 3.2) and fifty control participants
(32 females, mean age = 47.7 years, SD = 19.6; mean

education = 18.1 years, SD = 4.0), all native speakers of
German, took part in an auditory sentence-picture matching
task combined with visual-world eye-tracking. Individuals
with aphasia were in the chronic phase (at least 1 year
after onset of the aphasia). More information about the
patients is given in Appendix A. The procedure was as
follows: At the beginning of the trial, a preview phase
of 4000 ms was used to introduce two pictures to the
participants. One of the pictures (target) corresponded to the
correct meaning of the sentence, whereas the other picture
(foil) depicted the opposite thematic interpretation. After
the preview phase, an auditory recording of the sentence
started playing. Sentences were presented at a normal
speech rate, and participants were instructed to select the
picture that matched the meaning of the sentence. The
pictures were displayed until participants made a choice,
or for a maximum time of 30 s. Once the participant
pressed the choice button, the trial ended. During the
trial, eye movements were recorded using a SensoMotoric
Instruments eye-tracker (SMI RED250mobile; binocular
tracking, Experiment Center version 3.7, sampling rate
250 Hz). The proportion of looks to the target picture
against looks to the foil (or no picture) was calculated. The
response time and the accuracy of the picture selection were
also recorded. Each participant completed the experiments
twice, in two sessions (test and retest), with a gap of
approximately 2 months.7 Participants also performed a
battery of tests in order to assess auditory and visual
comprehension, morphological discrimination, and lexical
decision latency.

Materials In Experiment 1, two conditions (mach and
mismatch, as in example 3), with 10 items each were
included. Example pictures accompanying the pronoun
sentences are shown in Fig. 1. The pronoun items always
used subject-control verbs, so that the target of the retrieval
was always the first noun phrase.8 Control verbs were
selected from the ZAS Database of Clause-Embedding
Predicates (Stiebels et al., 2018).

In experiment 2, 20 items per relative clause type
(subject/object relative) were included. The noun phrase of
the matrix clause (henceforth NP1) was always masculine
and singular. Out of the 20 items, 10 had a singular
embedded noun phrase (henceforth NP2), and 10 had a
plural embedded noun phrase. The items were constructed
using 10 bisyllabic transitive action verbs, and the noun

7The test vs. retest main effect is not included in our modeling (see
the section on dependent variables) because the model structure had to
be simplified due to convergence issues. The test-retest reliability for
these data has been investigated in Pregla et al. (2021).
8The pronoun items that we use here were extracted from a larger
experiment that also contained object-control verbs, and fillers.
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Fig. 1 Example pictures used in
the picture-selection task in
Experiment 1. For the sentences
in example (3) the left picture is
the target and the right picture is
the foil

phrases were always bisyllabic animal names. Example
pictures for the relative clause conditions are given in Fig. 2.

Dependent Variables and Contrast Coding To assess partic-
ipants’ lexical access speed, which is important for evalu-
ating the delayed lexical access hypothesis of Love et al.
(2008) and Ferrill et al. (2012), we computed their average
reaction times in a lexical decision task, based on LEMO
2.0 (Stadie, Cholewa, & de Bleser, 2013). In this task, par-
ticipants have to decide whether an auditorily presented
item is a word or a non-word. Participants responded by
pressing one of two buttons on a computer keyboard, and
the accuracy and response times were recorded. We com-
puted the average reaction times in correct trials, which
yielded a single measure (lexical decision time, LDT) for
each participant that we use as a continuous predictor in
the models.

Response times in lexical decision tasks have been
previously used as a measure of lexical access speed in

IWA. For instance, Caplan et al. (2015) correlated the lexical
decision times for correct responses with the accuracy and
reading times in a self-paced listening task. We centered
and scaled the LDT predictor within groups. An LDT ×
group interaction would thus tell us whether an increase in
LDT leads to a larger increase in RT for IWA compared
to controls.

Another predictor in the models is the proportion of
fixations on the target picture (centered and scaled within
groups) at the critical sentence region, where retrieval is
assumed to take place. We use the proportions of looks
to the target at the critical region as a proxy for retrieval
(see the next section for more details). The remaining
predictors used in both models were sum-coded, with the
following contrasts: group was coded with IWA as +1 and
controls as −1; the high interference conditions (gender
match in pronouns, number match in relative clauses) were
coded as +1, and the low interference conditions (gender
mismatch, number mismatch) as −1. In the relative clauses

Fig. 2 Example pictures used in
the picture-selection task in
Experiment 2. The pictures
correspond to the correct
interpretations of the example
sentences in (4). Within both the
match and the mismatch
conditions, participants had to
select the correct interpretation
(SR interpretation vs. OR
interpretation)
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sub-experiment, the relative clauses were coded as OR +1,
and SR −1.

We base our statistical inferences on the posterior
distribution of the parameters, which we summarize with the
mean and 95% credible interval (CrI). This is the convention
used to report summaries of parameter values for which
there is support in the data. When interpreting the estimates,
the width of the CrI should be taken into account, as it shows
the range of plausible parameter values that lie with 95%
probability given our model and data.

For both the activation-based model and the modified
direct-access model, the data from the pronoun experiment
and the relative clause experiment were fitted separately.9

The four models were implemented in Stan (Carpenter
et al., 2017) and fitted in R (R Core Team, 2020) via
the rstan package (Stan Development Team, 2020). The
packages brms (Bürkner, 2017) and bayesplot (Gabry,
Simpson, Vehtari, Betancourt, & Gelman, 2019) were used
for examining and plotting the posterior distributions of the
parameters. For each model, three chains each, with at least
6000 iterations each were run. Each chain included at least
3000 warm-up iterations. Convergence was assessed by
checking that ̂R was below 1.01 and by visually inspecting
the convergence of the chains (Gelman et al., 2013). We also
verified that the models could recover simulated parameter
values. For both models, mildly informative priors were
used (Sorensen, Hohenstein, & Vasishth, 2016; Nicenboim
et al., 2021; Schad, Betancourt, & Vasishth, 2021). Details
about the implementation and the priors are available in
Appendix C.

Modeling Assumptions

Neither the activation-based model nor the direct-acccess
model have a linking function that maps proportions
of looks to a picture to retrieval times and/or retrieval
probabilities of memory chunks. Therefore, we need to
specify linking assumptions between fixations on the target
picture, the assumed retrieval processes, and the reaction
times and accuracies in the picture-selection task.

For the two sentence types, we assume two retrieval
events. The first retrieval takes place in the middle of the
sentence, at the critical region. In pronoun resolution, the
critical region is the pronoun, and in relative clauses, it is
the relativizer. Our linking assumption is that proportions
of looks to the target at the critical region can be used as a
proxy for retrieval. This assumption is based on the fact that
the critical region provides the necessary cues to retrieve the

9Initially, we intended to model the pooled data from both
experiments. However, the complex structure of fixed and random
effects lead to convergence issues in the modified direct-access model.
Therefore, we ended up implementing two separate versions of each
model, one for each experiment.

target. Therefore, we predict that more looks to the target
picture at the retrieval site correspond to a higher probability
that the target has been retrieved at this point.

The second retrieval event happens at the verb region,
that is, at the end of the sentence. In both experiments,
the retrieval target must be re-accessed at this point,
as a dependency with the verb needs to be established.
We assume that the second retrieval is linked to the
first, so that more looks to the target at the critical
region (the pronoun/relativizer) go along with higher
activation/availability, resulting in faster and/or more
accurate retrieval at the verb region. As the picture-selection
task takes place immediately after hearing the verb region,
we assume that accuracies and RT in this task should
show the interference effects predicted by the cue-based
retrieval theory.

We do not model retrieval failures, that is, trials in which
neither the target nor the distractor can be retrieved. This
simplification is necessary because participants in the Pregla
et al. (2021) study had to select one of the two pictures and
were not given the option to respond “I don’t know,” which
could be interpreted to index retrieval failure (Nicenboim &
Vasishth, 2018). Furthermore, even in the presence of such
an option, participants may resort to guessing rather than
responding “I don’t know,” although it has been suggested
that IWA only use such compensatory processes rarely
(Hanne et al., 2011; Burchert, Hanne, & Vasishth, 2013;
Arantzeta, Webster, Laka, Martı́nez-Zabaleta, & Howard,
2018). Parameters related to guessing can, in principle,
be implemented in probabilistic cognitive models (e.g.,
Oberauer, 2006; Logačev & Vasishth, 2016), including
the direct-access model, but we do not attempt such an
implementation here, given that our models are already
relatively complex.

In what follows, we will present the implementation and
the fits of the activation-based model and the modified
direct-access model to the data in turn. We also present
quantitative model comparisons, which allow us to assess
the relative goodness of fit of each model to the data.

Activation-BasedModel

The activation-based model can be implemented as a
lognormal race of evidence accumulators (Nicenboim &
Vasishth, 2018): For the two experiments, we assume
that there are two accumulators of noisy evidence that
correspond to the retrieval candidates in memory, namely
the first and the second noun phrase (NP1 or NP2, target or
distractor). For each trial i, the finishing times FT for NP1
and NP2 are each sampled from a lognormal distribution
with location μNP 1 or μNP 2 respectively, and scale σ .
The accumulator with the faster FTi determines both the
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selected picture (target or foil) and the reaction time for
trial i. This implementation maps straightforwardly onto the
notion of memory chunks with fluctuating activation values,
with the chunk with the highest activation being retrieved
on a particular trial.

The hierarchical structure of the models is implemented
in the μ of both accumulators, which include fixed and
random effects. The fixed effects added to μNP 1 and μNP 2

in the model for pronoun resolution are as follows: group
(IWA vs. control), condition (match vs. mismatch), and the
group × condition interaction. We also added the average
reaction time from the lexical decision task (LDT), and
the group × LDT interaction. Furthermore, we added the
proportion of looks to the target at the critical region
(fixations), the fixations × group interaction, and the three-
way interaction fixations × condition × group. In addition,
both μ included by-subject and by-item varying intercepts;
the fixed effect of group included an adjustment by item,
and the fixed effect of condition included an adjustment
by subject. The parameter σ included a fixed effect of
group. In addition, the model for relative clause conditions
also included a fixed effect for RC type, an RC type ×
group and an RC × condition interaction, and the RC ×
group × condition three-way interaction. The predictions
of the activation-based model for the two experiments are
as follows:

1. An increase in fixations to the target picture at the
critical region should lead to a decrease in RT for the
target accumulator in the picture-selection task, as we
assume that the first retrieval influences the second
retrieval. If participants retrieved the target at the critical
region, re-accessing it at the verb should be easier,
meaning that there should be more correct retrievals as
well as faster retrieval times.

2. The mean finishing time of the target accumulator
should be faster for the mismatch conditions relative to
the match conditions, as similarity-based interference
slows retrieval. The mean of the distractor accumulator
should be similar or slower in mismatch conditions
relative to match conditions.

3. IWA should have slower RT relative to controls, so
IWA’s μ should be higher. This would be in line with the
slow syntax theory. Similarly, IWA should have a higher
σ , that is, more noisy accrual of evidence corresponding
to more variable activation values, which would be in
line with intermittent deficiencies.

4. If a delay in lexical access is causing processing
difficulties in IWA, we would expect the effect of
LDT to lead to a bigger increase in RTs for the target
accumulator for IWA relative to controls, as higher
RT for the target accumulator would indicate more

difficulty in retrieving the target. This would be in line
with delayed lexical access.

In addition, given earlier results (Burchert et al., 2003;
Adelt et al., 2017), in Experiment 2, IWA should have
longer mean finishing times for the target accumulator in
OR compared to SR.

Modified Direct-Access Model

We implement the modified direct-access model as a
hierarchical mixture model in the Bayesian framework,
following Lissón et al. (2021b). Mixture models integrate
multiple generative processes in one model (see Nicenboim
et al., 2021 chapter 20, for a tutorial on these models in
Stan). The implementation of the modified direct-access
model as a mixture model allows us to take into account
the probability and cost of backtracking as a latent variable.
We assume that both correct and incorrect responses
are generated from one of two distributions: Responses
without backtracking follow a distribution with parameters
μ and σ , while responses with backtracking follow another
distribution with parameters μ� = μ + δ and σ , where δ is
the time needed for backtracking.

The direct-access model assumes that the availability of
items in memory determines their probability of retrieval. In
our implementation, we map availability to the parameter θ ,
which is the probability of retrieval of the target. Given that
interference is expected to affect availability, we add a main
effect of condition to θ . Because we expect IWA to have
lower base availability compared to control participants,
we also add a main effect of group to θ . We also add a
main effect of fixations, following the same logic as for the
activation-based model: More fixations on the target at the
critical region should lead to a higher probability of retrieval
of the target at the verb. In order to evaluate the delayed
lexical access theory, we include LDT as a fixed effect to θ ,
and the interaction LDT × group. This interaction tests the
delayed lexical access theory in IWA: If longer LDT leads
to a larger decrease in θ for IWA, this would suggest that
delayed lexical access lowers the probability of retrieval of
the target, causing difficulties in the retrieval process.

The original direct-access model assumes that when
the initial retrieval fails, a costly process of backtracking
(or reanalysis) can be triggered, which leads to correct
retrieval of the target (McElree et al., 2003; Martin &
McElree, 2008). Our modified direct-access model adds the
assumption that backtracking can fail. This is reflected in
the added parameter θb, which represents the probability
of correct retrieval after backtracking. The additional
parameter makes the modified direct-access model more
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suitable for modeling data from individuals with aphasia,
as it allows for slow, incorrect responses. If IWA show a
lower θb, relative to controls, this could point towards a
disruption in the process of backtracking as a main source
of comprehension difficulties in IWA. The parameter Pb

estimates the proportion of trials for which backtracking
is performed after an initial misretrieval. The parameter δ

estimates the amount of time (in log ms) that backtracking
takes. Main effects of group are added to the parameters θb,
Pb and δ. Pb and θb additionally have by-subject random
intercepts.10

The mixture process for a given trial i works as follows:

(a) if the retrieval of the target succeeds, with probability
θ , RTi is drawn from LogNormal(μ, σ ).

(b) if the retrieval of the target fails (1 − θ ), backtracking
is initiated with probability Pb. RTi is sampled from
LogNormal(μ + δ, σ ). After backtracking, the target
is retrieved with probability θb, and the distractor with
probability 1 − θb.

(c) if the retrieval of the target fails and there is
no backtracking, a misretrieval is predicted with
probability (1− θ) · (1−Pb), and RTi is sampled from
LogNormal(μ, σ ).

Notice that the probability of successful retrieval of
the target, θ , and the probability of backtracking, Pb are
assumed to be independent. Interference can only indirectly
affect response times through lower θ and the added cost
of backtracking δ. Therefore, in the μ parameter, which
estimates the mean average RT, we do not include an
adjustment by condition, but we do include an adjustment
by group, since retrieval may generally be slower in
IWA compared to controls. The noise parameter, σ , also
has an adjustment by group, as IWA may have more
variable retrieval times. The priors used, as well as the full
hierarchical model, are shown in Appendix C.

Due to the cost of backtracking δ, correct and incor-
rect responses following backtracking (b) are expected to
be slower, on average, than correct retrievals (a) and misre-
trievals without backtracking (c). The RTs corresponding to
an initial successful retrieval of the target (a) and to misre-
trievals without backtracking (c) are sampled from the same
distribution. The predictions of the modified direct-access
model for the two experiments are explained below.

1. Fixations to the target picture at the critical region
should lead to an increase in the probability of retrieval
of the target, as we assume that the first retrieval
influences the second retrieval. Therefore, the estimate

10Ideally, δ should also have a by-subject adjustment. However, this is
a complex hierarchical model, and a by-subject intercept on δ led to
convergence issues.

of the main effect of fixations to the target on the
probability of successful retrieval θ should be positive.

2. The probability of successful retrieval θ should be
higher for non-interference conditions relative to
interference conditions, that is, higher in mismatch vs.
match conditions.

3. IWA should have slower RTs relative to controls, so
IWA’s μ should be higher. This would be in line with the
slow syntax theory. Similarly, IWA should have a higher
σ , which would be in line with intermittent deficiencies.

4. If IWA’s slower access to items from memory leads
to difficulties in the retrieval, we would expect LDT
to lead to a bigger decrease in θ for IWA relative
to controls. This would be in line with delayed
lexical access.

5. We expect IWA to have a lower probability of
backtracking, Pb, and a lower probability of retrieval
of the target after backtracking, θb. This would be
in line with the resource reduction theory, assuming
that backtracking is a parsing resource that is impaired
in IWA.

6. Similarly, we also expect IWA to have a higher cost
of backtracking, δ, which would be in line with
slow syntax.

In addition, given earlier results showing that OR are
more difficult to process than SR (Burchert et al., 2003;
Adelt et al., 2017), for the relative clause construction, θ

should be lower in OR compared to SR.
We now move on to the modeling results, which

will be presented separately for pronoun resolution and
relative clauses.

Modeling Results

Experiment 1—Pronoun Resolution

In the pronoun resolution items, NP1 is always the target
of the dependency. Therefore, μNP 1 accumulates evidence
for the retrieval of the target, and μNP 2 for the retrieval of
the distractor. Figure 3 shows the distribution of estimated
finishing times for the two accumulators (NP1 and NP2)
across conditions and groups. The results confirm our
predictions: IWA have longer finishing times relative to
controls in both conditions. In controls, the means of the
NP1 accumulator in the mismatch and match conditions are
quite similar (1391 ms vs. 1465 ms), although responses are
faster on average in the mismatch condition, as expected.
IWA show a larger effect of interference: The mean of
the NP1 accumulator in the mismatch condition is 4532
ms, compared to 5735 ms in the match condition. The
interference effect can also be seen in the overlap of the
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Fig. 3 Distribution of the
accumulators of evidence across
groups and conditions for the
Experiment 1 (pronoun
resolution). The dashed lines
represent the means of the
distributions
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distributions within each plot. Whereas the distributions
lie far apart from each other in controls, in IWA, the
distributions overlap. This indicates that IWA are more
likely to retrieve the distractor than controls, especially in
the interference condition (match). In general, the plots
show that IWA experience a bigger interference effect. This
is in line with the estimates for the group × condition
interaction (μNP 1: 199 ms, CrI: [81, 322] ms and μNP 2:
1424 ms, CrI: [400, 2720] ms).

With regard to the fixed effects on μNP 1 and μNP 2, due
to space limitations, we will only comment on the estimates
that are relevant to the processing theories of aphasia that
we are evaluating. The estimates for all parameters in this
model and their credible intervals are shown in Appendix D.

The NP1 accumulator showed an indication of an LDT
× group interaction (836 ms, CrI: [539, 1152] ms), but
no indication of such an interaction was observed for the
NP2 accumulator. This suggests that additional time needed
for lexical access leads to a larger slowdown in IWA in
the target accumulator, as predicted by the delayed lexical
access theory. The estimates for fixations and the fixations
× group interaction do not point in the predicted direction:
Rather than facilitating correct retrieval of the target, an
increase in fixations on the target picture leads to an increase
in RTs in both accumulators (NP1: 41 ms, CrI: [−77, 160]
ms; NP2: 518 ms, CrI: [−141, 1212] ms). However, due to
large uncertainty around the estimates, the results are also
compatible with no effect of fixations.

Finally, as predicted under the intermittent deficiencies
theory, IWA have higher noise than controls (σIWA: 0.65

log ms, CrI: [0.62,0.69] log ms, σcontrols: 0.28 log ms, CrI:
[0.27,0.29] log ms).

Modified Direct-Access Model

We begin by assessing the posterior distribution of θ , which
is the probability of retrieving the target during the first
retrieval attempt. Figure 4 shows that the probability of
retrieval of the target is very high for controls: The mean
of the distribution lies above 95% in both conditions (CrI
mismatch: [98, 99]%, CrI match: [96, 98]%). By contrast,
IWA show lower retrieval probabilities overall. This can
be also seen in Fig. 4, where IWA’s mean estimate for
mismatch is 72% CrI: [66, 77]%, whereas the estimate
for match is 55% CrI: [47, 62]%. The group × condition
interaction is inconclusive (2% CrI: [−1, 5]%).

A unit increase in LDT leads to −5% CrI: [−8, −1]%
in θ , and a negative LDT × group interaction (−9% CrI:
[−12, −7]%) is consistent with the assumption that IWA
are more affected by increased LDT. There was neither an
indication of an effect of fixations (2% [−1, 5]%), nor of
a fixation × group interaction (−2% CrI: [−5, 2]%). This
means that for both groups, there is no indication that an
increase in fixations to the target picture led to an increase
in the probability of successful retrieval of the target.

The estimated probability of backtracking for IWA is
22% CrI: [13, 31]% compared to 66% CrI: [51, 79]% for
controls. The distribution of the cost of backtracking, δ, is
centered around 5592 ms, CrI: [3924, 7738] ms for IWA,
and around 2827 ms, CrI: [2277, 3551] ms for controls. The
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Fig. 4 Posterior distribution of
the probability of initial retrieval
of the target, θ for the two
groups, in the pronoun
conditions. The vertical lines
stand for the means of the
distributions, and the shaded
areas indicate the 95% credible
interval
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probability of retrieval of the target after backtracking, θb,
is shown in Fig. 5. Backtracking leads to the retrieval of the
target around 84% of the time for controls (CrI: [70, 94]%),
and 58% of the time for IWA (CrI: [42, 73%]). Slower and
less successful backtracking is consistent with slow syntax
and resource reduction in IWA.

Finally, IWA’s μ (2376 ms, CrI: [2079, 2701] ms) is
higher than controls’ μ (1320 ms, CrI: [1202, 1447] ms);
and IWA also have a higher noise estimate (0.46 log ms,
CrI: [0.43,0.5] log ms) relative to controls (0.24 log ms,
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Group
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Fig. 5 Posterior distribution of the probability of retrieval of the target
after backtracking, for the two groups, in the pronoun conditions. The
dashed lines stand for the means of the distributions

CrI: [0.23,0.25] log ms), as predicted under the slow syntax
and intermittent deficiencies theories.

Experiment 2—Relative Clauses

Activation-Based Model

In the relative-clause items, the accumulator mean μNP 1

stands for the retrieval of NP1 as the agent of the action,
whereas μNP 2 stands for the retrieval of NP2 as the agent.
Depending on the trial, NP1 (in subject relatives) or NP2
(in object relatives) will be the target of the retrieval, as we
model the retrieval of the agent.

Figure 6 shows the distribution of finishing times of the
two accumulators in subject relative clauses. As expected,
IWA have higher finishing times than controls across
conditions. The mean of the NP1 accumulator (target) is
roughly the same across conditions, whereas the mean of
the NP2 accumulator (distractor) is higher in the mismatch
condition than in the match condition. In general, controls
show almost no overlap between the distributions, which
indicates that controls retrieve the target (NP1) most
of the time. By contrast, in IWA, the two distributions
partially overlap, meaning that IWA often retrieve the
distractor (NP2).

Figure 7 shows the distribution of finishing times of
the two accumulators in object relative clauses. IWA have
higher finishing times than controls across conditions, and
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Fig. 6 Distribution of the
accumulators of evidence across
groups and conditions for
subject relative clauses. The
dashed lines indicate the means
of the distributions
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both groups have slightly lower finishing times in the NP2
accumulator (target) in mismatch vs. match conditions.
Crucially, in the match condition, for IWA (right upper
panel in Fig. 7, light dashed line), the mean of the NP1
accumulator is lower than the mean of the NP2 accumulator.
Since NP2 is the retrieval target in object relatives, the
pattern indicates that in the match condition, IWA retrieve
the distractor more often than the target. That is, in the
match condition, IWA are more likely to misinterpret the
sentence than to interpret it correctly. However, in the

mismatch condition, the mean of the two accumulators
overlap, which indicates that IWA are equally likely to
retrieve NP1 or NP2 on average.

Comparisons between Figs. 6 and 7 show that con-
trols perform similarly in subject and object relatives,
whereas IWA display a subject-object asymmetry: IWA
are estimated to correctly interpret subject relatives most
of the time. By contrast, IWA are estimated to misinter-
pret object relatives more often, especially in the match
condition.

Fig. 7 Distribution of the
accumulators of evidence across
groups and conditions for object
relative clauses. The dashed
lines indicate the means of the
distributions. Note that in the
mismatch condition, for IWA,
the means of the two
distributions overlap
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The model estimates for the fixed effects and interactions
on μNP1 and μNP2 are shown in Appendix D. No
indication of an effect was found for condition or the
condition × group interaction, but there was a RC type ×
condition interaction on μNP2 (631 ms, CrI: [385, 884] ms):
Interference (match) in OR lead to higher finishing times
for μNP2 relative to no-interference (mismatch). The three-
way interaction RC type × group × condition for μNP2

(−249 ms, CrI: [−491, −10] ms) indicates that the effect of
condition within RC is different for the two groups in the
μNP2 accumulator: In the SR trials, the difference between
match and mismatch conditions is bigger for controls. By
contrast, in OR trials, the difference between match and
mismatch conditions is bigger for IWA.

There was no indication of an LDT × group interaction,
a LDT × condition interaction, or a LDT × condition
× group interaction. There was an effect of fixations
on μNP2 (289 ms, CrI: [61, 521] ms). This main effect
is uninformative, given that NP2 was the retrieval target
in OR but not in SR. There was no indication of a
fixations × condition interaction or a fixations × group ×
condition interaction, so that the role of fixations remains
inconclusive. Finally, as predicted, IWA have higher noise
than controls (σIWA 0.55 log ms, CrI: [0.53, 0.57 log ms],
σcontrols 0.31 log ms, CrI: [0.3, 0.32 log ms]).

Modified Direct-Access Model

The posterior distributions of θ , the probability of initial
retrieval of the target, by group and condition are displayed

in Fig. 8. While controls have a slightly lower θ in OR
relative to SR in the match conditions, SR and OR have
a similar θ in mismatch conditions, around 95%. This
indicates that, in line with the model predictions, mismatch
facilitates the retrieval of the target, especially in OR. The
number mismatch also benefits IWA on average, but IWA
exhibit a stronger subject-object asymmetry, irrespective of
the number manipulation, with higher θ in SR relative to OR
for both match and mismatch conditions.

The estimates of the model confirm the patterns shown
in Fig. 8. The effect of condition (−10% CrI: [−13, −6]%)
suggests that match conditions elicit a lower θ across the
board, but a condition × group interaction (7% CrI: [3,
10]%) suggests that the effect of condition is stronger for
controls than for IWA. There was no indication of a RC type
× condition interaction (−1% CrI: [−5, 2]%), nor of a RC
type × condition × group interaction (1% CrI: [−3, 4]%).
The effect of RC type (−13%, CrI: [−18, −9]%) and the RC
type × group interaction (−7%, CrI: [−12, −3]%) indicate
that object relatives are more difficult to process than
subject relatives, and more so for IWA than for controls.

There was no indication of an effect of LDT on θ (−3%,
CrI: [−8, 2]%), nor of a group × LDT interaction (3%, CrI:
[−2, 8]%). A unit increase in fixations led to −2%, CrI:
[−5, 1]% on θ , and the interaction group × fixations 4%,
CrI: [1, 7]% suggests that the effect of fixations is different
for IWA and control participants: In IWA, an increase in
fixations of looks to the target leads to a higher θ .

The estimated probability of backtracking given an initial
incorrect retrieval is 35% CrI: [20, 50]% for IWA, whereas

Fig. 8 Posterior distribution of
the probability of retrieval of the
target (θ ) across groups and
conditions in relative clauses.
The vertical lines stand for the
means of the distributions, and
the shaded areas represent the
95% credible interval
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Fig. 9 Posterior distribution of the probability of retrieval of the target
after backtracking (θb) across groups in the relative clauses experiment

for controls, it is 87% CrI: [83, 91]%. The posterior
distribution of θb is shown in Fig. 9: After backtracking,
IWA retrieve the target about half of the time. By contrast,
controls retrieve the target more than 80% of the time. In
addition, IWA are estimated to need 3457 ms, CrI: [2425,
4659] ms for backtracking, whereas controls need 1829 ms,
CrI: [1637, 2032] ms.

Finally, as predicted, μ is higher for IWA (3744 ms, CrI:
[3304, 4234] ms) than for controls (1613 ms, CrI: [1492,
1736] ms), and σ is also higher for IWA (0.41 log ms, CrI:
[0.38 log ms, 0.44 log ms]) than for controls (0.24 log ms,
CrI: [0.23 log ms, 0.24 log ms]).

Discussion

In the two models, the location and scale parameters (μ and
σ ) of the RT distribution were consistently higher for IWA
than for controls. We linked these parameters to the slow
syntax and intermittent deficiencies theories, respectively.
Both models thus seem to be generally in line with these
two theories of processing deficits in aphasia. We will now
discuss the implications for the remaining theories within
each model.

Activation-BasedModel

We hypothesized that the accumulators in the activation-
based model should reflect the interference effect predicted
by cue-based retrieval theory, namely, lower mean finishing
times for the target accumulator, and similar or higher
mean finishing time for the distractor accumulator in the
mismatch conditions compared to the match conditions. The
accumulators show this pattern across the two experiments.
In addition, in Experiment 2, the distribution of the
accumulators across relative clause types shows that IWA
experience a subject-object asymmetry, that is, IWA have

more difficulties processing object relatives, in line with
previous findings.

The conclusions for the rest of our predictions are
more complex, since the results differ across the two
experiments. For instance, a group × LDT interaction was
found for the target accumulator in pronoun resolution.
This interaction indicates that slower lexical access leads
to increased processing difficulty for IWA, as predicted
by the delayed lexical access theory. However, there was
no indication of such an interaction in relative clauses.
We therefore conclude that more research is needed in
order to establish the role of delayed lexical access in the
activation-based model.

The effect of looks to the target at the critical region also
remains inconclusive. No effect of fixations was found in
pronoun resolution. In relative clauses, an effect of fixations
was found for the NP2 accumulator, but no indication of an
interaction between fixations and RC type was found. Given
that NP2 was the retrieval target in OR but not in SR, the
main effect of fixations is uninformative.

Modified Direct-Access Model

We expected similarity-based interference to result in a
lower probability θ of successful retrieval for the target in
the match conditions compared to the mismatch conditions.
The data from both experiments are in line with this
prediction. In addition, in Experiment 2, IWA show a
large effect of relative clause type, irrespective of the
condition: IWA have more difficulties understanding object
relatives compared to subject relatives. This subject-object
asymmetry is broadly in line with the accuracies in Adelt
et al. (2017), although Adelt et al. (2017) found this pattern
in both IWA and controls.

The probability of backtracking is consistently lower for
IWA than for controls, as is the probability of retrieval of the
target after backtracking (θb). This pattern is expected under
the resource reduction theory, assuming that backtracking
makes use of parsing resources. In addition, the average cost
of backtracking, δ, is twice as high for IWA compared to
controls in both experiments. This adds support for the slow
syntax theory.

According to the delayed lexical access theory, IWA
should be more affected by delays in lexical access, as
measured by a lexical decision task. The observed group
× LDT interaction lends some support to this theory in
the pronoun resolution sub-experiment, but not in relative
clauses. Therefore, the effect of delayed lexical access
in the modified direct-access model remains inconclusive,
as for the activation-based model. The effect of fixations
is also inconclusive: Although in relative clauses there is
some indication that fixations at the critical region may
lead to a increase in the probability of retrieving the target
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for IWA, no effect of fixations was found in pronoun
resolution.

Model Comparisons

The activation-based model and the modified direct-access
model make different assumptions about the retrieval
mechanism, and thus the generative process behind the
observed data. Within the framework of each model’s
assumptions, conclusions can be drawn about plausible
underlying deficits. However, one crucial question remains
open: Which model captures the generative process better?
In order to answer this question, we performed 10-fold
cross-validation (Vehtari, Gelman, & Gabry, 2017; see
also Nicenboim et al., 2021, chapter 17, for a tutorial on
carrying-out cross-validation for Bayesian models such as
the ones discussed here). This is a standard procedure in
machine learning for quantifying the relative predictive fit
of two or more models. Importantly, cross-validation can
also be applied when the models assume different generative
processes, as is the case with the activation-based and the
modified direct-access models.

The procedure for 10-fold cross-validation is as follows:
The data are partitioned into 10 balanced subsets containing
about the same amount of data per subject.11 One of the 10
subsets is held out, and the model is fit to the remaining
subsets. The posterior distributions from the resulting model
are used to compute predictive accuracy on the held-out
subset. This is repeated 10 times, so that all subsets are
covered. The expected log pointwise predictive density,
̂elpd , is then calculated as a measure of predictive accuracy.
̂elpd is the summed log-likelihood of all observed, held-

out data points under each model. Models are compared
by computing the difference in ̂elpd , ( ̂�elpd), with higher
̂elpd indicating better predictive fit. Because ̂elpd is an

estimate, the difference in ̂elpd between two models has an
associated standard error, which has the standard frequentist
interpretation: ̂�elpd ± 2 × SE gives a 95% confidence
interval. If the difference in ̂elpd between the models is
greater than 2 × SE, we conclude that there are grounds
to assume that the model with the higher ̂elpd provides the
better fit for the given data.

The results of the cross-validation are shown in Table 1.
In pronoun resolution, the modified direct-access model
has a predictive advantage, but since the SE of ̂�elpd

is large, the result is not conclusive. In relative clauses,

11Given that our dataset contains data from two experimental sessions
(test and retest), an alternative way to perform cross-validation would
be to train the models on the test data and to use the retest data to
compute predictive accuracy. However, we chose to use the pooled data
from each of the two experiments, in order to maximize the amount of
data, especially for IWA.

Table 1 Differences in ̂elpd between the two models and their
corresponding SE

Model ̂�elpd SE

Pronoun resolution −109 133

Relative clauses 403 167

Positive differences indicate an advantage for the activation-based
model, whereas negative differences indicate an advantage for the
modified direct-access model

the activation-based model has a clear advantage over the
modified direct-access model, but the advantage is mostly
driven by the control participants, as shown in Appendix E.

We also evaluated the predictive performance of the
original direct-access model, that is, a model in which
backtracking can only lead to the retrieval of the target.
The results are shown in Appendix F. In relative clauses,
the activation-based model outperforms both the original
and the modified-direct access model, while the result for
pronoun resolution is inconclusive.

General Discussion

This is the first-ever computational investigation of com-
peting models of similarity-based interference in German
language comprehension in IWA and unimpaired controls.
We investigated interference in two linguistic constructions,
namely pronoun resolution and relative clauses. Two mod-
els of cue-based retrieval were implemented in a Bayesian
framework: The activation-based model of Lewis and
Vasishth (2005) and a modified version of the direct-access
model of McElree (2000) as implemented by Nicenboim
and Vasishth (2018). The activation-based model assumes
a direct connection between retrieval latency and retrieval
probability for memory items, whereas the modified direct-
access model assumes a constant retrieval latency, along
with a costly backtracking mechanism that triggers when
retrieval fails. In the original direct-access model, back-
tracking leads to the correct retrieval of the target item from
memory (McElree, 1993). In our modified direct-access
model, backtracking can fail, leading to a costly misre-
trieval. We argue that this is a more suitable model for
individuals with aphasia, as it can account for slow incorrect
responses, a pattern that is frequently found in the apha-
sia literature (Hanne et al., 2015; Adelt et al., 2017; Lissón
et al., 2021b; Pregla et al., 2021).

The predictive performance of the two models was
compared against data from a visual-world experiment
(Pregla et al., 2021), using the reaction time and accuracy in
the picture selection task as dependent variables. Looks to
the target at the critical sentence region, where retrieval is
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assumed to occur, were used as a predictor, along with the
mean reaction times from a lexical decision task. We linked
the parameters of each computational model to prominent
theories of processing deficits in aphasia, aiming to answer
two main questions: (a) Which model is better able to fit
the data from IWA and control participants across the two
experiments? and (b) What do the parameters in each model
tell about the processing deficits and about interference in
IWA? We will now discuss the answers to these questions,
as well as the relation of our results to prior work in
computational modeling of processing deficits in aphasia.

First, both models of retrieval perform well across the
two linguistic constructions tested, in the sense that the
relevant parameters are affected in the expected direction by
group differences and by similarity-based interference. The
activation-based model outperforms the modified direct-
access model in the relative clauses experiment, mainly
because it provides a better predictive fit for the data
from control participants. However, both models perform
similarly at fitting data from IWA. In pronoun resolution,
the two models show similar predictive fit across groups and
across conditions.

Second, with regard to the underlying processing deficits
in aphasia, both models are in line with slow syntax
(Burkhardt et al., 2003; Burkhardt et al., 2008) and intermit-
tent deficiencies (Caplan et al., 2013). Resource reduction
(Caplan et al., 2007; Caplan, 2012), as implemented here,
can only be evaluated with respect to the modified direct-
access model, and the results show that the model is in
line with this deficit. There was no strong indication in our
data, across the two experiments and for both models, that
delayed lexical access (Love et al., 2008; Ferrill et al., 2012)
is a source of processing deficits in IWA: The predicted
relationship between individual lexical decision latency and
participant group was only found in some conditions. More
experiments are needed in order to explore the role of
this deficit.

Regarding the effect of similarity-based interference,
based on the results for the activation-based model, we
can conclude that in pronoun resolution, IWA are more
sensitive to gender interference than control participants.
The interaction group × condition was inconclusive in the
modified direct-access model. Both models estimate that
in relative clauses, the effect of number interference is
rather small for both groups. The models suggest that IWA
experience a subject-object asymmetry, whereas control
participants do not. Below, we discuss the comparatively
small effect of number mismatch in relative clauses and
some possible explanations of the subject-object asymmetry
in IWA.

Number Mismatch Versus Subject-Object
Asymmetry

The results of the models show that for IWA, the presence
of two candidate NPs with distinctive number features is
of limited use in both subject and object relatives with
regard to successful comprehension (see also the descriptive
statistics for relative clauses, split by condition, in Appendix
B). The modified direct-access model estimates no effect of
number mismatch for IWA, while pronouns did show some
indication of a gender mismatch effect. The activation-based
model estimates that number mismatch between the NPs in
object relative clauses slightly increases the probability of
retrieving the target; however, the target is only retrieved
about half the time in these conditions. For IWA, the main
difference is between subject and object relative clauses, not
between high- and low-interference conditions, as shown in
Fig. 10. The subject-object asymmetry in relative clauses
in IWA is in line with the canonicity effects reported in
several German studies with IWA (e.g., Burchert et al.,
2003; Burchert & de Bleser, 2004; Hanne et al., 2011; Adelt
et al., 2017; Pregla et al., 2021). Canonicity effects refer to
the fact that sentences with non-canonical word order (e.g.,
object-subject-verb in German) are more difficult to process
than sentences with canonical word order.

In contrast to English, where subject and object relative
clauses are distinguished by the subject NP intervening or
not intervening in the object-verb dependency, cue-based
retrieval cannot explain the subject-object asymmetry in
German: Both in subject and in object relative clauses, the
verb is clause-final and two NPs have to be retrieved, one
that is adjacent to the verb and one that is not. Consequently,
cue-based retrieval would predict no processing difference
between subject and and object relatives in German.

One possible explanation for the differential effects of
number marking and RC type is that German relative
clauses feature case marking, and that IWA may pay more
attention to case than to number cues. Case marking may be
more difficult to process in German object relative clauses
compared to subject relative clauses, given that there is a
case mismatch between the target noun phrase and the rel-
ative pronoun in the former. One influential proposal is
that of case attraction. Case attraction is analogous to the
well-studied phenomenon of number attraction, which has
been explained in terms of feature percolation (e.g., Schle-
sewsky, 1996; Eberhard, 1997; Nicol, Forster, & Veres,
1997; Bader & Meng, 1999; Fanselow, Schlesewsky, Cavar,
& Kliegl, 1999; Logačev & Vasishth, 2012; Czypionka,
Dörre, & Bayer, 2018). If the head noun and the relative
pronoun mismatch in case, as in object relatives, the [+nom-
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Fig. 10 Descriptive statistics for
the relative clauses experiment.
The dots stand for the means,
and the error bars show the
standard error of the means
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inative] case feature of the head noun could percolate down
to the relative pronoun, overriding its original [+accusative]
case feature. Because the case feature of the relative pro-
noun signals the syntactic role of the relativized noun
phrase, the object relative could be misinterpreted as a sub-
ject relative. The case attraction theory thus predicts that
subject relatives are easier to process than object relatives,
because the head noun and the relativizer have an identical
[+nominative] feature in subject relatives.

The proposal that IWA pay more attention to case than
to number cues can be seen a differential weighting of
retrieval cues. The cue-weighting proposal, implemented
by Engelmann (2016) in the framework of the Lewis
and Vasishth (2005) model, claims that depending on the
linguistic structure, some retrieval cues may receive more
weight, and therefore contribute more strongly to memory
activation, than others (Dillon et al., 2013; Cunnings &
Sturt, 2014; Parker & Phillips, 2017; Engelmann et al.,
2019; Vasishth et al., 2019). Differences in weighting
between case and number cues could be integrated in both
the activation-based and the direct-access model, possibly
at the individual participant level, as recently proposed by
Yadav, Paape, Smith, Dillon, & Vasishth (2021).

Studies that have investigated processing of number and
case in IWA in German provide mixed evidence with regard
to differential cue weighting. For instance, Hanne et al.
(2015) investigated IWA’s use of case and number cues to
interpret semantically reversible SVO vs. OVS sentences in
German. Their data indicate that processing of case marking
may be more impaired than processing of number marking.
This contrasts with the results in Adelt, Burchert, Adani,
& Stadie (2020), who tested case-unambiguous vs. case-
ambiguous, number-disambiguated object relatives. The

authors found that IWA have a general processing advantage
in the case-unambiguous conditions. The study of Adelt
et al. (2020) supports the idea that IWA may rely more on
case cues than on number cues in relative clauses. However,
neither Adelt et al. (2020) nor Hanne et al. (2015) included
both case and number cues within the same items. Our
modeling shows that when both case and number cues are
included in a sentence, IWA do not benefit from the extra
number cue, suggesting that cue weighting may be a factor.

Comparison with PreviousWork

Lissón et al. (2021a) investigated English relative clause
processing in IWA vs. controls using a large-scale dataset
from Caplan et al. (2015). Lissón et al. found an agent-first
bias for control participants in English: In non-canonical
clauses, such as object relatives, unimpaired controls tend
to initially assign the agent role to the first noun phrase
in the sentence, which is incorrect in object relatives. By
contrast, IWA do not show an agent-first bias. The agent-
first bias in unimpaired controls has been attested in visual-
world studies in both English (Mack, Wei, Gutierrez, &
Thompson, 2016, passives) and German (Hanne et al., 2015,
OVS sentences; Hanne et al., 2015, object relatives). In
these studies, control participants initially show increased
looks to the foil picture in non-canonical sentences. The
foil picture in non-canonical sentences depicts the canonical
interpretation of the sentence. As soon as they hear
the relevant morphological cues (e.g., the relativizer in
unambiguous German relative clauses), control participants
start looking at the target picture.

In the study of Lissón et al. (2021a), which modeled
self-paced listening data, this processing bias was reflected
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in the estimates for the direct-access model. Controls had
a lower probability of initial correct retrieval than IWA in
object relatives (controls 40%, IWA 50%). That is, controls
were estimated to initially retrieve the distractor more often
than the target in object relatives. The model could still
account for the higher accuracy of controls by assuming a
high probability of backtracking for controls (80%) relative
to IWA (20%). This pattern supported the notion that
controls initially processed the first noun phrase in object
relatives as the agent, until they revised and corrected their
interpretation by backtracking. Surprisingly, in the present
modeling of the German data, we do not see such an agent-
first bias. In the present study, controls did not have a lower
θ relative to IWA, and controls’ θ was always above 90% for
all conditions. One possibility is that in our modeling, the
RT at the end of the sentence do not reflect the agent-first
bias, given that the initial interpretation has already been
revised at this point.

With respect to model comparisons, Lissón et al. (2021a)
found that the activation-based model had a predictive
advantage over the original direct-access model, although
the difference was not decisive, given the large standard
error of ̂�elpd . In the present study, we show that in relative
clauses in German, the activation-based model provides a
better fit than both the original and the modified direct-
access model. Our results contrast with Nicenboim and
Vasishth (2018), who compared the predictive performance
of the activation-based model and the original direct-access
model using self-paced reading data from unimpaired
controls in German (Nicenboim et al., 2018). Nicenboim
and Vasishth (2018) found that the original direct-access
model provided a better fit to their data. However, the data
modeled in Nicenboim et al. (2018) differ from our data
in one important aspect: In correct trials (that is, trials
with correct responses to the comprehension question),
RTs were on average higher than the RTs in incorrect
trials. This pattern in Nicenboim et al.’s data is crucial,
because higher RTs for correct responses is what the
original direct-access model assumes. Consequently, the
advantage in predictive performance of the original direct-
access model vs. the activation-based model came from
the slow, correct responses. By contrast, our data show the
opposite pattern. Correct responses are, on average, faster
than incorrect responses, especially for IWA. Although in
the present paper we have implemented a modified direct-
access model that can account for slow incorrect responses,
the cross-validation shows that the activation-based model
outperforms both the original and the modified-direct access
model in relative clauses in German.

Overall, our results are in line with previous modeling
work in sentence comprehension in aphasia using the

activation-based model (Patil et al., 2016; Mätzig et al.,
2018; Lissón et al., 2021a). If we assume that sentence
comprehension is mediated by an activation-based model
of cue-based retrieval, the performance of IWA can be
explained by a combination of processing deficits, namely
slow syntax and intermittent deficiencies.

Limitations and Future Directions

The data that we modeled in this paper (Pregla et al.,
2021) is the largest-ever compilation of online measures
for IWA in German. Nevertheless, the size of the IWA
group (21 subjects) remains relatively small when compared
to the number of subjects tested in typical eye-tracking
experiments with unimpaired participants. Collecting online
data from impaired populations is difficult, which is why
most studies in the aphasia literature have a smaller number
of participants. Usually, online experiments have 3 to 12
IWA and 10 to 20 control participants (e.g., Burkhardt
et al., 2003; Love et al., 2008; Dickey & Thompson, 2009;
Choy & Thompson, 2010; Hanne et al., 2011; Mack, Ji, &
Thompson, 2013; Hanne et al., 2015; Mack et al., 2016;
Adelt et al., 2017; Engel et al., 2018). An exception is the
data presented in Caplan et al. (2013, 2015), with more than
50 IWA, although it does not include eye-tracking data.

The activation-based model outperforms the modified
direct-access model in relative clauses, but both models
perform similarly in pronoun resolution. We believe that
the inability to find a clear answer in pronoun resolution
has to do with the inherent limitations of the sample size,
both in terms of subjects and items. Crucially, the relative
clause experiment tested 40 items per subject (10 items per
condition, 4 conditions), whereas the pronoun resolution
tested 20 items per subject (10 items per condition, 2
conditions). Future work comparing these models will
require much more data in order to distinguish between the
models.

We have reported the most complex hierarchical structure
that yielded converging fits, but in order to account for
individual differences, an even more complex hierarchical
structure would be necessary. This is especially true for
the modified direct-access model, where an individual
adjustment for the effect of δ would help in understanding
the variability in the process of backtracking. The same
holds for both models regarding the effect of eye
fixations in the visual world paradigm. In addition, this
work focuses on average, group-level effects. While the
comparisons between groups yield an estimate of the
average performance, it has been shown that IWA have large
within and between-subject variability (Patil et al., 2016;
Mätzig et al., 2018; Pregla et al., 2021).
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A future direction is to develop an individual-level
modeling approach, in which parameters are estimated
for each subject, in a similar vein to the modeling
work in Mätzig et al. (2018) for offline data. Recent
modeling work shows that under the cue-based retrieval,
even among unimpaired participants, individual differences
can modulate interference effects (Yadav et al., 2021).
Therefore, obtaining individual parameter estimates for
IWA would be more informative regarding both interference
effects, and the extent to which each processing deficit
plays a role for each IWA. Furthermore, the possible
role of feature percolation, that is, of target features
being overwritten by features of distractor items, has
been recently investigated by Yadav, Smith, & Vasishth
(2021). Their results support the view that in unimpaired
populations, feature percolation feeds retrieval processes,
suggesting that a hybrid model may better explain
similarity-based interference.

A second limitation of this work concerns the implemen-
tation of the models. In order to compare the two competing
models in a common architecture, we implemented simpli-
fied versions that focus on a single retrieval event. However,
in order to account for sentence processing deficits in IWA
across the whole trial, the models should include a parser.
The original Lisp implementation of the activation-based
model in ACT-R (Anderson et al., 2004; Lewis & Vasishth,
2005) includes a left-corner parsing algorithm that could
conceivably be added to our model. However, as far as we
are aware, there exists no computational implementation of
a parser in the (modified) direct-access model. A future
direction would be to incorporate a parser into the (mod-
ified) direct-access model, and to fit Bayesian versions of
both models that account for individual parsing steps. This
is especially challenging because it requires finding a com-
mon architecture that supports a parsing algorithm for both
models, so that model comparisons can be performed.

Finally, another limitation concerns the use of looks to
the target at the critical region as an index of retrieval.
An analysis of eye fixation patterns across the entire trial
would possibly be more informative regarding the time-
course of interference during sentence processing. This is
especially true for relative clauses, where our results show
that higher fixations to the target at the critical region do
not lead to faster reaction times in the picture selection task.
Specific modeling techniques for visual-world-data could
be considered, such as growth curve analysis (Mirman,
2017) or divergence point analysis (Stone, Lago, & Schad,

2020). Integrating these analyses with our computational
modeling approach may be possible, and may yield
important insights into the differences between IWA and
controls over the course of the trial.

Conclusion

We conducted the first large-scale evaluation of two
computational models of sentence processing in individuals
with aphasia (IWA) in German. Our study tested two
competing models of cue-based retrieval — the activation-
based model and a modified version of the direct-access
model — against online and offline data from IWA
and control participants. The data came from a visual-
world eye-tracking experiment with a picture selection
task. Similarity-based interference was manipulated in two
linguistic constructions, namely pronoun resolution and
relative clauses. Reaction times from the picture selection
task were modeled as a function of interference, group (IWA
vs. control), lexical access speed, and fixations to the target
picture at the critical region of the sentence. The results
show that in pronoun resolution, IWA experience greater
gender interference effects relative to control participants.
In relative clauses, the data suggest that IWA exhibit a
larger subject-object asymmetry than controls. In IWA,
the subject-object asymmetry is much stronger than the
effect of number interference, suggesting that in relative
clauses, IWA may rely more strongly on case cues
compared to number cues. The parameter estimates from
both implemented models are in line with the slow syntax
and the intermittent deficiencies accounts. In addition, the
parameters of the modified direct-access model are also
in line with the resource reduction theory. The cross-
validation results show that while both models have similar
quantitative performance for the pronoun structures, the
activation-based model outperforms the modified direct-
access model in relative clauses.

Appendix A: Details about the individuals
with aphasia

Table 2, adapted from Pregla et al. (2021), shows a
summary of the demographics and neurological information
about the individuals with aphasia that took part in the
experiments.
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Table 2 Demographic and neurological data of the individuals with aphasia that took part in the experiment, adapted from Pregla et al. (2021)

IWA Gender Age Education Years P.O. Etiology Localization T3 T11 Aphasia type

2 F 72 8 7 IMI L 77 19 Anomic

3 M 76 20 17 IMI L/R 61 20 Not-classifiable

4 F 47 13 21 IMI L 78 20 Anomic

6 M 55 14 10 IMI L 67 20 Anomic

8 F 51 19 7 MA L 74 20 Anomic

9 M 64 15 2 IMI L 73 20 Anomic

10 M 58 18 1 IMI L 52 20 Broca

11 F 63 12 1 IMI L 73 20 Broca

12 F 46 12 13 IMI L 65 20 Broca

13 M 74 13 8 IMI L 57 20 Broca

14 M 66 13 17 IMI L 75 20 Anomic

15 F 59 21 4 I L 77 20 Broca

16 M 67 17 26 VH R 72 19 Broca

17 F 43 14 10 IMI L 65 20 Broca

18 M 57 13 1 I L 67 18 Wernicke

19 F 52 19 8 IMI L 76 20 Broca

20 M 38 13 3 IMI L 73 19 Broca

21 M 57 18 2 IMI L 66 18 Broca

22 F 67 16 5 IMI L 76 20 Anomic

23 M 74 15 7 IMI L 67 20 Anomic

Note: Age and education are given in years. T3 and T11 are part of the LEMO 2.0 (Stadie et al., 2013) battery of tests and the scores given in
the table are raw scores; T3 (n=80) = auditory lexical decision, T11 (n=20) = auditory word-picture matching. IWA, individual with aphasia; P.O.,
post-onset; F, female; M, male; L, left; R, right; IMI, ischemic arteria cerebri media infarct; I, infarct; MA, arteria cerebri media aneurysm; VH,
vertebrobasilar hemorrhage
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Appendix B: Descriptive statistics

Figure 11 shows descriptive statistics for the pronoun sub-experiment by group and condition. Figure 12 shows descriptive
statistics for the relative clause sub-experiment by group and condition.
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Fig. 11 Descriptive statistics for the pronoun sub-experiment. The dots stand for the means, and the error bars show the standard error of the
means. In the plot showing the fixations to the target picture at the critical region, the proportions are centered and scaled within groups
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Fig. 12 Descriptive statistics for
the relative clauses
sub-experiment. The dots stand
for the means, and the error bars
show the standard error of the
means. In the plot showing the
fixations to the target picture at
the critical region, the
proportions are centered and
scaled within groups
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Appendix C: Details about the
computational implementations

For both the activation-based and the direct-access model,
the varying intercepts and slopes for subject, u, come
from a multivariate normal distribution with x dimensions
(where x = number of by-subject adjustments), abbreviated
as MV Nx . The varying intercepts and slopes for items,
w, also come from a multivariate normal distribution
with y dimensions, MV Ny (where y = number of by-
item adjustments). In the equations below, 0 is a column
vector of zeros with the x or y dimensions. The σ are
the variance-covariance matrices of the multivariate normal
distributions.

u = MV Nx(0, �u)w = MV Ny(0, �w) (1)

Activation-Based Model For each trial i, values from two
independent distributions are sampled, as shown in Eq. (2).
The lowest value becomes the estimated reaction time for
trial i (see Eq. (3)).

Accumulator NP1

FTNP1i
∼ lognormal(μ1, σ )

Accumulator NP2

FTNP2i
∼ lognormal(μ2, σ ) (2)

RTi = min(FTNP1i
, FTNP2i

) (3)

The hierarchical structure in the location parameter of the
lognormal distribution for each accumulator (μ1 and μ2)
and in the standard deviation (σ ) is shown in Eq. (4).

Accumulator NP1
μNP1 = α1 + uα1 + wα1 + (β1 + wβ1 ) · group+
(β3 + uβ3 ) · condition + β5 · group · condition+
β7 · LDT + β9 · group · LDT +
β11 · fixations + β13 · fixations · group

Accumulator NP2
μNP2 = α2 + uα2 + wα2 + (β2 + wβ2 ) · group+
(β4 + uβ4 ) · condition + β6 · group · condition+
β8 · LDT + β10 · group · LDT +
β12 · fixations + β14 · fixations · group

Noise parameter
σ = σ0 + β15 · group

(4)

In addition to the adjustments shown in Eq. (4), in the
model for relative clauses, the following fixed effects were
also added to both accumulators: RC type, RC type ×
condition, RC type × group, RC type group × group ×

condition, fixations × RC type, fixations × group × RC
type. The slope for the effect of RC type also had a by-
subject adjustment. Equation (5) shows the priors used in
the activation-based model, all in log space.

α1,2 ∼ normal(7.5, 0.6)

β1,...,15 ∼ normal(0, 0.5)

σ0 ∼ normal+(0, 0.5)

(5)

Direct-Access Model In Eq. (6), the parameter θ stands for
the probability of retrieval of the target; μ is the location of
the distribution from which the reaction times are sampled.
Pb is the probability of backtracking, δ is the cost of
backtracking (in log ms), and σ is the noise parameter. In
addition to the adjustments shown in (6), in the model for
relative clauses, the following fixed effects were added to θ :
RC type, RC type × condition, RC type × group, and RC
type × group × condition. The slope for the effect of RC
type also had a by-subject adjustment.

μ = μ0 + uμ0 + wμ0 + β1 · group
θ = α + uα + wα + β2 · LDT + β3 · LDT · group
(β4 + wβ4) · group + (β5 + uβ5) · condition+
β6 · group · condition + β7 · fixations+
β8 · group · fixations
θb = αb + uαb

+ β9 · group
Pb = γ + uγ + β10 · group
δ = δ0 + β11 · group
σ = σ0 + β12 · group

(6)

Equation (7) shows the priors used in the direct-access
model. The priors for α, αb, and γ are in logit space, and
the rest of priors are in log space.

α ∼ normal(1, 0.5)

αb ∼ normal(0, 1)

β1,...,12 ∼ normal(0, 0.5)

μ0 ∼ normal(7.5, 0.6)

γ ∼ normal(−1, 0.5)

δ0 ∼ normal(0, 1)

σ0 ∼ normal(0, 0.5)

(7)

Appendix D: Model estimates
(activation-basedmodel)

Pronouns

Table 3 shows model estimates for the activation-based
model for the pronoun sub-experiment.
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Table 3 Model estimates for the fixed effects on μNP1 and μNP2 and corresponding credible intervals, backtransformed to ms

Parameter Estimate 95% CrI Accumulator (μ)

Group 2006 ms CrI: [1604, 2453] ms NP1
Group − 797 ms CrI: [− 2459, 629] ms NP2
Condition 310 ms CrI: [193, 433] ms NP1
Condition − 1478 ms CrI: [− 2820, -431] ms NP2
Condition × group 199 ms CrI: [81, 322] ms NP1
Condition × group 1424 ms CrI: [400, 2720] ms NP2
LDT 836 ms [539, 1152] ms NP1
LDT 588 ms [− 621, 1811] ms NP2
LDT × group 671 ms [377, 973] ms NP1
LDT × group 51 ms [− 1147, 1243] ms NP2
Fixations 41 ms [− 77, 160] ms NP1
Fixations 518 ms [− 141, 1212] ms NP2
Fixations × group 96 ms [− 23, 219] ms NP1
Fixations × group 251 ms [− 430, 949] ms NP2

Relative Clauses

Table 4 shows model estimates for the activation-based model for the relative clauses sub-experiment.

Table 4 Model estimates for the fixed effects on μNP2 and μNP2 and corresponding credible intervals, backtransformed to ms

Parameter Estimate 95% CrI Accumulator (μ)

Group 2348 ms [1687, 3055] ms NP1
Group 4057 ms [3279, 4916] ms NP2
RC type 2417 ms [2076, 2807] ms NP1
RC type − 1897 ms [− 2372, -1459] ms NP2
Condition − 68 ms [− 262, 122] ms NP1
Condition − 228 ms [− 506, 40] ms NP2
Condition × group − 37 ms [− 224, 153] ms NP1
Condition × group 86 ms [− 180, 355] ms NP2
RC type × group − 1670 ms [− 2019, -1366] ms NP1
RC type × group 1847 ms [1443, 2293] ms NP2
Condition × RC type − 150 ms [− 323, 19] ms NP1
Condition × RC type 631 ms [385, 884] ms NP2
Condition × RC type × group 103 ms [− 68, 276] ms NP1
Condition × RC type × group − 249 ms [− 491, -10] ms NP2
LDT 779 ms [243, 1337] ms NP1
LDT 812 ms [252, 1398] ms NP2
LDT × group − 50 ms [− 594, 496] ms NP1
LDT × group − 460 ms [− 1045, 121] ms NP2
LDT × RC type − 5 ms [− 258, 255] ms NP1
LDT × RC type 19 ms [− 347, 385] ms NP2
LDT × RC type × group 5 ms [− 251, 262] ms NP1
LDT × RC type × group 291 ms [− 72, 677] ms NP2
Fixations − 37 ms [− 205, 130] ms NP1
Fixations 289 ms [61, 521] ms NP2
Fixations × group − 46 ms [− 211, 118] ms NP1
Fixations × group 57 ms [− 173, 285] ms NP2
Fixations × RC type 69 ms [− 97, 235] ms NP1
Fixations × RC type − 27 ms [− 248, 204] ms NP2
Fixations × RC type × group 75 ms [− 96, 244] ms NP1
Fixations × RC type × group − 111 ms [− 341, 112] ms NP2
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Appendix E: Cross-validation results
by group and construction

Figure 13 shows cross-validation results by group and
construction.

Controls, OR,  match

Controls, OR, mismatch

Controls, SR, match

Controls, SR, mismatch

IWA, OR, match

IWA, OR, mismatch

IWA, SR, match

IWA, SR, mismatch

−100 0 100 200 300

Δelpd

Activation−based model vs. MDA

Fig. 13 Graphical representation of the ̂�elpd between the activation-
based and the modified direct-access model across groups and
conditions. The dot stands for the ̂�elpd and the bars indicate to the
95% confidence interval. Positive values indicate an advantage for the
activation-based model, and negative values indicate an advantage for
the modified direct-access model (MDA)

Appendix F: Comparisons with original
direct-access model

The ̂�elpd between the original direct-access model and the
modified direct-access model is −41, SE 134 for pronoun
resolution; and −175, SE 166 for relative clauses. The
negative ̂�elpd estimates indicate that the modified direct-
access model may have a better predictive performance,
but given the large SE, the ̂�elpd are inconclusive. When
comparing the activation-based model with the original
direct-access model, the difference is not conclusive in the
pronoun experiment ( ̂�elpd −68, SE 140), but in relative
clauses, the activation-based model performs better ( ̂�elpd

578, SE 173). Thus, in relative clauses, the activation-based
model outperforms both the original and the modified-direct
access model.
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