
Microprocessors and Microsystems 104 (2024) 104987

A
0
n

A
d
A
a

b

A

K
C
E
D
I
S

1

c
d
s
r
t
o
(
i
t
a
o

p
b
t
I
d
I

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

beto: An automated benchmarking tool to manage heterogeneous IP core
atabases
ntonio J. Sánchez a, Yubal Barrios a,∗, Lucana Santos b, Roberto Sarmiento a

Institute for Applied Microelectronics, Univ. of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017, Spain
European Space Research and Technology Centre, European Space Agency, Noordwijk, 2201, The Netherlands

R T I C L E I N F O

eywords:
omputer aided engineering
lectronic design automation
atabase management

P cores
ystem-level design

A B S T R A C T

System-level design makes use of building blocks, known as soft IP cores, to build complex developments. The
usage of these IP cores allows to reduce design and verification time, and also to save costs. However, the use
of third-party IP cores tends to present difficulties because of a lack of standardization in their organization,
distribution and management, which derive in heterogeneous databases. Most of the time, system developers
need to describe some additional code to enable the integration, verification and validation of the IP core,
which is not available as part of their distribution. This implies acquiring a deep knowledge of each IP core,
often with a large learning curve.

In this work Abeto is presented, a new software tool for IP core databases management. It allows to easily
integrate and use a heterogeneous group of IP cores, described in VHDL, with a unified set of instructions or
commands. In order to do so, Abeto requires from every IP core some side information about its packaging
and how to operate with the IP. Currently, Abeto provides support for a set of well-known EDA tools and has
been successfully applied to the European Space Agency portfolio of IP cores for benchmarking purposes. To
demonstrate its performance, mapping results for these IP cores on the novel NanoXplore BRAVE FPGA family
are provided.
. Introduction

Digital electronics and circuits have been continuously growing in
omplexity during the last decades. This has motivated a variety of
esign methodologies (e.g., system-level design or high-level synthe-
is), and common practices in both industry and academia, aiming at
educing development costs, design effort and time-to-market. Among
hese techniques, collaborative design based on reusing previous devel-
pments or building blocks, commonly known as Intellectual Property
IP) cores, is a trend for different applications, including the space
ndustry [1]. The adoption of these IP cores is normally managed
hrough their licensing from other vendors or by adapting open-source
lternatives. Plenty of IP cores are available in either commercial [2,3]
r open-source repositories [4,5].

All these practices imply a know-how transfer from IP developers to
otential users, so the designs not only are required to be functional,
ut also understandable and manageable by users [6,7]. Nevertheless,
here has been historically a lack of standardization in the way that
P cores and their auxiliary components are developed, packaged and
ocumented. This makes the IP reuse not straightforward, having each
P core a unique learning curve and usually leading to extra efforts

∗ Corresponding author.
E-mail address: ybarrios@iuma.ulpgc.es (Y. Barrios).

adding Electronic Design Automation (EDA) tool support for each
design.

Both the industry and academia have proposed some solutions
to facilitate the exchange and reuse of IP cores. On the one hand,
standards have been proposed for IP metadata documentation, such
as those from the Accellera initiative [8]. Among them, IP-XACT [9],
an XML-based standard for IP packaging and interchange intended for
highly-automated design environments (e.g., Xilinx Vivado), must be
highlighted as it has been adopted by IEEE. IP-XACT allows to link tools
into an automated system development framework, which is able to
understand, configure and launch different IP processes related to their
metadata, but not to functional features such as simulation or synthesis.
However, the application and adoption of such standards is not general
yet, mainly for the deep knowledge required for their usage.

On the other hand, there are several open-source IP management
applications developed [10–12], including IP-XACT front-ends [13–15].
Among the academic applications stand out FuseSoC [10], an open-
source package manager which incorporates a build tool for Hardware
Description Languages (HDLs) and thought for System-on-Chip (SoC)
development; and Kaktus2 [13], an IP-XACT front-end incorporating
vailable online 27 December 2023
141-9331/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.micpro.2023.104987
eceived 9 March 2023; Received in revised form 24 October 2023; Accepted 13 D
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ecember 2023

https://www.elsevier.com/locate/micpro
https://www.elsevier.com/locate/micpro
mailto:ybarrios@iuma.ulpgc.es
https://doi.org/10.1016/j.micpro.2023.104987
https://doi.org/10.1016/j.micpro.2023.104987
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2023.104987&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Microprocessors and Microsystems 104 (2024) 104987A.J. Sánchez et al.
extensions for reuse of software components of IP cores. However, these
IP managers tend to be rigid in the expected IP cores format, usually
requiring a noticeable adaptation effort to the tool requirements.

Due to the increasing number of open-source IP management tools,
initiatives have appeared which try to establish a common ground in
this field. In particular, EDA2 [16] proposes a conceptual model for
the different abstraction layers present in EDA tools and tool chains. It
also provides a common framework for open-source Python-based EDA
management tools, where different front-ends and workflows can be
integrated.

In an attempt to reuse previous designs and thus reduce devel-
opment time and costs, the European Space Agency (ESA) provides
a portfolio of IP cores [17], described in VHDL, which can used in
different system developments for future space missions. This portfolio
is continuously growing, adding new IP cores that fulfill the demands
of potential applications with interest for the space industry. Each IP
core has its own database, including all the necessary components
and their associated information to enable the reusability of the IP.
However, each database is produced by a team that follows its own
workflow, resulting on different structures and implementation pro-
cesses. This results in an heterogeneous IP core database with a lack
of standardization.

In this work we introduce Abeto (Automated Benchmarking Tool),
a software IP management tool intended to integrate heterogeneous
groups of IP cores and operate with them in a unified manner. As use
case, this tool is applied to better organize the ESA portfolio of IP cores.
However, Abeto has been designed with versatility in mind, adapting its
performance to other IP databases and allowing extending the catalog
of supported EDA tools. The different stages of the IP workflow, such as
configuration, simulation or synthesis, can be configured and launched
from Abeto in a transparent way from the user point of view. This
allows to accelerate iterations in the design flow in case that changes
in the IP cores are introduced or new target technologies are targeted.
Although Abeto is currently provided as an stable tool, it is constantly
evolving to incorporate new features that can be required by potential
users.

The rest of the paper is structured as follows. Section 2 gives a
brief overview of Abeto, while Section 3 explains the use of the Abeto
through its command-line interface. Section 4 introduces the auxiliary
IP core description files necessary for IP integration in Abeto. An
example of the Abeto usage targeting a simple IP core is then described
in Section 5. Later, Section 6 provides a preliminary experience about
the tool usage and results with the ESA portfolio of IP cores. Finally,
Section 7 draws some conclusions.

2. Overview

Abeto is a software tool intended to serve as an IP management
framework, which has been fully developed in Python and supports
UNIX-based systems (tested in Ubuntu 18.04 and 20.04, and also in Red
Hat 7) and Windows 10. The main idea behind Abeto consists in unify-
ing the design flow steps (e.g., configuration, simulation, synthesis) of
different IP cores – potentially heterogeneous – under a common set of
commands, thus making most of IP-specific details transparent to the
user. Fig. 1 illustrates this concept. Although Abeto has been initially
developed to manage the ESA IP cores portfolio, it is versatile enough
to manage any other IP core repository if it is properly adapted to be
understood by the tool.

Abeto has also the capability of interacting with several EDA tools.
Currently, the following third-party tools are supported: Mentor Ques-
tasim and GHDL for simulation; Xilinx ISE and Vivado, Synopsys Syn-
plify and the novel NanoXplore NXmap for FPGA synthesis; and Syn-
opsys Design Compiler for ASIC synthesis. Support for the NanoXplore
BRAVE family, the first high-performance, radiation-hardened repro-
grammable European FPGA [18], demonstrates the goodness of the
Abeto tool to be adapted to new technologies that are not widely
2

Fig. 1. Abeto overview.

supported by commercial EDA tools because of their reduced number
of users. This list of tools can be extended in the near future, in case
other tools will be identified as interesting for specific IP databases
and their potential users. These supported third-party EDA tools can be
invoked by Abeto to run different steps of the design flow. To ease this
interaction, Abeto provides an auxiliary package with methods that can
be called in these third-party EDA tools to access the Abeto IP database
and automatize several operations.

Abeto comprises an IP core database, which centralizes the man-
agement of soft IP cores, and a Command-Line Interface (CLI), which
allows operating with the IP cores integrated in the database for
benchmarking purposes. IP cores can be attached and detached from
the Abeto database in a plug & play fashion using available commands
in the Abeto CLI. In order to do so, and taking into account the
potentially heterogeneous nature of the IP cores Abeto shall handle,
the tool requires some information of each IP core to be integrated on
its database: its directory structure and a list of which operations can be
performed with that IP, which must be provided with specific formats.
These are jointly denoted as IP description files. Abeto is distributed
along with an example IP core, a Gray counter of configurable width,
named as dummyIP. This IP core is pre-loaded in the Abeto IP database,
including a self-checking testbench and the necessary scripts for its
operation through Abeto. The purpose of the dummyIP is to provide
to IP developers a way to organize their IP database to be integrated
as part of the ESA IP portfolio. A brief tutorial of Abeto using this IP is
later explained in Section 5.

Once installed, Abeto designates a directory to allocate the Abeto
IP database. From here, IP cores integrated in Abeto are accessed and
operated, either directly if IP cores are installed in the same directory,
or by means of symbolic links if they are installed elsewhere in the
workstation. It is important to not move the location of IP cores in
the workstation once they are integrated in the Abeto IP database,
otherwise Abeto will not be able to access them. If that happens, it
is necessary to first remove the IP core from the Abeto IP database and
include it again, indicating the new location of the IP core. In addition,
Abeto stores a log file with the contents of the Abeto IP database. This
file is dynamically updated with any change in the IP database, and it
allows to restore the IP database each time Abeto is launched. Fig. 2
illustrates the organization of the Abeto IP database.

By default, Abeto operates with IP cores assuming they have a
predefined directory structure. This default directory structure is shown
in Fig. 3. If the directory tree of an IP does not match this baseline
structure, Abeto must be informed of the real directory structure for a

proper operation, as explained later in Section 4.1.

Microprocessors and Microsystems 104 (2024) 104987A.J. Sánchez et al.

o
c

3

c
f
s
s
d
(
a
i

f
w
n
o
t

d
c
d

f
<
d
c
c

3

b
m
t
A
.
l
e
t
b
e

Fig. 2. Abeto IP database.

Fig. 3. Baseline IP directory structure.

3. Abeto command-line interface

There are two main categories of commands supported in Abeto.
There is a set of built-in commands, with the purpose of configur-
ing Abeto and managing the IP database, while the other group of
commands allows operating with each one of the IPs integrated in
the Abeto database and launching the different design flow steps. In
addition, Abeto incorporates a built-in IP configuration tool. All these
are introduced in the next subsections. Besides, the CLI incorporates
a batch mode and a special feature to support the execution of any
command multiple times in sequence with argument variations, thus
reducing the user intervention for some repetitive tasks, such as the
generation of multiple configurations of the same IP or synthesizing it
applying a succession of constraint files.

Runtime errors, either originated by Abeto itself or by any invoked
EDA tool, are captured by Abeto. Then an appropriate error message is
displayed, and control returns to the user by the Abeto CLI.

3.1. Abeto initialization

Abeto is launched by running the corresponding executable (de-
pending on the OS) from Abeto installation directory. It can be executed
with either one argument (the path to an Abeto shell script) or none,
which starts Abeto in batch or manual mode, respectively. In any case,
an initialization process begins where Abeto generates the necessary
file structure (if it did not previously exist) and loads all the IPs already
integrated in the Abeto IP database in the last session. Abeto stores the
list of IPs in a text file. This file is read to know which IPs must be
3

loaded during the initialization process. For each one of these IPs, Abeto
internally loads its directory structure, as well as the list of available IP
commands. Once the initialization is completed, if Abeto was launched
in the manual mode, the Abeto prompt is displayed, enabling the use
of the command-line interface; otherwise, if Abeto is launched in batch
mode, it automatically executes the commands in the provided shell
script in sequence and closes itself upon termination.

3.2. Built-in commands: Managing the IP database

Two ways to add IP cores to the Abeto IP database are provided. On
the one hand, already designed IP cores are included using the addIP
command (addIP <IP identifier> <path>). The tool expects in
this case to find and parse the corresponding IP description files. On the
other hand, the directory structure for a new IP core can be generated
through the command newIP (newIP <IP identifier> <path>)
to ease the integration of new IP cores in Abeto at the beginning of
the design flow. Both cases require to provide the IP core location
and a unique IP identifier, which is used to invoke the IP core in any
subsequent commands within Abeto. With any of these changes, the
internal list of IP cores is updated.

In case that changes are made to the IP description files of any IP
core integrated in the Abeto database, they can be reloaded (refreshIP)
to make Abeto aware of these changes. Other commands allow to
remove IP cores from the Abeto IP database (removeIP), query infor-
mation about them (IPtree to know the IP database organization, help
r where command to find the IP location on the workstation), or to set
onfiguration settings.

.3. IP operation

IP cores are operated through a unified set of commands. These
ommands cover different steps of the IP design flow, from IP con-
iguration (config) to synthesis (syn), including compilation (build),
imulation (sim) and post-synthesis/post-P&R simulations (ps-sim, par-
im). Additional commands allow to validate results (verify), display IP
ocumentation and/or reports (doc, report) and clean intermediate files
clean). However, not all these commands are necessarily available for
ll the IPs and, in addition, each IP may execute these commands on
ts particular way.

To solve these issues, every IP must provide a command dictionary
ile (more details in Section 4.2), which determines the IP commands
hich are enabled for that IP, the format these commands have (i.e., the
umber and name of additional arguments, if they are mandatory or
ptional, and a list of valid values for each argument) and the handling
hese commands receive specifically for the IP.

Nevertheless, there are some IP commands that have a predefined
efault behavior and they become available for each IP if certain
onditions are met, even if they are not declared in the IP command
ictionary or if this file is missing.

IP commands in Abeto are invoked by prepending the IP identifier,
ollowed by any additional arguments, if required (i.e., with the form
IP identifier> <IP command>. For example, to simulate the
ummyIP, the command dummyIP sim should be introduced. The IP
ommands a particular IP supports and the use of every IP command
an be queried through the built-in help.

.4. Batch mode

In addition to the manual (interactive) mode, Abeto provides a
atch mode in which commands from a given shell script are auto-
atically executed in sequence. This mode is entered by executing

he Abeto launcher along with an extra argument: the path to an
beto shell script. An Abeto shell script is a text file, with extension

acs, which includes a set of Abeto commands with one command per
ine. Commands in .acs files must be typed exactly as if they were
ntered manually by the Abeto CLI. An .acs file can be also provided to
he default config command to enter the built-in configuration tool in
atch mode. In batch mode, when all commands from an .acs file are
xhausted, Abeto is automatically closed.

Microprocessors and Microsystems 104 (2024) 104987A.J. Sánchez et al.

e
o

w
t
c
m
e
o
p
a

b
t
h
i
t

3

A
g
a

v
a
g
v
i
c

4

a
t
d
o
T
I
r

c
p
A

h
t
w
f
p
i
d

3.5. Abeto configuration tool

Abeto incorporates a built-in configuration tool, with the purpose of
editing IP configuration parameters before simulations or synthesis runs
in case that the IP does not provide its own configuration mechanism.
This is accessed through the default config IP command, which is
nabled as long as the corresponding IP description file identifies one
r more source files which contain IP configuration parameters.

The Abeto configuration tool is an independent CLI inside Abeto
ith its own set of commands. It incorporates a simple VHDL syn-

ax analyzer to extract the constant declarations in the given source
ode as configurable parameters. These parameters can be queried and
odified through commands. IP configuration changes can be saved

ither by overwriting the original source file or by generating replicas
f the configuration file. If any syntax error is found or no configuration
arameters are found in the target configuration file, an error is raised
nd the configuration tool is closed.

When Abeto it is running in batch mode, the access to the Abeto
uilt-in configuration tool is slightly different than through the CLI. In
his case, attempting to enter the configuration tool in ‘‘manual’’ mode
as the effect of resuming the execution of the same Abeto shell script
nside the configuration tool. If the configuration tool is then closed,
he same script continues executing in Abeto.

.6. Multiple command execution through argument lists

To avoid users the necessity of introducing commands individually,
beto offers the possibility of executing multiple commands from a sin-
le command-line instruction by using argument lists. This mechanism
llows reducing the user intervention for some repetitive tasks.

Argument lists are enclosed by curly brackets (‘‘{}’’), using the
ertical slash character (|) to separate different values of the same
rguments. If a command includes an argument list it is first unrolled,
enerating multiple instances of the same command with the elements
alues in the argument list, and then all commands are executed
n sequence. All Abeto commands support this feature, including IP
ommands or commands in the Abeto configuration tool.

. IP core description files

Every IP to be integrated in Abeto should provide two auxiliary files:
Database Definition file (ADD), which provides information about

he directory structure of the IP core and its integration in the Abeto
atabase; and a Command Dictionary file (ACD), which includes the list
f supported IP commands for that IP and how must they be executed.
hese files are required by Abeto to handle a heterogeneous group of
P cores in a common framework and they must be located in the IP
oot directory.

These auxiliary files are validated every time the corresponding IP
ore is loaded in the Abeto IP database, either during the initialization
hase of a new Abeto session (see Section 3.1) or by using the built-in
beto commands addIP or refreshIP (see Section 3.2). Any error found

in the validation of these files causes the corresponding IP core to be
rejected from the IP database, along with an error message indicating
the cause of such error.

4.1. Abeto database definition

An ADD file is a text file, with extension .add, which informs about
ow the directory structure of a given IP is arranged. In particular,
he ADD file must reflect the differences of the IP directory structure
ith respect to the baseline directory structure from Fig. 3. If the ADD

ile is not provided for a given IP, the baseline directory structure is
resumed. In addition, other side information required for the IP core
ntegration in the Abeto IP database shall be included, such as external
ependencies or IP-specific environment variables.
4

Fig. 4. (a) ADD file example; (b) resulting directory structure.

ADD files are comprised by a set of directives, which are parsed
and executed in sequential order from the beginning to the end of the
file. From the baseline directory structure and the modifications stated
in the ADD files, Abeto internally builds an image of the directory
structure of each IP in the IP database. Abeto works with the internal
image of the directory structure to access the IP and operate with
it, assuming that it matches the directory tree of the IP distribution.
Fig. 4 shows an example on how to re-define the IP directory structure
through ADD files.

Because the IP directory structure can be modified at will, a mecha-
nism to denote the purpose of every folder in the IP directory structure
is required. Directory flags are used with this aim. These flags allow
to define which folders have trackable content, documentation files
and executable files or scripts, among others. The baseline IP directory
structure includes a predefined flag setting for each one of its direc-
tories, but this can be modified by means of directives in the ADD
file. Unless otherwise stated, the properties indicated by these direc-
tory flags affect solely to the content of the corresponding directory
(i.e., these properties are not propagated to children directories).

4.2. Abeto command dictionary

An ACD file is also a text file, with extension .acd, which informs
Abeto about the IP commands available for a given IP and provides
instructions about how to execute them. An example of an ACD file is
given in Fig. 5. ACD files have two parts: header and body.

The ACD header indicates the supported IP commands that need a
dedicated handling for the corresponding IP, along with the expected
format of such IP commands. The list of IP commands to be defined in
the ACD header must be written using one line per IP command. The
format of these commands is highly configurable. Each IP command
may define any number of arguments and they can be either manda-
tory or optional, and a list of supported values that can be defined
for each argument. Argument definitions come after the IP command
reserved word, in the same line. An argument is declared by the ‘$’
character, followed by the name identifying the argument (i.e., the
argument identifier). Multiple arguments can be defined for any given

IP command.

Microprocessors and Microsystems 104 (2024) 104987A.J. Sánchez et al.

t
T
r
t

i
c
o
c
t

m
e
c
d
t
r

m
A
i
i
r
t
w
t

e
R
a
i
d
A
i

5

g
l
m
d
q
c
t

i
d

c
c
c
c
f
l

5

t
i

t
(
r
i
a
c
w
j

c
c
I
c
a
t

Fig. 5. Example ACD file.

The ACD body contains the handling of the commands declared in
he ACD header, using a target-recipe format similar to a makefile.
argets are the IP commands introduced in Section 3.3, while the
ecipes constitute the actual set of instructions to execute for that
arget.

Targets defined in an ACD file may include requisites concern-
ng command arguments. Thus, different handlers for the same IP
ommand can be defined, depending on the value of its arguments
r whether certain optional arguments are used or not. When an IP
ommand is introduced through the Abeto CLI, only the first target in
he ACD file whose requisites are met is executed, ignoring the rest.

The recipe of any target may include an arbitrary number of com-
ands, including calls to EDA tools, make targets, shell commands,

xecution of scripts and binary files, and even calls to other Abeto IP
ommands. A recursion limit is implemented in order to avoid cyclic
ependencies between IP commands, since an IP command is allowed
o invoke other IP commands. IP commands execution will fail if such
ecursion limit is reached.

When multiple translation rules are defined for the same IP com-
and by means of argument selectors, just the first rule found in the
CD body compatible with the current argument values is executed,

gnoring the rest of the translation rules even if they also match. It
s therefore a good practice to put first in the ACD body the more
estrictive rules. It is also possible to include a last translation rule for
he IP command with no argument selectors at the end of the ACD body,
hich would trigger for all the cases not covered with the previous

ranslation rules.
In the case of scripts and binary files, it is necessary to grant them

xecution permissions in Abeto through the corresponding ADD file.
ecipes may include wildcards to insert the values of the command
rguments introduced through the Abeto CLI. By default, all commands
n a recipe will be executed from the IP root directory, but the working
irectory can be modified on a command-by-command basis in the
CD file. It is also possible to redirect the standard input and output

ndividually for each command in a recipe.

. Abeto use case: dummyIP

By default, the dummyIP is included in Abeto to help new users to
et familiarized with the IP operation by means of the Abeto command-
ine interface. As it is part of the Abeto IP database, it will be auto-
atically loaded the first time the Abeto framework is launched. The
ummyIP is provided along with the auxiliary IP description files re-
uired for its integration in Abeto. These files define the set of allowed
ommands for the dummyIP, and perform a minimal configuration of
he IP file tree.

This section also aims to explain how to work with this IP core
n Abeto, serving as a tutorial. The following subsections explains the
5

ifferent actions which can be performed with the dummyIP.
Fig. 6. List of available IP commands shown after introducing the help instruction.

Fig. 7. help usage to show IP command details.

Fig. 8. config command details.

5.1. Help command

The help command can be used in several ways, providing infor-
mation about built-in commands, available commands for a particular
IP core and further details about them. In this case, the two latest
options give important information about dummyIP. In the first place,
it is possible to use it to show the list of available commands for this IP
core passing its identifier as an argument, returning the output shown
in Fig. 6.

Then, to get more details about each one of these commands, help
ommand can be used by passing the IP identifier followed by the
ommand name as arguments. For example, to ask Abeto how clean
ommand shall be used and which are its functions, this variation of the
ommand should be used, as reflected in Fig. 7. Firstly, the command
unction is described, whilst the information about its usage (command
ine) is shown then.

.2. Configuration command (config)

To obtain a description and usage information about the configura-
ion command of the dummyIP, help command can be used as described
n previous subsection and obtaining the output shown in Fig. 8.

As it is observed, the config command provides a way to configure
he IP, which is done through the Abeto built-in configuration tool
see Section 3.5). Optional arguments SCRIPT and OUTDIR allow to
un the Abeto built-in configuration tool in batch mode, feature which
s not covered in this tutorial. The target configuration file CFILE is
n optional argument, although when omitted just the list of target
onfiguration files is displayed. Configuration files are VHDL files
hich contain configuration parameters of the IP core. The dummyIP

ust includes one configuration file, as next shown in Fig. 9.
If just the configuration file is passed as argument to the config

ommand, the Abeto built-in configuration tool is launched. First, the
onfiguration tool parses the configuration file in order to extract the
P core configuration parameters, as long as they are declared as VHDL
onstants. If parsing succeeds, a welcome message is displayed and the
pplication prompt changes to indicate that the built-in configuration
ool has been entered. The new prompt also displays the name of the

Microprocessors and Microsystems 104 (2024) 104987A.J. Sánchez et al.

a

c

5
p

t

t
t
p
f

A
o
a

5
v

a
e
s
1
t
c
f
p

5

o
m
u
b

i
p
d
t
i
i
c

w
p

e
v
c

Fig. 9. config command output without arguments.

Fig. 10. config command output with valid configuration file.

Fig. 11. List of configuration parameters in the dummyIP.

Fig. 12. Use Case 1: initial parameter values.

IP (dummyIP) and the source file (tb_dummy_cfg.vhd) being configured.
Using the help command again, the system will show the user which
commands are available within the configuration tool. This is reflected
in Fig. 10.

In the case of the dummyIP, its configuration parameters are the
counter width (w), the clock period (tclk) and a flag to select be-
tween functional simulation or simulation with a synthesized netlist
(post_syn). This information can be accessed through the list command,
s shown in Fig. 11.

Two examples are provided to easen the understanding of how every
onfiguration command works:

.2.1. Case 1: Changing the counter width value to 7 and expand the clock
eriod to 20 ns

Firstly, the current values for all parameters are checked by running
he get command. This is reflected in Fig. 12.

Since the current configuration does not match the target one,
he user runs set command to change parameter values, starting with
he counter width. Then, to make sure Abeto is making the changes
roperly, the get command is invoked. In this case, two values are given
or parameter w: the current value still appearing in the configuration
6

Fig. 13. Use Case 1: changing and verifying the new value of the w parameter.

file (3) and the new value to be applied (7). Changes are not applied
until a save command is run. These steps are shown in Fig. 13.

As the save command is executed without any arguments, changes
are applied to the original configuration file, which is reflected in
the configuration values obtained when calling again get after save.

lternatively, by specifying a path as a command argument, a new copy
f the configuration file can be generated to store configuration changes
t the designated path.

.2.2. Case 2: Checking configuration values and changing the clock period
alue in case it is not 20 ns

The first step is to check the clock period value using get command
nd passing it tclk as an argument. As the reported value is not the
xpected one, it is replaced using the set command. However, before
aving changes, the user finally decides to change the clock period to
5 ns. Therefore, the user discards changes using discard command, sets
he new value and save changes. By using the -force flag with the save
ommand, overwriting of existing files is forced without asking the user
or permission. After that, the configuration tool can be closed. This
rocess is summarized in Fig. 14.

.3. Simulation commands (sim, ps-sim, par-sim)

As same as config command, the help command can be used to
btain a description and usage information about the simulation com-
and of the dummyIP. The dummyIP simulation can be performed
sing either Questasim (vsim) or GHDL. Target simulation tool must
e specified as command argument, as shown in Fig. 15.

The optional argument CSV_FILE allows to run an exhaustive ver-
fication campaign using the configurations defined in a CSV file. If
rovided, it must denote the path to an existing CSV file with the format
efined in the load command from the Abeto built-in configuration
ool. If such file exists, first the Abeto built-in configuration tool is
nvoked in batch mode to generate the configuration files correspond-
ng to each test configuration defined in the CSV file, and then all test
onfigurations are launched sequentially.

In addition to functional simulation, it is possible to run simulations
ith synthesized and place&routed models. With this aim, ps-sim and
ar-sim commands can be used, respectively.

The ps-sim command allows to generate post-synthesis models with
ither Synopsys Synplify or Xilinx Vivado tools, depending on the
alue of the argument SYNTH_TOOL. On the other hand, the par-sim
ommand does not accept any arguments: synthesis and place&route is

Microprocessors and Microsystems 104 (2024) 104987A.J. Sánchez et al.
Fig. 14. Use Case 2: Checking, changing and discarding the value of the tclk parameter.

Fig. 15. Launching a dummyIP simulation using Questasim.

always performed with Xilinx Vivado (it is planned to extend the sup-
port to other EDA tools). Both commands operate in the same fashion:
first, they perform synthesis of the IP core for a set of configurations
defined in the CSV file with path syn/$tool/scripts/configurations.csv.
Then, every synthesized model is simulated with Questasim, using the
same CSV file to configure the testbench.

5.4. Synthesis command (syn)

Synthesis can be run with any of the following synthesis tools,
selected by means of the TOOL argument: Synopsys Design Compiler
(dc), Synopsys Synplify (synplify), NanoXplore NanoXmap (brave) and
Xilinx Vivado. For the latter case, there are two options allowing to run
just logic synthesis (vivado) or synthesis plus place&route (vivado-par).
Compatibility with new NanoXplore Impulse tool is ensured, since most
of the ACD and ADD file content already developed for NanoXmap can
be reused.

For example, Fig. 16 shows how to run the synthesis using Synplify,
after launching the help command to know the syn command options.
7

Fig. 16. Launching a dummyIP synthesis using Synplify.

Fig. 17. Opening a dummyIP synthesis report.

The optional argument CSV_FILE allows to synthesize the IP core for
several configurations in an automated way. If provided, it must denote
the path to an existing CSV file with the format defined in the load
command from the Abeto built-in configuration tool. If such file exists
it is parsed and synthesis is run multiple times, applying one of the
configurations defined in the CSV file at a time. By now, this mode of
operation is compatible just with the synthesis tools Synopsys Synplify
and Xilinx Vivado.

5.5. Report command (report)

The report command can be used to show simulation and synthesis
reports. The argument FILE_PATH is the path to the report file to be
displayed, relative to the IP root. Unlike other command arguments,
here the list of available target files cannot be provided through the
help command, as it may dynamically change with simulation and
synthesis runs. However, the list of available reports can be obtained
by executing the report command without arguments.

Since the dummyIP follows the Abeto baseline IP directory structure
(see Fig. 3), we can find several reports within sim and syn folders
after running simulation or synthesis, respectively. For example, after
running the synthesis using Design Compiler, several report files within
the sim/dc/reports folder. And if we want to show the area report, we
could use the report command as reflected in Fig. 17. This command
opens the selected report using the default application associated to
the report file extension.

6. Application to the ESA IP cores portfolio

Finally, Abeto is employed to organize, manage and launch a set of
the ESA IP cores to demonstrate the strengths of this novel tool. ESA
maintains a collection of soft IP cores concerning common function-
ality used in space applications and distributes them under licenses,
with the aims of guaranteeing the availability of some key functional
blocks, reducing costs of large developments and promoting the use

Microprocessors and Microsystems 104 (2024) 104987A.J. Sánchez et al.

I
h
t
f
p
h
s
w
t
f
E
a
T
U
A
(
g
i
R
a
M
t
s
I

Table 1
Implementation results on BRAVE FPGA family.

IP HurriCANe [19] Spwb2-3 [20] Spw-v12 [21] LEON2FT [22] SHyLoC [23] SpaceFibre [24] AHBR [25] FTADDR [26]

Part NG-MEDIUM NG-LARGE

Carry cells 157 (2%) 109 (2%) 100 (2%) 866 (11%) 3855 (12%) 516 (2%) 82 (1%) 196 (1%)
Registers 500 (2%) 301 (1%) 359 (2%) 12033 (38%) 3674 (3%) 1899 (2%) 607 (1%) 967 (1%)
BRAMs 0 (0%) 1 (2%) 0 (0%) 16 (29%) 97 (51%) 12 (7%) 0 (0%) 0 (0%)
DSPs 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8 (3%) 0 (0%) 0 (0%) 0 (0%)
LUTs 742 (3%) 413 (2%) 385 (2%) 12410 (39%) 6943 (6%) 4933 (4%) 622 (1%) 1790 (2%)
Clk freq. (MHZ) 60.48 91.13 89.5 46.8 31.7 48.57 91.84 47.75
T
c
p
c
c
m
d
p
r
b
w
e

7

a
t
p
w
d
I
a

g
o
w
a
a
u
m
n
p
s

D

c
i

D

A

of standardized functions and protocols. Among the available IPs are
communication bus controllers [19–21,24] and bridges [25], micro-
processors [22], Single Event Effect (SEE) mitigation modules or data
compression units [23].

However, there are not unified criteria on how to document and
package these IPs and, consequently, scripts and commands used along
the design flow greatly vary among them. Moreover, documented
technology mapping results tend to become out-dated along time as
new space-graded (i.e., robust against radiation effects) technologies
emerge. From the potential users point of view, having access to up-to-
date results (or the capability of generating them) is crucial to evaluate
if an IP is adequate for the target application. Because of these reasons,
the ESA IP cores portfolio constitutes a suitable use case for Abeto.

We have chosen a subset of 15 IPs from the ESA portfolio to inte-
grate in the Abeto IP database. This subset demonstrates the strengths
of Abeto to manage a quite heterogeneous database, which includes
most of the designs commonly integrated on electronics on-board satel-
lites. Some of these IPs are listed below, which are the ones whose
results are summarized in Table 1:

• HurriCANe. Peripheral controller for CAN protocol.
• Spwb2-3 and Spw-v12. Two different implementations of the

SpaceWire protocol [27].
• LEON2FT. Fault-tolerant SPARC microprocessor for space mis-

sions.
• SHyLoC. Hyperspectral image compressor.
• SpaceFibre. Controller for SpaceFibre protocol [28].
• AHBR. AMBA AHB to AMBA AHB bus bridge.
• FTADDR. Fault-tolerant DDR memory controller.

The integration process for every IP consisted in, first, studying the
P core documentation and packaging, with the aim of understanding
ow the workflow is implemented for the IP. Then, we have elaborated
he corresponding IP description files (i.e., the ADD and ACD auxiliary
iles) to reflect the IP packaging organization and support as much as
ossible of the operation modes available for each IP core. Next, we
ave incorporated the IPs to the Abeto database and checked that every
tep in the IP workflow is successfully launched through Abeto. Finally,
e have enabled the synthesis flow of every IP for NanoXplore NXmap

ool and obtained implementation results through Abeto for the BRAVE
amily. BRAVE stands for ‘‘Big Re-Programmable Array for Versatile
nvironments’’ and it is a European initiative supported by ESA, CNES,
nd NanoXplore to develop a range of rad-hard, SRAM-based FPGAs.
hree rad-hard devices are planned: NG-MEDIUM, NG-LARGE, and NG-
LTRA, with increasing fabric size and number of logic resources.
combination of radiation hardening by process layout, architecture

EDAC), and circuit design (TMR flip-flops and DMR clock-tree), to-
ether with a background scrubber to preserve the integrity of the
nternal configuration, are used to provide a rad-hard fabric [18].
esults for NanoXplore technology were not originally available for
ny of the IP cores under study. Results are provided for both NG-
EDIUM and NG-LARGE devices, depending on the IP demands in

erms of resources utilization. It is worth to mention that, once the
ynthesis flow (or any other design flow step) has been enabled for any
8

P, it can be executed by just running a pair of commands in Abeto. t
A representative subset of those mapping results is shown in Table 1.
hey have been generated using NXmap 3.9.0.5. Most of the ESA IP
ores present several configuration options which affect both the occu-
ation and performance results. In such cases a single representative
onfiguration set has been chosen. In general terms, these results are
onsequent with those reported by each IP core in its associated docu-
entation for other target FPGAs, taking into account the technological
ifferences between them and the BRAVE FPGA family. This assessment
rovides the first IP benchmark available in the state-of-the-art on the
ecently developed BRAVE technology. Besides, mapping results have
een obtained for other space-grade FPGA technologies. These results,
hich can be found in [29], can serve as a guide to potential users for
valuating the suitability of these IP cores for their application.

. Conclusions

This work has presented Abeto, a software tool for IP workflow
utomation, intended to manage IP core databases in a unified way and
o accelerate iterations of the IP cores design flow for benchmarking
urposes. This tool aims at solving the lack of standardization in
hich steps of the IP design flow are implemented among different IP
evelopers, with minimal modifications over the original IP structure.
n order to do so, a pair of auxiliary files must be provided for each IP:
database definition and a command dictionary.

A tutorial is provided to ease the understanding of the different IP
eneric commands supported by the Abeto tool. This tutorial makes use
f a simple IP core, denoted as dummyIP, which is provided together
ith the Abeto distribution. In addition, Abeto has been validated
gainst a subset of the ESA portfolio of IP cores, which constitute
n heterogeneous group of cores as result of different activities. This
se case demonstrates the versatility of our tool. Furthermore, first
apping results available in the state-of-the-art are provided on the
ovel NanoXplore BRAVE FPGA family for a subset of the IP cores
resent in the ESA portfolio, providing a reference point for future
pace missions.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgement

This work has been supported by the European Space Agency (ESA)

hrough the contract 4000127452/19/NL/GLC/vr.

Microprocessors and Microsystems 104 (2024) 104987A.J. Sánchez et al.
References

[1] I. Tuomi, The Future of Semiconductor Intellectual Property Architectural Blocks
in Europe, JRC Scientific and Technical Reports, European Comission (JRC),
2009.

[2] Design&Reuse, 2023, URL https://www.design-reuse-embedded.com/.
[3] Synopsys IP, 2023, URL https://www.synopsys.com/designware-ip.html.
[4] Software & hardware open repository for embedded systems, 2014, URL http:

//www2.imse-cnm.csic.es/shores.
[5] OpenHW group, 2023, URL https://www.openhwgroup.org/.
[6] D. Gajski, A.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama, P. Bricaud, Essential

issues for IP reuse, in: Proceedings 2000. Design Automation Conference. (IEEE
Cat. No.00CH37106), 2000, pp. 37–42, http://dx.doi.org/10.1109/ASPDAC.
2000.835067.

[7] J. Haase, Design methodology for IP providers, in: Design, Automation and Test
in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078),
1999, pp. 728–732, http://dx.doi.org/10.1109/DATE.1999.761211.

[8] Accellera Systems Initiative, Accellera standards, 2022, URL https://www.
accellera.org/downloads/standards.

[9] IEEE Computer Society, IEEE standard for IP-XACT, standard structure for
packaging, integrating, and reusing IP within tool flows, in: IEEE Std 1685-2014
(Revision of IEEE Std 1685-2009), 2014, pp. 1–510, http://dx.doi.org/10.1109/
IEEESTD.2014.6898803.

[10] Olof Kingdren, Invited paper: A scalable approach to IP management with
FuseSoC, in: First Workshop on Open-Source Design Automation, OSDA, 2019,
pp. 1–6, URL https://osda.gitlab.io/19/kindgren.pdf.

[11] K. Mohajerani, XEDA, 2020, URL https://pypi.org/project/xeda/.
[12] legoHDL, 2021, URL https://github.com/c-rus/legoHDL.
[13] A. Kamppi, L. Matilainen, J.-M. Määttä, E. Salminen, T.D. Hämäläinen, Extend-

ing IP-XACT to embedded system HW/SW integration, in: 2013 International
Symposium on System on Chip, SoC, 2013, pp. 1–8, http://dx.doi.org/10.1109/
ISSoC.2013.6675264.

[14] T. Schattkowsky, T. Xie, W. Mueller, A UML frontend for IP-XACT-based IP
management, in: 2009 Design, Automation & Test in Europe Conference &
Exhibition, 2009, pp. 238–243, http://dx.doi.org/10.1109/DATE.2009.5090664.

[15] F. Herrera, H. Posadas, E. Villar, D. Calvo, Enhanced IP-XACT platform descrip-
tions for automatic generation from UML/MARTE of fast performance models
for DSE, in: 2012 15th Euromicro Conference on Digital System Design, 2012,
pp. 692–699, http://dx.doi.org/10.1109/DSD.2012.51.

[16] P. Lehmann, U. Martinez-Corral, EDA2, 2016, URL https://github.com/edaa-org.
[17] European Space Agency (ESA), ESA IP Cores Website, 2022, URL http://www.

esa.int/TEC/Microelectronics/SEMVWLV74TE_0.html.
[18] NanoXplore, From eFPGA cores to RHBD System-On-Chip FPGA, in:

SEFUW: SpacE FPGA Users Workshop, 4th ed., 2018, pp. 1–53, URL https:
//indico.esa.int/event/232/contributions/2137/attachments/1820/2121/2018-
04_NX-From_eFPGA_cores_to_RHBH_SoC_FPGAs-JLM-v2.pdf.

[19] European Space Agency (ESA), CAN IP, 2008, URL https://www.esa.int/
Enabling_Support/Space_Engineering_Technology/Microelectronics/CAN.

[20] European Space Agency (ESA), SpaceWire-b, 2009, URL https://www.esa.int/
Enabling_Support/Space_Engineering_Technology/Microelectronics/SpWb.

[21] European Space Agency (ESA), SpW-AMBA, 2003, URL https://www.esa.int/
Enabling_Support/Space_Engineering_Technology/Microelectronics/SpW-AMBA.

[22] European Space Agency (ESA), LEON2-FT, 2015, URL https://www.esa.int/
Enabling_Support/Space_Engineering_Technology/Microelectronics/LEON2-FT.

[23] European Space Agency (ESA), SHyLoC IP core, 2017, URL https://www.esa.
int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SHyLoC_
IP_Core.

[24] European Space Agency (ESA), SpaceFibre port IP core, 2019, URL
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/
Microelectronics/SpaceFibre_Port_IP_Core.

[25] European Space Agency (ESA), AHBR, 2008, URL https://www.esa.int/Enabling_
Support/Space_Engineering_Technology/Microelectronics/AHBR.

[26] European Space Agency (ESA), Fault tolerant DDR controller, 2020,
URL https://www.esa.int/Enabling_Support/Space_Engineering_Technology/
Microelectronics/Fault_Tolerant_DDR_Controller_FTADDR.

[27] European Cooperation for Space Standardization, SpaceWire – Links, Nodes,
Routers and Networks (ECSS-E-ST-50-12C Rev.1), ECSS, 2019.

[28] European Cooperation for Space Standardization, SpaceFibre – Very High-Speed
Serial Link (ECSS-E-ST-50-11C), ECSS, 2019.

[29] European Space Agency (ESA), Automated BEnchmarking TOol (ABETO) for ESA
IP Cores, 2022, URL https://www.esa.int/Enabling_Support/Space_Engineering_
Technology/Microelectronics/Automated_BEnchmarking_TOol_ABETO_for_ESA_
IP_Cores.
9

Antonio J. Sánchez is graduated on Industrial Engineering
by Universidad Carlos III de Madrid (UC3M) in 2011.
Then he joined the Microelectronic Design and Applications
research group in the Electronic Technology Department
of the UC3M, where he worked as assistant researcher.
During this period, he awarded his Master on Advanced
Electronic Systems in 2013 and his Ph.D. degree on Electric,
Electronic and Automatic Engineering in 2017, both by the
UC3M. Currently he is a member of the Integrated Systems
Design Division of the Institute for Applied Microelectronics
(IUMA) in the University of Las Palmas de Gran Canaria.
His research at IUMA is focused on the hardware imple-
mentation of algorithms for hyperspectral image processing
for space applicationsHe was a Visiting Researcher with
the European Space Research and Technology Centre, The
Netherlands. Additionally, his research interests include
fault tolerant hardware design, approximate computing, and
formal verification methods.

Yubal Barrios was born in Las Palmas de Gran Canaria,
Spain, in 1993. He received the Telecommunications Engi-
neering degree by the University of Las Palmas de Gran
Canaria in 2016. He obtained the MSc. and the Ph.D.
in Telecommunications Technologies in 2017 and 2022,
respectively, by the same University. He has been funded
by the Institute for Applied Microelectronics (IUMA) since
2017, where he has conducted his research activities at
the Integrated Systems Design Division in the context of
hardware implementations for hyperspectral image compres-
sion on FPGAs and MPSoCs. In 2019, he was invited as
Visiting Researcher by the Microelectronics Section of the
European Space Research and Technology Centre (ESTEC),
core of the European Agency (ESA) located in Noordwijk,
the Netherlands. His current research interests include the
development of efficient algorithms for on-board hyper-
spectral image compression and reconfigurable hardware
architectures optimized in terms of throughput, memory
usage and power consumption. He has co-authored sev-
eral scientific papers published in specialized journals and
international conferences.

Lucana Santos received the Telecommunications Engineer-
ing degree from the University of Las Palmas de Gran
Canaria, in 2008, and the Ph.D. degree from the Integrated
System Design Division, IUMA, in 2014. She was a Visiting
Researcher with the European Space Research and Technol-
ogy Centre, The Netherlands. She has participated actively
in industrial projects in the field of hardware architectures
for hyperspectral and multispectral image compression on
GPUs and FPGAs for Thales Alenia Space España and
the European Space Agency. Since 2018, she has been
with the Data Systems and Microelectronics Division at
the European Space Agency. She is currently a member
of the CCSDS Multispectral/Hyperspectral Data Compression
working group. She has co-authored several scientific papers
and has been a Reviewer of major international journals in
her research areas. Her current research interests include
hardware architectures for on-board data processing, re-
configurable architectures, and hardware/software co-design
methodologies.

Roberto Sarmiento is Full-Professor at the Electronics and
Telecommunication Engineering School at University of Las
Palmas de Gran Canaria, Spain, in the area of Electronic
Engineering. He contributed to set this school up, he was
the Dean of the Faculty from 1994 to 1998 and Vice-
Chancellor for Academic Affairs and Staff at the ULPGC
from 1998 to 2003. He is a co-founder of the Research
Institute for Applied Microelectronics (IUMA) and Director
of the Integrated Systems Design Division of this Institute.
He has published more than 90 journal papers and more
than 160 conference papers. Roberto Sarmiento has been
awarded with five six years research periods by the National
Agency for the Research Activity Evaluation in Spain. He
has participated in more than 60 projects and research
programmes funded by public and private organizations.
His current research interest is related to electronics system
on-board satellites.

http://refhub.elsevier.com/S0141-9331(23)00232-6/sb1
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb1
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb1
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb1
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb1
https://www.design-reuse-embedded.com/
https://www.synopsys.com/designware-ip.html
http://www2.imse-cnm.csic.es/shores
http://www2.imse-cnm.csic.es/shores
http://www2.imse-cnm.csic.es/shores
https://www.openhwgroup.org/
http://dx.doi.org/10.1109/ASPDAC.2000.835067
http://dx.doi.org/10.1109/ASPDAC.2000.835067
http://dx.doi.org/10.1109/ASPDAC.2000.835067
http://dx.doi.org/10.1109/DATE.1999.761211
https://www.accellera.org/downloads/standards
https://www.accellera.org/downloads/standards
https://www.accellera.org/downloads/standards
http://dx.doi.org/10.1109/IEEESTD.2014.6898803
http://dx.doi.org/10.1109/IEEESTD.2014.6898803
http://dx.doi.org/10.1109/IEEESTD.2014.6898803
https://osda.gitlab.io/19/kindgren.pdf
https://pypi.org/project/xeda/
https://github.com/c-rus/legoHDL
http://dx.doi.org/10.1109/ISSoC.2013.6675264
http://dx.doi.org/10.1109/ISSoC.2013.6675264
http://dx.doi.org/10.1109/ISSoC.2013.6675264
http://dx.doi.org/10.1109/DATE.2009.5090664
http://dx.doi.org/10.1109/DSD.2012.51
https://github.com/edaa-org
http://www.esa.int/TEC/Microelectronics/SEMVWLV74TE_0.html
http://www.esa.int/TEC/Microelectronics/SEMVWLV74TE_0.html
http://www.esa.int/TEC/Microelectronics/SEMVWLV74TE_0.html
https://indico.esa.int/event/232/contributions/2137/attachments/1820/2121/2018-04_NX-From_eFPGA_cores_to_RHBH_SoC_FPGAs-JLM-v2.pdf
https://indico.esa.int/event/232/contributions/2137/attachments/1820/2121/2018-04_NX-From_eFPGA_cores_to_RHBH_SoC_FPGAs-JLM-v2.pdf
https://indico.esa.int/event/232/contributions/2137/attachments/1820/2121/2018-04_NX-From_eFPGA_cores_to_RHBH_SoC_FPGAs-JLM-v2.pdf
https://indico.esa.int/event/232/contributions/2137/attachments/1820/2121/2018-04_NX-From_eFPGA_cores_to_RHBH_SoC_FPGAs-JLM-v2.pdf
https://indico.esa.int/event/232/contributions/2137/attachments/1820/2121/2018-04_NX-From_eFPGA_cores_to_RHBH_SoC_FPGAs-JLM-v2.pdf
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/CAN
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/CAN
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/CAN
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpWb
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpWb
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpWb
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpW-AMBA
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpW-AMBA
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpW-AMBA
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/LEON2-FT
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/LEON2-FT
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/LEON2-FT
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpaceFibre_Port_IP_Core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpaceFibre_Port_IP_Core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/SpaceFibre_Port_IP_Core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/AHBR
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/AHBR
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/AHBR
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Fault_Tolerant_DDR_Controller_FTADDR
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Fault_Tolerant_DDR_Controller_FTADDR
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Fault_Tolerant_DDR_Controller_FTADDR
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb27
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb27
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb27
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb28
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb28
http://refhub.elsevier.com/S0141-9331(23)00232-6/sb28
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Automated_BEnchmarking_TOol_ABETO_for_ESA_IP_Cores
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Automated_BEnchmarking_TOol_ABETO_for_ESA_IP_Cores
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Automated_BEnchmarking_TOol_ABETO_for_ESA_IP_Cores
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Automated_BEnchmarking_TOol_ABETO_for_ESA_IP_Cores
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Automated_BEnchmarking_TOol_ABETO_for_ESA_IP_Cores

	Abeto: An automated benchmarking tool to manage heterogeneous IP core databases
	Introduction
	Overview
	Abeto command-line interface
	Abeto initialization
	Built-in commands: Managing the IP database
	IP operation
	Batch mode
	Abeto configuration tool
	Multiple command execution through argument lists

	IP core description files
	Abeto Database Definition
	Abeto Command Dictionary

	Abeto use case: dummyIP
	Help command
	Configuration command (config)
	Case 1: Changing the counter width value to 7 and expand the clock period to 20 ns
	Case 2: Checking configuration values and changing the clock period value in case it is not 20 ns

	Simulation commands (sim, ps-sim, par-sim)
	Synthesis command (syn)
	Report command (report)

	Application to the ESA IP cores portfolio
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

