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Abstract: Dietary supplementation with Omega-3 fatty acids seems to promote skeletal health. There-
fore, their consumption at imbalanced or excessive levels has offered less beneficial or even prejudicial
effects. Fish produced in aquaculture regimes are prone to develop abnormal skeletons. Although
larval cultures are usually fed with diets supplemented with Omega-3 Long Chain Polyunsaturated
fatty acids (LC-PUFAs), the lack of knowledge about the optimal requirements for fatty acids or about
their impact on mechanisms that regulate skeletal development has impeded the design of diets that
could improve bone formation during larval stages when the majority of skeletal anomalies appear. In
this study, Argyrosomus regius larvae were fed different levels of Omega-3s (2.6% and 3.6% DW on diet)
compared to a commercial diet. At 28 days after hatching (DAH), their transcriptomes were analyzed
to study the modulation exerted in gene expression dynamics during larval development and identify
impacted genes that can contribute to skeletal formation. Mainly, both levels of supplementation
modulated bone-cell proliferation, the synthesis of bone components such as the extracellular matrix,
and molecules involved in the interaction and signaling between bone components or in important
cellular processes. The 2.6% level impacted several genes related to cartilage development, denoting
a special impact on endochondral ossification, delaying this process. However, the 3.6% level seemed
to accelerate this process by enhancing skeletal development. These results offered important insights
into the impact of dietary Omega-3 LC-PUFAs on genes involved in the main molecular mechanism
and cellular processes involved in skeletal development.

Keywords: fish larvae; skeletal development; differentially expressed genes; cartilage

1. Introduction

The appearance of skeletal anomalies is an important problem for the aquaculture
sector. However, the molecular mechanisms implicated in the onset of these malformations
remain mostly unknown [1]. The skeletal system is a highly dynamic tissue continuously
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in formation and transformation through highly controlled bone modeling and remodeling
processes involving different bone-cell types [2]. In advanced teleosts that present acellular
bones, the main elements involved are involved mainly osteoblasts (OBs), responsible for
the synthesis of new bone, and also osteoclasts (OCs), responsible for bone resorption [3].
It is well known that for correct bone formation, an equilibrium among the activity and
function of these cells must be balanced. Despite the fact that the onset of these anomalies
seems to be multifactorial, among the most important nutritional factors that control bone
metabolism and modulate the development of the skeletal system are fatty acids, concretely
the LC-PUFAs [4-6]. They are crucial in controlling several cellular and molecular pathways
involved in bone modeling. According to the studies, these fatty acids seem to impact bone
composition [7] through modulation of important molecular pathways controlling bone-cell
differentiation [8] or the synthesis of some key bone components such as the extracellular
matrix (ECM) [9]. Furthermore, as components of cell membranes, they can influence the
fluidity and the behaviour of ECM components; membrane-bound enzymes and receptors
or ion channels, affecting cellular signaling; the responsiveness to exogenous molecules;
and the transport of proteins and minerals such as calcium (ion or mineral) [6,10]. In
addition, they can impact bone formation directly or indirectly through their conversion
into lipid mediators such as docosanoids and eicosanoids [11-14], which also present
pro- or anti-osteogenic functions during skeletal formation (see reviews [12,13,15]). These
nutrients and their mediators are also involved in key cellular processes such as calcium
metabolism, oxidative stress, and inflammation that ultimately affect bone health [16].
However, despite the fact that the pathways by which these nutrients can control bone
development have been mostly identified, the genes participating in these pathways that
are most impacted by these nutritional factors have not been extensively studied and
identified. LC-PUFAs are divided into two classes according to their structure: Omega-3
(n-3) and Omega-6 (n-6) [17]. The most biologically active among them are eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) from the Omega-3 family and arachidonic
acid (ARA) from the Omega-6 family. Generally, LC-PUFAs from the Omega-3 family are
considered beneficial for bone health because they seem to increase bone mass and mineral
content by stimulating the proliferation of cells involved in bone formation and inhibiting
OC differentiation, such as decreasing the level of pro-inflammatory cytokines [18]. Still,
excessive levels seem to increase oxidative stress, ultimately affecting bone health [19].
Regarding ARA, the current literature denotes that high levels negatively affect skeletal
development because it can increase bone resorption and reduce bone formation [20,21].
These effects can be related to the ability to increase the production of pro-inflammatory
cytokines or ROS [22]. Due to this wide complexity, information about the impact of
the different PUFAs on molecular mechanisms and cellular pathways controlling skeletal
development is still scarce, mainly in some groups of organisms, as in common teleosts
employed in the aquaculture sector.

However, since aquaculture-reared fish usually present a high number of skeletal
malformations, producers have shown increasing interest in the potential of these nutrients
to improve skeletal health and reduce the economic losses associated with deformed indi-
viduals. Since most malformations occurring in aquaculture production originate during
larval stages and these cultures are routinely fed with formulations containing significant
levels of these nutrients, it is believed that the optimization of dietary levels during this
period can contribute to reducing the occurrence of skeleton deformities in farmed fish and
improve production rates [9]. Despite the fact that studies have demonstrated the beneficial
effect of adequate Omega-3 supplementation in larval culture performance [23-25], only a
few have shown that these nutrients are able to improve skeletal formation and reduce the
incidence of some types of bone anomalies [26,27]. However, the scarcity of comparable
results has impeded the design of diets that could improve skeletal formation during these
life stages and the acquisition of knowledge about the molecular mechanisms involved in
the control of skeletal formation carried out by PUFAs.
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Currently, thanks to the advances in genetic sequencing technologies and computa-
tional methods, we can use genomic and transcriptomic approaches to gain information to
improve fish health and quality in the aquaculture sector [28]. In fact, it is believed that
gaining knowledge about genes that are involved in the molecular pathways employed
by these nutrients is a promising tool for the aquaculture industry with which to reduce
the prevalence of deformities [29]. The analysis of the differential expression of genes
encoding important bone biomarkers, enzymes, cytokines, or growth factors controlling
bone metabolism can be an effective method to denote the impact of dietary LC-PUFAs
during skeletal formation. Studies evaluating alterations in the genetic expression of
skeletal-related specific genes exerted by dietary PUFAs are limited in fish [30-32]. Meagre
(Argyrosomus regius) is a promising candidate for the diversification of Mediterranean
aquaculture, based on its fast growth, high flesh quality, and economic value [33]. Their
fast development rates and easy adaptation to captivity have contributed to a fourfold
increase in meagre production, between 2010 and 2019 (EUMOFA, 2022), reaching around
55,000 tons in the European Union in 2019. The research developed for this species regard-
ing broodstock management or optimization of rearing protocols [34], nutritional aspects,
and feed optimizations [35-37], among others, have contributed to the success of meagre
production. Still, the molecular mechanism involved in their skeletal development and the
impact of functional diets in this process is scarce. The knowledge about these mechanisms
can help to optimize maintaining their skeletal health. Hence, a transcriptomic study was
performed to evaluate the impact of supplementation of different levels of Omega-3 on
the gene expression profile during the bone formation of meagre. The wide quantity of
information obtained in this study about the genetic modulation exerted by these nutrients
during skeletal formation can be useful to design diets that can improve skeletal develop-
ment maintaining bone health and minimizing the incidence of skeletal deformities during
aquaculture production.

2. Materials and Methods
2.1. Larval Culture

Eggs were obtained from a natural posture of F1 breeders maintained in captivity at
the installations of the Estacao Piloto de Piscicultura de Olhao (EPPO) belonging to the
Instituto Portugués do Mar e da Atmosfera (IPMA), where the experiment was carried out.
Eggs were incubated in 200 L fiberglass tanks until larvae hatched. Once hatched, a total of
10,000 larvae were distributed in each tank, establishing an initial density of 33 Iv/L. The
selected temperature was 21-22 °C. Dissolved oxygen was maintained at over 90%, and the
photoperiod selected was 14 h of light and 10 h of darkness. The tanks were provided with
air-lift systems for aeration and were supplied with pre-filtered, UV-sterilized seawater.

2.2. Feeding Protocol

Triplicate groups of Argyrososmus regius larvae were settled to test different experimen-
tal diets. The diets were formulated and produced by SPAROS Lda (Olhao, Portugal). The
formulations for Medium Diet (MD) and High Diet (HD) presented increasing levels of
LC-PUFAs Omega-3: 2.6 and 3.6 (% DW), respectively. The ingredients of the experimental
diets are listed in Supplementary Table S1. Furthermore, a Reference Diet (RD), to compare
the efficacy of our experimental diets in culture performance, was employed using a com-
mercial diet from SPAROS Lda (Olhao, Portugal) that presented a similar proportion of
proteins and lipids as the experimental diets. The DHA /EPA ratios for the different diets,
RD, MD, and HD, were 0.97, 0.71, and 1.42, respectively.

2.3. Sampling

The number of fish sampled for all experimental procedures was estimated according
to the minimum number of animals necessary to provide reliable and robust statistical
results. At 28 days after hatching (DAH), six larvae from each triplicate from each treatment
were collected, rinsed with distilled water, immediately transferred into tubes containing
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RNAlater (Qiagen, Hilden, Germany), placed at 4 °C for 24 h, and then stored at —20 °C
until use for genetic purposes. At this age, meagre larvae have formed almost all the
elements of the vertebral column, whereas cartilage differentiation and ECM synthesis
associated with endochondral ossification and the mineralization of the axial skeleton are
still ongoing [38].

2.4. RNA Extraction

The RNA was extracted at 28 DAH via disruption of the samples in liquid nitrogen
using a mortar and pestle. RNA was extracted using the RNA extraction Kit NZYtotal RNA
isolation kit (NZYtech, Lisbon, Portugal), according to the manufacturer’s instructions.
RNA yield and purity were determined by measuring the absorbance at 260 and 280 nm
using a NanoDrop DS-11FX spectrophotometer (DeNovix, Wilmington, Delaware, USA),
and the integrity was assessed using 1.5% agarose gel electrophoresis. The results were
read using ChemiDoc XRS+ (Bio-Rad, Hercules, California, USA) with Image Lab software.

2.5. Sequencing

Extracted RNA was sent to Eurofins Genomics Europe Sequencing GmbH (Kostanz,
Germany) and employed for library construction. Prepared cDNA libraries were sequenced
with [llumina. Paired-end reads of 150 base pair (bp) lengths were generated per sample.
Library type: strand-specific cDNA library. Library preparation methods: purification of
poly-A-containing mRNA molecules, mnRNA fragmentation, random primed cDNA syn-
thesis (strand-specific), adapter ligation, and adapter-specific PCR amplification Illumina
sequencing. Sequencing method: Illumina paired-end, random primed cDNA synthesis
(strand-specific).

2.6. RNA-Seq Data Processing

Raw reads were processed using a bioinformatic pipeline, as indicated in Figure 1. To
obtain high-quality clean reads, the raw reads were pre-processed with SeqTrimBB (v2.1.8),
and mapping was performed with BWA-MEM2 (v2.2.1). To identify differentially expressed
genes (DEGs) across samples or groups, DEgenesHunter (v1.0) software was employed.
Genes were considered as differentially expressed (DEG) if the [fold-change] > 1.5 and the
adjusted p-value < 0.05 (calculated with the false discovery rate (FDR)). Three comparisons
between dietary treatments were carried out: ‘Medium Diet’ vs. ‘Reference Diet” (MD vs.
RD), ‘High Diet’ vs. ‘Reference Diet” (HD vs. RD), and ‘High Diet’ vs. ‘Medium Diet’ (HD
vs. MD).

p
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Figure 1. RNAseq analysis pipeline. Data processing was performed with the computational
resources of the Andalusian Bioinformatics Platform located at the University of Malaga (Spain).
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2.7. Functional Enrichment Analysis

Enrichment analysis is a method that employs data mining to identify whether genes
from pre-defined sets/are present more than expected in the dataset. This analysis permits
elucidation of the functional roles of DEGs during larval development. The functional en-
richment of GO terms and KEGG pathway analysis was performed with in-house R scripts
(using the computational resources of the Andalusian Bioinformatics Platform, located
at the University of Malaga in Spain). Since no available reference exist for Argyrosomus
regius, the reads were mapped to the Larimichthys crocea reference genome (RefSeq assembly
accession: GCF_000972845.2) that was annotated with eggNOG (v2.1.6). According to
Phylogenomic analysis [39], both species are quite close and present a high homology [40].
These results support the mapping of the meagre genome employing this Larimichthys crocea
as reference, contributing improvement in the scarce information available for meagre.

To find out the most significant processes in which the genes present in our data are
involved according to enrichment analysis, all DEGs were mapped to the available terms
in the GO and KEEG databases. Firstly, a GSEA (Gene Set Enrichment Analysis) was
performed employing as input all the genes expressed in the transcriptomic analysis, even
those that did not pass the double thresholds (p-value < 0.05 (cut-off at 5% FDR) and a
fold-change of either >1.5 or <1.5) to be considered as DEGs. All expressed genes were
mapped to the KEGG database (http:/ /www.genome.jp/kegg/, accessed on 11 October
2022), and significantly enriched KEGG pathways were identified in order to output a
general overview of all modulated pathways due to the effect of the dietary treatment
across the large network of expressed genes. Then, the pathways that were significantly
enriched (p-value < 0.05) were further analyzed. Nevertheless, this approach has certain
limitations in obtaining information about the true impact of PUFAs on individual DEGs.
Therefore, to improve the results and increase the specificity at the individual gene level,
an ORA (Over-Representation Analysis) was performed employing only genes that passed
the double thresholds (p-value < 0.05 (cut-off at 5% FDR and a fold-change of either >1.5 or
<1.5). Furthermore, through an ORA analysis, the GO terms in which the DEGs obtained in
the different comparisons were overexpressed were retrieved. GO terms were classified into
three subgroups, namely biological process (BP), cellular component (CC), and molecular
function (MF).

2.8. Clustering

Gene expression clustering provides a general and organized overview of the data
without becoming lost among the thousands of individual genes [41]. In addition, this anal-
ysis permits a deeper understanding of the modulatory effect of LC-PUFAs in individual
genes of interest and investigates their function as it is believed that the genes involved
in the same function can be grouped together because they present a similar regulation of
their genic expression. To this end, a list of interesting genes obtained as DEGs for some
of the comparisons (HD vs. RD, MD vs. RD, and HD vs. MD) and that participated in
the most overrepresented pathways obtained in the GO and KEEG enrichment analysis
were selected for further study. According to the available bibliography, these genes are
involved in skeletal development and bone metabolism in vertebrates, and in some cases,
imbalances in their expression have been directly related to alterations of bone formation.
Hierarchical cluster analysis was performed using Euclidean distances to compare the
similarity in the expression between genes. Furthermore, Ward’s method was employed
to join groups of genes and generate a dendrogram. Cluster analysis is used to identify
similar variations instead of significant changes. It allows us to group together genes that
are highly correlated in their expression.

2.9. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) for Validation

To validate the RNA sequencing and transcriptome analysis, the expression of a set of
bone-related genes was evaluated using qRT-PCR. The genes selected were sp7 (osterix),
mgp (matrix gla protein), and bmp2 (bone morphogenetic protein 2), which are identified in
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Table 1. Total RNA was extracted and quantified as described in the previous Section 2.4.
The cDNA was generated from 1 pg of total RNA from the larvae with 28 DAH using
the M-MulV first-strand cDNA synthesis Kit (NZYtech, Lisbon, Portugal) following the
manufacturer’s protocol. Synthesis of cDNA comprises two main steps: elimination of
genomic DNA and reverse transcription into cDNA, which was used for PCR quantification
of the specific genes. The cDNA was stored at —20 °C until further analysis. Quantitative
analysis of genes considered bone remodeling biomarkers was undertaken, and their
expression was studied using quantitative real-time polymerase chain reaction (QRT-PCR).
To design the primer of interest listed in Table 1, the nucleotide sequences of these genes
from this species were blasted using the NCBI database. Then, based on the FASTA,
primers were designed on the identified conserved regions (Tm 60 °C; G/C 45-55%) using
Primer3plus (www.primer3plus.com/, accessed on 21 March 2022). To determine primer
efficiency, five serial two-fold dilutions of cDNA mix of all samples were prepared, and
efficiency was calculated from the slope of the regression line of the quantification cycle
(Ct) versus the log 10 of the different cDNA solutions. Quantitative PCR using SensiFAST
master mix was applied to determine the relative expression of selected genes using the
specific primer sets for each gene. The qPCR reactions were set up in a final 20 pL volume
with 6.4 pL of ultrapure water (NZYtech, Lisboa, Portugal), 10 uL of SensiFAST, 2 uL of
total cDNA, and 400 nM of both forward and reverse primers. The PCR amplification was
started with an initial polymerase activation for 10 min at 95 °C, and then amplification
via 40 cycles of PCR were as follows: denaturation at 95 °C for 15 s and annealing and
extension at 60 °C for 30 s (Bio-Rad CFX Connect-Real-time system). Each sample was
run in duplicate, and the specificity of the reaction was verified via melting curve analysis.
Data were normalized to Efl and Tub (because of its abundance and Ct value consistency
among treatments) using the 2~44¢t method.

Table 1. Primer’s design for Argyrosomus regius. Primers were employed for validation of genetic

expression.
Gene Primer Pair Primer Sequence (5'-3') Length (bp) GenBank Reference or Publication
Sp7_fwd TTCCTTTTGCGGCTTCAGAG 142 bp
»7 Sp7_rev GCCTGCACACACACATACAA GFVG01056384.1
mgp_fwd GCTGGCATTGAATCCCACAT 171 bp
gl mgp_rev TGTTTCGGTCACCATCCACT GFVGO01044233.1
bmp?2_fwd TGTGGAATTTATCGGAGCCCA 113 bp
bmp2 bmp2_rev.  CGAGCAGCAGTACCATGAGA GFVG01014899.1
efla efla _ fwd GGTGCTGGACAAACTGAAGG 161 bp Ruiz et al. (2019) [42]
efla _rev GAACTCACCAACACCAGCAG
tub tub _ fwd GGAGTACCCCGATCGTATCA 196 bp Ruiz et al. (2019) [42]
tub _rev AGATGTCATACAGGGCCTCG
3. Results

3.1. Transcriptome Assembly and Annotation

The transcriptomes of whole larvae at 28 DAH were analyzed. Nine cDNA samples
(three replicates per treatment) were sequenced, and more than 150 million bp paired-end
reads were generated for each library. Reads were processed for subsequent transcriptome
analysis (Table 2). The reads were mapped to the Larimichthys crocea genome (RefSeq
assembly accession: GCF_000972845.2), obtaining average mapping rates of 67.60%, 67.39%,
and 69.21% for Reference Diet (RD), Medium Diet (MD), and High Diet (HD), respectively.
More than 13,500 genes were assigned.
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Table 2. Summary of RNA sequencing, assembly, and mapping of larvae of Argyrosomus regius at
28DAH.

Reference Diet Medium Diet High Diet

R1

R2 R3 M1 M2 M3 H1 H2 H3

Total HQ
reads
Mapped
reads
Mapping
rate (%)

180,488,089 164,478,326 163,786,858 152,078,855 179,103,633 253,267,203 164,384,967 150,515,239 163,786,580

118,135,719 111,751,235 114,019,947 105,130,555 118,434,455 169,468,930 111,221,544 105,927,381 114,019,947

64.45%

67.94% 69.61% 69.13% 66.13% 66.91% 67.66% 70.38% 69.61%

3.2. Differentially Expressed Genes (DEGs)

To identify DEGs in the Argyrosomus regius larvae during development, pair-wise
comparisons were performed among the different dietary treatments. The impact on total
transcriptome expression and the number of DEGs obtained from the different comparisons
can be observed in the MA plots (Figure 2A). A high proportion of DEGs was found when
the Medium Diet and Reference Diet were compared (648 up- and 441 down-regulated,
Figure 2(Aa)) and when the High Diet and Medium Diet were compared (345 up- and
618 down-regulated, Figure 2(Ac)). However, a significantly lower number of DEGs (50 up-
and 30 down-regulated Figure 2(Ab)) was found after a comparison between the HD and
MD. Using Venn diagram analysis (Figure 2B), it was observed that there were only three
DEGs overlapped among the three comparisons between diets. Furthermore, 457 DEGs
overlapped between the comparisons MD vs. RD and HD vs. MD, 5 overlapped between
the comparisons HD vs. RD and HD vs. MD, and 47 DEGs overlapped between the
comparisons MD vs. RD and HD vs. RD. Furthermore, 582 DEGs were identified uniquely
in MD vs. RD, 498 DEGs were identified uniquely in HD vs. MD, and 25 were identified
uniquely in HD vs. RD.

3.3. Detailed Transcriptomic Data Analysis Based on KEGG Enrichment

In Figure 3 are shown the GSEA results obtained from the different comparisons. The
dot-plots present the most enriched pathways for each comparison considering all the genes
expressed in the dataset (MD vs. RD, HD vs. RD, and HD vs. MD in Figure 3A, Figure 3B,
and Figure 3C, respectively). These results were divided into two categories regarding
whether the total expression calculated for each pathway was activated or suppressed,
considering the relative expression of all genes included in each term. Therefore, it was
observed that the levels of supplementation with Omega-3 in the diet significantly enriched
(p.adj < 0.05) different pathways during larval development and metabolism. Mainly, the
MD in comparison to the RD (Figure 3A) activated processes related to drug metabolism-
cytochrome P450 (ko00982), metabolism of xenobiotics by cytochrome P450 (ko00980),
oxidative phosphorylation (ko00190), glutathione metabolism (ko00480), or the VEGF
signaling pathway (ko04370). Some of these cited pathways presented high gene ratios and
an elevated number of genes correlated. Contrarily, the Wnt signaling pathway (ko04310),
calcium signaling pathway (ko04020), and FoxO signaling pathway (ko04068) were among
the most enriched pathways identified from the suppressed terms, and they presented
notably different gene ratios.
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(B)

Figure 2. Visualization of gene expression datasets in Argyrosomus regius larvae fed with different
level of Omega-3 (commercial, medium, and high) at 28 DAH. (A) These figures show the plots
of log?2 fold-change against mean of normalized counts (MA plot) of all transcriptome genes from
pairwise comparisons: (a) MD vs. RD, (b) HD vs. RD, and (c¢) HD vs. MD. Blue dots represent genes
that passed the threshold FC > 1.5 (p.adj < 0.05, false discovery rate correction, FDR). Grey dots
represent expressed genes that did not pass the thresholds in order to be considered true DEGs. MD,
Medium Diet; HD, High Diet; RD, Reference Diet. (B) Venn diagram of the number of genes declared
as true DE for each comparison. The figure shows shared and unique DEGs obtained in the pairwise
comparisons between treatments. The number of true DE genes that were obtained in MD vs. RD is
surrounded in orange. The number of true DE genes that were obtained in HD vs. RD is surrounded
in green, and the number of true DE genes that were obtained in HD vs. MD is surrounded in blue.

In the facet plot B (Figure 3B), the pathways most affected by the HD in comparison
to RD are identified. Among those activated that were most enriched, pathways were
found that were related to communication and binding among cells and with the ECM,
such as ECM-receptor interaction (ko04512), regulation of actin cytoskeleton (ko04810),
and focal adhesion (ko04510). On the contrary, several suppressed genes were correlated
to terms involved in the biosynthesis of lipids, as in steroid biosynthesis (ko00100), in the
biosynthesis of unsaturated fatty acids (ko01040) and their elongation (ko00062), or even
in the adipocytokine signaling pathway (ko04920). In the facet dot-plot C (Figure 3C), it
can be observed that an elevated number of pathways were highly enriched in both cases
among the suppressed and activated terms when both levels of supplementation were
compared (MD and HD). Furthermore, a wide number of genes were related to each term
according to the GSEA results.
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Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG). KEGG pathway functional analysis of
differentially expressed genes during skeletal development of Argyrosomus regius fed with different
Omega-3 dietary levels at 28 DAH. (A—C) represent facet dot-plots of nominally significant up-
regulated and down-regulated KEGG pathways enriched among all expressed genes in the different
comparisons MD vs. RC, HD vs. RD, and HD vs. MD according to GSEA results. (D-F) dot-plots
represent the most enriched KEGG pathways among all differently expressed genes in the different
comparisons MD vs. RC, HD vs. RD, and HD vs. MD, according to ORA results. In all these cited
figures, the x-axis shows the ratio of differentially expressed genes in each term relative to the total
number of genes in that term. The y-axis represents the term associated to each enriched pathway.
The size of the dot indicates the number of differentially expressed genes in that term, and the color of
the dot shows the pathway enrichment significance according to p-value. (G-I) Upset-plots presented
the number of common elements among GO terms in our functional enrichment analysis for each
comparison of MD vs. RD, HD vs. RD, and HD vs. MD, respectively. The vertical bars indicate the
common elements in the sets, indicated with dots under each bar. The single points represent the
number of unique elements in each group.
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However, to obtain more precise information about the role of genes that were more
impacted, an ORA analysis was performed employing only DEGs. Mainly, the larvae feed
with the MD in comparison to the RD (Figure 3D) enriched pathways related to ribosome
(ko03010), ECM-receptor interaction (ko04512), arachidonic acid metabolism (ko00590),
metabolism of xenobiotics by cytochrome p450 (ko00980), or drug metabolism-cytochrome
p450 (ko0098). Among the genes involved in ECM-receptor interaction (ko04512), several
were observed that were related to the synthesis of collagenous and other non-collagenous
proteins such as integrins, tenascins, nidogens, or cadherins that exert a crucial role in
the binding and organization of the different ECM components. Furthermore, this diet
also impacted genes involved in the synthesis of lipid mediators such as leukotrienes
or prostaglandins that were included in the pathways: arachidonic acid metabolism
(ko00590), metabolism of xenobiotics by cytochrome p450 (ko00980), and drug metabolism-
cytochrome p450 (ko00982). Furthermore, the DEGS in this comparison also enriched
pathways involved in the production and detoxification of toxic compounds (ko00480)
derived from the metabolism of fatty acids as alcohol dehydrogenases, glucuronosyl-
transferase, or glutathione peroxidases. Some of the DEGs involved in these pathways
were also present in other less significantly enriched pathways, as can be observed in
the upset-plot (Figure 3G). For instance, processes such as LA-metabolism (ko00591) and
ALA-metabolism (ko00592) shared genes such as phospholipase A2 (PLA2) with ARA
metabolism (ko00590). A similar situation occurs among glutathione metabolism (ko00480),
ARA metabolism (ko00590), or metabolic pathways involved in the metabolism of drugs
(ko00982) and xenobiotics (ko00980), with glutathione S-transferase (GST) participating in
all of them. In the same way, but with a low number of shared genes, it can be observed that
the pathway metabolism of glutathione (ko00480) presented genes that participate in the
metabolism of ARA (ko00590) as some glutathione peroxidases or also with the pathway’s
ECM-receptor interaction (ko04512) and PPAR signaling (ko03320) sharing the gene coding
for the molecule CD36.

The HD in comparison to the RD (Figure 3E) enriched mainly the pathways involved
in focal adhesion (ko04510) and ECM-receptor interaction (ko04512) that moreover pre-
sented the highest number of genes affected and the highest gene ratios among the iden-
tified pathways. These pathways also shared several genes coding for collagenous and
non-collagenous proteins that usually are involved in other crucial cellular functions. Nev-
ertheless, different terms involved in pathways associated to PUFA metabolism were also
enriched. Concretely, ARA (ko00590), LA (ko00591), and ALA (ko00592) metabolism
that share some DEGs as can be observed in the upset-plot (Figure 3H). Furthermore,
some processes were differently regulated by the two experimental diets MD and HD. In
Figure 3E, pathways differentially impacted by the two different levels were identified.
For instance, enriched pathways were associated to Ribosome (ko03010), PPARs signaling
(ko03320), or steroid biosynthesis (ko00100) that did not present shared affected genes
among them or with other KEEG terms identified (Figure 3I). Moreover, they also regulated
drug metabolism (ko00982), metabolism of xenobiotics by cytochrome p450 (ko00980),
or drug metabolism-other enzymes (ko00983) differently. However, in this case these
pathways shared some genes among them including the glutathione metabolism pathway
(ko00480). Through the results obtained, the enriched pathways that were differently
impacted between treatments and that are known to be involved in the control carried out
by PUFAs in bone metabolism were selected for further investigation.

3.4. Detailed Transcriptomic Data Analysis Based on GO Terms Enrichment

In the comparison (MD vs. RD) the up-regulated DEGs correlated to GO categories
related to CC presented the highest number of DEGs associated to the extracellular region
(GO:0005576), with 18% of the total of DEGs participating, and extracellular space with
9% of DEGs significantly correlated. However, regarding the BP categories, the pathway
presenting a higher number of associated genes was a small-molecule metabolic process
(GO:0044281) with 17% of the DEGs up-regulated. Furthermore, in the MF category, 2% of
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DEGs participated in fatty acid binding (GO:0005504). However, repressed genes related to
CC were also mostly associated with the membrane (GO:0016020), presenting this term
as 52% of the DEGs correlated. Concretely, 42% of them associated to the cell periphery
(GO:0071944), 39% associated to the plasma membrane (GO:0005886), 36% associated
with intrinsic components of the plasma membrane (GO:0031226), and 34% to integral
components of the plasma membrane (GO:0005887). In the case of down-regulated genes
associated with BP, terms related to cell communication (GO:0007154) were obtained with
47% of DEGs involved, signaling (GO:0023052) with 46%, system process (GO:0003008)
with 23%, ion transport (GO:0006811) with 16%, or cell death (GO:0008219) with a 23% of
DEGs participating in this process. However, a lower number of down-regulated DEGs
were annotated in GO terms related to MF. In this class, most of the enriched terms were re-
lated to transmembrane transporters’ activity, including the transporter for carboxylic acids
(GO:0046943), organic anions (GO:0008514), and organic acids (GO:0005342), with around
4%-5% of DEGs participating in each of them. On the other side, when comparing the diet
with the highest level of Omega-3 (HD) and the reference diet (RD), several up-regulated
genes were related to CC terms: 40% of DEGs were associated with extracellular region
(GO:0005576), while 18% were correlated with supramolecular polymers (GO:0099081)
or a 12% with contractile fibres (GO:0043292). In fact, several enriched pathways were
related to collagen, as for instance the 10% of DEGs that were involved in collagen trimer
(GO:0005581). Regarding the terms associated with BP, 16% of DEGs participated in ex-
tracellular matrix organization (GO:0030198), while 16% were included in extracellular
structure organization (GO:0043062), and another 16% were involved with external encap-
sulating structure organization (GO:0045229). Furthermore, important biological processes
related to cytoskeleton and filament sliding were enriched, as actin-mediated cell contrac-
tion (GO:0070252) with 10% of identified DEGs correlated. Again, attending to the DEGs
associated with MF, the results indicated that 12% of DEGS were involved in the extracel-
lular matrix structural constituent (GO:0005201), 6% in the extracellular matrix structural
constituent conferring tensile strength (GO:0030020), and 20% in structural molecule activ-
ity (GO:0005198). On the contrary, attending to DEGs down-regulated in this comparison
(HD vs. RD) and participating in the categories of CC, most of them were related to organel-
lar membranes: 6% were coded for the extrinsic component of the organelle membrane
(GO:0031312). However, regarding the BP terms, 31% were associated with the response
to lipids (GO:0033993), 28% with the cellular response to cytokine stimulus (GO:0071345),
and 12% were associated with positive regulation of fat cell differentiation (GO:0045600).

Again, when comparing both experimental diets, what was appreciated was that both
diets impacted the pattern of expression of several genes during development differently.
This different regulation was reflected in the elevated number of enriched terms and the
higher number of DEGS identified in response to the different levels of PUFA Omega-3s
in both diets. Several up-regulated genes were grouped in the CC categories as involved
in the cell periphery (GO:0071944), cell junction (GO:0030054), and plasma membrane
region (GO:0098590). Furthermore, enriched terms related to supramolecular complexes
(GO:0099080) as related to contractile fibres (GO:0043292) or the collagen-containing extra-
cellular matrix (GO:0062023) were obtained. Furthermore, regarding the DEGS that were
related to BP, several terms were found involved in larval morphogenesis and development,
and 12% were involved in muscle organ development (GO:0007517) or eye development
(GO:0042460).

Also observed were several genes coding for proteins involved in cell adhesion
(GO:0007155) and cell morphogenesis involved in differentiation (GO:0000904), 28% in the
movement of cells or subcellular components (GO:0006928) and 22% in cellular component
morphogenesis (GO:0032989) or in anatomical structure morphogenesis (GO:0009653) and
animal organ development (GO:0048513). Finally, among the pathways significantly en-
riched regarding the MEF, several functions related to musculoskeletal development were
also found, as in actin filament binding (GO:0051015), a 4% structural constituent of muscle
(GO:0008307), or a 2% structural molecule activity conferring elasticity (GO:0097493). Some
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of the most enriched pathways were also identified with a high number of genes associated,
such as calcium ion binding (GO:0005509) and protein binding (GO:0005515). Regarding
down-regulated genes, despite the fact that the terms in the CC and BP categories were
mostly related to ribosome or ribosomal processes, among the MF categories pathways
were included that were related to the metabolism of fatty acids as occurs with 2% of DEGs
involved in fatty acid binding (GO:0005504) and the 7% that were associated with oxidore-
ductase activity (GO:0016491) or with the metabolism of their products or subproducts as
for instance, the 2% of DEGS that were involved in antioxidant activity (GO:0016209).

From the enrichment analyses, it was confirmed that Omega-3 levels may coordinate
the regulation of skeletal development by modulating the expression of target genes
involved in several pathways.

3.5. Screening and Clustering of Interesting DEGs Retrieved among KEGG and GO Pathways

Among the genes impacted in relevant pathways that modulate skeletal development
under the control of dietary PUFAs, a list of interesting genes that exert important roles
in bone metabolism was selected to better understand the modulatory effect of these
nutrients in skeletal development. Hence, the list of 96 genes, obtained as DEGs for some
of the comparisons (HD vs. RD, MD vs. RD, and HD vs. MD) was divided into three
panels regarding if they present a major role in the synthesis, organization, and binding
of the extracellular matrix; the differentiation of skeletal cells (osteoblast, osteoclast, and
chondrocytes); or in the modulation of different cellular processes known to be affected by
the dietary fatty acids such as calcium metabolism, oxidative stress, or in the synthesis of
fatty acids and their derived mediators among other inflammatory molecules. The figures
show the hierarchical clustering of the selected genes.

In the first panel (Figure 4A,B), genes selected among KEEGS and GO pathways were
grouped together because of the code for coupling factors, extracellular-related proteins or
signaling molecules released from the matrix or produced within the bone-cell lineage, and
other cell types that regulate important transcriptional mechanisms controlling bone-cell
differentiation. DEGS grouped in this panel were clustered in two main groups according
to their differences in Euclidean distances. The first group presented most of the genes that
were down-regulated in the MD in comparison to the RD. Among the genes involved in this
cluster, several corresponded to transcriptional factors such as alx4, ppargcla, sox10, znf219,
mef2d, and mef2c or asxI2. However, none of these genes showed an expression significantly
different from HD to that of RD. Nevertheless, bcl11b was significantly up-regulated in
HD in comparison to MD as also occurred with sox10. Critical signaling factors were also
been included, such as growth factors or cytokines produced by different cell types that are
crucial regulators of molecular pathways modulating osteogenesis (BMPs, NOTCH, WNTs).
Among them, receptors such as Irp6, ddr2l, or notch receptors such as notch2 and notch3
were found, and also genes coding for their ligands as jag2. Despite some of these cited
molecules passing the FC threshold, they did not pass the quality control measured with
the FDR value in order to be considered true DEGs in the comparison between MD and RD,
and only jag2 was considered a true DEG in this comparison. Contrarily, the genes lrp6,
notch2, and notch3 passed both thresholds and are considered as true up-regulated DEGs
in the comparison between both experimental diets, denoting a different impact in their
expression related to the levels of Omega-3 supplementation. Other signaling molecules,
such as the cytokine t¢ff2, were down-regulated in the MD.
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Figure 4. Heatmaps and dendrograms showing the hierarchical clustering of DEGs obtained employ-
ing Euclidean distances and the Ward method. Heat maps of DEGs obtained from the comparison
between experimental groups treated with different levels of Omega-3 supplementation were gener-
ated with Graphpad. Expressions of genes in MD vs. RD and HD vs. RD are showed in graphics
(A,C,E), while expressions in HD vs. MD are shown in separate graphics (B,D,F). Red bands represent
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low levels of gene expression; green bands represent high levels of gene expression. Due to the fact
that some genes were not considered as DEGs in all the comparisons due to not passing the double
threshold of fold-change and FDR value, the asterisks indicate the comparison for which these genes
were considered true DEGs. The first panel includes genes involved in skeletal cell differentiation;
the second panel includes genes coding for molecules involved in the synthesis of ECM components,
binding among cells, and cells with the extracellular matrix; and the last panel includes genes in-
volved in important signaling cellular pathways. Panel (A): myocyte-specific enhancer factor 2C
(mef2c); SRY-box transcription factor 10 (sox10); zinc finger protein 219 (znf219); cadherin-2 (cdh2);
myocyte enhancer factor 2d (mef2d); ALX homeobox 4a (alx4a); refilinA (rflna); tenascin R (tnr); perox-
isome proliferator-activated receptor gamma coactivator 1 alpha (ppargcla); syndecan-2 (sdc2); belll
transcription factor B b (bcl11b); protein jagged-2 (jag2); transforming growth factor beta 2 (tgfp2); dis-
coidin domain receptor family, member 2 like (ddr2l); low-density lipoprotein receptor-related protein
6 (Irp6); notch receptor 2 (notch2); notch receptor 3 (notch3); integrin alpha 11b (itgal1b); polycystic
kidney disease 1a (pkd1a); microtubule actin crosslinking factor 1a (macfla); matrix remodelling-
associated protein 8-like (mxra8-I); FAT atypical cadherin 4 (fat4); BARX homeobox 1 (barx1); forkhead
box A2 (foxa2); musculoskeletal embryonic nuclear protein la (mustnla); protein kinase-like domain
containing (pkdc); transmembrane protein 119b (tmem119b); collagen triple helix repeat containing 1
(cthrcl); syndecan-3 (sdc3); laminin, alpha 3 (lama3); patched domain containing 3 (ptchd3); cellular
communication network factor 6 (ccn6); tenascin Xba (tnxba); secondary ossification center-associated
regulator of chondrocyte maturation (snorc). Panel (B): alkaline phosphatase 3 (alp3); collagen alpha-4
(VI) chain-like (col6a4-like); collagen, type II, alpha 1b (col2a1b); hyaluronan and proteoglycan link
protein 1 (hapinl); carbohydrate (chondroitin 6) sulfotransferase 3a (chst3a), collagen, type II, alpha
la (col2ala), matrix Gla protein (mgp); collagen alpha-5 (IV) chain (col4a5); matrilin 1 (matn1); colla-
gen alpha-4 (IV) chain (col4a4); chondroitin sulfate N-acetylgalactosaminyltransferase 1 (csgalnact1);
claudin 18 (cldn18); collagen alpha-2 (VI) chain (col6a2); chondromodulin (cnmd); collagen, type IX,
alpha 1a (col9ala); collagen, type IX, alpha 2 (col9a2); collagen, type IX, alpha 3 (col9a3); aggrecan
b (acanb); aggrecan core protein-like (acancpl); angiopoietin 1 (angpt1); nidogen 2a (nid2a); throm-
bospondin 2a (thbs2a); angiopoietin 2a (angpt2a); semaphoring 3B (sema3b); collagen, type XIV, alpha
1b (col14a1b); keratocan (kera); collagen, type IV, alpha 6 (col4a6); nidogen-1 (nid1); thrombospondin-1
(thbs1); collagen, type V, alpha 3a (col5a3a); collagen alpha-1 (XIII) chain (col13a1); cartilage inter-
mediate layer protein 2 (cilp2); collagen alpha-3 (VI) chain (col6a3); collagenase 3 (mmp13). Panel
(C): glutathione peroxidase 1b (gpx1b), glutathione peroxidase 4a (gpx4a), glutathione S-transferase
Omega-1 (gstol); annexin A2 (Anxa2); protein S100-P (s100p); peroxiredoxin 1 (prdx1); epoxide hydro-
lase 2 (ephx2); glutathione peroxidase 8 (gpx8); peroxiredoxin like 2B (prxi2b); glutathione peroxidase
3 (gpx3); S100 calcium-binding protein A10a (s100a10a); phospholipid hydroperoxide glutathione
peroxidase-like (phgpxl); peroxiredoxin-like 2A (prxI2a); S100 calcium-binding protein Al (s100al);
somatostatin 1, tandem duplicate 2 (sst1.2); CD36 molecule (cd36); fatty acid-binding protein 6
(fabp6); sphingomyelin phosphodiesterase acid-like 3B (smpdl3b); fatty acid-binding protein 2 (fabp2);
prostaglandin I2 (prostacyclin) synthase (ptgis); prostaglandin-endoperoxide synthase 2b (ptgs2b); asxl
transcriptional regulator 2 (asxI2); regulator of calcineurin 1 (rcanl), calcium/calmodulin-dependent
protein kinase (CaM kinase) II beta 1 (camk2b1); calcium/calmodulin-dependent protein kinase II
alpha (camk2a); peroxisome proliferator-activated receptor alpha a (pparaa); prostaglandin E receptor
2a (ptger2a); leukotriene B4 receptor (Itb4r).

Furthermore, were also selected genes that, despite also participating in ECM functions
such as binding, adhesions, and interactions among cytoskeleton, ECM, and other cellular
components, are expressed by bone cells during the different stages of maturation and exert
an important role in signaling and communication processes that regulate cell phenotype
and differentiation. Some of them were down-regulated in the MD regarding the RD as
membrane proteoglycans (sdc-2) and membranal (rflna and lama3) or binding proteins
(fat4 and cdh-2). However, different regulation between both levels of supplementation
was observed in some genes involved in these processes. The HD increased expression of
adhesion molecules as mxra8 and genes more related to interactions with the cytoskeleton
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such as macfla and pkdla. The second main cluster was divided in two main groups of
genes at the same time. One of these groups was formed by genes that were up-regulated
in the MD in comparison to the RD, but they did not present significant differences in
the HD in comparison to the RD. This subgroup was mainly formed by genes coding for
proteins involved in bone-cell interactions with regulatory molecules as members of the
Wnt pathway and controlling the expression of osteogenic markers, as for instance sdc-3,
mustnla, and tmem119. Furthermore, cldn-18, ctrh1, and pkdcc were included in this cluster,
and they also seem to impact the expression of bone-developing markers, but the molecular
mechanism by which they exert this effect has been less clarified. Two genes that were
not related to ECM interactions were included in this group. They were the transcription
factors foxa2 and ptch3d (a receptor that is involved in Ihh pathway). The second group,
however, involved genes that were up-regulated in both the MD and the HD experimental
treatments compared to the RD. Only two genes formed this cluster snorc (a proteoglycan
of chondrocytes-secreted ECM) and the growth factor wisp3 (also named ccn6, which is
involved in the Wnt pathway).

Figure 4C,D show the clustering of genes involved in ECM synthesis and maintenance.
When observing the aggrupation of genes in this panel according to their expression,
two main clusters can be observed. The first main cluster is divided into two groups.
The first group corresponds with genes that were up-regulated in the larvae from MD in
comparison with the RD, but their expression does not change significantly in the larvae
from the HD. Mainly, this group was formed by genes considered markers of mature cells
that synthesize the ECM as mature osteoblasts and chondrocytes and for components of the
ECM. Among them, genes coding for the main ECM components of cartilage and markers
of proliferating chondrocytes such as col2a1 variant B were observed, but they also included
genes coding for non-collagenous proteins involved in mineralization such as mgp and alp3,
or proteins involved in the metabolism of members of the proteoglycan family, such as
hapln1 or chst3a. Any of these genes showed differences in their regulation between the
different levels of Omega-3 in MD and HD.

The second group presented genes that were significantly down-regulated in the MD
but were not significantly affected in the fish treated with the HD in comparison with the
RD. In this group, genes coding for components of the extracellular matrix of OB as for
the proteoglycan Keratocan (kera) and genes coding for collagen proteins as col13a1 and
col6a3 (usually present in basement membranes) were included, while col6a4! was also
included but was differently regulated by the two levels of Omega-3, being significantly
up-regulated in the larvae fed with the HD. Furthermore, in this cluster, several non-
collagenous proteins that allow the cell adhesion, organization, and binding of the different
cell components and the ECM but that also are involved in other important processes
as sema3 (involved in signaling between bone cells) were observed. Others such as nid1,
thbs1, and angpt2, which are important factors involved in membrane organization and
vascularization of mineralized tissues were also present. However, most genes coding for
non-collagenous proteins were differently regulated among the two experimental diets
with supplementation of Omega-3 as nid1, nid2, thbs2, angpl, cilp2, and «11B1 (integrin that
is expressed in osteoblast). All these genes were up-regulated in the HD in comparison
to the MD, whereas among the genes present in this group, only mmp13, coding for a
matrix metalloprotease involved in degradation and resorption of the bone matrix, was
down-regulated in the HD compared to the RD. The last cluster presented genes that were
significantly up-regulated in both experimental treatments in comparison with the RD,
but in a more pronounced way in the moderate level of Omega-3 in the MD. This cluster
mostly entailed proteins involved in cartilage development and in the synthesis of ECM
components. Among them, collagens present in the cartilaginous matrix (col2a1, col9a1,
col9a2, and col9a3), proteoglycans (acanb or acanb-like), or proteins involved in their synthesis
were identified. In addition, structural proteins that mediate signaling interactions and
binding between matrix constituents were included in this group, as cnmd1, matnl, and
tnxba. All the genes in this cluster passed the threshold of 1.5 for fold-change to be
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considered differentially up-regulated in both treatments with Omega-3 supplementation.
However, some did not accomplish the FDR value in order to be considered DEGs in the
treatment with the highest level of Omega-3 supplementation (HD), and they were all more
related to the cartilage ECM (acanb, acanb-like, col2ala, and csgalnact1).

The third panel included genes involved in important cellular pathways under the
control of PUFAs that have been probed to regulate bone metabolism (Figure 4E,F). Hence,
genes involved in calcium metabolism and signaling, synthesis and transport of fatty acids
and their derived lipid mediators, and in inflammatory processes were selected. In this
panel, two main clusters were observed. The first cluster is again divided into two groups.
The first group included genes that were up-regulated in the MD in comparison with the
RD. Among these genes, several genes were found to be involved in the antioxidant system.
Several glutathione peroxidases (gpx1, gpx4a, and gpx8) and other antioxidant proteins
such as gstol or perredoxins such as prdx1, prdx2a, and prx2b, were identified. Furthermore,
some DEGs coding for proteins involved in calcium metabolism and mineralization such as
anxa2 or s100 proteins such as s100p and s100a10a were identified. Furthermore, some genes
involved in inflammatory processes such as ephx2, coding for a hydrolase, which converts
epoxy fatty acids (EpFAs) produced by cytochrome P450 enzymes, were also up-regulated.
The second group of this cluster was mainly composed of genes that were highly up-
regulated in the MD, while none of them was significantly affected in the HD with regard
to the RD. This group included genes involved in the transport of fatty acids (fabp2, fabpé,
or CD36 molecule) or calcium (rcan1, s100al, and the hypocalcemic factor sst). The second
main cluster, however, included down-regulated genes in both experimental treatments
in comparison to the RD, but in a more pronounced way in the MD. Among them, genes
coding for calcium-dependent proteins involved in cellular signaling were included, such
as camk2a and camk2b1, as well as genes involved in the synthesis of lipid mediators related
to inflammatory processes, such as leukotriene B4 (/tb4) or others involved in the synthesis
and metabolism of prostaglandins such as ptgis, ptgs2b, or ptger2a. Finally, this cluster also
included ppara, which is involved in several functions related to fatty acid metabolism,
such as oxidation.

4. Discussion

This study describes for the first time the gene expression pattern of the skeletal
formation of Argyrosomus regius larvae, fed diets with different levels of Omega-3 supple-
mentation. The results of this study revealed important insights into the molecular basis of
bone development and the role of PUFAs in modulating this process, by identifying the
impact of these formulations on individual genes participating in important cellular and
molecular pathways controlling bone metabolism.

Although macroscopically the skeleton seems to be a static organ, it is one of the
most metabolically active tissues at the microscopic level. It is constantly changing and is
responsible for the growth and maintenance of body shape and skeletal health through two
complex mechanisms: modeling and remodeling [43]. In these processes, different bone-cell
types are involved in advanced teleosts with acellular bone [44]: chondrocytes (CHs) and
osteoblasts (OBs), which are mesenchymal-derived cells responsible for bone formation
and extracellular matrix deposition, and osteoclasts (OCs), with hematopoietic origin, are
responsible for bone resorption [45]. Furthermore, two main patterns of bone formation
have been identified in this species. On one hand, intramembranous ossification starts with
the condensation of mesenchymal cells that directly differentiate into osteoblasts without
a cartilaginous phase, as occurs in the vertebral bodies and intermuscular bones [46].
However, endochondral ossification is characterized by cells from the mesenchyme that
coalesce, condense, and differentiate into chondrocytes that form cartilage, which is then
eventually replaced by bone [47]. This process is usually accompanied by perichondral
ossification. In this process, the bone starts to be produced around the periphery of the
cartilage [48]. In ossification that employs a cartilage template, chondroblasts change their
genetic program and maturate to CHs that become hypertrophic and die [49]. This is
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followed by the resorption and calcification of the cartilage extracellular matrix that they
have constructed, mainly formed by type II collagen and aggrecan. During this stage, the
matrix is invaded and replaced by the cells that will become the constituent cells of bones,
such as blood vessels, bone marrow cells, osteoclasts for the removal of this cartilage matrix,
and osteoblasts that deposit bone on the remnants of the cartilage matrix [50].

Bone is continuously remodeled throughout life and is regulated at several levels to
maintain the equilibrium between functional osteoblasts and osteoclasts [51]. The number
and activity of bone cells are further controlled by transcriptional and epigenetic mech-
anisms that are also highly regulated by hormonal and local regulatory proteins such
as growth or transcriptional factors or cytokines [52-54]. Furthermore, in recent years
the control performed by mechanical strain, cell-cell interactions, and cell-matrix inter-
actions [55,56]. Due to the complexity of all these regulatory mechanisms and molecules
involved, imbalances or alterations in these factors can result in incorrect bone forma-
tion and lead to the onset of skeletal anomalies [57]. Skeletal deformities in fish entail
abnormal transformations of normal bone and cartilage structures throughout metaplastic
changes, trans-differentiation, and the development of intermediate tissues, among other
pathological events that lead to the appearance of a complex mixture of skeletal alterations
that differ from their normal morphology [45,58-67]. Previous studies have indicated
that bone abnormalities originate mainly during early developmental stages when the
skeleton is being formed (i.e., during chondrogenic and early osteogenic differentiation
periods) [68-70]. Due to these factors, 28DAH larvae were used, since these processes were
still not completed.

Previous studies have indicated that the onset of skeletal disorders is multifactorial,
linked to alterations in biotic and abiotic factors that can regulate the systemic and local
factors controlling bone metabolism [1,71-74]. Among the nutrients that can control skeletal
development, dietary highly polyunsaturated fatty acids seem to play a crucial role in
skeletal metabolism and bone composition in fishes [20,73,75-77]. Although fatty acids have
been one of the most studied nutrients, their effects on bone metabolism have not been well
identified [78]. The impact of these nutrients in bone formation varies among the different
types of PUFAs [4]. However, different studies have indicated that the consumption of
moderate levels of Omega-3 promotes correct skeletal development [79]. Consequently, it
is considered that the consumption of these nutrients in adequate amounts can improve
bone formation and health [79], while imbalances in dietary levels have been related to
several bone disorders and types of skeletal malformations [20,80]. However, the molecular
mechanism involved in this beneficial effect remains mostly unknown.

The transcriptomic analysis performed in the larvae of Argyrosomus regius fed with
experimental diets showed several genes differentially expressed among the different
groups. However, among the treatments, the MD showed the most different pattern
of expression and the highest number of DEGs. To obtain information about which of
these DEGS were related to the control of PUFAs in skeletal development, enrichment
analyses employing the GO and KEEG databases were performed. The results indicated
that among the terms, the most enriched pathways crucial for the control of skeletal
development were obtained. Among them, several were related to membrane transport, cell
communication, and signaling control of bone-cell differentiation and activity. Several were
also involved in binding and interactions among ECMs and other cellular components, or
were related to important cellular processes such as ion transport and calcium metabolism
or in the biosynthesis of PUFAs or their subproducts (including pathways related to the
antioxidant system and inflammation). The impact on genes involved in these cellular
pathways was also considered due to the fact that the onset of several skeletal disorders is
related to imbalances in these cellular pathways, leading to increased oxidative stress and
high synthesis of pro-inflammatory molecules that negatively impact bone and cartilage
metabolism [65,81-84].

Once the most important enriched pathways related to the control of PUFAs in skeletal
development were selected, this study searched for interesting DEGs correlated to them to
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gain information about the impact of these diets on expression of the individual molecules
that control bone formation. However, the knowledge about the function of genes involved
in skeletal development in teleosts is still very scarce. Due to this, information obtained in
studies with different vertebrates other than fish was employed to unravel the function
of the different affected genes in our species. This approach is possible because most
skeletal tissues, bone cells, and key factors controlling mammal skeletal development
have orthologues in teleosts, where the molecular and cellular mechanisms involved
in the regulation of bone morphogenesis seem to be conserved among vertebrates (see
reviews [85,86]). Based on this, 96 DEGs were selected among these processes for further
study. They were divided into three panels regarding their main effects during bone
formation, and due to this, several of these DEGs were included in more than one enriched
pathway. The genes were divided regarding if they control the differentiation of bone
cells [87-89]; they synthesize bone proteins and ECM components [90]; or if they modulate
important signaling and cellular pathways that affect bone metabolism [91] such as Ca
metabolism and transport [92,93], oxidative stress [94], and inflammation [95].

4.1. Molecules That Impact Molecular Pathways Involved in Bone-Cell Differentiation

During the process of bone-cell differentiation, osteoprogenitors acquire specific phe-
notypes under the control of adequate regulatory factors. The differentiation and activity
of terminal chondrocytes, osteoblasts, and osteoclasts in vertebrates are carried out through
important transcriptional and signaling pathways. These pathways are controlled by
transcription and growth factors, among other signaling molecules produced within the
bone-cell lineage and other cell types [51,54,96-99]. Furthermore, other genes coding for
ECM-related proteins were also included in this panel as it has been reported that they
contribute to bone-cell differentiation, indicating that mechanisms underlying differentia-
tion are likely more complex than previously appreciated [56,57]. The factors regulating
bone-cell differentiation are expressed and control bone-cell differentiation at different
points during maturation.

Among the different transcriptional factors impacted by the different dietary treat-
ments, it was observed that the MD down-regulated genes controlling the commitment
of mesenchymal cells through osteogenic lineages such as pparg, whose inhibition has
been related to an increased osteogenic commitment while inhibiting adipogenic com-
mitment [100]. Furthermore, down-regulated genes also promote early differentiation
of OB and most CH lineages such as, for instance, sox10 [101] or znf219 (which is a tran-
scriptional partner of Sox9) [102]. Nevertheless, other crucial factors during the early
stages of CH differentiation were up-regulated, such as barx1 [103], whose attenuation and
mutation in zebrafish led to dysmorphic arch cartilage elements due to reductions in chon-
drocyte condensation [104]. The MD seems to also up-regulate factors involved in more
advanced stages of CH differentiation, such as foxa2 [105,106], that prompt the expression
of chondrocyte-proliferating population markers, while decreased transcriptional factors
are involved in the terminal phases of CH differentiation and hypertrophy, such as mecf2c
and mecf2d [107] (which furthermore seem to promote OC differentiation [108,109]). The
inhibitory effect of OC differentiation can also be appreciated in the suppression of asxI2,
which is involved in the assembly of transcription factors promoting myeloid differentia-
tion [110]. These results indicate that the MD inhibited genes involved in early commitment
and terminal differentiation of the CH lineage while it increased the differentiation of chon-
droprogenitors to proliferative chondrocytes that synthesize the ECM. Nevertheless, the
high level of Omega-3 (HD), significantly increased sox10, znf219, and bcl11 (which is a
suppressor of premature OB differentiation [111] and is absent in cranial endochondral
ossification) [112] in comparison to the MD.

Furthermore, several secreted molecules and growth factors produced within the
bone-cell lineage and other cell types regulate the molecular pathways responsible for the
control of bone-cell differentiation (see reviews [98,113]). Among the cytokines involved in
this function, a few can be highlighted: Hedgehogs, NOTCH, BMPs, TGF-f3, and WNTs
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(see reviews by [114-116]), which are indispensable for both direct endochondral and
intramembranous ossification [117]. These molecules exert different effects depending
on the bone cells and the differentiation stage in which they are expressed. For instance,
TGF-p cytokines can exert a dual impact. Their expression presents a pro-osteogenic
effect when expressed at the early stages of differentiation by promoting mesenchymal
cell commitment into OB or CH lineages and decreasing OC differentiation. However,
this cytokine also inhibits terminal differentiation in OB and hypertrophy in CH when
expressed in more advanced stages of cell development. Among this family, the expression
of tgfB2, which is considered crucial for embryonic skeleton development, was decreased
in the MD in comparison to the RD [118]. In addition, among DEGs molecules involved
in the Wnt-signaling pathway, which is crucial not only in regulating differentiation of
osteoprogenitors into OB and CH but also in promoting the late stage of differentiation
of these cells and inhibiting osteoclastogenesis [119,120], were also identified. Among
them, expression of Irp6, which is a receptor that promotes OB maturation [121] and CH
hypertrophy [122], was down-regulated in the MD in comparison to the RD. In addition,
wisp3 expression was increased by both levels of supplementation (MD and HD) and
was included because it is able to modulate the Wnt-signaling pathway in different ways.
On one hand, their interaction with Irp6 has been related with an inhibition of the Wnt
pathway and the decrease in osteogenesis, while at the same time they inhibit chondrocyte
hypertrophy by interacting and inhibiting the effect of IGF-1 [123]. Other genes involved in
signaling pathways were impacted by PUFAs levels such as notch2 and notch3, which were
down-regulated in the MD in comparison to the HD. Despite these molecules seeming to
decrease early OB differentiation by decreasing runx2 or Col2 expression [124], their main
effect seems to be directed toward increasing OC differentiation in different ways [125].
Among notch ligands, jag2 was similarly regulated and included in the same cluster,
denoting a functional relationship. A gene coding for a ptc receptor ptch3 was highly
up-regulated in the MD, and it was included in the panel because it inhibits the Indian
hedgehog pathway (Ihh) delaying chondrocyte differentiation and hypertrophy [126].
In developing cartilage, Ihh is primarily expressed by pre-hypertrophic chondrocytes
(immediately prior to hypertrophy) as well as in early hypertrophic chondrocytes. The
impact on gene expression exerted by the MD again denoted an inhibitory effect in genes
that promote chondrocyte hypertrophy and osteoclastogenesis.

The modulation of several ECM-related proteins was also analyzed because they are
involved in cell-cell and cell-matrix interactions with regulatory factors and can modulate
cell differentiation. Cell-cell and cell-matrix interactions usually require macromolecular
assemblies that are formed by several components that include ECM- and cytoskeletal-
associated components, among others. Currently, several studies and reviews have reported
on their importance in bone formation, and it is believed that imbalances or loss of these
molecules lead to alterations in skeletal development [57,127]. Again, a more pronounced
impact on the expression of these molecules was exerted by the MD, as demonstrated via
enrichment analysis denoting a high number of genes differentially regulated in pathways
related to the ECM, cell communication, and binding. Among the up-regulated genes
in the MD in comparison with the RD, mainly molecules that control differentiation by
interacting with important molecular regulators of bone-cell development were observed.
For instance, the MD positively regulated mgp expression, which inhibits OB and CH matu-
ration, and matrix mineralization by binding to BPM2 and blocking their signaling effect.
This protein also inhibits osteoclastogenesis regulating the expression of nfatc1 [128,129].
Contrarily, up-regulated genes in the MD were associated with the promotion of OB and
CH differentiation as cthrcl (encodes a membrane protein secreted by osteoclasts [130,131]),
the transmembranal protein tmem119 (interacts with BMP to exert an osteogenic effect),
or PKdcc (a tirosine kinase that phosphorylates a broad range of ECM proteins, including
collagens and matrix metalloproteinases, and their disruption seem to delay chondrocyte
differentiation [132]). Other pro-osteogenic genes that were up-regulated have a key impact
in chondrocyte lineage such as mustnl (acting in a transcriptional complex promoting
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chondrocyte differentiation [133]) and cldn-18 (a member of the tight junction family of
proteins, which also presents an osteo-inductive role due to that fact that it is a negative
regulator of RANKL-induced osteoclast differentiation [134]). In addition, genes coding for
specific components of cartilage were up-regulated by both levels as the gene coding for a
transmembrane proteoglycan (snorc). This gene promotes CH differentiation and cartilage
synthesis and its expression in cartilage is highest in proliferating and pre-hypertrophic
populations, while it is more restricted in hypertrophic chondrocytes [135].

Furthermore, other proteoglycans, named syndecans, with an important role in en-
dochondral ossification, were identified among DEGs [136]. Syndecans interact with a
variety of extracellular matrix components and soluble mediators exerting a critical role in
adhesion to the matrix and in modulating matrix deposition [137]. Among them, sdc-3 was
up-regulated by both levels of Omega-3 in the diet, while sdc-2 was down-regulated in the
MD in comparison to the RD. The different regulations can be related to their functions.
Syndecan-3 is related to an osteo-inductive role as it increases during OB differentiation,
but its effects have been more intimately associated with the control of chondrocyte pro-
liferation [138]. Syndecan-2 regulates OB and CH differentiation, and its expression is
up-regulated in response to osteogenic factors [139]. In a study, the overexpression of sdc-2
inhibited both osteoblast and osteoclast proliferation, but the higher bone mass observed in-
dicates higher inhibition of osteoclast reabsorption [137]. Furthermore, syndecan-2 exerts a
critical role in neo-angiogenesis/angiogenic sprouting during embryonic stages, as proved
in different organisms such as zebrafish and mice [137]. Due to this, it is expressed in the
final stages of chondrocytes’ differentiation coinciding with the onset of cartilage vascular-
ization during the endochondral process. Furthermore, as in the case of sds-2, the expression
of genes coding for other molecules involved in cell interactions related to advanced states
of endochondral ossification were also down-regulated by the MD in comparison with the
RD, such as sema3a, which code for a secreted and membrane-associated protein expressed
by OC that acts as a coupling factor among bone resorption and formation due to its ability
to regulate osteoblasts, chondrocytes, and osteoclasts (reviewed by [140]). It has been
associated to pro-osteogenic effects [141] and has also been related to angiogenesis due to
being expressed in the pre-hypertrophic and hypertrophic chondrocytes coinciding with the
onset of endochondral ossification and vascular invasion [142]. Also, a similar expression
pattern was obtained in Cfm2, which is also expressed by pre-hypertrophic chondrocytes,
regulating actin organization. Mutations of this gene in mice manifested defects of the
vertebral column as scoliosis and kyphosis or vertebral fusions [143]. Contrary to the MD,
the HD seemed to promote hypertrophy by increasing mxra8 expression, which is a member
of matrix remodeling-associated proteins that regulate the Ihh pathway [144]. Moreover,
the different impact of both levels was also observed among genes that have been mostly
related to the regulation of OB differentiation such as itga11b1 (binds with osteolectin and
increases osteogenesis by regulating the Wnt pathway) and macf1, which is also involved in
adhesions and interactions with the cytoskeleton and are positively regulated by osteogenic
factors and also promote the expression of bone formation markers (col1, runx2, and alp)
and OC differentiation. Also, genes coding for pkd1 and cdh2, which participate in cell—cell
adhesion, were down-regulated in the MD in comparison to the RD. PKd1 enhances OB
differentiation, while cdh2 code for a negative modulator of Wnt signaling [145].

The expression of these molecules indicates that the MD seems to highly impact endo-
chondral ossification due to their special impact in several molecules related to cartilage
development, mainly inhibiting molecules participating in pathways that promote CH
hypertrophy, but also diminishing OB terminal differentiation and OC proliferation. From
these results, we hypnotized that the skeletal development of larvae from the MD group
are in a less advanced stage of maturation regarding the structures formed by this process
in comparison with the RD and HD groups, which did not present several differences
among them. In larvae from the MD group, the cartilaginous plate and cartilaginous matrix
seem to be still in formation due to the level of Omega-3-increased transcriptional factors
and signaling molecules that promote the population of proliferative chondrocytes but
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inhibit hypertrophy. The larvae from the HD group, in comparison, showed an increased
expression of molecules that promote the hypertrophy of chondrocytes and the prolifera-
tion of OB and OC, which are mostly related with a more advanced stage of endochondral
ossification when the cartilaginous matrix has been totally formed and starts to be replaced
and vascularized. In fact, the HD seems to increase expression of molecules involved in the
onset of angiogenesis and tissue vascularization while MD inhibited these genes.

4.2. Molecules That Impact the Synthesis of ECM Components

ECM is an assembly of several components, which work together to carry out a wide
range of functions. The proteins in the extracellular matrix of bone are often classified
into two main groups, structural proteins (mainly collagenous proteins) and proteins
with specialized functions (non-collagenous proteins) [56]. Around 180-200 different
non-collagenous proteins have been identified and are involved in the regulation of the
collagen fibril diameter; serve as signaling molecules, growth factors, or enzymes; or
have other functions including proliferation, migration, apoptosis, and differentiation (see
review [146]). Some of them have been already cited and included in the panel of genes
related to factors controlling bone-cell differentiation. The expression of ECM molecules
changes among stages of skeletal formation and bone-cell maturation; due to this fact, some
are considered markers that permit identification of different cell populations or stages of
skeletal development. A high number of genes related to the synthesis of components of the
ECM was identified in the transcriptomic analysis, and this can be related to the increased
cell proliferation and enhanced tissue that occurs during the first steps of skeletal formation.

Among the genes coding for collagenous proteins, the MD-up-regulated genes coding
for markers of proliferating chondrocytes such as col2ala and col2a1b [147] and several
other minor components of collagens. Furthermore, this level again seems to decrease
expression of genes associated to collagens that impact chondrocyte differentiation promot-
ing hypertrophy and endochondral ossification such as col6a3 [148] (due to their roles in
cell adhesions) or col13a1 (that interact and bind with regulatory molecules as nidogens or
integrins to promote angiogenesis [149]). These collagenous proteins, on the contrary, were
up-regulated in the HD in comparison to the MD such as also col5a3, which is a regulator
of coll molecules and is more associated to the OB-secreted ECM [150]. The expression of
genes coding for other collagenous proteins that are usually associated to stability of base
membranes were up-regulated by both levels of Omega-3 supplementation as in the case of
those usually present in the base membrane of the cartilaginous matrix such as col4a4 and
col4a5 (that usually forms a composed helical structure with the protein coded by col4a6
that was more up-regulated in the HD). This triple helical complex possess anti-angiogenic
properties that might be involved in the control of vascularization during cartilage repair
and in cartilage homeostasis [151]. Furthermore, genes coding for col6a2 (inhibits OC
differentiation), or col9a1, col9a2, and col9a3, were up-regulated, and they are important
components of collagen and exert an anti-angiogenic effect preventing vascularization [152].
However, other components present in the cartilaginous matrix that help their stabilization
and participate in endochondral ossification included in this panel were down-regulated
by the MD as nid2 and cilp2 [153]. Furthermore, the MD decreased the expression of genes
coding for pro-angiogenic factors associated also with cartilage hypertrophy such as angpt2
in comparison to RD, and angpt1 in comparison to HD. Concretely, angpt2 code for the most
expressed angiogenic factor in cartilage, being more expressed than angpt1 or vegf [154].
Furthermore, the anti-angiogenic effect of the moderate level of supplementation in the MD
was confirmed by the impact on thbs1 and thbs2, which encode inhibitors of OB ossification
and angiogenesis while promoting OC differentiation [155,156].

The MD treatment up-regulated the expression of cartilage proteoglycans haplnl,
acanb [157], while it down-regulated kera, coding for keratan, which is more associated
to the OB-secreted matrix [158]. In addition, this level also up-regulated the expression
of genes coding for proteins involved in their synthesis such as csgalnact1 (crucial for
aggrecan metabolism) or chst3a (that catalyze the sulfation of chondroitin [159]). The
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positive regulation of Omega-3 PUFAs in gene coding for the main components of the
chondrocyte-secreted matrix was also observed in regulation of non-collagenous proteins
such as cnmd1, which is also considered a major regulator in cartilage development and
an inhibitor of angiogenesis [160]. Both levels of supplementation up-regulated genes
such as lama3, tnxb [161], and matrilin1 [162], which are related to cellular interactions
among collagens and other ECM components that increase cartilage synthesis. Finally, a
minor but potentially interesting fraction of non-collagenous proteins in the ECM of bone
that also exert important roles during endochondral ossification are the enzymes, mainly
phosphatases as alkaline phosphatase (ALP) and also matrix metalloproteases such as
MMP13. The genes coding for these enzymes were also founded among DEGs. While the
gene coding for alp (involved in ECM mineralization [163]) is increased significantly in the
MD, the expression of mmp13 (that degrades the ECM) was significantly reduced in the
HD in comparison to the RD [164]. Again, it was observed that LC-PUFAs’ dietary level
modulates the expression of collagenous and non-collagenous proteins that exert important
roles during bone formation. Among the diets, the MD seems to again impact especially
during the endochondral process. Concretely, in this panel of genes, the moderate Omega-3
supplementation up-regulated the expression of markers of proliferating chondrocytes and
cartilaginous ECMs while inhibiting hypertrophy and angiogenesis. The HD, however,
seems to have had a positive impact in molecules that are more related with the OB-secreted
matrix or in molecules involved in late stages of endochondral ossification as, for instance,
in the genes that promote mineralization, matrix degradation, and vascularization.

4.3. Molecules That Impact Crucial Cellular Processes

Molecules that are participating in fatty acid metabolism and synthesis of their lipid
mediators, calcium metabolism, antioxidant system, and inflammation were further ana-
lyzed. Among the DEGs included in these pathways, the MD seemed to increase all the
genes included in this panel that were involved in fatty acid metabolism and binding and
have been identified in skeletal cells as fatty acid binding proteins [165] (fabp2, fabp6), and
the cd36 molecule that is crucial for fatty acid uptake is expressed in OB [166] and OC [167].
Some genes coding for proteins involved in calcium metabolism and mineralization such as
sst (which is a hypocalcemic factor and seems to inhibit bone and cartilage formation [168]),
anxa2 (that also affects osteogenesis [169]), or s100 proteins such as s100p and s100a10a (that
have been described in mammalian and teleost bone and seem to be crucial for endochon-
dral ossification and seem to supress chondrocyte hypertrophy) were also up-regulated in
the MD in comparison with the RD [170]. Contrarily, calcium-dependent proteins involved
in cellular signaling coded by camk2a and camk2b1 were down-regulated by the MD. These
proteins have been associated with cartilage homeostasis [171]. In fact, expression of camk2
gene has been related to premature chondrocyte maturation [172].

Several genes involved in the antioxidant system were up-regulated by the MD.
Namely, as observed in DEGs, genes coding for glutathione peroxidases (gpx1, gpx4a, and
gpx8), which are key suppressors of lipid peroxidation, were expressed in bone cells and are
also extremely important in other tissues for cellular detoxification of ROS. The expression
of the different GPXs seems to be inhibited by the high level of Omega-3 in the diet, which
can indicate a lower protection in these larvae against ROS. This effect was also observed
in other fish larval cultures where higher Omega-3 content in the diet reduced their expres-
sion [20]. Other antioxidant molecules involved in the reduction of hydrogen peroxides
that further modulate osteogenic differentiation like peroxiredoxins (prdx1, prdx2a, and
prx2b) [173,174] or gstol (which is expressed in a wide range of human tissues including
bone [175]) were similarly regulated by the MD. Lipid peroxides are common subproducts
derived from the metabolism of high energetic PUFAs. These compounds are toxic in
higher amounts, and their accumulation results in damage to cellular bio membranes [176].
Furthermore, the accumulation of peroxides due to the insufficient detoxification and de-
fense against them have been related to an increase in osteoclastogenesis, bone resorption,
and inhibition of bone formation [81]. These results suggest that larvae fed with the HD
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might be less protected against oxidative stress, which can be prejudicial for bone health.
The lower oxidation exerted by the MD was also evidenced by the lower expression of
ppara, which is usually highly expressed in tissues presenting higher oxidation [177]. Fur-
thermore, the negative effect of excessive fatty acid oxidation and increased oxidative stress
has also been related to positive feedback in inflammation. The inflammatory process is
also highly impacted by LC-PUFAs due to their derived lipid mediators (eicosanoids and
docosaenoids) usually present with pro- or anti-inflammatory potential. The MD decreased
genes involved in the synthesis of lipid mediators promoting inflammatory processes such
as Itb4, which lead to the release of pro-inflammatory cytokines or genes coding for the
synthesis and metabolism of prostaglandins such as ptgis, ptgs2b, or ptger2a. Prostaglandins
are important signaling molecules in bone metabolism. PGE2 is synthetized by COX2 and
is one of the most biologically active factors in controlling bone metabolism. While lower
amounts of PGE2 seem to promote bone formation, their synthesis in high amounts has
been related to an increase in inflammation and ROS that seem to be deleterious for bone
formation and skeletal health. Furthermore, the MD increased ephx2, which converts epoxy
fatty acids (EpFAs) in their diols that are not inflammatory. In this panel, we could observe
that the MD positively regulated antioxidant defense and calcium transport and inhibited
pro-inflammatory genes, while no differences in any of these genes was observed among
the HD and RD. In this panel, it was observed that the MD seemed to up-regulate the
expression of antioxidants and molecules involved in calcium and fatty acid transport while
inhibiting signaling molecules such as inflammatory molecules and calcium-dependent
kinases in comparison to the RD.

The results obtained in the transcriptomic analysis are in agreement with authors
that have already discovered that Omega-3 PUFAs (EPA and DHA) and their metabolites
assist in regulation of cell functions through regulation of gene expression directly, by
interacting with transcriptional factors, or indirectly, by influencing the membrane lipid
composition and modulating several cell signaling pathways [178]. Since the progression
of skeletal development is guided by the expression of different regulators and synthesis
of the different components of bone, from the different expressions among the different
treatments, we can identify different regulations exerted by the diets in this process and
according to the stage of skeletal development. Analyzing the results on gene expression,
the MD presented a very different genetic profile in comparison to the other treatments.
This different pattern of expression seems to be related to a different stage of skeletal
development. Mainly, the differences among diets seem to impact a high number of genes
involved in the differentiation of bone cells and in the synthesis of the ECM. Concretely,
a high regulation of chondrocyte-related genes and cartilage ECM components, among
other molecules involved in endochondral ossification, has been observed, which indicates
that differences among diets mainly affect the structures formed through this mechanism.
The MD up-regulated biomarkers were mostly related to proliferating chondrocytes, while
inhibiting genes that were related to a more advanced stage of chondrocyte differentiation
such as hypertrophy. Among these genes, we can include several transcription factors
and also proteoglycans or other components of cartilage ECM. Furthermore, this diet
seems to also inhibit a high number of genes that are related to the control of OB and
OC differentiation. These genes, however, seem to be more highly expressed in the HD
and did not present several differences in the RD. Therefore, while the intermediate level
seems to inhibit the genes promoting the final steps of endochondral ossification, the
HD seems to up-regulate the genes promoting these processes; for instance, it increased
genes that promote chondrocyte hypertrophy and ECM mineralization such as angiogenic
molecules and genes related to OB and OC proliferation required for the replacement of
the ECM formed by the cartilage. Due to this, these genes reflected an advanced state of
endochondral ossification.

These results are in agreement with the analyses of the skeleton performed in larvae
during the trial [179].These analyses, performed at the end of the trial at 42 DAH, indicated
that dietary supplementation with the highest level of Omega-3 (HD) improved larval
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growth performance and accelerated the process of skeletal development and the rate of
skeletal mineralization. However, at 28 DAH, larval growth and skeletal development
were similar among the HD and RD, while the larva from the MD was slightly smaller
and presented less developed skeletons. Regarding the frequency of skeletal anomalies,
the moderate level of Omega-3 supplementation in the MD decreased the frequency of the
malformed larvae observed during the trial in comparison to the RD that did not present
significant differences with to HD. Concretely, the MD exerted a reduction in the frequency
of anomalies presented in structures that are formed via endochondral ossification as
vertebral arches and spines. This beneficial effect observed during the trial in larvae fed
with the MD could be associated, hence, with better regulation of the molecular and cellular
mechanisms through which fatty acids are able to control skeletal development and the
concrete endochondral ossification process.

The special impact of Omega-3 supplementation in cartilage metabolism that has
been observed in the transcriptomic analysis has also been identified by several authors
during in vivo and in vitro experiments. Koren et al., 2014 [180] indicated that treatment
of chondrocytes with Omega-3 FAs increased chondrocyte proliferation, proteoglycan
synthesis, and the expression of collagen type II. These results demonstrate the beneficial
effect of n-3 LC-PUFAs’ increased chondrocyte proliferation and differentiation in vitro.
These promising effects of Omega-3 supplementation have been also identified in reared
fishes. Several studies have already identified that Omega-3 dietary supplementation
promote larval growth and bone formation and increase the rate of bone mineralization
while, to the contrary, deficiencies in n-3 LC-PUFAs, as demonstrated with DHA, produced
low mineralization and down-regulated the expression of osteogenic markers such as
ALP in gilthead seabream (Sparus aurata) larvae [181]. These results were in agreement
with others obtained from Sparus aurata larvae, where the deficiency of DHA has also
been associated with the lowest number of mineralized vertebrae and with lower mineral
content [19].

However, other authors have identified a negative impact on skeletal development
with Omega-3 dietary supplementation. The deleterious effects have usually been observed
with an excess of these fatty acids. For instance, an excess of EPA in Senagalese sole
(Solea senegalensis), rather than enhancing growth and development, had a detrimental
effect on morphogenesis [182]. Along these lines, the excess of DHA seems to lead to an
increase of bone deformities in the presence of supernumerary skeletal structures, as has
been recently observed in piperkech larvae (Sander lucioperca) [20]. Similarly, the elevation
of both n-3 PUFAs, has also been demonstrated to be detrimental in European seabass
(Dicentrarchus labrax) and induced both cephalic and vertebral column deformities, while
a moderate level of PUFA with diets containing 1.1% to 2.3% EPA and DHA, decreased
this incidence [183]. Similar results were also observed in studies on fast-growing species
as in long fin yellowtail (Seriola rivoliana) larvae; the studies have demonstrated that the
incidences of some anomalies such as kyphosis and lordosis increased along with the
dietary DHA contents [184]. These deleterious results have been mainly related to the
impact of excessive levels of Omega-3s in the important cellular pathways cited above. For
instance, several authors associated the increased occurrence of bone deformities, with
oxidative damage, as a consequence of an excess of n-3 LC-PUFAs. In fact, deleterious
effects were observed when high Omega-3 levels were included in diets accompanied by
a low level of antioxidants in larval stages of other species such as in sea bass [185] or
sparus aurata [19]. This is due to the fact that cartilage and bone cells or matrix vesicles
are composed of PUFAs that are very prone to suffer lipid peroxidation, and this can
represent a risk for bone health [73,186,187]. These results could be in agreement with
our results, due to the diet with a moderate level of Omega-3 seeming to present a higher
capacity to combat oxidative stress due to the higher expression of antioxidant molecules
and reduced expression of molecules that promote fatty acid oxidation. Furthermore,
other authors have also related the negative effects of excessive Omega-3 levels with a
deregulation in the synthesis of inflammatory mediators. The beneficial effect of the MD
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in skeletal development can be also related to the better regulation carried out by this
diet in molecules involved in that function, due to the fact that a decreased expression
in the larvae fed with this diet can be observed in the molecules that participate in the
synthesis of pro-inflammatory lipid mediators. Furthermore, the beneficial regulation
of cellular pathways carried out by the MD can be also evidenced in the up-regulated
expression of molecules involved in calcium transport due to that fact that it is believed
that Omega-3 LC-PUFAs could also benefit skeletal health, enhancing the uptake of Ca. The
different modulations exerted in the genetic expression profiles by both levels of PUFAs
can be associated with the impact of these nutrients on the correct development of the
skeleton during larval stages. While moderate Omega-3 levels seem to delay endochondral
ossification, an increase in the synthesis of cartilage, and inhibition of OB proliferation, the
high level seems to increase the skeletal formation rate by enhancing OB differentiation.
Furthermore, the moderate level also impacted cellular pathways differently, increasing
expression of antioxidant molecules and diminishing the expression of molecules related to
inflammatory lipid mediators. The different regulation among all these pathways can be
related to the differences in growth, skeletal formation, and incidences of skeletal anomalies
at the end of the trial. However, further studies are required to investigate if the different
modulations observed among of the genes that we selected can be effectively associated to
the onset of anomalies.

5. Conclusions

Omega-3 PUFAs are able to regulate the expression of important genes involved
in skeletal formation. Therefore, exploring the modulatory impacts exerted by different
formulations on the expressions of molecules involved in the control of skeletal forma-
tion provided new insights about how these nutritional factors are able to modulate this
process. Employing the available information about the most important molecular and
cellular pathways affected by dietary LC-PUFAs that are involved in the control of bone
metabolism, we have selected candidate genes that can be relevant in the onset of skeletal
anomalies. The results demonstrated that levels of dietary Omega-3 PUFAs are able to
impact the expression of several molecules involved in pathways that control bone-cell
differentiation, the synthesis of ECM components and cellular pathways such as calcium
metabolism, oxidative stress, or the synthesis of inflammatory mediators that also impact
bone composition and health. Among these molecules, Omega-3 inclusion seems to espe-
cially impact molecules that are involved in cartilage metabolism related to endochondral
ossification. However, a different regulation of these molecules was observed in both levels
of supplementation at 2.6% and 3.6% Omega-3 in the diet. Thus, more studies are necessary
to confirm whether the different regulations exerted in these promising genes are effectively
related to the beneficial effects associated to dietary supplementation with Omega-3 and to
ascertain the imbalance with which these molecules can be related regarding the onset of
skeletal anomalies.
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