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Illegal landfills are the source of many impacts that can alter the environment and represent a public health risk.
This study investigates their spatiotemporal distribution in two representative areas of Gran Canaria: northwest
(Zone A) and east (Zone B). Illegal landfill occurrence was simulated between 2000 and 2018, to estimate and
spatially locate the surface growth of illegal landfills based on cellular automata, cellular automata-Markov and
multiobjective land allocation models. The proliferation of illegal landfills in 2018 was simulated following the
calibration and validation of the proposed models. Models' accuracy was assessed using Kappa index and land-
scapemetrics. The cellular automata-Markovmodel had the best performance. The model simulations predicted
an increase of 52.3 ha and 81.5 ha affected by illegal landfills in Zone A and Zone B for 2018, respectively. The in-
terannual growth rate of surfaces affected by illegal landfills for the period between 2000 and 2006was 4.5% and
9.5% and between 2006 and 2012 it was 6.6% and 6.7%, for Zone A and Zone B respectively. The growth of illegal
landfills between 2000 and 2006 was higher in urban areas, construction sites, and industrial zones, and may be
closely related to the process of urban expansion linked to the real estate boom. The latterwould have a deep im-
pact on the landscape due to the proliferation of illegal construction and demolition waste. The growth rate of
illegal landfills in urban environments fell during the later period of urban expansion. Overall, simulation outputs
showed the model's ability to correctly reproduce the distribution patterns for illegal landfill proliferation. Even
though the simulated spatial location of illegal landfills was not highly accurate, the models built in this study
provide an informative tool to policy makers to aid the process creating policies for environmental protection
as well as territorial planning.
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1. Introduction

In the last 50 years, European cities have developed different mor-
phological, demographic, and socioeconomic models (Turok and
Mykhnenko, 2007), with urbanisation and urban expansion being in
many cases the major driving force and a potential source of environ-
mental impacts (Turner et al., 1990). Areas designated for residential
construction have been disproportional to declining population trends
(Chaline, 2001; Salvati and Sabbi, 2011). The rise of single-family
homes has also generalised patterns of urban sprawl (Salvati, 2013), es-
pecially in areaswith low levels of human activity that affect the conver-
sion of open spaces and natural environments (Colantoni et al., 2016).
This continuous urban expansion has generated negative impacts for
urban and environmental sustainability, particularly in Mediterranean
Europe (European Environment Agency, 2006b; Catalán et al., 2008).
It was especially notable in Spain and Greece during the 1990s and
early 2000s, with the occurrence of accelerated construction cycles
that consolidated a scattered and discontinuous model of urban expan-
sion dominated by low densities of expanding settlements (Dura-
Guimera, 2003; Chorianopoulos et al., 2010; Salvati and De Rosa,
2014). The decentralisation of inner cities and suburbanisation led to
the development of medium and low density settlements, a predomi-
nant trend in Mediterranean urban regions (Salvati et al., 2012). In
this regard, a higher rate of population growth and distribution in the
2000–2007 period was identified compared to 2008–2014; although
in the latter period there is a tendency to densify and recompact
urban spaces (Salvati et al., 2016, 2018).

Unlike Italian or Greek cities, Spanish cities were more exposed to
the housing bubble (Cuadrado-Ciuraneta et al., 2017). Around 600,000
homes were built annually from 2000 to 2006 in Spain (INE, 2017b),
30,000 in the Canary Islands (see Supplementary material: Fig. 1s).
Home construction was lower but sustained during the period from
2006 to 2012, with 167,000 and 9000 homes built in Spain and the Ca-
nary Islands respectively (INE, 2017b). According to the European Envi-
ronment Agency (2006b), in Spain various factors were decisive for the
increase of urban areas during the period of 2000 and 2006: i) economic
growth based on sectors with high demand for land consumption, in-
cluding construction, transportation and tourism; ii) higher domestic
and foreign demand for secondhomes driven by higher living standards
along with favourable mortgages with low interest rates, leading to an
increase in urban speculation; and iii) substantial investment in public
transportation and infrastructures by public authorities in the last two
decades (Hortas-Rico, 2014). The ‘housing bubble’, as a precursor of
land cover changes, strongly impacted the natural environment and
the landscape (Potschin and Haines-Young, 2006). The high amount of
cadastral parcel rezoning from rural to urban caused important changes
in the production system, leading to a process of farm and pasture aban-
donment ahead of expanding tourismand urbanisation (Balabanis et al.,
2000; Bonet, 2004; Burke and Thornes, 2004; Sluiter andDe Jong, 2007).
New urban landscapes were generated as a result of increasing urban
population settlement in agricultural and forest areas and along coasts
(Salvati et al., 2012). The growth of urban areas favoured the prolifera-
tion of paved land, leading to changes in ground cover composition and
a subsequent loss of biodiversity in semi-natural areas, agricultural
zones, and suburban terrain (Bajocco et al., 2012; Hrenovic et al.,
2017). The European Commission reported that soil degradation, refer-
ring to limited humidity infiltration in the ground, could cost up to US
$56 billion per year (European Environment Agency, 2006b). Even
though the impacts associated to urban expansion and their influence
on losses of environmental assets have been extensively studied
(Marull et al., 2010), the specific impacts associated towaste generation
and its effect on dynamics of landscape changemay have not been stud-
ied until recently (Quesada-Ruiz et al., 2019). Those specific impacts
may be associated with processes of landscape conversion resulting
from mining and extraction activities (Quesada-Ruiz et al., 2018;
Quesada-Ruiz et al., 2019). Furthermore, the demolition of old buildings
to generate new construction, the suspension of urban projects, and the
increase of interior renovationworkmayhave contributed to the gener-
ation and illegal deposition of construction and demolitionwaste in ille-
gal landfills (ILs) (Quesada et al., 2013; Díaz-Parra and Romano, 2016).
Considering the aforementioned, a better understanding of the specific
components that influence IL patterns in a region could improve the ef-
fectiveness of waste management and reduce the impacts derived from
their appearance (Tasaki et al., 2007; Biotto et al., 2009; Glanville and
Chang, 2015a; Quesada-Ruiz et al., 2019).

Until now, the generation of waste and ILs has been approached
using techniques for locating affected areas such as: i) remote sensing
(Silvestri and Omri, 2008; Uricchio et al., 2010; Glanville and Chang,
2015b; Mohee et al., 2015); ii) identifying the main physical and socio-
economics drivers of the IL occurrence (Bridges et al., 2000; Tasaki,
2004; Santos et al., 2006; Biotto et al., 2009; Ichinose and Yamamoto,
2011; Jordá-Borrell et al., 2014; Quesada-Ruiz et al., 2018); and iii) pre-
diction of potential areas of IL occurrence (Tasaki et al., 2007; Biotto
et al., 2009; Chu et al., 2013; Glanville and Chang, 2015a; Lucendo-
Monedero et al., 2015; Quesada-Ruiz et al., 2019). These respective
studies agree on the determinant factors: identification of population,
accessibility of communication routes, and distance to elements of in-
terest such as distance to industrial zones and urban areas (Quesada-
Ruiz et al., 2019). Yet none of the studies cited above considered the
possible implications of landuse changes onwaste generation and IL oc-
currence by analysing their spatial and temporal aspect. In a previous
study conducted on the islands of Gran Canaria (GC) and La Palma it
was found that 52% and 43% of the ILs mostly contained construction
and demolition waste (Quesada-Ruiz et al., 2018); hence, the impor-
tance of understanding the relationship between IL proliferation and
the land-use changes caused byphenomena such as the housingbubble.

This paper evaluates novel methodologies, such as cellular automata
– Markov (CAM) and multi-objective land allocation (MOLA) (see
Section 2.2), to study the interactions of IL occurrence with the natural
and human environment. Particularly, this study examines the impact
of land-use changes and the housing bubble on IL proliferation pro-
cesses in GC. A series of partial objectives were defined as follows:
i) to analyse the occurrence of ILs for the periods 2000–2006 and
2006–2012; ii) to evaluate different methodological approaches for
the modelling and simulation of IL proliferation such as CAM, applying
multicriteria analysis and logistic regression, and land change modeller
with MOLA, applying logistic regression and neuronal networks; iii) to
asses and discuss the accuracy of the simulation models through the
use of Kappa indices, Quantity Disagreement (QD) and Allocation Dis-
agreement (AD) indices, and two indices of landscape metrics; and iv)
to simulate the extent of areas affected by ILs in 2018. In view of the ab-
sence of 2018 orthophotos and considering a fixed range period of
6 years between training and validation and between validation and
prediction, we have opted to select 2018 as a prediction year, but with
more recent validation data it would be possible estimate the IL occur-
rence for the future.

2. Methods and materials

2.1. Complex systems theory to study land use changes

Land-use change processes are governed bymultiple factors such as:
uses of land; responses to social, economic, political, climatic and eco-
logical changes; spatial and temporal scales in the causes of and re-
sponses to change; connections in social and geographical space; and
ties between people and land (Geist et al., 2006). Causes and conse-
quences of land-use change depend on the social, geographic and his-
torical context. All these processes and the complexities emerging
therefrom can be studied by the development and implementation of
integrated models with the goal of improving territorial planning. Con-
sidering that real-life experiments in land-use systems are difficult,
computer models can be used as a computational laboratory in which
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the hypotheses about the processes of land-use change are tested
(Verburg et al., 2015). The science of land-use cover and change (LUCC)
has found in computer models a tool to study complex processes that
take place at different spatial and temporal scales (Parker et al., 2003;
Green and Sadedin, 2005; Van Schrojenstein Lantman et al., 2011). Al-
though a large amount of research presents methods and applications
to study LUCC, to the authors' knowledge, there are no scientific publica-
tions that approach the matter of illegal landfills. For over two decades,
the study of LUCC has found through complex systems theory a way to
conceptualise and analyse the dynamic processes involved in land use
transformation (Irwin and Geoghegan, 2001; Parker et al., 2003;
Verburg, 2006; Santé et al., 2010; Van Schrojenstein Lantman et al.,
2011; Yang et al., 2016; Mas et al., 2018; Saeedi, 2018). Complex systems
theory incorporates a number of characteristics inherent to land-use
change processes, for example self-organisation, emergence, path-
dependence and feedbacks (O'Sullivan, 2004; Verburg, 2006). Likewise,
complex systems theory takes into account the non-linear characteristics
of processes and feedbackswith the environment andwithin the environ-
ment (Torrens and Benenson, 2005; Batty, 2009; Gaudreau et al., 2016)
allowing the design and exploration of scenarios to better understand
the dynamics and interactions inside a system (Gaudreau et al., 2016;
Tiné et al., 2018). Therefore, the use of complex systems modelling ap-
proaches permits an explicit focus on system feedbacks that result in an
adequate description of land-use dynamics (Geist et al., 2006; Verburg,
2006; Verburg et al., 2015). In view of the goals of this study, the transi-
tions fromdifferent types of LUC to ILswere considered as a complex pro-
cesswhere there aremultiple relationships between the location of a new
IL and land-use changes in spaces close to new ILs. Such changes in land
use correspond in turn to processes in the change of production model
(e.g. agrarian activity) or in the changes of model of territorial or city or-
ganisation (e.g. transition from agrarian uses to urban and residential
uses). In this sense, the proliferation and location of ILsmay be a complex
process due to the link between the generation and deposit of waste and
the system for territorial organisation of land uses. This consideration of
ILs therefore transcends the mere analysis of their specific placement
(Cilliers, 1998) and aims to address the study of the dependence relation-
ships of ILs and land uses.

2.2. Complex systems modelling: cellular automata and hybrid approaches

Complex behaviours can be replicated byusing simulation approaches
that allow the integration of stochasticity and spatiotemporal fluctua-
tions. Cellular automata (CA) models are one such approach, and they
have beenwidely used tomimic and study land-use cover and change dy-
namics, due to their capability to reproduce non-linear processes
(Wolfram, 1984; White and Engelen, 2000; Engelen, 2002; Vliet et al.,
2009). CA were developed by the mathematicians Alan Turing and John
von Neumann in the 1940s (Batty, 2005; Langlois, 2008). These ap-
proaches have been widely used to create simulations of future scenarios
(Langlois andPhipps, 1997; Engelen, 2002; Syphard et al., 2005;Di Traglia
et al., 2011; Yu et al., 2011 Liu et al., 2014), to study land-use changes
(Pontius et al., 2004; Nurwanda et al., 2016; Feng and Tong, 2017), as
well as for understanding complex processes that have high levels of un-
certainty, such as the appearance of ILs. CAs are composed by a matrix of
cells that represent the spatial environment under study. Each cell has a
state or value that can change in time depending on the previous state
and according to the set of rules applied at a discrete timewithin a specific
neighbourhood (Green and Sadedin, 2005). The transition rules are thus
applied homogeneously to all cells for each discreet time step. Although
powerful, one of themain issues of using CA to simulate changes is the de-
terministic nature of the rule creation. To overcome this limitation, alter-
native hybrid approaches can be implemented. The combination of CA
with a Markov decision process adds stochasticity to the model, while
the combinationof CAwith Logistic Regression (LR), orMulticriteria Anal-
ysis (MA) provide an alternative way to eliminate the determinism in
transition rule creation.
As subtypes of CA models, cellular automata – Markov (CAM) and
multi-objective land allocation (MOLA) enable the analysis of changes
in terrestrial covers, detecting and locating their future tendencies for
change (Pontius et al., 2004). CAM is a combination between CA and
Markov chains (MCs). CAM recognises the spatial contiguity of each
cell as well as its spatial distribution probability based on MC analysis.
This allows a transition area matrix and a transition probability matrix
to be obtained for a certain time interval. The former enables total
area (in pixels) to be obtained, which includes changes between any
land cover class pair. The latter indicates the probability of change for
each land cover class determined for all other categories. Hence, use of
the transition probabilitymatrixmakes it possible to obtain information
about the influence of neighbouring cells on those transitions (Eastman,
2015). Both matrixes in CAM can be used to implicitly insert the neces-
sary suitability maps to develop a simulation. Suitability maps in CAM
can be generated by using LR or MA approaches. On the other hand,
themulti-objective land allocation (MOLA) algorithm can be used to as-
sign new land-use transitions and predict changes (Clark Labs, 2016).
MOLA allows the use of suitability maps based on LR and Multi-Layer
Perceptron Artificial Neural Network (ANN) to help divide the amount
of change predicted byMC in the different land cover classes. The parti-
tion and assignment of land covers in MOLA is an iterative process,
which also allows unequal weighting of the different sub-objectives
(Eastmanet al., 1995; Eastman, 2015).MOLA supplies a procedure to re-
solve multi-object land allocation problems for cases with conflicting
objectives (Hajehforooshnia et al., 2011). It also determines a trade-off
that attempts tomaximise suitability of lands for each objectivewith re-
spect to their assigned weights (Hajehforooshnia et al., 2011). MOLA
thus permits conversion of the simulation into a dynamic process, by
recalculating in each time step (discrete simulation) certain conditions
such as themodification of distances to land uses or to protected spaces.
MOLA therefore includes not just dynamic variables but also recognises
the changes produced in the characteristics.

2.3. Study area

This paper focuses on the north-western (Zone A) and south-eastern
(Zone B) sectors of Gran Canaria (GC), one of the Canary Islands, coincid-
ing with the areas most affected by ILs (Fig. 1). The Canary Islands com-
prise one of Spain's 17 autonomous regions and are recognised as an
outermost region of the European Union. The Canary Islands comprise a
small and fragmented territory where space is a scarce resource
(Quesada-Ruiz et al., 2019). This limits the availability of land to set up
authorised landfills and other management infrastructures (GOBCAN,
2008, 2015). The distance to the principal centres for processing and val-
uing collected material increases costs and makes it difficult to manage
whatever waste cannot be processed in the islands. However, GC is
home to two environmental complexes, two transfer plants, and eight
waste facilities. Despite the availability of these facilities for waste man-
agement and processing, they are not sufficient to meet the deposit de-
mand (Quesada-Ruiz et al., 2019). On the other hand, it has been
verified that the island supports a large number of illegal landfills, as re-
ported by the European Union and disclosed in other studies (Quesada-
Ruiz et al., 2018; Quesada-Ruiz et al., 2019).

GC has an area of 1560 km2, being the third largest of the Canary
islands. GC has been catalogued as a World Biosphere Reserve by
UNESCO, covering 40% of its territory. GC was the island chain's second
most populated island in 2016 (845,195 inhabitants), after Tenerife
(892,111 inhabitants) (INE, 2016a). GC's population density is very
high compared to the rest of Spain: 543.45 inhab./km2 versus 91.95
inhab./km2. Its population is concentrated in coastal areas, where its
capital is likewise situated, while the interior is less populated. The Ca-
nary Islands are the eighth-ranking Spanish region in terms of gross do-
mestic product. It is nevertheless one of the regions with the highest
unemployment rates (25%; INE, 2016a) and is the antepenultimate re-
gion in terms of least income per capita (€19,900; INE, 2016a). The



Fig. 1. Study sites on Gran Canaria island.

Table 1
Characteristics in models.

Characteristic Short
name

Unit of
measure

Zone

Altitude ALTITU m A, B
Slope SLOPE % A, B
Distance to coastline E_COAS m A, B
Distance to cliff E_CLIFF m A, B
Distance to natural protected areas E_PRAR m A, B
Distance to highways E_HIGH m B
Distance to roads E_CARR m A, B
Distance to ways E_WAYS m A, B
Distance to forest areas E_FOAR m A, B
Distance to continuous urban fabric E_CUAR m A, B
Distance to discontinuous urban fabric E_DUAR m A, B
Distance to industrial areas E_INAR m A, B
Distance to construction sites E_COSI m A, B
Distance to dry agricultural areas E_DAAR m A, B
Distance to irrigated agricultural areas E_IAAR m A, B
Distance to grass areas E_GAAR m A, B
Distance to transitional woodland-shrub areas E_TSAR m A, B
Distance to spaces with sparse vegetation or without
vegetation

E_WVAR m A, B
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major economic driver of GC's economic activity is tourism (Cruz et al.,
2011), which has given a strong boost to the construction sector. Tour-
ismonGC is basically beach-related (Cruz et al., 2011) and concentrated
in the southern part of the island, which received 4,223,679 visitors in
2016 (INE, 2016b). Trade activity is likewise important on GC, particu-
larly around the port area. There is an industrial sector in south-
eastern GC, focusing on agro-food production, light manufacturing,
and cement (Hernández Torres, 2003; Quesada-Ruiz et al., 2019). Agri-
culture remains important in some north-eastern and eastern districts
of GC, though less so than in years past. Notable is the intensively irri-
gated cultivation of bananas and tomatoes in greenhouses for export
(Morales-Matos and Macias-Hernández, 2003). The general exported
goods of the region totalled 3643 M (€), representing the 8.24% of
44,206 M (€) of the regional GDP (INE, 2017a).

2.4. Datasets

The location of ILs was obtained by means of photointerpretation of
orthophotos with 0.5 m spatial resolution from the years 2000, 2006
and 2012. A total of 6556 surfaces with waste in the north-western and
south-eastern district of GC for 2000, 2006, and2012were digitized. Loca-
tionswith an area greater than 1000m2were categorized as ILs, resulting
in 2129 ILs (see Supplementary material: Fig. 2s). The database for each
area was complemented with physiographic and socioeconomic charac-
teristics as well as characteristics derived from the analysis of land uses.
Each group of characteristics was extracted from datasets available from
the “Instituto Geográfico Nacional” of the Spanish Government and the
Corine Land Cover program. Due to the lack of disaggregated data for
each period, socioeconomic characteristics were indirectly obtained by
the application of Euclidean distance (ED) criteria between the location
of the IL and the features of interest such as distance to urban areas, agri-
cultural area or industrial areas from the rest of the territory, (Tasaki et al.,
2007; Biotto et al., 2009; Jordá-Borrell et al., 2014). Several characteristics
were considered as time invariant, such as Euclidean distances to ele-
ments of interest such as the coast, protected natural spaces, ravines,
and road network. Additionally, physiographic characteristics such as
the terrain and slope were also considered invariant over time. Further-
more, the dynamic characteristics such as distances to LUC were com-
puted for each period using the Corine Land Cover maps (European
Environment Agency, 2002, 2006a, 2006b, 2012). Euclidian distances to
urban, industrial and construction areas and to agricultural land were
computed considering the cell centre (Table 1). Each characteristic was
standardised, rasterised and resampled to a spatial resolution of 10 m
(Quesada-Ruiz et al., 2018; Quesada-Ruiz et al., 2019), thus matching
the spatial resolution of the original data and allowing us to recognise sig-
nificant extensions ofwaste deposits. The characteristic spacewas created
based on expert knowledge, previous research works (Quesada-Ruiz
et al., 2018; Quesada-Ruiz et al., 2019), review of the literature, and inter-
views with stakeholders during 2016 and 2017.
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2.5. Model implementation

The modelling of IL occurrence was based on the generation of tran-
sition rules, the simulation of future scenarios and validation of the pre-
dicted maps. The modelling process was in turn sustained by the use of
synchronic data series that ensured: i) equal time intervals between
study periods; ii) equal number of characteristics per period; iii) values
specific to the characteristics for each period. This enabled the study of
the dynamic behaviour of the characteristics and generation of the tran-
sition rules. The latter encompassed and described the set of decisions
that direct the change of values of the characteristics involved in devel-
opment of a phenomenon for a given time interval (Nakicenovic and
Swart, 2000; Peterson, 2003; Swart et al., 2004). Additionally, transi-
tions rules enabled the application of increments to the characteristics'
values and simulation of the dynamic changes of the systems (Lambin
andMeyfroidt, 2010). The generation of transition rules required an ini-
tial period (t0),final period (t1) and validation period (t2). The transition
rules between t0 and t1 were used to validate the degree of success in
simulating the behaviour of the phenomenon studied in t2 and the tran-
sition rules between t1 and t2 were used to obtain the simulation of the
Fig. 2. The flowchart describes the process of modelling IL proliferation: database
future scenario. The transition rule generation procedure between CAM
and MOLA were different. In CAM, the transition rules were obtained
based on the grouping of transition potential maps for the periods t0
and t1. For MOLA, the transition rules related the involvement of the
characteristics in t0 and t1 to the change of values for a same pixel,
using a single transition potential map for the simulation.

Four models were generated (see Supplementary material: Table 1s):
i) CAM with LR (Model 1); ii) CAM with MCE (Model 2); iii) MOLA with
LR (Model 3); and iv) MOLA with ANN (Model 4). The spatiotemporal
modelling of the ILs was divided into three steps for the four models
(Fig. 2): calibration, validation and generation of future scenarios (Ngo
and See, 2012). All the models used the consecutive periods of
2000–2006 for the calibration and the periods 2006–2012 for the simula-
tion of 2018.

2.6. Model calibration

The calibration ofModels 1 and 2was based on the IL occurrence po-
tential analyses that established the relationship between the drivers
and IL occurrence for the years 2000 and 2006. Transition rules were
creation, calibration, validation and simulation in the future scenario of 2018.
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thus generated based on the consecutive set of IL occurrence potential
maps for each year. Bothmodels used proximity filters of 5 × 5 cells, en-
abling homogenisation of the simulated map by spatial aggregation,
thereby avoiding the pixelated aspect. Six iterations of cellular automata
model were applied, one for each year. The transition potential maps
provide the changes of the characteristics' values between the years of
each period.

The results of all simulation models were the soft prediction models
or maps of vulnerability to change, and the model of prediction (Clark
Labs, 2016). The soft prediction models selected the cells with highest
potential for IL occurrence in the case of Models 1 and 2, and the pixels
with greater relationship between the transition of the values of the
characteristics considered and IL occurrence in Models 3 and 4. Finally,
themodel of prediction, as a consequence of applying the soft prediction
models, provides the result of the simulation for the future.

Parallel to the calibration and simulation phase, the transition prob-
abilitymatrixwas calculated forModel 1 andModel 2 and the transition
area matrix for Model 3 and Model 4. The former were generated to
learn the probabilities of spatial changes from non-affected zones to
IL-affected zones, considering the influence of the changes produced
in covers adjacent to the zones of positive IL occurrence. Conversely,
the latter only included the probability of change of the pixel values
without taking the values of the closest neighbours into account. Also,
to facilitate future policies for environmental remediation of ILs, the sur-
face (ha) affected by ILs was estimated for all the models using MC
(Metropolis and Ulam, 1949; Coquillard and Hill, 1997).

2.7. Model validation

The accuracy of simulation outputs and generalisation error of the
models were evaluated by comparing the predicted changes versus real
changes in the study area (Tiné et al., 2018). The validation of themodels
was carried out by running a simulation of illegal landfill occurrence
changes from 2000 to 2012, and comparing its output with the observed
change from the 2000 to 2012 illegal landfill occurrence samples. The ac-
curacy of the predictive models were validated by considering the Kappa
Kstandard, Kno and Klocation indices, the Quantity Disagreement (QD) andAl-
locationDisagreement (AD) indices, and the indices for landscapemetrics
– the Agglomeration Index (AI) and Path Cohesion Index (PCI). The Kappa
indices defined by Pontius (2000) are linear functions and have values on
a 0 to 1 scale, where 1 indicates perfect agreement and 0 total disagree-
ment. Kstandard measures the ability of a simulation to achieve a perfect
classification given a fixed marginal distribution of cells in a category in
the simulation map (Cohen, 1960). Kno shows the proportion of agree-
ment without specifying the location. Klocation is a spatial precision mea-
surement that indicates the correct assignment of values. The Kappa
indices were applied to both categories, the presence of IL occurrence
and IL absence. The models' predictive ability was further evaluated
based on exclusive analysis of positive IL occurrence using the fuzzy
Kappa statistic. The models' precision was thus considered to be fair for
values between 0.41 and 0.60, good for values in the interval from 0.61
and 0.8 and very good for values above 0.80 (Watson and Petrie, 2010).
Due to the models' high success rates in the Kappa indices, resulting
from the majority presence of the IL absence class, and to the low results
in the Klocation indicator of the fuzzy Kappa statistics, alternative indicators
were proposed: QD, AD, AI and PCI. The first twowere proposed as an al-
ternative to theKappa indices (Pontius andMillones, 2011). TheQD index
measured the quantity of disagreement between numbers of cells in each
category without taking spatial location into account, while the AD index
evaluated the quantity of disagreement between the reference map and
the comparison map with respect to the spatial location of cells in each
category (Tiné et al., 2018). The QD and AD indices are calculated using
a contingency table for categoric variables and vary between 0 and 1, re-
spectively indicating perfect agreement and perfect disagreement. Land-
scape metrics were also obtained to indicate the models' ability to
reproduce similar patterns of dispersed or concentrated IL proliferation.
Metrics for influence and connectivity appropriate for the study of land-
scape fragmentation were thus calculated, such as AI and PCI
(McGarigal and Marks, 1995). Two different metrics of landscape frag-
mentation (Agglomeration Index and Path Cohesion Index), which report
for influence and connectivity, were calculated within the software envi-
ronment Fragstats v4.2.1 (McGarigal andMarks, 1995). The former shows
the general agglomeration of the ILs, i.e. a tendency to occur in large, ag-
gregate or dispersed distributions. These indicators vary from 0 to 1; AI
values close to 0 indicate no adjacency between ILs, i.e. maximum disag-
gregation, while AI values close to 1 consist of a continuous pattern. PCI
refers to the degree to which the ILs can attract or repel the presence of
new ILs around existing ones. PCI values close to 0 would indicate that
the proportion of landscape composedby the objective class (IL presence)
is transformed and increasingly subdivided and is less physically con-
nected. PCI thus quantifies the connectivity between ILs as perceived by
the bodies dispersed in binary landscapes. Although the aim of using
the landscape metrics was to compare similarities between real IL pat-
terns and simulated ones, they were also applied separately to all the
study years (2000, 2006 and 2012) to evaluate the IL dispersion patterns
(Tiné et al., 2018). The choice of best simulation model depended on the
consideration of all statistics previously examined and on results obtained
by gains and losses of the simulated future scenarios.

3. Results and discussion

3.1. Analysis of IL growth according to land uses

The annual growth rate of surface affected by ILs for the period be-
tween 2000 and 2006 was 4.5% and 9.5% in Zone A and Zone B, respec-
tively. For the period between 2006 and 2012, the annual growth rate
was 6.6% and 6.7%. Those changes represent an increase in absolute
terms in the year 2006 of 20.5 ha and 97.8 ha, and in 2012 of 97.8 ha
and 111.6 ha for Zone A and Zone B, respectively (see Supplementary
material: Table 2s). The ILs of the two zones are mainly located in
agro-livestock areas and areas of sparse vegetation, away from urban
areas and where there is less monitoring and control. The highest
growths nevertheless occurred in areas close to urban uses, construc-
tion zones, and industrial zones. Interannual growth of ILs in a radius
of 250 m from urban areas for the period between 2000 and 2006 was
21.1% and 13.1% in Zone A and Zone B, respectively. For the period be-
tween 2006 and 2012 that IL growthwas less in both zones, with an in-
terannual growth rate of 9.4% and 7.7% in Zone A and Zone B,
respectively (see Supplementary material: Tables 3s and 4s). Interan-
nual IL growth in a radius of 250 m from construction zones between
2000 and 2006 was 14.0% in Zone A and 23.3% in Zone B. That IL growth
was much less between 2006 and 2012, with an interannual growth
rate of 4.1% in Zone A and 6.9% in Zone B. The highest IL growth rates
in urban areas and construction zones coincided with the period of
most urban growth amid the real estate boom. Even though the abso-
lute increment of IL-affected surface less than 250 m from industrial
zones was negligible for both zones, high IL surface growth rates oc-
curred between 2000 and 2006, with 47.3% in Zone A and 16.9% in
Zone B. That growth could be associated to the creation of new indus-
trial areas on the outskirts of built-up areas. During the period between
2006 and 2012, the IL surface growth rate less than 250 m from indus-
trial zones fell to 15.7% in Zone A and 10.1% in Zone B (see Supplemen-
tary material: Tables 5s and 6s). Fig. 3s in Supplementary material
shows the gains or losses of land affected by ILs for each period. The
gainsweremainly located along the coast of both zones,mainly in aban-
doned agricultural spaces and unfinished urban development projects.
Also, the new ILs of the 2006 and 2012 periods were located in spaces
close to old landfills; those spaces may have acted as a factor of attrac-
tion. Contrary to this, the losses do not present a specific pattern; they
may occur due to land clearing or new uses such as residential housing.

As far as the authors know, there is no other example, at least in
Europe, in which home construction has reached the levels of Spain



Table 2
Landscape configuration validation results.

Zone Map PCI AI

A Reference 86.386 79.544
Model 1 87.248 81.279
Model 2 89.427 86.517
Model 3 88.823 78.576
Model 4 90.232 83.982

B Reference 85.365 77.290
Model 1 90.804 83.576
Model 2 90.831 87.219
Model 3 93.568 84.261
Model 4 91.861 85.564
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(Fernández-Tabales and Cruz, 2013; Cruz, 2014; Quesada-Ruiz et al.,
2019). This problem is aggravated by joint development of the housing
market and the tourist market in the case of the Canary archipelago
(García-Cruz, 2016; Quesada-Ruiz et al., 2019). It was thus observed
that the growth rate of ILs close to urban environments was higher dur-
ing the period of more urban expansion before the 2008 economic crisis
(Quesada et al., 2013) and Law 8/2007 on Land (Gobierno de España,
2007). Furthermore, the concentration of population around consoli-
dated built-up areas due to the population shift from marginal metro-
politan areas to the periphery may have driven the urban expansion
process and therefore the generation of waste (Salvati et al., 2016). In
addition, urban expansion and the decline of agrarian activity along
the coast may have enhanced environmental deterioration, as it was
the case for other regions of Europe such as the island of Sardinia
(Bajocco et al., 2012), the Roman coast (Salvati et al., 2014), Greece
(Hadjimichalis, 2014; Alexandri and Janoschka, 2017) and Catalonia
(Parcerisas et al., 2012), where the distance to the coast has been iden-
tified as an important factor of land use change. Both processes may
have favoured the appearance of new peripheral urban uses with pres-
ence in low-density residential areas, roads and new infrastructures
(Parcerisas et al., 2012). Indeed, municipal administrations may have
encouraged the urban expansion process, aiding urban developers
with tax benefits and the provision of goods and services. Municipal
budgets may also have become dependent on income stemming from
licences for construction activity during this phase (Hortas-Rico,
2014). The supply and distribution of services, infrastructures and ame-
nities to citizens, mainly buildings for residential use, may thus have
changed as demand was exceeded. That may have brought many con-
struction projects to a halt, with a consequent accumulation and gener-
ation of waste. At the same time environmental impacts not foreseen by
municipal administrations occurred, which may have their root in the
urban expansion.

3.2. Validation results

The simulations' preciseness was very high with respect to the
Kappa indices (see Supplementary material: Table 7s). All the simula-
tions indicated nearly perfect agreement for Kstandard, Kno and Klocation,
with values very close to 1. The high values of the Kno Index would
thus show that our simulation correctly specifies the quantity of pixels
for each class of simulated maps with the reference maps of each
zone. The Klocation index also shows high agreement regarding
localisation of the classes. The Kappa indices used may nevertheless
not be appropriate for validating alone the simulation models due to
the dominant presence of one category (Watson and Petrie, 2010), in
our case IL absence. In addition, these problems specific to the validation
of simulation models have been extensively dealt with and are widely
debated in the scientific community (Pontius et al., 2004; Wang and
Mountrakis, 2011; Mas et al., 2012; Sinha and Kumar, 2013). The QD
and AD analysis proposed by Pontius and Millones (2011) may accord-
ingly be a good alternative. However, the existence of a majority cate-
gory does produce high agreement between the covers of the
simulated maps and the reference maps for the indices, as occurs with
the Kappa indices. The use of indicators alternative to Kappa and others
associated to landscapemetricsmay therefore help assess the validity of
ourmodels. In this regard, the use of a variant of the Kappa indices, such
as fuzzy Kappa indices solely applied to one category (IL presence)
might show different results (see Supplementary material: Table 8s).
However, the preciseness fell sharply until obtaining models with fair
or good precision. Among those models, the CAM simulation models
had a higher degree of success compared to theMOLAmodels. The sim-
ulations of Model 1 (kfuzzy: 0.61) and Model 2 (kfuzzy: 0.64) were the
ones with best results for Zone A and Zone B, respectively (see Supple-
mentary material: Table 8s). The results nevertheless continue to be
close to 1 for the kno statistic in all the simulated maps, showing their
good ability to quantify the total affected surface in the future scenario
of 2012 (see Supplementary material: Table 8s). We could therefore
state that all the models are able to quantify the surface affected by ILs
in a future scenario. Despite this, the simulations of Model 3 and
Model 4 exaggerate both the gains of surfaces affected by new ILs and
the loss of IL-affected surfaces (see Table 3). With a view to planning,
one should not overestimate IL presence in order to make the most of
efforts to track and monitor areas potentially affected by ILs. On the
other hand, the models had a very low capacity to correctly situate the
new areas affected by ILs, as reflected in results of the klocation statistic.
This may generally be due to a certain randomisation of the phenome-
non, the need to include new characteristics that better describe the
ILs' behaviour, or to an excessive spatial scale of detail (10 m in the
case of this study).

The indicators associated to landscape metrics, AI and PCI, showed
the simulationmodels' ability to reproduce the IL proliferation distribu-
tion patterns similarly to the reference map. Those metrics may thus be
an alternative for validating the IL simulation models, as they are appli-
cable to a single landscape category, in our case the presence of ILs.
Table 2 summarises the PCI and AI values exclusively to the ‘IL presence’
category; there are slight differences between the simulation models
and the reference maps for each study zone. High cohesion and spatial
aggregation of the ILs was accordingly shown. Moreover, the analysis
of the PCI andAI indices for all studyperiods showed that the ILs present
a connectivity and aggregation among themselves which gradually in-
creases in each of the periods (see Supplementary material: Table 9).
The IL occurrence zonesmay thus by themselves be a focus of attraction
for new ILs. In this sense, the Model 1 simulations showed more agree-
ment for the indices in both zones. The simulations made for the year
2012 (see Supplementary material: Figs. 4s and 5s) and the simulations
in the future scenario of 2018 (Fig. 3; and Fig. 6s in Supplementary ma-
terial) show the mapping results of the different simulation models for
each zone. The choice of the CAM models based on LR for both zones
was deemed adequate. Both CAM models showed the greatest agree-
ment in the Kappa statistics, Kfuzzy, and high agreement with the land-
scape metrics. They were also the models that least overestimated the
gains and losses.

In both Zone A and Zone B the impact of the physiographic terrain
features (e.g. slope and height), the closeness to built-up areas, and ag-
ricultural areas as well as the distance to communication routes were
considered in the analyses of potential for IL occurrence for all periods.
Although significant differences were seen in the quantification granted
to the associated variables in the land uses for each period (e.g. dis-
tances to urban areas and distances to agricultural areas), as reflected
in the LR equations (see Supplementary material: Tables 10s and 11s).
The Model 1 simulation predicted increases of 52.3 ha in Zone A and
81.5 ha in Zone B affected by ILs for the year 2018 (Table 3). Fig. 4 and
Fig. 7s in Supplementary material show the maps of gains and losses
for the 2018 period. The good gain prediction ability of the simulation
models based on MOLA (Table 3) was observed, though not for losses;
it could not consider or overestimate them. The selected simulation
models could thus allow better delimitation of the possible spaces af-
fected by ILs, facilitating monitoring and oversight of the territory.



Fig. 3. 2018 illegal landfill simulationmodel for eastern Gran Canaria. a) Logistic regression CA_Markovmodel; b)multicriteria evaluation CA_Markovmodel; c) logistic regressionMOLA;
d) neural network MOLA.
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3.3. Illegal landfill simulation models and land cover changes

The transition rules obtained using the suitability analyses and their
respective set of transition potential maps reflect the influence of the
characteristicsmost associated to the evolution of IL occurrence through
time. All the simulation models also showed very similar results in the
delimitation of areas with higher IL potential for the respective study
periods. The influence of the coastal margin and the proximity to
urban areaswere notable drivers in the time evolution of the ILs, similar
Table 3
Gains and losses between 2012 illegal landfill sampling and 2018 illegal landfill
simulation.

Zone Model Gains Losses Differential

A 1 55.280 2.960 52.320
2 59.770 7.450 52.320
3 88.710 0.000 88.710
4 88.630 0.000 88.630

B 1 109.470 27.930 81.540
2 109.470 27.930 81.540
3 191.580 170.800 20.780
4 174.430 0.000 174.430
to studies focusing on spatial characterisation (Quesada-Ruiz et al.,
2018; Quesada-Ruiz et al., 2019). The areas with the highest potential
for IL occurrence were also located on coastal margins. This exposure
of coastal areas to landfilling may entail implications for touristic
image and environmental quality. Furthermore, the coastal areas situ-
ated close to agricultural areas, industrial areas, urban settlements,
and communication routes were particularly affected (Quesada-Ruiz
et al., 2018; Quesada-Ruiz et al., 2019). The simulation models hence
showed the influence of the changes in the land-use types with respect
to the delimitation of the potential areas of both zones. The abandon-
ment of consolidated agricultural areas, especially those associated
with intensive greenhouse agriculture in both zones, could be related
to the relative increase of the potential for occurrence in agricultural
and less urbanised environments. Specific strategies would therefore
be required, complementary to the monitoring of IL occurrence, to pre-
vent the occurrence of new ILs in those spaces. It may also be necessary
to address unused agricultural plots relatively accessible to built-up
areas and main communication routes, as they may be attractive sites
for landfilling. Simulation Models 1 and 3 of Zone B demonstrate this
question, as there is a relative increase of IL occurrence potential for
those spaces, probably due to the substantial decline in agricultural ac-
tivity during the period between2006 and 2012 (Martín-Fernández and
Martín-Martín, 2016). It was nevertheless seen how proximity to areas



Fig. 4.Gains and losses 2018. Illegal landfills – simulatedmodel for easternGran Canaria. a) Logistic regression CA_Markovmodel; b)multicriteria evaluation CA_Markovmodel; c) logistic
regression Land Change Model; d) neural network Land Change Model.
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with denser construction of artificial surfaces may be highly important
for IL proliferation, especially those associated with residential uses,
this has been corroborated in previous empirical studies (Quesada-
Ruiz et al., 2018; Quesada-Ruiz et al., 2019). The presence of new
urban developments or unfinished urban spaces might thus foment
the potential area of IL occurrence. This influence was reflected in the
derived transition maps of the year 2006 (Fig. 5; and Fig. 8s in Supple-
mentary material), one of the most important during the real estate
boom. The transition from agricultural land and the appearance of
new industrial areas may also have encouraged urban expansion and
the areas of potential IL occurrence.

Analysis by zones enables observation that in Zone A, Model 1 (see
Supplementary material: Fig. 8sA) indicated coastal spaces and zones
close to urban areas as placeswith higher IL potential.Model 2 (see Sup-
plementary material: Fig. 8sB) reduced the relative occurrence of
coastal areas in favour of the interior zones. The transition potential
maps obtained in Model 3 (see Supplementary material: Fig. 8sC) and
Model 4 (see Supplementary material: Fig. 8sD) highlighted a greater
influence of the terrain's relief characteristics, showing a higher proba-
bility of occurrence in interior ravines and less steep areas. In Zone B
the transition potential maps obtained in Model 1 (Fig. 5A) and Model
2 (Fig. 5B), along with the transition potential maps obtained in
MOLA, Model 3 (Fig. 5C) and Model 4 (Fig. 5D), indicated higher IL
occurrence in areas close to industrial areas and agricultural zones.
Models 2 and 4 nevertheless showed higher occurrence potential
along the entire coastal margin in Zone B for all periods. The differences
in themodels' resultsmay have their origin in the application of the sta-
tistical techniques used to generate the transition potentialmaps. In this
regard, Models 1 and 3 based on LR allowed control of the characteris-
tics entered by the user, as the respective involvement throughout the
process could be known. The same does not happen with Model 4
based on NN, because the selection of drivers is based on a black-
box model, preventing knowledge of the characteristics involved in
the process. Conversely, Model 2 is a model that skews the suitability
analyses, weighting characteristics per expert criterion. On the other
hand, the CAM and MOLA models present very small differences, as
MOLA uses the same algorithm as CAM. The use of transition proba-
bility matrixes for CAM as opposed to the transition area matrixes
used in MOLA may nevertheless have marked the difference be-
tween the models. The former may thus be more appropriate for
studying the problem of IL proliferation, as it considers changes of
neighbouring cells. Hence, not only were land-use changes consid-
ered for each of the cells but also the influence of their neighbours.
The transition area matrix considered instead the change of values
from one period to another for a pixel. Validation of the models nev-
ertheless demonstrated similar results.



Fig. 5. Suitability analysis of illegal landfill occurrence in easternGran Canaria. a) Logistic regression CA_Markovmodel; b)multicriteria evaluation CA_Markovmodel; c) logistic regression
MOLA; d) neural network MOLA.
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3.4. Applications of the simulation models

This paper shows the application of CA in the analysis of IL occur-
rence, with ILs considered to be a dynamic and complex system. This
may supply added value to policies for environmental repair and pro-
tection as well as territorial planning (land use and management), by
delimiting possible future areas of IL occurrence. In this regard, future
waste management plans should examine and control the relationship
between spaces for urban expansion and increased waste, especially
waste from construction and demolition (Quesada-Ruiz et al., 2018).
In addition, agricultural abandonment stemming from urban expansion
and the transition to a service economymay be demonstrated as a phe-
nomenon very closely associated to the increase of waste,mostly plastic
and with higher incidence in irrigated greenhouse farming areas
(Quesada-Ruiz et al., 2018; Quesada-Ruiz et al., 2019). The delimitation
of possible new areas for IL occurrence may thus enable assessment of
the possible costs of recovery of those spaces potentially affected by IL
occurrence and help plan environmental education policies with the
aim of improving the waste collection process in those spaces. The effi-
cient introduction of dissuasive measures (e.g. video surveillance and
signage) could also be improved. On the other hand, the study of IL oc-
currence over time may help us conduct complementary studies that
evaluate the incidence of ILs in soil composition, contamination of un-
derground water, or emission of atmospheric pollutants.

The main limitations of this study lie in the lack of equivalent official
statistics for all the periods, since the simulation approaches rely on the
use of spatiotemporal dynamic characteristics. Likewise, the shortage of
socioeconomic features such as information about the behaviours and
the degree of awareness on recycling and respect for the environment
or the relation of dumpers to the landlord of a site on illegal landfills, for
all the periods, limits the capabilities to understand and model IL occur-
rence. Consequently, the IL simulation models require the creation of a
comprehensive database with the aim of including a large amount of fea-
tures for all the periodswhich are not always available. An additional lim-
itation concerning data input is the extensive and time consuming
orthophotointerpretation that was required in this study. Furthermore,
the analyses of potential for IL occurrence show limitations resulting
from the use of methods that only recognise non-linear relationships be-
tween the characteristics and the occurrence of ILs. The use of artificial in-
telligence algorithms and machine learning may be able to improve the
models' prediction capacity (Rodriguez-Galiano and Chica-Rivas, 2014;
Rodriguez-Galiano et al., 2018), especially with chronological series
(Bishop, 1995; Lai andWong, 2001; Li andYeh, 2002). Improving the suit-
ability analysis based on selection of the group of most representative
characteristics might consequently improve the transition rules and
hence the simulationmodels. Finally, themain limitations in the develop-
ment of the proposed simulation models are due to a lack of inclusion of
outside elements such as the price of waste treatment facilities (Liu et al.,
2017), the degree of citizen awareness (Smrekar, 2011) or the influence
of legislative changes (Matsumoto and Takeuchi, 2011).

4. Conclusions

This paper approached the temporal study of the problem of IL oc-
currence for the periods of 2000, 2006 and 2012 in two representative
zones of GC, one situated in the northwest (Zone A) and the other situ-
ated in the east (Zone B). The interannual growth rate of surfaces af-
fected by ILs obtained for the period between 2000 and 2006 was 4.5%
and 9.5% in Zone A and Zone B, respectively. For the period between
2006 and 2012 the growth ratewas 6.6% and 6.7%. These changes repre-
sent an increase in absolute terms in the year 2006 of 20.5 ha and
97.8 ha, and in 2012 of 97.8 ha and 111.6 ha. Analysis of the relationship
between the ILs and land uses showed that the ILs of both zones were
located during all periods mainly in agro-livestock zones and areas of
sparse vegetation far from built-up areas and were accessible, with nei-
ther control nor monitoring. Growth of ILs during the period between
2000 and 2006 was higher in urban areas, construction sites and indus-
trial zones, and may be closely related to the urban expansion process
linked to the real estate boom. However, the IL growth rates of urban
environments declined during the period after the 2008 economic crisis
and the appearance of new urban planning regulations.

The use of dynamic characteristics such as those associated to land
uses and static characteristics such as elevation and slope helped
model the ILs' growth. Consideration of the ILs within CA enabled the
generation of simple rules for carrying out the simulations, allowing
complex and non-linear interactions to be modelled in a long timescale
(18 years). CA also enabled surface growth of ILs to be estimated in both
areas thanks to the Markov matrixes. The modelling of IL proliferation
was divided into three phases: calibration, validation and simulation
of the future 2018 scenario. Synchronic data series were used, along
with Markov chains and transition rules, in all phases. In the calibration
phase the suitability analysis was done and the transition rules and
transition potential maps were obtained. The calibration was done
based on the suitability analyses produced in CAM and MOLA. Four
models were generated: i) CAM with logistic regression; ii) CAM with
multicriteria evaluation; iii) MOLA with logistic regression; and iv)
MOLA with neural networks. The precision of the output simulations
was evaluated using the Kappa indices, fuzzy Kappa, Quantity Disagree-
ment, Allocation Disagreement and landscape metrics such as Path Co-
hesion Index and Aggregation Index. The results obtained from the
Kappa indices were very high for all the simulations, with almost a per-
fect agreement (values close to 1) for Kstandard, Kno and Klocation. How-
ever, the Kappa indices should not be used alone when validating the
outputs of dynamic models. For this reason, landscape metrics such as
QD and ADmay be a good complementary validation approach. The ex-
istence of a majority category nevertheless produces high agreement
between the covers of the simulated maps and the reference maps for
the two indices, as occurs with the Kappa indices. Also, application of
fuzzy Kappa solely to the category for ‘presence of ILs’ obtained less
solid results, showing the difficulties faced by all the models when sim-
ulating the surface affected by ILs. That forced us to use alternative indi-
cators associated to landscape metrics, AI and PCI. They showed the
simulation models' ability to reproduce the distribution patterns of IL
proliferation similarly to the reference map. These metrics might thus
be an alternative for validating the IL simulationmodels, as they are ap-
plicable to a single landscape category, in our case the presence of ILs.
The choice of best simulation model depended on consideration of all
the previously examined statistics and on the result obtained for gains
and losses of the simulated future scenarios. The Model 1s of both
zones obtained the best validation results overall and correctly quanti-
fied the gains and losses of surfaces affected by ILs, which the Model
3s andModel 4s did not. The simulation of theModel 1s predicted an in-
crease of 52.3 ha and 81.5 ha respectively affected by ILs in Zone A and
Zone B for the year 2018.

In both Zone A and Zone B the physiographic terrain characteristics
(e.g. slope and elevation), the proximity to built-up areas and agricultural
areas, aswell as the distance to communication routeswere considered in
the analyses of potential IL occurrence for all periods. Although important
differences are seen in the quantification granted to the variables associ-
ated to the landuses for each period (e.g. distances to urban areas anddis-
tances to agricultural areas). In this regard, it was seen how the areaswith
more urban expansion and agricultural abandonment were affected by a
higher increase in IL incidence. The selected simulationmodels were thus
able to allow a better delimitation of possible spaces affected by ILs. In ad-
dition, the simulation models could enable the evaluation of the possible
costs of recovery, planning of environmental education policies or im-
provement of the efficient introduction of dissuasive measures (e.g.
video surveillance and signage). Furthermore, temporal study of IL occur-
rence might help us when conducting complementary studies that
evaluate IL incidence in the composition of soils, contamination of under-
ground water, or emission of atmospheric pollutants. The main limita-
tions of this study implementation rest on the data requirements and
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the need for matching (or identical or standard) official statistics for all
the periods, especially for the socioeconomic features. The IL simulation
models require the creation of a comprehensive database and an exten-
sive and time consuming orthophotointerpretation phase. In future
work, and with a view to improving adjustment of the IL simulation
models, the analyses of potential for IL occurrence based on the use of dif-
ferent algorithms from artificial intelligence and machine learning could
improve the models' prediction ability, especially with the chronological
series, considering non-linear relationships between the characteristics
and IL occurrence for each study year. Other techniques framed within
the study of complex systems such as agent-based models (ABMs) may
improve the IL occurrence simulation process, considering multiple sce-
narios in space and time and including outside elements such as the
price ofwaste treatment facilities, extent of citizen awareness or influence
of legislative changes.
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