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ABSTRACT

Research in the field of computer vision and intelligent systems has become increasingly
vast and extensive to meet the needs and conditions of all users. Additionally, new
machine learning architectures have shown profound results and made the
interpretation and analysis of media more robust and efficient. The robustness and
efficiency of these new architectures, coupled with technology development, have
made a new area of application and opened the door for new research more beneficial
for the end-user. Indeed, in the field of biology, microscopic image analysis has led to an
important evolution in terms of the creation of new diagnostic support systems. The
purpose of the latter is to provide practitioners with an automatic interpretation of

microscopic images to allow an exploitation of the cells of such a studied disease.

Different segmentation approaches have been proposed in the literature, but a method
has yet to be deemed optimal for only a specific application. Therefore, it can be
admitted that there is no universal method for segmentation; rather it depends on the
type of knowledge sought. This thesis is articulated around the axis of segmentation
methods, highlighting the crucial dependence on the specific type of knowledge being
sought. The main objective of this work is to propose methods and algorithms to help
recognize the cells of Nosema disease in microscopic images and make the diagnosis.
These methods are very helpful in many fields and present an important pre-work for
many applications. To achieve the objectives outlined in this thesis, various approaches
such as: Machine Learning (ML), Deep Learning (DL, the newest and most efficient
algorithm in machine learning techniques), and Augmentation Data (AD) are
implemented and explored. As such, in this thesis, image processing tools will be used
to calculate interesting features of Noema cells, and computer vision techniques, ML,
DL, and AD techniques will be employed to recognize them. Finally, an automatic
algorithm for cell identification and counting will be implemented. The automated
system performs well in the diagnosis task, demonstrating high accuracy across four

Nosema infection levels.



Resumen

La investigacion en el campo de la vision informatica y los sistemas inteligentes se ha
vuelto cada vez mas amplia y extensa para satisfacer las necesidades y las condiciones
de todos los usuarios. Ademas, las nuevas arquitecturas de aprendizaje automatico han
mostrado resultados profundos y han hecho la interpretacién y el analisis de los medios
mas robustos y eficientes. La robustez y la eficiencia de estas nuevas arquitecturas, junto
con el desarrollo tecnoldgico, se han convertido en una nueva esfera de aplicacién y han
abierto la puerta a nuevas investigaciones mas beneficiosas para el usuario final. De
hecho, en el campo de la biologia, el andlisis de imagenes microscdpicas ha conducido a
una importante evolucion en términos de la creacion de nuevos sistemas de apoyo
diagndstico. El propdsito de este Ultimo es proporcionar a los profesionales una
interpretacidon automatica de imagenes microscdpicas para permitir una explotacion de
las células de una enfermedad estudiada.
En la literatura se han propuesto diferentes enfoques de segmentacion, pero ningun
método ha sido considerado éptimo para una aplicacion especifica. Por lo tanto, se
puede admitir que no existe un método universal para la segmentacién; mas bien,
depende del tipo de conocimiento buscado. Esta tesis se articula en torno al eje de los
métodos de segmentacién, destacando la dependencia crucial sobre el tipo especifico
de conocimiento que se busca. El objetivo principal de este trabajo es proponer métodos
y algoritmos para ayudar a reconocer las células de la enfermedad de Nosema en
imagenes microscopicas y hacer el diagndstico. Estos métodos son muy utiles en muchos
campos y presentan un importante trabajo previo para muchas aplicaciones. Para
alcanzar los objetivos establecidos en esta tesis, se implementardn y exploraran
Aprendizaje Automatico (AA), Aprendizaje Profundo (AP) (el algoritmo mas nuevo vy
eficiente en técnicas de aprendizaje automatico) y Aumento de Datos (AD). Como tal,
en esta tesis, se utilizaran herramientas de procesamiento de imagenes para calcular
caracteristicas interesantes de las células de Noema, y se emplearan técnicas de vision
por ordenador, y técnicas de AA, AP y AD para reconocerlas. Por ultimo, se

implementard un algoritmo automatico para la identificacién y el conteo de células. El
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sistema automatizado se desempefia bien en la tarea de diagndstico, demostrando una

alta precision en cuatro niveles de infeccion de Nosema.
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1 Chapter I: Introduction

1.1 Motivation

In microbiological studies focused on diseases, researchers frequently employ direct
observation methods to gain a deeper understanding of the behaviors exhibited by
diseased microorganisms or cells within specific conditions. This observation can take
place at different scales, offering insights into the characteristics and dynamics of the
microbial entities under investigation. At the level of a colony, researchers often engage
in counting procedures. This involves quantifying the number of microorganisms
present within a collective group, providing a macroscopic view of their population and
distribution. Colony-level observation is particularly useful for assessing overall health,

growth patterns, and interactions among microorganisms.

Conversely, observation at the cellular level involves scrutinizing individual
microorganisms or cells. This finer-scale approach aims to unravel intricate details about
the morphology and structure of individual entities. Researchers focus on parameters
such as the shape, size, and texture of cells, seeking to discern patterns or irregularities

that could be indicative of specific characteristics or behaviors.

In the case of Nosema, it is a disease known to cause degeneration of the digestive tissue
in honeybees, leading to acute starvation and, consequently, early mortality. This
degeneration can also affect the flying behavior of bees, resulting in a reduced
population of bees . The impact of Nosema
extends beyond the bees themselves; it has adverse effects on plant species diversity
and crop productivity. This, in turn, leads to pollination shortages and substantial
economic losses in honey production

, impacting both honey production and pollination efficiency.

The motivation behind undertaking this thesis is rooted in the recognition of significant
deficiencies and losses stemming from the impact of infectious illnesses on food-
producing animals, particularly bees. The identified deficiencies and losses serve as a
driving force for the research conducted herein. Pollination is a fundamental ecological

process that facilitates the reproduction of flowering plants, contributing to biodiversity



and overall ecosystem health. The potential consequences of a breakdown in the
pollination process extend beyond the immediate impact on bees. If effective diagnostic
measures are not in place to identify and combat infectious illnesses in bees, crucial
actions to treat the affected bees and hives may not be implemented. This failure in
diagnosis and subsequent treatment has the potential to exacerbate the spread of lethal
diseases among bee populations. The repercussions of such a scenario could be severe,
not only for the bees themselves but also for the broader ecosystem, agriculture, and
food production systems that rely on the pollination services provided by these vital

pollinators.

In summary, the study of Nosema is crucial not only for understanding the health of
honeybee colonies but also for assessing its broader ecological and economic
ramifications, including effects on plant species, crop productivity, and the pollination

ecosystem.

In essence, this thesis seeks to address these critical issues by contributing to the
development of effective diagnostic tools and strategies for combating infectious
diseases in bees. By doing so, it aims to mitigate the potential losses and deficiencies in
pollination processes, safeguarding the health of ecosystems and the essential role
played by pollinators in sustaining biodiversity and food production. Furthermore, in
earlier research endeavors, there has been a notable gap in effectively addressing this
disease from a technological perspective. To address this deficiency, the present thesis
aims to leverage a comprehensive set of tools in microscopic image processing alongside
advanced machine learning methods. The intention is to enhance the identification of

this disease through the application of robust and innovative technological approaches.

This thesis introduces a novel automatic algorithm designed to detect and count
Nosema cells within microscopic images. The primary objective is to identify and
guantify these cells to assess the level of infection, thereby providing valuable support

for diagnosing the associated disease.
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1.2 State of the art
1.2.1 Nosema disease and its negative complications

Two species of the genus Apis (the true honeybees) have long attracted man's special
attention. These are the European honeybee, Apis Mellifera (Figure 1. 1, A), and the
physically smaller but very similar Asian honeybee, Apis Ceranae (Figure 1.1, B). These
species have been of particular interest to man because they produce large amounts of
honey and can be kept as “domesticated animals” in movable nests or hives. Throughout
the past centuries, the European honeybee has been transported all over the world and
widely distributed. The Asian honeybee, however, is restricted only to Southeast Asia,
China, eastern Russia, and Japan. Due to this restriction, Apis Ceranae is to some extent
being actively replaced by A. Mellifera. Honeybees are well studied insects. Many
detailed descriptions of the honeybee’s biology can be found in literature, such as

(Seely, 1995) and (Winston, 1987).

Figure 1.1 Apis Ceranae (A), and Apis Mellifera(B)

Apis Mellifera and Apis Ceranae (figure 1.1), the European and Asian honeybees, support
biodiversity and are also of considerable agricultural relevance. These bee species have
been the topic of several recent research because they are critical pollinators of human-
maintained crops. According to the research of (Klein et al, 2006), honeybees account
for 90% of commercial pollination. Originally introduced by Europeans for crop
management, many honeybees are now now kept in heavily farmed areas. As a result,
honeybee health is inextricably tied to agricultural success and sustainability.

Pathogenic research is being prioritized to preserve the health of the honeybee.

Despite new breakthroughs, populations are dropping all around the world, from France
to the United States. If the current population reduction continues, many agriculturally

3
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developed countries may face a large-scale environmental problem. If not addressed
appropriately, such a calamity will exacerbate the world's food crisis. Researchers have
been working hard on uncovering because honeybee colonies are dying all around the
world, thanks to donations from agriculturally based economies and huge

environmental corporations. Hive depopulation syndrome (HDS)

The depopulation syndrome is characterized by the decrease in the number of beesin a
colony, without apparent cause. In depopulation, the surviving bees cannot maintain

the basic tasks of the colony, causing it to collapse and disappear without presenting

any symptoms that allow one to pinpoint the origin of the problem (see Figurel.2)

Figure 1.2 Honeybee colony collapsed by Nosema Ceranae (Higes, Meana, Bortolomé,
Botias & Martin, 2013)

Honeybee colonies collapse due to various causes, including a lack of resources,
predation, sickness, and environmental variables. Changes in nest temperature, for
example, disrupt brood rearing circumstances, which has the potential to reduce
organism count and biodiversity within a colony (Klein et al, 2006). Any of the
aforementioned loads might be critical in promoting catastrophic hive collapse. The
detection and understanding of the fungal diseases Nosema Ceranae and Nosema Apis
is one area of focus for halting the tremendous loss of world honeybee populations.
Pathogenic elements are a health risk for every colony, and infection of tiny organisms

can cause sickness inside the hive.

The so-called hive depopulation syndrome is not a new phenomenon. It was detected
in Spain, in the late 90's and early 2000, although with a lower diffusion than the current

one. There are several possible causes of depopulation, which were investigated until
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the real cause was found. Such possible reasons ranged from a depopulation hypothesis
due to the treatment of sunflower seeds with insecticides to parasitic diseases of bees

(Matt, Wall, & Zamir, 2014). The latter will be the real cause and the object of our
interest. (See Figurel.3 and Figure 1.4)

Figure 1.3 Example of sampling zones in Spain: Castilla-La Mancha (Buendia & al.,
2018)
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Figure 1.4 Sampling Nosema disease in several ecoregions of north Asia
(Ostroverkhova, Konusova, Kucher, Kireeva, & Rosseykina, 2020)

Nosemosis, a degenerative gut illness, is caused by the microsporidia Nosema ceranae
and Nosema Apis. Nosemosis is a disease that causes organism death, which can result
in fast colony loss. Both parasitic and fungal research is quite recent and innovative. One
of these fungi, Nosema ceranae, is thought to be more dangerous than N. Apis with
important agricultural value. The transfer of its pathogenicity from its native host, A.
Ceranae, to A. Mellifera, however, poses a difficult scenario for infectious disease
prevention. The dual infection of Nosema ceranae in different bee species could
potentially lead to colony collapse on a global scale if it continues to spread rapidly
across all bee populations. Of particular concern is the European bee species, A.
mellifera, which is widely used in commercial agriculture. If Nosema ceranae becomes
more generalized and infects A. mellifera extensively, it could result in millions of dollars
lost in the agricultural industry. There are few treatments for combating parasitic
fungus, although approaches are constantly developing. To effectively protect bee
populations, a thorough examination of these parasitic species is required.
Understanding their behavior and developing effective control measures is crucial for

the conservation of bee populations worldwide.
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Several works on the impact of Nosema disease on commerce, society, and food have
been published, as shown in (Sinpo, Paseton, Disayathanoowat, Krongdang, &
Chantawannakul, 2018) and (Paneka & al., 2018), and the disease is now of major
economic importance globally (Calderon & Ramrez, 2010). Biologists are particularly
interested in the health of the two kinds of bees, not only because of their importance
in the economy and food production, but also because of the critical function they play

in pollinating agricultural and horticultural crops.

1.2.2 Biological diagnosis of Nosema disease

Detecting spores of Nosema spp. using microscopic analysis has historically been used

to diagnose Nosema'’s illness (Slimanuki & Kanox, 2000).

However, given the recent discovery that both Nosema Ceranae and Nosema Apis harm
western honeybees (Apis mellifera), genetic approaches are needed to distinguish
between two various types of microsporidia. This is important since the spores of the
two Nosema species cannot be consistently recognized based only on their shape (Fries,
Hernandez, Meana, Plencia, & Higes, 2006). Furthermore, microscopic investigations are
not as sensitive as molecular approaches, such as PCR, at detecting low levels of Nosema

infection.

There are several biological descriptions of its DNA and behavior in the literature,
including (Higes, Herndndez, Baildn, Palencia, & Meana, 2008) and (Higes, Martn, &
Meana, 2010).

Furthermore, microscopic inspection of Nosema spores is not only expensive, but also
time-consuming and difficult. Previously, the first molecular approaches used to
distinguish Nosema spp. required PCR followed by sequencing like in (Higes, Martn, &
Meana, 2006) and (Chen, Evans, Smith, & Pettis, 2008) or the use of restriction analysis
of PCR products like in (Klein & al., 2006). Although effective, some approaches require

extra steps beyond simple amplification.

In (Martin et al., 2007), a simplified approach for identifying N. Apis and N. Ceranae was
established. They developed a duplex PCR-based approach for amplifying the 16S rRNA
sections of N. Apis or N. Ceranae in a single reaction with two sets of primers, allowing

them to identify both microsporidians in tandem.
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More recently, a real-time duplex PCR assay that amplified the same 16S rRNA regions

as N. Apis and N. Ceranae in a single reaction was devised

Real-time PCR thermocyclers and techniques, on the other hand, are not widely
accessible in many laboratories and are more expensive than normal PCR thermocyclers
and procedures. As a result, an enhanced multiplex-PCR approach is used to
differentiate and quantify Nosema spp. in honeybees in a single reaction. This method
combines Martin-Hernandez et al.'s duplex PCR-based method with
the relative RT-PCR strategy , which incorporates a
house-keeping gene of the host in each reaction for relative quantification based on PCR
band intensity. Using a conventional PCR thermocycler, this semiquantitative approach

may assess Nosema infection levels.

A new DNA extraction procedure was also used to improve the amount of DNA retrieved
from honeybee samples. The newly enhanced approach offers significant advantages
over previously reported conventional PCR-based tests, as demonstrated in this work.
Indeed, this novel technology allows for the detection and quantification of Nosema
spores in honeybee samples. A multiplex PCR test will be used to diagnose and quantify
Nosema infections in honeybees (Apis Mellifera) using the approach described in

. The precise identification of the microsporidia species, namely Nosema
apis and Nosema ceranae, holds paramount importance in both comprehending and
managing Nosema disease within honeybee (Apis mellifera) populations.
1.2.3 Diagnosis of Nosema disease using technical and microscopic image analysis

methods

Diagnosing parasitic diseases in bees continues to rely on traditional microscopic
analysis methods. However, studies focusing on the life history detection phase of
microsporidia N. Apis and Ceranae employ image processing
techniques. These techniques are utilized to monitor temperature variations, which are
then analyzed to determine potential temperature-dependent influences on the life

cycle (refer to Figure 1.5).
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Figure 1.5 Detailed views of ventricular epithelial cells parasitized at 7 days p.i. at 33°C.
N. apis-infected cells (A) displayed similar quantities of immature and mature stages
(red), while N. ceranae-infected cells (B) exhibited a higher proportion of immature
stages (Pink) at this time (Martin & al., 2009)

Furthermore, numerous recent studies, like (Suannapong, Maksong, Phainchajoen,
Benbow, & Mayack, 2008) and (Mura & al., 2020), attempt to cure this condition by

chemical modeling.

In addition, honeybees are important in computer science. Several efforts have included
observing bees and manipulating their behavior. For example, (Tu, Hansen, Kryger, &
Ahrendt, 2016) observed bee behavior to assist beekeepers in managing their honey
colonies. The key finding of this study was the identification of bee disruption induced

by a disease, Colony Collapse Disorder (CCD), or colony health assessment.

Similarly, numerous image analysis approaches were investigated in (Giuffre, Lubkin, &
Tarpy, 2017) to research honeybee auto grooming behavior. Chemical and gas sensors
were employed to collect data. To identify illness, Destructor infestations were

introduced into the honeybee colony.



In , during a 12-hour experiment, the
researchers measured the environment of six beehives using six different types of solid-

state gas sensors.

There are now numerous notable pieces of research accessible in image processing

relating to the study of Nosema’s illness.

The Scale Invariant Feature Transform was used to extract features from cell pictures in

. Image data is converted into scale-invariant
coordinates with respect to local features using this approach. On the obtained
microscopic pictures, a segmentation approach and a support vector machine algorithm

were used to perform automatic categorization of N. Apis and N. Ceranae microsporidia.

In

, the authors used the Open CV library to do the identification of Nosema cells in
microscopic images To achieve the task of identifying the contours of each spore, we
utilized the findContours function from the OpenCV library, as described in the
(“Structural Analysis and Shape Descriptors OpenCV 2.4.13.0 documentation,” n.d.-b).
This function made use of the Suzuki algorithm. As the Nosema cells exhibit an elliptical
form, we employed the fitEllipse function, also detailed in the (“Structural Analysis and
Shape Descriptors OpenCV 2.4.13.0 documentation,” nd-a) to implement Fitzgibbon's
ellipse detection algorithm. Finally, considering the shape elliptical measurements in a
range of approximately 5-7um x 3-4um, it was assumed that any preselected elliptical
shape with width and length measurements of the ellipse within the mentioned range,

would correspond to a Nosema spore.

In

, the authors implement an automatic infection
diagnosis system. Image processing tools were employed to effectively segment the
images and compute the three most significant descriptors of Nosema spores: size,
eccentricity, and circularity. Once the Nosema cells were characterized within the
microscopic images, the researchers proceeded to quantify the spores and ascertain the
extent of infection. The accuracy of success of the system has been considered high

(84%).
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The authors of employed image
processing approaches to extract the most valuable information from Nosema
microscopic pictures. Following that, they used an Artificial Neural Network (ANN) for

recognition, which was statistically evaluated using the cross-validation approach.

1.3 Hypothesis

By leveraging advanced tools in microscopic image processing, machine learning
methodologies including transfer learning and deep learning, this thesis aims to develop
an automatic algorithm for the detection and counting of Nosema cells. It is
hypothesized that the proposed algorithm will not only surpass traditional methods in
accuracy and efficiency but will also contribute significantly to the diagnosis of Nosema
disease. The successful implementation of this algorithm is expected to enhance the
understanding of the disease, providing valuable support for biologists, and contributing
to the preservation of honeybee populations and overall ecosystem health. Moreover,
the automatic algorithm is anticipated to streamline the detection and diagnosis
process, saving time and effort for biologists involved in Nosema disease recognition

and contributing to more efficient and timely interventions.

1.4 Objective

Due to the high costs and complexity of manual and commercial disease detection
systems, this investigation strays from traditional systems and takes a newer approach.
Beyond the many advantages of image analysis, these newer methods automate the
intricate process of detecting and distinguishing diseased cells from other cell types

present within the same microscopic image.

The fundamental goal of this research is to develop an algorithm capable of automated
identification and cell counting, which will allow biologists to measure infection levels
and provide accurate diagnoses. A number of consecutive tasks or objectives must be

performed in order to reach this overarching goal:

1. Creation of Image Dataset: Generate a comprehensive dataset of images by
cropping individual shots of Nosema cells and other coexisting objects from the

primary microscopic images.
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2. Feature Investigation of Nosema Cells: Thoroughly investigate the distinctive
features of Nosema cells and compute them. This investigation involves
meticulously assessing various tools in image processing and pattern recognition
within computer vision. The aim is to either select an existing methodology or
formulate a new one and compile a dataset of features.

3. Testing with Diverse Machine Learning Techniques: Utilize the constructed two
datasets to test a diverse array of machine learning, deep learning, and transfer
learning models to know the most proficient method for identifying Nosema
cells. This process aims to establish a streamlined, rapid, and reliable model for
spore recognition.

4. Model Creation and Implementation: Implement an automatic algorithm for

Nosema counting and diagnosis using the model established in the previous step.

While the methodology proposed in this project applied to images of Nosema disease,
its foundational principles remain versatile and applicable to other image categories, as
long as they conform to the same statistical criteria. This adaptability underscores the
potential broader impact of the proposed approach in image analysis and pattern

recognition.

1.5 Methodology

The primary aim of this study is to introduce a robust method capable of recognizing
and identifying cells afflicted by Nosema disease. While certain prior efforts have delved
into the analysis of microscopic images of Nosema, the methodologies proposed therein
are often confined to the application of specific morphological tools for image
investigation. In a solitary instance, a support vector machine was employed to process
extracted features. Although these undertakings are intriguing, they fall short of
delivering comprehensive solutions. This means that with the development of
technologies and human needs to deal with computer vision, processing more methods
under this axe becomes a necessity. One of our main contributions of this thesis started
from this point; how to exploit proposed techniques in image processing, computer
vision, and machine learning to establish a system capable of analyzing the microscopic

images of Nosema and detect the cells’ disease.
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This work combines two disciplines: microbiology and image processing. The aim of this
project is to devise a methodological protocol customized for detecting and identifying
Nosema disease cells in microscopic images. This will be achieved by employing
innovative image processing tools. The implementation of a coherent analysis strategy
is crucial, covering each stage from image acquisition to the extraction of relevant

information.

The dataset used in this research was obtained from “Centro de Investigacién Nacional

de Apicultura Tropical” (CINAT), belonging to Universidad Nacional de Costa Rica.

Initially, the dataset of images intended for study (including its origin, data, and
structure) is introduced. We used a total of 400 microscopic photos that were arranged
in files of five and labeled by the specialists with the severity of the infection (very mild,

mild, moderate, semi-strong, severe). Figure 1.6 shows an example of every group.

Figure 1.6 An example of used microscopic images from every infection level: from (a)
to (d): very mild, mild, moderate, semi-strong, and strong

Second, the construction of a DS1 sub-images dataset derived from the original dataset,
Subsequently, this dataset is utilized for calculating image features. Techniques
involving image segmentation and object characterization are applied, leading to the

creation of a new feature dataset known as DS2.
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Third, ANN and SVM classification systems will be automatically reproduced and applied
to the dataset of features (DS2) for the recognition of Nosema spores. Furthermore, a
CNN will be implemented and reproduced to DS1 for the task of recognition. Also,
several models of transfer learning will be fine-tuned and applied, the experiments will
be conducted according to different training conditions, the data augmentation tool is
approved to push the results to get the maximum accuracy that can be achieved in this

work.

Fourth, an automatic algorithm will be developed performing the pre-trained model
with the highest accuracy to count the cells within the image and identify the infection

level.

The stages, the experiments as well as the results will be detailed in the chapters of this

thesis.

1.6 Contributions and results

During the course of this doctoral thesis, three publications were produced: a book
chapter, a conference paper, and a journal paper. All these publications delve into the
implementation of microscopic image segmentation approaches, merging them with
classification and recognition systems to achieve the detection and identification of

Nosema cells.
We will present a summary of the two papers.

A summary of the conference Paper: “Nosema Pathogenic Agent Recognition Based on

Geometrical and Texture Features Using Neural Network Classifier.”

The dataset utilized in this paper comprises 30 microscopic images. From these images,
all the existing objects were cropped with a semi-automatic program to obtain a second
dataset of 185 sub-images. The implemented approach extracted a number of 9
features: geometric and texture parameters which are the most useful in the definition
of our Nosema cell. The choice of these parameters was based on the good role played
by the preprocessing block in defining the perimeter of Nosema cells. Subsequently, a
Multi-Layer Perceptron NN trained by the Back Propagation algorithm (MLP-BP) has

been configured to do the classification of images between Nosema and non-Nosema.
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The measure quality is based on the binary confusion matrix, the methodology was
based on a supervised recognition approach, and the training and test samples were
randomly separated according to a cross-validation strategy to be retained until getting

the optimum result.

A summary of the journal paper: “Analysis of the Nosema Cells ldentification for

Microscopic Images”

Several techniques are used in this study to recognize and locate Nosema cells among
other existent objects in a microscopic picture. 400 microscopic pictures were utilized
as the primary dataset. From this dataset, we constructed DS1, a new dataset containing
2000 sub-images. Subsequently, we employed two main strategies for the recognition
of Nosema images. The initial strategy involves using image processing techniques to
extract useful information and attributes from a collection of microscopic images. The
first dataset used comprises 400 microscopic images, from which we extracted 2000
sub-images to construct the second dataset. Following this, machine learning methods
like neural networks (ANN) and support vector machines (SVM) are employed for the
detection and classification of Nosema disease cells. The second strategy investigates
deep learning and transfers learning. Multiple algorithms were investigated, including a
convolutional neural network (CNN) classifier and multiple transfer learning methods
(Alex Net, VGG-16, and VGG-19), which were fine-tuned and used to the object sub-

pictures to distinguish the Nosema images from the other object images.

1.7 Structure of the Thesis

Throughout this thesis, our endeavor has been to encompass an extensive array of
details while striving to maintain completeness and rigor in presenting essential
information. Most of the high-level details are explained in the five chapters that make

up this thesis. The chapters are organized as follows:

Chapter 2 details the methodology developed for the construction of the datasets

ranging from image processing to feature calculation.

Chapter 3 describes the approved classification systems and details the methods

implemented, the experiments carried out, and the recognition results provided.
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In Chapter 4, the procedures for performing the automated algorithm for Nosema cell
counting and diagnosis are detailed. The automatic algorithm detects the cells, counts
their number, and determines the infection level (the diagnosis). The algorithm was

tested on a variety of microscopic images and produced the most effective outcomes.

The report ends with the overall conclusion, outlining the findings and future works.
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2 Chapter 11 : Dataset analysis and
segmentation of microscopic
images

2.1 Introduction

Following the presentation of this project’s motivations, hypothesis, objectives, and
state of the art in Chapter 1, Chapter 2 will describe the first part of the method utilized
in this study to recognize Nosema cells. This first part consists in extracting of objects

that exist in microscopic images to:

1. Build the dataset of sub-images of objects extracted from the primary images
and which are in RGB format. These sub-images will be used in the identification of

Nosema using deep learning and transfer learning techniques (in Chapter 3).

2. Preprocess and segment the collected dataset of images to calculate the most
significant features which can characterize and define an object in a microscopic image
and thus build a second dataset in Excel file form to be used later in the recognition of

Nosema basing on ANN and SVM classifiers (in Chapter 3).

The preprocessing and preparation of the extracted sub-images for segmentation, as
well as the basic principles of segmentation of these images (in grayscale level and in
RGB color), are detailed in this chapter. More specifically, as will later be discussed in
this chapter, the segmentation of these images is conditioned by criteria of brightness
and texture of the studied microscopic images. As such, this thesis will propose and
employ a segmentation algorithm that is self-adapting to the context of the used images.
Indeed, this algorithm is quite original due to its genericity, flexibility, and adaptability

to variable contexts.

2.2 Extraction
2.2.1 Problems with the used microscopic images
Microscopic images used in this study were acquired using Cantwell's method, as

employed by biologists.
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2.2.1.1 Cantwell's method and related problems

Cantwell's method is described in (Molina & al., 1990). The process followed in this
project was to collect 30 adult bees per sample and place them on absorbent paper. The
bees' abdomens were then separated and put in a mortar to macerate. Each abdomen
received 1.0 ml of distilled water, for a total of 30 ml. The mash was stirred for a minute
to be homogenized, then a drop of the mixture was placed on a blade. The macerated
abdomens were ready to be imaged under a microscope at a magnification of 40x at the
end of this operation. This method was applied to 75 samples, which is comparable to
2,250 adult bees. This approach requires the counting of all Nosema spores framed by
double lines, including those that contact the double lines on the left and top sides of
each block, but not those that touch the bottom double lines or those on the right side
of the block. This is done in just five of the twenty-five center blocks (see Figure 2.1 and

Figure 2.2), specifically the four corner blocks and the center block.

004 square mm
|~

o | EEEEE

Figure 2.1 Blocks used for spores counting in a hemocytometer.
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Figure 2.2 Actual image of the hemocytometer used in capturing of microscopic
images.

Positioning the Nosema cells within the photos presents a challenge in its own right, as
they might sometimes be obscured by other objects or located on the grid or blocks
utilized by biologists for spore counting. The grid is also an object occupying a large part
of the image (Figure 2.3) and in the case of cell counting, it can be considered as an

artifact, especially in case of overlap.

Figure 2.3 A microscopic image with the red color of the Counting Grid.

The artifact itself is a big problem because its brightness level is too high in the images,
this poses a problem when transforming the image into grayscale, more precisely when

detecting the elliptical shape of the Nosema cell (see Figure 2.4). This problem affects
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the shape of the cell, it gets smaller or bigger or completely changes its shape (Figure

2.5).

Figure 2.4 Example of cells overlapping the counting grid

Binarization & hole fee!mg

Figure 2.5 Example of the change in cell shape during the preprocessing phase
2.2.1.2 Noise problem of microscopic images
Figure 2.6 illustrates a representative photograph obtained under a microscope using
the Cantwell method. It is evident that a considerable amount of noise is present, with

numerous elements in the image not corresponding to Nosema spores. Moreover, there

is a lot of similarity between the spores' color and the background color.
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Figure 2.6 Image obtained by the microscope: (A) a whole image and (B) a part of the
image that shows the existing noise.

Figure 2.7 clearly describes the noise that affects the spores of Nosema. In such
instances, the sole identification of Nosema spores becomes unfeasible, as they would

be perceived as distinct objects.

Figure 2.7 Example of spores hidden behind or superimposed on other objects:
Nosema spores in the red circle.

2.2.2 Building of dataset from sub-images extracted from microscopic images

Based on the problems detailed before, the processing of the complete microscopic
image is likely to lead to the disappearance of numerous Nosema cells or their

misidentification as noise. Furthermore, objects that have a shape close to that of
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Nosema will be considered as Nosema cells. Due to this reason, the decision was made
to initially analyze the characteristics of these cells by isolating them through cropping

from the original digital image (Figure 2.8).

Figure 2.8 Instance of dataset extraction of Nosema cells and other existing objects in
the microscopic images.

The procedure begins by selecting the region of interest (ROI), followed by the
development of a simple semi-automatic algorithm to capture and crop the cell's image
within the chosen ROI. Subsequently, automated preprocessing is applied to ascertain
the cell's shape. The used microscopic images are loaded by several objects, they are
quite unclear and noisy. To mitigate this, we involve Nosema cells that are distinctive
from other items, ensuring that only pertinent information is extracted for analysis. Our
preference is for a minimally sized, isolated cell area (see Figure 2.9). Thus, each Nosema
cell subpicture contains only one clear cell. The same work is applied to objects that are
not considered Nosema cells. Based on the preceding phases, a DS1 database was built
that contains a total of 2000 sample images. DS1 consists of 1000 sample images of

Nosema cells and 1000 images of non-Nosema cells (that is, any different object that
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exists in the microscopic images). Figure 2.9 below depicts the process of building DS1.

Dataset of sub-images (D51}

| -

Extraction (cropping images)
=

=]
(=]
n
z.
=
3
i
4

1000 n-N
Total= 2000 Images

Figure 2.9 Construction of the image dataset contains both types of objects Nosema
(N) and none Nosema (n-N)

In this chapter, the method involves collecting the Nosema cells and the coexisting
objects (ROIs) in the studied microscopic images and investigating and analyzing these
ROIs automatically. The next chapter details the detection of Nosema cells among other

non-Nosema items.

2.2.3 Automatic segmentation and features extraction: building of dataset with
extracted features:

The aim of this part of the chapter is to propose a method that prepares objects for
extracting semantic information. To achieve this objective, this approach has been

proposed:

Step 1: Contour detection of the extracted objects: the goal of this step is to extract and

calculate the most relevant and reliable geometric features that characterize an object.

Step 2: Extract the objects from their background: The aim of this second step is to study

the object color: color channels as well as texture.

2.2.3.1 Extracting the shape of the object

During the extraction of the cell shape, the following objectives must be achieved:

- the outline must be thin: the ideal thickness of the outline must be one pixel,
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- the shape must correspond to the cell wall.

The technique for contour extraction needs to be in alignment with the rest of the
processes, as the significance and accuracy of the extracted contours play a crucial role

in distinguishing between the cells and obtaining their measurements.

There are two viable approaches for object identification: using regions or contours.
However, we find the contours approach to be more appropriate. It is the contours of
the cells that will be scrutinized to facilitate their identification. The contour or shape
can be appreciated as the edge or border of two regions (objects). Detecting the edges
of objects is equivalent to detecting changes in gray levels, or discontinuities at the
boundary of two regions. The cells are distinct from the image's background, which is

defined by a lower gray scale level.

2.2.3.1.1 Classic edge extraction techniques

Different approaches are used, we will mention derivative approaches, surface methods

and, more recently, active contours.

2.2.3.1.1.1 Gradient approach

The gradient, in one pixel of a digital image, is a vector characterized by its modulus and
direction. The module is directly related to the amount of local grayscale variation. The
direction of the gradient is orthogonal to the boundary that passes at the point

considered (Figure 2.10) and is oriented from the light part to the dark part.

Figure 2.10: Gradient of a given point belonging to a given boundary
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By considering f (x, y) the grayscale function of the image, the gradient is used to
measure the rates of change of this function values with respect to the distances in the
direction x and y, by the maximum of the first derivative or by the passage to zero of the

second derivative.

The study of an image behaves like the study of a function. To make the discontinuities
appear in a signal, it is necessary to work on the differences between neighboring pixels,
a difference that relates to the gray level. Figure 2.11 shows the calculation of the
gradient using the filter of Sobel and Prewitt for two images, A and B. A is a Nosema cell

image, and B is a non-Nosema image.

A Y
Nosema
IJl L]

cell

] *
non-Nosama ‘1”

cell

it

Sabel Prewitt

Figure 2.11 Calculating a gradient with multiple filters

The results are quite comparable for both filters they both produced open results.
Additionally, the contours were relatively thick, exceeding two pixels in width. Knowing
that the size of the matrix used for the calculation of the gradient was of size 3x3 there's
a potential for closed contours. However, such an operation would generate an outline
that might not align precisely with the concave region's wall. Moreover, this contour
would not be an accurate representation of the wall for the identification of objects. The
objective is to have the thinnest possible outline (one pixel). Unfortunately, gradient
usage falls short in delivering fine contours, despite producing closed contours for all

cells.
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2.2.3.1.1.2 Laplacian approach

The maximums of the first derivative correspond to the zero passages of the second
derivative, signifying locations with substantial grayscale variations. Since the first
derivative is very sensitive to noise, the second derivative of the signal is then calculated.
The second derivative, in the direction of the gradient, passes through 0 by changing the

sign on an outline point. This causes the Laplacian to:

GE 92 . .
Vif = é + 0_3; equal to 0 in these points. The passages by zero, between the dark

areas and the light areas are thus localized. The principle is to calculate the Laplacian of

the image and look for the zeros.

A
MNosema
cell

B
non-Nosema
cell

Laplacian

Figure 2.12 Contour search with the Laplacian

The results are almost the same for both image types (Figure 2.12). The contour of the
cell seems to decompose into two internal and external "contours". The ideal contour is
between the two contours obtained. The thickness of the contour, thus obtained, is
about 5 to 6 pixels in these examples. The resulting contours are all closed but the
disadvantage of this method is that the resulting contours are too far from the actual
contours of the object; the difference is estimated at about 5 pixels. Thus, the Laplacian
cannot allow a good extraction of the contour of a cell, more precisely of the wall of a

cell.
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2.2.3.1.1.3 Active edges

An active edge is a set of points that we will try to move, to make them fit a shape. The
idea of this method is to move the points to bring them closer to the areas of high
gradient, while retaining characteristics such as the curvature of the contour or the
distribution of the points on the contour, other constraints related to the arrangement
of the points. Active contours were also used in this study and proved to be as effective
as gradient or Laplacian methods, but the disadvantage of this method is that it is costly
in terms of calculation time and operations since we will repeat the work for 2000

images.
2.2.3.1.1.4 Binary mathematical morphology

The well-known tools of binary mathematical morphology were also tested in this study

and proved to be more effective than the previously cited methods.

2.2.3.1.2 Contour extraction using mathematical and binary morphology tools

Since the contour methods cited have not been validated and the contours calculated
by mathematical and binary morphologies were the most appropriate, we will quote

and explain the steps for calculating the contour of an object.

The analysis of images by mathematical morphology dates to the 1960s. This theory was
initially introduced in materials science by J. Serra to analyze objects through their
texture Over the past two decades, it has undergone many developments,
both theoretically and practically. It now covers a wide range of fields of application,
particularly in robotics and machine vision, medical imaging and even multimedia

. Originally developed for the study of porous materials, mathematical
morphology now finds its applications in many areas of image processing, both 2D and
3D, in biology and quantitative cytology, in medical imaging, in aerial imaging and
satellite, robotics and computer vision, non-destructive industrial testing, studies of
documents and works of art. Outside the field of image processing, we find applications
for example in data analysis, on data represented by graphs, hypergraphs, fuzzy sets,
etc., in logic, or even in game theory. To detect the contour of an object, the procedure
described in Figure 2.13 was followed. The steps taken will be set out in the following

paragraphs.
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Figure 2.13 Approved approach to detect the shape (border) of an object.

2.2.3.1.2.1 Grayscale representation

For edge detection, the grayscale representation of the color was used. Images are
converted to grayscale for manipulation, where image data consists of a single channel
representing the intensity, brightness, or density of the image. In most cases, positive
values are those that make sense (e.g., the intensity of light). Typically, a grayscale image
uses 8 bits (1 byte) per pixel and the range of intensity values is from [0-255], where the
minimum range value represents the minimum brightness (Black), and the maximum

value represents the maximum brightness.

2.2.3.1.2.2 Binarisation

This step is carried out to create a binary image where all cell contours are enclosed.
Otsu's method (Miss, Vola, & Baxi, 2013) was used to perform automatic thresholding
from the shape of the image's histogram, or reduce a grayscale image to a binary image.
The algorithm assumes that the image to be binarized contains only two classes of
pixels, (that is, the foreground and the background) and then calculates the optimal
threshold that separates these two classes so that their intraclass variance is minimal.

The name of this method comes from the name of its initiator, Nobuyuki Otsu.

Some cells are complete entities, while others have points in common with the edge of
the image. To overcome the bias in the treatments and measurements that will result,
a mathematical morphology operation, called "bwareaopen" (an operation that

removes all connected components (objects) that have fewer P pixels of the binary
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image, producing another binary image), is applied to eliminate connected objects that

are very close to the cell and that have a smaller size (see Figure 2.14).

a - Loy
Nasema cell
‘Q

- -
|

B i '
non-Nosema |
call . |

1 2
Thrashaldingimage Elimination of
with Otsu method stnaller objects

Figure 2.14 Steps to Remove Unwanted Objects

2.2.3.1.2.3 Populating regions and holes in the image

A flood filling operation was used. This method conducts a fill operation on the
background pixels of the input binary image to fill the item's hole from its precise

positions before discarding any small existing objects in the image of the desired object.

2.2.3.1.2.4 Using the dilation method

The dilation calculates the maximum of the neighbors of each pixel and removes holes
inside the object that are smaller than the structuring element
. If we want to calculate an expansion of an image B by a structuring function A

such that Z is the grayscale, the mathematical equation can be defined as follows:

B®A ={z|A, N B + 0} (2.1)

It is the boundary of the object using a matrix consisting of 0 and 1. A matrix 3x3 (see
Figure 2.15) was used in such a way that it did not greatly widen the boundary of the

object by adding only one pixel to the boundary.
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Figure 2.15: Used Matrix for dilation

2.2.3.1.2.5 Contour calculation

Following dilation, the contour of the object is recognized by computing the difference

between the two pictures before and after expansion, as shown in Figure 2.16 below:

B
non-Nosema
cell

.y
Mosema cell

Before dilation

After dilation

Shape
Detection

Figure 2.16 Edge Detection

The method offers the advantage of being computationally efficient and operationally
cost-effective, thus yielding closed contours for each cell. Furthermore, the provided

contours are outside the cell and with a thickness of 1 pixel.

Figure 2.17 illustrates the detailed approach to detecting the contour of an ROI.
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Figure 2.17 The preprocessing steps for automatic contour extraction: (a) RGB image,
(b) gray image, (c) binarization and hole filling, (d) dilation, and (e) contour extraction

2.2.3.2 Automatic segmentation and Features extraction

After presenting the contour extraction algorithm developed within this document, this
section demonstrates its application in extracting features. The latter will be employed
for identifying and characterizing the region of interest within an image. The goal of the
segmentation method proposed in this chapter is to keep separately the information of
each object (regardless its kind: Nosema or non-Nosema. Consequently, upon
completing the segmentation, a vector encompassing all computed or extracted

features is obtained.
From the calculated shape/contour, two types of features were extracted:

- Geometric features (six features)

- Statistical features (three features)

2.2.3.2.1 Geometric features

The geometric aspects define the fundamental qualities of geometric shape. Their
significance lies in the fact that, through numerous experiments, we have found them
to consistently yield the best results. These parameters were used and defined in our

work (Dghim, Travieso-Gonzales, Dutta, & Hernandez, 2020) respectively:
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Size/Perimeter provided that the Nosema cell has an elliptical shape, and the
other items have distinct spherical forms. This elliptical perimeter calculation is
based on the a and b variables, where a is the semi-major axis and b is the semi-
minor axis. The following equation gives the perimeter P:

The formula for Area A is as follows:

P=n T @TD)7 22)

(2.3)

The Relation R is the quotient of the shape's height (H) and width (W):

R= H/W (2.4)

Equivalent diameter (D) is the diameter of a circle that has the same area as the

item:

A
D= [4x— (2.5)
T

Solidity (S) is the fraction of the convex region contained in the item:

A
§=— - (2.6)
convex area

Eccentricity (E) is defined as the ratio of the distance between the ellipse's foci
to its major axis length: Let a be the semi-major axis and b be the semi-minor

axis of the ellipse:

E=1-ab 2.7)
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E=\fx2-/)

2.2.3.2.2 Statistic Features

(2.8)

The remaining features 7, 8, and 9 were determined using the object's polar coordinates,

namely the polar coordinates of a Cartesian point (x, y) (Dghim, Travieso-Gonzalez, &

Burget, 2021). Assume that a point M is located at such a distance (r) and in such a

direction (6) from the reference points. It is a boundary projection or one-dimensional

representation. This is determined by calculating the distances from the object's

centroid (center of "mass") to the border as a function of angles in any selected

increment. When appropriately scaled, the resulting set of distances was the vector

required as angle distances to the border pixel. Figure 2.18 shows the distribution of this

distance for Nosema and non-Nosema object.
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Figure 2.18 Histograms describing the distribution of distances that flow from an
object's centroid to each pixel of its shape in both cases Nosema and non-Nosema
object for two examples of each type: this shows the large difference between the two

types

Following that, a value for these distances is shortened, and the nearest integers to a

value are used to determine the three following respective parameters.

e The standard deviation of these distances has been determined, resulting in

feature number 7. Standard deviation is a measure of variability that
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successfully normalizes the elements of N through the first array dimension
whose size does not equal one; where P can be an array or a matrix and in
this case is a vector of the radius values of the studied object's polar

coordinates, and E is its mean. It is provided by Equation:

N
Std.deviation (o) = %-Z(PU - Ei)2 (2.9)
=1

e Variance derivate computes the difference and the closest derivative of the
variance (X) for a vector X, which is [X (2) X(1) X(3) X(2)... X(n) X(n1)]. It is

provided by the following equation:

g2 = (1 = H) 2+ (x; — H)Z +n(x3 B u)2+'-'+(xn B H)Z (210)

2.2.3.2.3 Automatic segmentation and feature extraction from the texture of the color
image:
2.2.3.2.3.1 Extracting the characteristics of the color channels (six characteristics)

The RGB object image is then used to extract further information regarding texture and
color (Dghim, Travieso-Gonzalez, & Burget, 2021). However, first, the item must be

separated from its background in the image; to do so, follow these steps:

1. The bounding box image was extracted based on shape characterization

(calculated in the section of shape extraction).

2. After converting the picture from RGB to HSV color spice, individual Hue (V),

Saturation (S), and Value (V) channels were retrieved.
3. Use the V mask to find the vibrant color.

4. Concatenate the three new HSV channels by setting the H and S masks to 0

and the V mask to 1.
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5. Finally, transform the image back to RGB color to remove the object's

backdrop, as illustrated in Figure 2.19:

Y B
non-Mosema
Mosema cell cell

= 1

Shape Bounding Box extraction

|

Individual channels extraction

1

| Get the vived
‘ color by Value
channel (V) )

thresholding

Convertion
from HSV to

RGB

Figure 2.19 Extracting an object from its background.

The texture parameters are 6 in number and quantify the entropy of the RGB and HSV
channels; it may be characterized as a logarithmic measurement of the number of states
having a substantial likelihood of being occupied. The blue, red, green, and yellow
channels are the input intensity images. Furthermore, the randomization of the Hue and
saturation masks is determined. The value/lightness channel was removed because it

provides no further information.

Figure 2.20 shows the extracted channels for features calculation.
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Figure 2.20 used images for entropy measurements for both Nosema cell and non-
Nosema cell: (a) extracted RGB object, (b) Red mask, (c) Green Mask, (d) Blue Mask, (e)
yellow mask, (f) hue channel, and (g) saturation channel.

Assume xi is the set of pixels in the image with the color/channel i, and p(xi) represents
its probability. The following equation 11 is used to determine the six entropy

parameters:

N
EG) = ) PO - loga(p(e). (2.11)
i=1
2.2.3.2.3.2 Feature extraction using the GLCM: (four characteristics)
A) Concepts

As mentioned before, (Dghim, Travieso-Gonzalez, & Burget, 2021) Nosema cells tend to
exhibit a more pronounced yellow hue internally. This observation prompted the
utilization of a Grey Level Co-occurrence Matrix (GLCM) used on the yellow mask. This
approach was employed to calculate additional texture information specific to the
yellow color. The GLCM is a popular statistical approach for extracting textural features
from microscopic images. It was employed in numerous feature extraction operations,
such as feature skin extraction (Kolkur & kalbande, 2016) or plant disease feature

extraction (Al-Hiary, Ahmed, Reyalat, Braik, & Alrahameh, 2011). As shown be (Rundo
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, a novel strategy to compute the GLCM called HaraliCU can offload the
computations into the Graphics Processing Units (GPU) cores, allowing to drastically
reduce the running time required by the execution on Central Processing Units (CPUs).
In , an invented method called CHASM uses the previously
mentioned HaraliCU method, a GPU-enabled approach capable of overcoming the
issues of existing tools by efficiently computing the mappings of features for high-
resolution images with their full dynamics of grayscale levels, and CUDA-SOM, a GPU-
based execution of the SOMs for recognizing of clusters of pixels in the image. The
statistical texture calculator's main rule states that they are determined from the
statistical distribution of intensities measured at defined points relative to each other in
the picture. Statistics are classified into first-order, second order, and higher-order
statistics based on the number of pixels in each pair. The GLCM approach collects the
statistical texture properties of the second order. Third and higher-order textures are
theoretically conceivable but are seldom used because of the computational time

requirements and difficulties in interpreting them

B) Extracted features with GLCM
The GLCM is a greyscale picture that | defined in Z. The grey level co-occurrence matrix
is a square matrix Gd of size N, where N is the total number of grey levels in the picture.
Gd's (i, j)th entry specifies the number of instances a pixel X with intensity value i splits
from a pixel Y with intensity value j at a certain distance k in a specific direction d. Where
k is a non-negative integer and d is described by d = (d1, d2, d3,... dn), where di 0, k, -k i
=1,2,3,..n . The Haralick GLCM was
used to extract four characteristics from the picture of the yellow channel. The GLCM's

most important qualities are contrast, correlation, energy, and homogeneity.

Ng-1 Ng Ng
Contrast = Z n? - ZZp(i,j) (2.12)
n=0 i=1j=1

Correlation quantifies the linear relationship between the grey levels of surrounding
pixels:

1
Correlation = ZZ(i—Hi)'(/—#j)'Pi,j
i J

(oi.o)) (2.13)
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It is also known as the Angular Second Moment (ASM), and it is highly useful when two
neighbor pixels are quite similar:

Ng—-1Ng-1

Energy = Z Z p(i,j)? (2.14)
i=0 j=0

When a local grey level is homogeneous, homogeneity is strong:

. . » 1
Homogeneity = Z Z P(i,j) m (2.15)
i j

2.3  Conclusion

In this chapter, we introduced our segmentation algorithm. The general strategy of our

method is to accomplish the final segmentation in two essential steps:

1-Extract the clear and isolated objects that exist in the microscopic images: In this step
we built our first DS1 database that contains the sub-images of Nosema objects and non-
Nosema objects. DS1 contains a total of 2000 RGB images: 1000 Nosema cells samples

image and 1000 non-Nosema samples image.

2-From the images of DS1: we calculated the attributes or features most relevant
to the identification of its objects: these features are in the form of a vector of size 19
for each object; and we have built the DS2 features dataset. Features calculation was

done by the following two steps:

2.1- Extract the contour of the object derived from the grayscale image
and calculate its most relevant geometric and statistical characteristics.
From this contour 9 characteristics were calculated.

2.2- Extract the RGB object from its background and calculate its texture

and color characteristics. 10 features were extracted from the texture of

the studied objects. Figure 2.21 shows a backup extract of 19 calculated
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features for both types of objects as an Excel file.

Features of 1000 Nosema cells

1

Features of 1000 non-Nosema objects
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Figure 2.21 DS2 Features Dataset stored files.

The two datasets DS1 and DS2 built will be used in Chapter 3 for the recognition

of Nosema cells following different strategies.

The details of using these datasets for Nosema identification will be explained in

the upcoming chapter.
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3 Chapter 111: Nosema recognition

3.1 Introduction

In the previous chapter, our research strategy focused on image segmentation, laying
the groundwork for effective feature extraction. This chapter presents an approach
specifically designed to identify Nosema cells and distinguish them from coexisting
objects within the same microscopic image. The subsequent section directs attention to
cell classification, exploring traditional object classification methods and their efficacy
in categorizing cells. This analysis is then contrasted with the effectiveness of modern
object classification techniques, including the application of classic methods such as
Artificial Neural Networks (ANN) and Support Vector Machines (SVM), as well as
contemporary techniques like Convolutional Neural Networks (CNN) and transfer
learning, which have emerged within the domain of object classification.

Moreover, the chapter involves testing and validating various architectures of transfer
learning models for object recognition. The model demonstrating the highest accuracy
will undergo retraining with Augmentation Data to enhance its precision in object
recognition. Notably, ANN and SVM will leverage feature vectors extracted from the
studied objects, while the second category of methods will employ RGB images of the
objects under examination.

This chapter emphasizes that cell recognition can be achieved through several methods.
However, for comparison, we will unveil the most effective method for application
identification. The strategy pursued for recognition is elucidated in Figure 3.1, providing

a visual representation of the proposed approach.
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Figure 3.1 The Implemented Methodology for Identification

3.2 Artificial intelligence, machine learning, and deep learning

In 2021, artificial intelligence continues to bring daily benefits to people: music
recommendation systems, Google Maps, Uber, and many other applications are
powered by artificial intelligence. However, there is confusion between the terms

"artificial intelligence," "machine learning," and "deep learning." One of Google's most
popular queries is, "Are artificial intelligence and machine learning the same thing?". Let
us get it straight: Artificial intelligence, machine learning, and deep learning are three

different things (Figure 3.2):

e Artificial intelligence is a science like mathematics or biology. It studies ways to
build intelligent programs and machines to solve problems creatively, which has always

been considered a human prerogative.

* Machine learning is a field of artificial intelligence that allows systems to learn and

improve from experience without being explicitly programmed automatically.
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¢ Deep learning is a sub-domain of machine learning, which uses neural networks to

analyze different factors with a structure similar to the human neural system.

Artificial Intelligenca

Machine Leaming .

Figure 3.2 A Venn diagram showing how deep learning is a kind of representational
learning, which is in turn a kind of machine learning, used for many, but not all,
approaches to artificial intelligence

Many of artificial intelligence's early breakthroughs occurred in somewhat antiseptic
and formal contexts, with computers having little awareness of the world. For example,
IBM's Deep Blue chess engine defeated world champion Garry Kasparov in 1997
(Campbell, Hoane, & Hsu, 2002). Chess is a fairly basic game. It only has sixty-four spaces
and thirty-two pieces that can move restrictedly. Creating a good chess strategy is a
fantastic accomplishment but not very difficult. In truth, there is minimal difficulty in
expressing computer-related topics. Failures can be fully characterized by a very short

number of perfectly formal rules, which the programmer can simply specify in advance.

Ironically, the abstract and formal tasks that are among the most difficult mental tasks
for a human being are among the easiest for a computer. While computers have long
been able to beat even the best human chess player, it is only recently that they have
reached a level of recognition of objects or speech comparable to that of a human being.
A person's daily life necessitates a vast understanding of the globe. Much of this

information is subjective and intuitive, making formal expression problematic. To act
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intelligently, computers must capture this same knowledge. One of the main challenges

of artificial intelligence is how to bring this informal knowledge into a computer.

Several artificial intelligence projects have sought to hard-code knowledge about the
world in formal languages. A computer can automatically reason about utterances in
these languages by using logical inference rules. This is called the knowledge-based
artificial intelligence approach. The difficulties faced by systems based on hard-coded
knowledge suggest that artificial intelligence systems must be able to acquire their
knowledge by extracting models from raw data. This capability is known as machine
learning. Machine learning has enabled computers to solve challenges using real-world
information and make judgments that appear subjective. A basic machine learning
technique known as logistic regression can indicate whether a caesarean section should
be recommended . Another basic machine learning method,

naive Bayes, may distinguish between valid and unwanted emails.

The performance of these rudimentary machine learning algorithms is strongly
dependent on the data representation provided to them. When logistic regression is
used to propose a caesarean section, for example, the artificial intelligence system does
not physically assess the patient. Instead, the doctor sends the system various relevant
pieces of information, such as the existence or absence of a uterine scar. A characteristic
is any piece of information contained in the patient's depiction. Logistic regression is
used to discover how each of these patient features corresponds with different

outcomes. It can, however, have no effect on how the qualities are specified.

Many Al challenges may be accomplished by defining the correct collection of features
to extract for that job and then feeding those characteristics into a basic machine
learning algorithm. However, for many tasks, it is difficult to know what features need
to be extracted. Assume someone wants to create software that detects vehicles in
photos. We all know that autos have wheels; thus, the existence of a wheel might be
employed as a feature. Unfortunately, describing the appearance of a wheel in terms of
pixel values is challenging. Although a wheel has a simple physical shape, its picture may
be complex. It is necessary to take into account, when describing the wheel, the
shadows that fall on the wheel, the sun that glistens on the metal parts of the wheel,

the wing of the car or an object in the foreground that obscures part of the wheel, etc.
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One solution to this problem is to use machine learning to discover not only the
correspondence between the representation and the output but also the representation
itself. This approach is known as representational learning. The representations learned
often give much better performances than those obtained with hand-designed
representations. They also allow intelligent systems to quickly adapt to new tasks with
minimal human intervention. A representation learning algorithm can discover a good
set of characteristics for a simple task in a few minutes, while for a complex task, it can
take a few hours or even a few months, depending on the complexity of the task.
Designing features for a hard task by hand takes a long time and a lot of human labor; it

might take decades for an entire community of scientists.

Many aspects of variation impact every piece of data that may be seen, which is a
primary source of difficulty in many real-world artificial intelligence (Al) applications.
Individual pixels in a photograph of a red automobile, for example, can be extremely
close to black at night. The shape of the car's silhouette is determined by the angle of
vision. Most applications need to unravel the sources of variation and eliminate those
that are irrelevant. In fact, extracting such high-level abstract qualities from raw data
might be challenging. Many of these factors of variation, such as the accent of the
speaker, can only be identified using a sophisticated understanding of the data at the
human level. When obtaining a representation is nearly as complex as solving the actual

problem, understanding representation does not appear to help us at first glance.

Deep learning (DL) solves this central problem of learning representation by introducing
representations that are expressed in terms of other simpler representations. DL allows
the computer to construct complex concepts from simpler concepts. The prime example
of a deep learning model is the Deep Neural Network (DNN) or Multilayer Perceptron
(MLP). An MLP is just a mathematical function that maps a set of input values to output
values. The function is formed by the composition of many simpler functions. It can be
considered that each application of a different mathematical function provides a new

representation of the input.

45



Deep learning is a machine learning approach that allows systems to improve with
experience and data. It is the only viable approach to building intelligent systems that
can operate in complex real-world environments. Indeed, DL is a special type of machine
learning that achieves great power and flexibility by learning to represent the world as
a nested hierarchy of concepts and representations, with each concept defined against
simpler concepts and more abstract representations calculated based on less abstract

concepts.

3.3 Principles of classification
3.3.1 Concepts

Classification makes a direct use of computer-based learning methods. In artificial

learning, there are usually several types of learning:
— Unsupervised learning
— Supervised learning
— Semi-supervised learning

For all these learning methods, there is a set of observations {x1, - - -, xn} € X and a
number of classes to be discriminated against by the classifier. Each observation is
described by several characteristics. Unsupervised learning seeks to build a model
directly from the data. The goal is to describe how the data is organized and to extract
homogeneous subsets from the data. Unsupervised methods include hierarchical
classification , self-organizing maps , k-
means , etc. In supervised learning, in addition to observations, there
are target values (or labels or membership classes) {yi} € Y associated with these
observations, where Y designs the set of possible classes. A model is then built that
allows to estimate the dependencies between the sets X and Y. Supervised learning is

called supervised learning because the elements of Y are used to guide the estimation

process. Supervised methods include k-ppv , heural networks
, support vector machines (SVM) , ,and
, decision trees , etc. As part of a semi-supervised
learning and , among the
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observations, only a small number of them have a label {yi}. The objective is then to seek
to classify unlabeled observations. In this work, particular attention is put on supervised
methods. As such, below more details will be given about the principles of supervised

methods.

3.3.2 Supervised learning

The generalization power of an artificial learning algorithm is dependent on the
inductive process it performs and the space of H hypotheses. This space corresponds to
the set of feasible decision functions. The inductive principle makes it possible to select
in space hypotheses, from a set of data, those that best explain these data. These
concepts represent the learning bias used by the artificial learner to produce a decision
function with the best generalization capabilities (Cormuéjols & Michet, 2002). Let O be
a population of objects, X the description space associated with these objects and o an
oracle capable of performing a categorization of objects from O, denoted by the function
fo: O > Y. Let fa: O > X a function that determines, for an object o € O givens, its
description x. From O, Y, fa and f, it is possible to define the space of the examples Z. An
example z €Z corresponding to an object o €0 is a pair of data (x, y) such that (x, y) =
(fa(o), fo(0)). In supervised learning, it is important to look for a function f: X = Y which
allows one to estimate the class y associated with x. f belongs to the hypothesis space

H. The ideal case corresponds to fo = fa O f. Figure 3.3 summarizes all these notions.

fsO0=2X X fEH: XY

a"f—.‘__f_,:ﬂ—}‘f' . :

Figure 3.3 For a given learning problem, an object o € O representative of this problem
is described by a vector of attributes x €X and is identified by the oracle o as a classy €
Y. In this diagram, fd and fo represent respectively the procedure performing the
description of an object o and the decision-making process of the oracle o. The
learner’s objective is to choose a hypothesis f€ H whose predictions are as close as
possible to the oracle
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3.4 Using of artificial neural networks and support vector machine for the
identification problem

3.4.1 Identification using artificial neural network
3.4.1.1 Concepts

In recent decades, ANN has emerged as an active area of study. To construct a
"standard" neural network, neurons must create real-value activations, and the neural
networks must react as predicted by modifying the weights. However, depending on the
nature of the issue, the process of developing a neural network might include lengthy
causal chains of computing operations. Retro-propagation is a fast gradient descent
approach that has been used in neural networks since 1980. It enables supervised
learning to be used to train ANNs. Although the training accuracy is good, the
performance of backpropagation on test data may be inadequate. Because retro-
propagation is reliant on local gradient information with a random beginning point, the
algorithm frequently gets stuck in local optima. Furthermore, if the amount of the

training data is insufficient, neural networks will experience over-learning.

A formal neuron can be considered as an elementary modeling of a biological neuron
(Figure 3.4). The neuron receives as input a vector of numerical attributes presenting
the description of an observation x, the elements of this vector x; are weighted by
synaptic weights w; a bias wy is also added. The y-output of the neuron is obtained by

applying a transfer function also called activation function:

d
7= z wix; + Wy y = f(2) (3.1)
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Figure 3.4 Artificial neuron

The artificial neural network (ANN) is a highly connected network of elementary
processors (neurons) operating in parallel and having in layers. All neurons in the same
layer have the same activation function. The learning of an ANN is most often done
iteratively, by backpropagation of the error gradient, this very efficient learning
algorithm gives an important boost to this classifier. The types of ANN are as numerous
as their definition is general, they are distinguished globally by the function of activation
of neurons (table 3-1), the architecture of the network (organized or not in layers, with
or without cycles) and the mode of connectivity (fully or locally connected) (see Figure
3.5). In the next part, we will quickly introduce the two most popular types of activation

function: the Multi-Layer Perceptron (MLP) and the Radial Basis Function (RBF) network.

Other types such as: convolutional networks, Kohonen map and polynomial networks
are well described in (Touzet, 1992) and (Cheriet, Kharma, Lui, & Suen, 2007). An
overview of the uses of Fuzzy Neural Networks (FNNs) in image processing is described

in (Victor, 2020).

Table 3-1: Some common transfer functions, x is the input vector

Linear function YW x; +wy (3.2)
Sigmoid function 1
— 3.3
1+e*x (33)
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Tanh function e?X-1
T (3.4)
Softmax function eX
- 3.5
et )
Radial basis function with center x. exp l_ IIxZ—;CZcIIZJ (3.6)
. {a) ; ib)
o (<) (d)

Figure 3.5 Different neural network topologies. (a) multilayer networks, (b) local
connections, (c) with recurring connections, and (d) full connections

3.4.1.2 Activation functions

The activation function of a single-layer network may be used to push each neuron's
output towards a binary rank. However, in multi-layer neural networks, the activation
function is even more essential. Even a massive multilayer neural network with a
nonlinear activation function would only have the representational capability of a linear
classifier, given the composition of linear functions is a linear function. As a result, the
activation function f is a nonlinear function applied to a neuron's output to enable

multilayer networks to learn complicated nonlinear functions.

d
2= wx+w, | y =f(2) (3.7)

Where wi is the input xi weight, f is an activation function, and wp is the bias. This is
commonly written more succinctly in matrix notation, where each neuron is made up of
an input vector x = (Xo,..., Xn), @ weight w = (wy,..., Wn), and a bias b = wy, the output of

which is,
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y = f(wTx + b) (3.8)

Traditionally, in the study of neural networks, activation functions have been selected
as sigmoid functions, that is, functions that translate negative inputs to negative outputs
and positive inputs to positive outputs with a smooth transition around a = 0. This is a
useful quality to have since the function still drives the network's outputs towards a
binary ordering, the function is nonlinear (so the function's composition is not
straightforward), and the function has well-defined gradients. The logistic function is an

example of a regularly used sigmoid function:

1 (3.9)
fla) = 1+e @
and the hyperbolic tangent,
f(a) = tanh(a) (3.10)

The fact that gradients are quite low in most of the function domain is one issue with
sigmoidal activation functions. As a result, and in order to acquire superior empirical
findings, current neural networks often employ the rectified linear unit (ReLU) activation

function:

f(a) = max(0,a) (3.11)

3.4.1.3 Multi-layers perceptron

Multi-Layer Perceptron’s (MLPs), also known as Feedforward supervised neural
networks, are the quintessence of deep networks. These are parametric functions
defined by the composition of many parametric functions. Each of these component
functions has multiple inputs and multiple outputs. Multilayer perceptron are the most
popular and simple neural networks. These are direct propagation networks without a

cycle, with at least one hidden layer (Figure 3.6), the neurons are usually completely
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connected, and the transfer function is sigmoid (value in [0,1]), tanh (value in [-1,1]) or

SoftMax type.

98
\

S i

Figure 3.6 Multi-Layer Perceptron with a Single Hidden

In neural network terminology, we refer to each sub-function as a layer of the network,
and each scalar output of one of these functions as a unit or sometimes as a
characteristic. Even if each unit implements a relatively simple mapping or
transformation of its input, the function represented by the entire network can become

arbitrarily complex.

This classifier has discovered applications in many areas such as character recognition,
face recognition, prediction and more. It is remarkable performance, robust
generalization capabilities, and swift decision-making phase have all contributed to its
widespread adoption. Nonetheless, its utilization is associated with a set of challenges
(over-learning, local minima, etc.). A detailed description of these problems is given in

(Parisia, Kemkerb, Part, Kanan, & Wermtera, 2019).

MLPs are also the key technology that underpins most contemporary business
applications of deep learning for large data sets. Neural networks allow us to learn new
types of non-linearity. Another way of looking at this idea is that neural networks allow
us to learn the characteristics provided to a linear model. From this point of view, neural
networks allow us to automate the design of features, a task that, until recently, was
carried out gradually and collectively, thanks to the combined efforts of a whole
community of researchers. MLPs have been among the first and most efficient of
nonlinear learning algorithms (Rumelhart, Hinton, & Williams, 1986). These networks
learn at least one function defining the characteristics, as well as a (typically linear)
function for mapping the characteristics to the output. Layers in the network that match
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characteristics rather than outputs are called hidden layers. This is because the correct
values of the characteristics are unknown. The characteristics must be created by the
learning algorithm. The input and output of the network are observed in the drive data.
It should be noted that in the literature, DNNs can be confused with other deep learning

models, but in most cases, DNNs refer to MLPs with more than one hidden layer.

3.4.1.4 Number of hidden layers

Research has demonstrated that neural networks with a minimum of one hidden
(infinitely wide) layer are universal approximators. This signifies that such neural
networks possess the theoretical capability to denote any function and

. This contrasts with the limits of neural networks
that lack hidden layers. However, we discover that a network with just one hidden layer,
even one with a very wide breadth, may learn to represent complicated functions just
as effectively as networks with numerous hidden layers. Indeed, the discovery that
networks that have several hidden layers, known as deep networks, continually
outperform networks with only a few hidden layers, dubbed as shallow networks,
represents a significant step forward in the improvement of neural network learning in

recent years

3.4.1.5 Radial Based Function

RBF-like neural networks usually have a single hidden layer. The neurons in this layer are
gaussian type and the neurons in the output layer are linear or any other function as for
hidden markov model (HMMs). The learning of RBF neural networks is direct
, it consists in learning the parameters of the output layer by the gradient descent
method. The characteristics of Gaussian neurons are usually estimated at the beginning
of the training (most often, by the clustering method) and they will then be frozen. In
, Augustine presents a comparison between HMM and RBF networks,
he indicates that RBF networks do not always behave well in high-dimensional spaces
with redundant and noisy dimensions, a problem that HMM is supposed to solve better.
Furthermore, the algorithm for training a Radial Basis Function (RBF) demands a greater
number of parameters than that of a Hidden Markov Model (HMM) for achieving

equivalent performance. Consequently, a larger dataset is required. Additionally, the
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count of hidden neurons could escalate exponentially in tandem with the increase in
dimensions. However, an RBF network models the probability distributions of shapes
conditionally to classes, which is more information than modeling the only

neighborhood of decision boundaries like does HMM.

3.4.1.6 Experimental methodology for artificial neural networks

In the chapter before, existent items in Nosema illness microscopic pictures were
discovered and extracted (both Nosema cells and other kinds of cells present in
microscopic images). Their images were automatically segmented for feature
calculation (geometric, texture, and statistical features), and the result was given as a
vector of the 19 most significant features.

As mentioned in the introduction, this chapter will focus on object classification
between Nosema cells and non-Nosema cells, and a multilayer Neural Network system
is the first approved tool for this purpose. To do this, the feature dataset DS2 is created
once the features of the various objects have been retrieved. The DS2 has 38,000 values
that represent 2000 pictures, each with 19 attributes that are distributed evenly
between the two types of objects (Nosema objects/images and non-Nosema
objects/images). This section of the task was quite computationally difficult, since the
extraction of 2000 sub-images, together with the calculation of 19 characteristics for
each picture, took several days of calculations on a CPU, namely a PcCom Basic Elite Pro
Intel Core i7-9700/8GB/240SSD.

Neural networks were utilized in this part of the study to detect Nosema illnesses in
honeybees automatically. The neural networks demonstrated their worth in a variety of
real-world applications, including classification tests. A neural network is often
composed of two sets of functionalities: the first set is used to train the NN model, while
the second set of testing functionality is used to evaluate the correctness or validity of
the trained NN model. In the learning phase, computational units are connected to one
another through weights, which serve the same role as the strengths of synaptic
connections in biological organisms. Each input to a neuron is scaled with a weight,
which affects the function computed at that unit. The artificial neural network computes
a function of the inputs by propagating the computed values from the input neurons to

the output neuron(s) and using the weights as intermediate parameters. The connection
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weights were constantly updated and changed until they achieved the specified
repetition number or the tolerable error. Thereby, the ANN model's capacity to respond
appropriately was assured by utilizing the mean squared error (MSE) criteria to improve
the reliability of the model between input and network output.

As usual, during the experiment, the set of data was separated into two parts: learning
and testing/validation of the model. The approved approach consists of conducting two
experiments using the extracted features, and the goal of these two tests was to
demonstrate the high presence of a yellow hue in Nosem's cell image. In the first one,
the model was tested with only the first three kinds of extracted features (geometric,
statistical, and texture features); that is, just 15 characteristics were used, not including
the four yellow color features estimated using the GLCM. The second experiment was
carried out by utilizing all 19 attributes. The studies were performed by varying the
accuracy of the data split between training and testing data. The architecture of the
applied Artificial Neural Network (ANN) comprised a singular hidden layer, with
experimentation conducted on the count of neurons within this layer. Several repeats
of the test (at least 30 times) were performed with each authorized hidden layer neuron
number to get the ideal value of success recognition accuracy. Overall, the software was
evaluated with a number of hidden layer neurons equal to the number of picture input
characteristics retrieved (15 or 19), with weights inserted at random. The number of
neurons in the hidden layer was then raised to 50 for the second test. The number of
neurons was then raised by 50 in each successive trial until it reached 1800. Table 3-2
and Figure 3.7 further clarify the experimentation process.

A 10-cross-validation approach ranging from 10% to 90% for training and testing was
used for statistical assessment. The output is a binary decision: [1 0] means a Nosema
object, and [0 1] means a non-Nosema object.

Table 3-2: Experiments for Nosema recognition using a vector of 15 features/19 features:

the initial number of neurons in the hidden layer is 15/19 equals to the number of
features and the final number is 1800 equal to the maximum number of training data

Experiments for (15/19) Features Number of Neurons in the Number of Experiment
Hidden Layer repetition
Training Data Test Data
10% 90%
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3.4.2

Hidden Layer
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Figure 3.7 Implemented ANN for Nosema recognition

Identification using SVM

3.4.2.1 Concepts

Within the realm of kernel methods, and drawing inspiration from Vladimir Vapnik's

statistical learning theory, the most renowned family is that of Support Vector Machines

(SVM). (Cortes & Vapnik, 1995). SVMs are binary classifiers by supervised learning
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intended to solve problems of discrimination or regression (prediction). This method
relies on using a nonlinear transformation to redescribe the training data in a larger
space. Nonlinearly separable data in initial space will therefore be simpler to separate
in large space. The objective is thus to ascertain, within the new re-description space, a
hyperplane that optimally separates the training data. This concept is referred to as the
notion of maximum margin. For simplicity, taking the case of linearly separable data. In

SVM, the line used to separate classes is called hyperplane.

The choice of the separator hyperplane is not obvious. There are indeed an infinite
number of separator hyperplanes (see Figure 3.8), whose learning performance is

identical, but the generalization performance can be very different.
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Figure 3.8 Basic principle of SVM (Russell & Norvig, 2011). (a) nonlinearly separable
problem, the equation of the separator plane is x_1/2+x_272<1(7); (b) projection of the
data in a three-dimensional space () x_172, xx_ 272,V (2x_1) x_2 (3.12)

To address this issue, it has been demonstrated that there is a single optimal hyperplane
defined as the hyperplane that maximizes the margin between the samples and the
separator hyperplane (Cortes & Vapnik, 1995) (Figure 3.8(b)). For this purpose, only the
points located on the hyperplanes of maximum margins called support vectors

participate in the definition of the optimal hyperplane (Figure 3.9).

In other words, only a small subset of data is needed for the calculation of the solution,
the other samples do not participate in its definition. This is therefore effective in terms
of complexity. On the other hand, changing or enlarging the training set has less

influence than in Hidde Markov Model (HMM) classifier for example, where all the data
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participates in the solution. Indeed, adding samples to the training set that are not

support vectors has no influence on the final solution.
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Figure 3.9 Notion of maximum margin, for a set of linearly separable points, there are
an infinite number of separator hyperplanes; the optimal hyperplane (in yellow) with
the maximum margin, the surrounded samples represent the supporting vectors.

For nonlinearly separable data, the idea of SVMs is to reconsider the problem in a higher-
dimensional space, possibly infinite-dimensional. In this new space, it is then likely that
there is a linear separation hyperplane. However, the problem that arises is the
determination of this hyperplane in a very large space. The solution is to use the "kernel
trick" to determine the hyperplane that optimally separates the data in a very large
space without the need to redescribe the data in it (Cervantes, Lamont, Mazahua, &
Lopez, 2020). This solution is much less expensive than a scalar product in the

redescription space. Commonly used kernel functions are:

e linear kernel:
k(x,x;) = x.x; (3.13)

e Sigmoid kernel:

k(x,x;) = tanh(k. (x.x;) + 6) (3.14)
e Nucleus polynomial:
k(x,x;) = (k. ((x.x;) + 1P (3.15)
e RBF kernel:
k(x,x;) = exp [% (3.16)
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K, 6, p, o are parameters of the kernels, whose determination and the choice of the
kernel function are the responsibility of the user because there is no proven guide for
any use. However, the polynomial kernel (Pk) and the RBF kernel (RBFK)are listed in

as the most performant kernel types for pattern
recognition applications. In , authors

compare two combination strategies: "one against one" and "one against all."

3.4.2.2 Experimental methodology for SVM

The SVM method operates based on features and tries to find a decision model. As the
complexity of SVM increases with the size of the learning base, its direct application
without special precautions is difficult for classification. Indeed, this work's pixel
database is extensive and highly redundant due to the similarity of many pixels within
the same class. While an SVM can yield favorable classification rates, its decision
function will necessitate querying for the classification of a considerable number of
pixels when aiming to classify the pixels within a new image. This can become very
disabling if we want quick segmentation. Subsequently, the method for constructing
decision functions with reduced complexities for object classification was implemented.
Each decision function will be optimized independently. To determine the best model
0* for each binary decision function, incorporating the desired settings for adjustment
into this model is a requisite. To perform an object classification by a decision function,
we used the data extracted in the previous chapter: 19 features for 2000 objects, which
we introduced to our SVM model in the form of 38000 parameters. Then we selected
the optimal hyperparameters by choosing the optimal values of C and 0 after several

tests as follows: C = 3 and 6= 5x10°.

3.5 Using of deep learning tools
3.5.1 Concepts

Deep learning emerged from research on artificial neural networks (ANN)

. Authors developed a novel learning approach (named
layer-wise-greedy-learning) in ( , Which marked the start
of deep learning techniques. This algorithm's fundamental concept is based on

unsupervised learning, which must be performed as a network pre-training step before
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subsequent layer-by-layer learning. By extracting characteristics from the inputs, the
size of the data is reduced, and a compact representation is obtained. Then, by exporting
the characteristics to the next layer, all the samples will be labeled, and the network will

be refined with the labeled data.

The popularity of deep learning can be attributed to two main factors: on the one hand,
the development of large data analysis techniques indicates that the problem of
overlearning of training data can be partially solved; on the other hand, the pre-training
procedure before unsupervised learning will assign non-random initial values to the
network. Therefore, a better local minimum can be achieved after the training process
and a faster rate of convergence can be achieved. So far, deep learning research has
received a lot of attention, and a number of intriguing outcomes have been discussed in
the literature. Since 2009, the ImageNet competition has drawn a huge number of
image-processing research organizations from academia and business across the world.
Hinton's research group won the ImageNet competition in 2012 utilizing deep learning
algorithms . Hinton's group competed for the very
first time, and its scores were 10% greater than those of second place. Google and Baidu
have both modified their image search engines to include Hinton's deep learning
architecture, which has resulted in significant gains in search accuracy. Baidu also
founded the Institute of Deep Learning (IDL) in 2013 and appointed Andrew Ng, a
Stanford University associate professor, as its head scientist. In March 2016, Google's
deep learning team (named DeepMind) staged a Go Game match in South Korea
between the ALPHAGO Al player and one of the world's greatest players, Lee Se-dol

. AlphaGo, which used deep learning algorithms, demonstrated
startling strength and defeated Lee Se-dol by a factor of four. Deep learning algorithms
have also demonstrated an excellent ability to forecast the activity of new therapeutic
compounds as well as the impact of non-coding DNA alterations on gene expression.
With the fast growth of computational methods, ANN with deep architectures for
supervised learning has given a strong framework. The deep learning method, overall, is
made up of a hierarchical design with several layers, each of which is a nonlinear
information processing unit. In this chapter, we will go through the deep architectures

that we have employed in our research.
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3.5.2 Convolutional Neural Network
3.5.2.1 Concepts and history

Convolutional CNNs are deep learning models that have demonstrated excellent
performance in the processing of two-dimensional data with grid topologies, such as
photos and movies . CNN architecture is inspired on the
arrangement of animal visual cortex. Hubel and Wiesel

introduced the notion of receptive fields in the 1960s. They revealed that the intricate
cell configurations were included in the animal visual cortex, which is in charge of
detecting light in overlapping and tiny subregions of the visual field. Furthermore, the
Neocognitron computational model with hierarchically ordered picture transformations
was introduced in . However, the Neocognitron
differs from CNN networks in that it does not require a shared weight. The concept of
CNN networks is inspired by time delay neural networks (TDNN). In a TDNN network,
weights are shared in a time dimension, resulting in a reduction in calculations. In CNN
networks, convolution has replaced general matrix multiplication in standard neural
networks. In this way, the number of weights is reduced, which decreases the
complexity of the network. In addition, the images, as raw inputs, can be imported
directly into the network, thus avoiding the procedure of extracting characteristics in
the standard learning algorithms. It should be noted that CNN networks are the first
truly successful deep-learning architecture thanks to the effective learning of
hierarchical layers. CNN network topology exploits spatial relationships to reduce the
number of parameters in the network, and performance is therefore improved by using
standard backpropagation algorithms. Another advantage of the CNN model is that it
requires minimal pre-processing. With the rapid development of computational
techniques, GPU-accelerated computing techniques have been exploited to train CNNs
more efficiently. Today, CNNs have already been successfully applied to handwriting
recognition, face detection, behavior recognition, speech recognition, recommendation

systems, image classification, and natural language processing.

61



Identification Of Nosema Cells Using Microscopic Images

Output

Figure 3.10 A diagram of the convolutional neural network. (The depth of the matrices
represents the number of used filters. The size of the output vector is determined after
flattening the matrices of the previous layer and concatenating the resulting vectors.

The absence of contact, the exchange of parameters, and equivocal representation all
play important roles in the training process of a CNN (Gonzalez & Wood, 1993). Unlike
traditional neural networks where the relationship between input and output units is
derived by matrix multiplication, CNN networks reduce computational overhead
through low interaction where kernels are made smaller than inputs and used for the
entire image. The basic idea of sharing parameters is that instead of learning a separate
set of parameters at each location, we only need to learn one set of these parameters,
which implies better CNN performance. Parameter sharing has also given CNN an
attractive property called equivariance, which means that every time the input changes,
the output changes in the same way. As a result, fewer parameters are needed for CNN
compared to other traditional neural network algorithms, resulting in a reduction in
memory and an improvement in efficiency. A conceptual diagram of a standard CNN is

shown in Figure 3.11.
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Figure 3.11 A conceptual diagram of the convolutional neural network using three
filters.

As shown in Figure 3.11, CNN is a multilayer neural network that consists of two different
types of layers, namely convolution layers and pooling layers (Krizhevsky, Suskever, &
The, 2006), (Goodfellow, Bengio, & Courville, 2016), and (Deng, 2012). The convolution
and pooling layers are connected alternately and form the central part of the network.
In the first convolution layer, the input picture is convoluted using filters that may be
learned at all conceivable offsets to yield feature maps, as illustrated in Figure 3.10. Each
filter contains a connection weight layer. Typically, four feature map pixels make a
group. These pixels generate extra feature maps in the first pooling layer after passing
through a sigmoid function. This method is repeated until we have the feature maps in
the subsequent convolution and subsampling layers. Finally, the pixels' values are
simplified into a single vector that will be used as input to the MLP network (Arel, Rose,

& Karnowski, 2010).

Convolution layers are often employed to extract features when the input of each
neuron is connected to the preceding layer's local receptive field. After obtaining all of
the local features, the position connection between them may be calculated. A
subsampling layer is required for feature mapping. These weighted feature mapping
layers create a plane. Because of its minor impact on the function's core, the sigmoid

function is chosen as the activation function to provide scale invariance. It must

63



additionally be mentioned that the filters in this model link a series of overlapping
receptive fields and turn the 2D picture batch input into a single unit in the output.
However, when the dimension of the inputs is equivalent to the dimension of the filter
output, it will be difficult to preserve translation invariance with more filters. Using a
classifier might result in over-learning due to the high dimensionality. To address this
issue, a pooling procedure known as subsampling is used to minimize the total size of
the signal. Subsampling has already been used successfully in audio compression to
reduce data size. Subsampling was also employed in the 2D filter to improve position

invariance.

A CNN's training technique is identical to that of a normal neural network, which uses
retro-propagation. used an error gradient to generate CNNs. The
information is pushed forward through multiple levels in the first stage. By adding digital
filters to each layer, the main features are obtained. After that, the output values are
computed. The error over the predicted values and the actual value of the output is
computed in the second phase. Subsequently, the weight matrix is fine-tuned to
minimize this error, leading to the refinement of the network. In contrast to other
conventional image classification algorithms, CNNs don't often necessitate pre-
processing. It is sufficient to train the filters in CNNs rather than establishing parameters,
as is the case with classic neural networks. Furthermore, CNNs are independent of past
information and human influence in the extraction of attributes. The max-pooling
approach for subsampling was proposed in LeNets in 1998
. A pooling function is used to substitute the network output at a certain
point by summing the statistics of the neighboring outputs. We may acquire the
maximum output in a rectangle neighborhood by using the max-pooling approach. The
pooling approach can also make the representation insensitive to input translations.
Adding a max-pooling layer between convolutional layers now enhances spatial
abstraction as feature abstraction grows. Pooling, as indicated in
, is used to achieve invariance in picture modifications. This method allows
for increased noise resilience. It is stated that the performance of the various pooling
methods is dependent on numerous parameters, such as the resolution at which the

low-level components are retrieved and the linkages between the sample's cardinalities.
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Boureau (Boureau, Le Roux, Bach, Ponce, & Lecun, 2011) discovered that while the traits
are highly varied, they may be grouped together as long as their locations are near.
Furthermore, it has been observed that doing the pooling before to the pooling phase
results in improved performance. It is demonstrated by (Jia, Huang, & Darrell, 2012) that
greater pooling performance may be obtained by learning receptive fields in a more
adaptable way. Particularly an efficient learning algorithm based on an incremental
selection of features is presented to accelerate the training process utilizing the idea of

over-skill.

3.5.2.2 Experimental methodology:

The CNN architecture employed consists of three distinct blocks. The first convolutional
block comprises two convolutional layers with kernel 3 x 3 x 32 filters, an activation layer
RelLU, and a batch normalization layer (batch_normalization) to standardize the inputs.
To speed up the training process and improve the performance of the CNN, we applied
a 2 x 2 max_pooling and dropout layers technique to randomly disconnect nodes from
the current layer to the next layer to decrease overfitting. As a result, increasing the
number of filters deepens the network. The second block contains one convolutional
layer with 3x3x64, followed by ReLU and batch normalization. The third block includes
one convolutional layer with 3x3x64, followed by max_pooling and dropout layers. Table
3-3 shows the architecture utilized for an 80x80 input picture of three RGB channels.

This architecture is described in Figure 3.12.
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Figure 3.12 Implemented CNN for Nosema Recognition
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Table 3-3: CNN experiment Values for an 80 x 80 input image

Layer Type Output Shape Number of
Parameters
conv2d (Conv2D) (None, 80, 80, 32) 896
batch_normalization (BatchNo) (None, 80, 80, 32) 128
conv2d_1 (Conv2D) (None, 80, 80, 32) 9248
batch_normalization_1 (Batch) (None, 80, 80, 32) 128
max_pooling2d (None, 80, 80, 32) 0
(MaxPooling?2D)
dropout (Dropout) (None, 80, 80, 32) 0
conv2d_2 (Conv2D) (None, 80, 80, 64) 18,496
batch_normalization_2 (Batch) (None, 40, 40, 64) 256
conv2d_3 (Conv2D) (None, 40, 40, 64) 36,928
batch_normalization_3 (Batch) (None, 40, 40, 64) 256
max_pooling2d_1 (None, 40, 40, 64) 0
(MaxPooling?2)
dropout_1 (Dropout) (None, 40, 40, 64) 0

3.5.3 The use of Transfer learning architectures
3.5.3.1 Concepts
Transfer Learning refers to the set of methods that allow the transfer of knowledge

acquired from the resolution of given problems to deal with another problem.

With the ascent of Deep Learning, Transfer Learning has achieved remarkable success.
Frequently, models employed in this domain demand extensive computation time and
substantial resources. However, using pre-trained models as a starting point, Transfer
Learning makes it possible to quickly develop high-performance models and effectively
solve complex problems in Computer Vision or Natural Language Processing, NLP

(Lezory & Cardot, 2002).

Transfer learning corresponds to the ability to use existing knowledge, developed for
the solution of given problems, to solve a new problem. Transfer Learning is based on a
simple idea, that of re-exploiting the knowledge acquired in other configurations

(sources) for the solution of a particular problem (target), (Figure 3.13).
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Figure 3.13 Traditional approach vs. Transfer learning approach

A domain D is defined by two parts: a feature space X and a marginal probability
distribution P(X), where X = {x1, ..., xn} €Y, where Y is the possible features of the space.
Let’s say Ds is the source domain, Dt is the target domain, Ts is the source task, Tr is the
target task, and (f) is the predictive function. Transfer learning improves the target
predictive function (f)r by using the related information from Ds and Ts, where Ds # Dt
or Ts # Tr. The single source domain defined here can be extended to multiple source
domains. Given the definition of transfer learning, since Ds = {Ys, P(Xs)} and Dr = {Yr,
P(Xt)}, the condition where Ds # Dt means that Ys # Yr and/or P(Xs) # P(X1). The case
where Ys # Yt concerning transfer learning is defined as heterogeneous transfer learning.
The case where Ys = Y7 concerning transfer learning is defined as homogeneous transfer
learning. Heterogeneous transfer learning occurs when the source software project has
different metrics (features) than the target software project. Alternatively,
homogeneous transfer learning occurs when the software metrics are the same for the
source and the target software projects. Continuing with the definition of transfer
learning, the case where P(Xs) # P(Xt) means the marginal distributions in the input
spaces are different between the source and the target domains. Shimodaira (Zhuang et
al., 2021) demonstrated that a learner trained with a given source domain will not
perform optimally on a target domain when the marginal distributions of the input
domains are different.

In this context, many techniques may be identified based on what one desires to
transfer, when, and how the transfer should be carried out. Overall, there are three

forms of Transfer Learning:
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> Inductive Transfer Learning

The source and target domains are the same (same data) in this arrangement, while the
source and target tasks are different yet nearby. The objective is to leverage current
models to minimize the scope of prospective models' applications (model bias).. For
example, it is possible to use a trained model for the detection of animals on images to

build a model capable of identifying dogs.

> Unsupervised Transfer Learning

The source and target domains are comparable, as in inductive transfer learning, but
the tasks are not. However, neither domain's data is labeled.

It is frequently faster to get huge volumes of unlabeled data, such as through databases
and web-based sources, than labeled data. As a result, there is a lot of interest in the
notion of combining unsupervised learning with transfer learning.

As an example, self-taught clustering is an approach that allows you to cluster small
collections of unlabeled target data, with the help of a large amount of unlabeled source
data. This approach is more efficient than the state-of-the-art approaches traditionally

used when the target data is labeled in an irrelevant way.

> Transductive Transfer Learning:

The source and target tasks are comparable in this design, but the related domains differ
in terms of data or marginal probability distributions.

For instance, the NLP models used for morpho-syntactic word tagging, Part-Of-Speech
Tagger (POS Tagger), are often trained and evaluated using Wall Street Journal news
data. They can be tailored to data from social networks, which material differs but is

similar to that of newspapers.

3.5.3.2 Transfer learning resolves deep learning problems

These models, in general, relate to high-performance algorithms that have been created
and trained on huge databases and are now openly available. We can differentiate two

tactics in this context:

3.5.3.2.1 Using pre-trained models as feature extractors

Deep learning models frequently use a tiered stack of neurons as its architecture.

Depending on the level at which they are positioned, these layers learn distinct
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properties. In the case of supervised learning, the last layer (typically a fully linked layer)
is employed to obtain the final output. As a result, the goal is to reuse a pre-trained
network without its final layer. This new network then serves as an extractor of fixed
characteristics for the accomplishment of additional tasks. In our case we will use the

second strategy that will be described in the following paragraph.

3.5.3.2.2 Adjusting pre-trained models

This is a more complex technique, in which not only is the last layer replaced to perform
classification or regression, but other layers are also selectively re-training. Indeed, deep
neural networks are highly configurable architectures with various hyperparameters. In
addition, while the first layers capture the generic characteristics, the last layers focus
more on the specific task at hand.

The concept is thus to immobilize (i.e., fix the weights) of certain layers during training
and refine the rest to answer the problem. This strategy makes it possible to reuse
knowledge in terms of the overall architecture of the network and to exploit its states
as a starting point for training. It therefore makes it possible to obtain better
performance with a shorter training time.

The figure below summarizes the main transfer learning approaches commonly used in

deep learning.
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Figure 3.14 Deep transfer learning approach
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ImageNet is a database of images freely accessible (under conditions) online. This
database contains 14 million images divided into 1000 categories. Since 2010, a machine
learning competition has been ongoing, dedicated to assessing the most effective image
processing algorithms using the ImageNet dataset. The name of this competition is
ILSVRC. Since 2012, the year of the first convolutional deep neural network (AlexNet),
all the winners have been using Deep Learning. Testing the new neural network
architectures on the ImageNet dataset is customary. This is precisely what Microsoft
accomplished with their architecture known as ResNet (He, K. & al.). ResNet networks
perform very well on ImageNet (>93%). There are several variations of ResNet(s)
depending on their depth. The teams that created ResNet made their work and results
generally available. This allows us to benefit from it to do transfer learning.

Hence, ResNet allows everyone to leverage its capabilities for image classification
without requiring millions of images or extensive computational efforts.

For simplicity, replace the last layer(s) of the ResNet network with a layer dedicated to
your problem and train the network on your data while keeping (in part) the weights
calculated by ResNet. ResNet is one of many architectures that can benefit from it. Many
others exist, such as AlexNet, Xception, VGG16, VGG19, ... DenseNet, NASN and all

trained-on ImageNet.

3.5.3.3 Application of transfer learning in the real world

The deep-learning-based approaches such as ,
, ,and are applied to solving
image classification problems, Alzheimer detection by fine-tuning AlexNet architecture
and . Also,

the are widely applied to resolve problems in several domains like:

Medical applications: In have refined the pre-trained deep neural
network to solve computer-aided detection problems. In used
transfer learning to help assess knee osteoarthritis. In

active learning and domain adaptation technologies were combined for the
classification of various medical data. Also, in transfer learning was

used to automatically describe a patient's diagnosis.
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Bioinformatics Applications: Transfer learning can be applied to facilitate biological
sequence analysis by understanding the behavior of one organism and transferring it to
the others organism like in (Schweikert, Ratsch, Widmer, & Scholkopf, 2008), it can also
help on problems of organism classification like in (Huang, Smola, Gretton, Borgwardt,
& Scholkopf, 2006) and (daumé Ill, 2007). In addition, transfer learning tool are widely
used in gene expression analysis and association predictions between genes and
phenotypes like in (Petegrosso, Park, Hwang, & Kuang, 2016), (Huang & Kuang, 2010),
(Xu, Xiang, & Yang, 2010) and (Singh & Gordon, 2008).

Transportation applications: Transfer learning is applied in the field of transport in
order to understand images of traffic scenes. in (Di & al., 2018) a solution has been
proposed to solve the problem related to traffic images taken from a certain location
and which often suffer from variations due to different weather and light conditions.
Transfer learning is also applied to the task of modeling driver behavior. For example, in
(Lu &al., 2020) an approach has been proposed to adapt the driver model in lane change
scenarios. In (Liu, Lasang, Pranata, Shen, & Zhang, 2019) applied transfer learning to
recognize driver poses. In (Wang, Zheng, Huang, & Ding, 2018) authors adopted a
regularization technique using transfer learning for vehicle type recognition. Transfer
learning can also be used for the detection of abnormal vehicle movements as in
(Gopalakrishnan, Khaitan, Choudhary, & Agrawal, 2017) and (Bansod & Nandedkar,
2019).

A diverse array of applications has employed transfer learning to address prevailing
issues, and we have aimed to highlight the most significant among them. In the context
of identifying Nosema images, or more precisely, classifying images as either Nosema or
non-Nosema, the selected architectures were AlexNet, VGG16, and VGG19. For these
three architectures we will use the DS1 image database, we will fine-tune each model

and then retrain it on our DS1, and finally show and discuss the results.

3.5.3.3.1 Fine-tuning AlexNet transfer learning model
3.5.3.3.1.1 Concepts

AlexNet, which was first proposed by Alex Krizhevsky & al. in the 2012 ImageNet Large
Scale Visual Recognition Challenge (Krizhevsky, A. & al, 2017). It is a simple CNN

71



Identification Of Nosema Cells Using Microscopic Images
architecture that consists mainly of five convolutional layers: the first four layers are
followed by the pooling layer and the fifth layer is followed by three fully connected
layers (FCN). Figure 3.15 Describes the Architecture of AlexNet model.
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Figure 3.15 AlexNet Architecture
The non-linearity layer of ReLU is from the following equation:
f(x) = max(x,0) (3.17)

It is a half-wave rectifier function, which can significantly accelerate the learning phase
and avoid overlearning. The abandonment regularization technique consists of the stall
that stochastically defines several input neurons or hidden neurons to zero to reduce
the co-adaptations of neurons, which are typically used in fully connected layers of the
AlexNet architecture. The ReLU non-linearity layer and the abandonment regularization

technique are the reasons for AlexNet's success.
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3.5.3.3.1.2 Experimental methodology for fine-tuned AlexNet model

AlexNet's model has 25 layers, includes over a million photos, and can categorize 1000
categories. To train this model on our dataset of images, the following steps were
adhered to:

1-Partition of the input data into separate sets for training and validation. The dataset
was divided into learning and validation sections based on four cross-validation folders.
2-The input data is organized into two labeled folders: the Nosema cell images class and
the non-Nosema objects images class.

3-RGB images are automatically resized to 277x277 in the model augmentation phase
since AlexNet only accepts this dimension of images.

4-The AlexNet pre-trained model's last three layers have been replaced: layer 23 with a
fully connected layer, layer 24 with a softmax layer, and layer 25 with a classification
output layer.

5-The last classification layer has been modified to identify two image classes, the
Nosema class, and the non-Nosema class, instead of 1000 classes.

6-Finally, following the regularization of training options, a series of experiments were

conducted to attain the optimal outcome.
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Figure 3.16 Fine-tuned AlexNet Model for DS1 images classification
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Table 3-4 below illustrates the training options finally chosen to train AlexNet according

to our images:

Table 3-4: Experimental setting for retrained AlexNet model

Model Parameters Setting Values
AlexNet Learning algorithm Sgdm
Initial Learning Rate 0.001
Mini-batchsize 64
Maximum epochs 20

3.5.3.3.2 Fine-tuning VGG16 and VGG19 transfer learning models

K. Simonyan and A. Zisserman proposed VGG16 from the University of Oxford in the
paper "Very Deep Convolutional Networks for Large-Scale Image Recognition." The
model achieves 92.70% top-5 test accuracy in ImageNet. VGG-16 and VGG-19 are
convolutional neural networks trained on more than one million images in the ImageNet
database. Both networks possess the ability to classify images across 1,000 object
classes. Furthermore, they share an image input size of 224 by 224 pixels. The concept
of the VGG19 is the same as that of the VGG16, except that the VGG16 network has a
depth of 16 layers, and the VGG19 has 19 layers. However, the two x-arrays of
convolutional neurons are used to analyze the image object. The following image
illustrates the general architecture of the VGG16 network. The VGG19 network follows
a similar architecture, except for featuring three additional convolutional layers

compared to VGG16.
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Figure 3.17 VGG16 Architecture

The fine-tuning procedures for both models mirror those of AlexNet, albeit with

variations in terms of the input image types and the specific layers to be modified:

1-Partition the input data into two parts. The dataset was divided into learning and
validation sections based on four cross-validation folders.

2-The input data is organized in two labeled folders: one for the images class of
Nosema cells and the other for the images class of non-Nosema objects.

3-RGB or gray images are automatically resized to 224x224 in the model
augmentation phase since VGG16 and VGG19 only accept this dimension of images.
4-For VGG16, the network contains a total of 41; layers numbers 39, 40, and 41 have
been replaced by a fully connected layer that supports classification between two
classes (Nosema classes and non-Nosema classes) and a classification output layer.
5-For VGG19, which contains a total of 47 layers, layer 45 has been replaced by a
fully connected layer to classify two classes of objects, and layer number 47 (the
softmax layer) has been replaced by a classification layer.

6-Finally, several experiments were carried out after the regularization of the
training options to obtain the optimal result.

The following two figures (Figure 3.18 and Figure 3.19) describe the two models after

their modifications.

75



Identification Of Nosema Cells Using Microscopic Images

1: Pretrained 2: Fine-Tuned & Retrained

VEGIE Model

i r—| -

| Fe i

CE= )

—r—

)

o)

G

|

—=——

CE=tT

f l ===

I:l Trensfer Learning

= Caman) [~ ey """"ﬁ:""““ﬁ ,

=] —=— prisinss o ys

= =]

== == —

=1 = — .

e =1 5=
5 of own -

VGG16 (2000 mages) Lo

Figure 3.18 The Fine-Tuned VGG16 Model for Nosema Recognition

2: Fine-Tuned &Retralned WGG19 Model

=) e,

Fuily connected oyer
N ki for 2 elases: Nosema
 —— and Non-Nosema
(===
s
(=]
T
 — —
[Ee=ii ]
E:,E'_-"—"—l Transfer Learning Frocen lovers: used for transfer
=51 — leorning from the pretrained Alexnet

Model to the retrained Model
 — —
===
===
=== — A
.- .-

CEE=T= - -
 — — .mmd’-" e
CEans ] e T~ |
C ] Ds1 (2000 B —
i E-‘ imoges) |
VGGE19 Input 2245224 ROBGF Gravicole Booger

VGG19

Figure 3.19 The Fine-Tuned VGG19 Model for Nosema Recognition

Table 3-5 below describes the choice of training parameters of two models.
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Table 3-5: Experiment for VGG16 and VGG19 fine-tuned models

Model Parameters Setting Values
VGG-16 and VGG-19 Learning algorithm Adam
Initial Learning rate 0.0004
Mini-batch size 10
Maximum epochs 25
Validation Frequency 3
Validation Information Test-Images

3.6 Recognition result

Next, the detailed description of our classification approach is in the preceding part; the
next section will disclose the results of its application on the DS1 and DS2 datasets.

This chapter aims to compare the outcomes of traditional approaches to classification
methods with those provided by sophisticated transfer learning techniques. The
presentation begins with the results of applying ANN and SVM based on the computed
characteristics of DS1 and the results of CNN and the re-trained models AlexNet, VGG16,
and VGG19 based on DS2 pictures. The results of the authorized classification

techniques will then be shown and examined.

3.6.1. Results of classification with ANN and SVM: The use of DS1

The use of the DS2 characteristics database for object classification was made using two
strategies. The first technique involves testing the 15 geometric, static, and textural
characteristics without considering the four yellow color features generated by the
GLCM, whereas the second consists of trying all 19 characteristics. This procedure aims
to demonstrate the significant presence of a yellow hue within Nosema cells. This
validates the rationale behind calculating the GLM features for this specific color from
the outset. The results of the two classifiers, ANN and SVM, are presented in Table 3-6

below.

Table 3-6: Best recognition results given by ANN and SVM

Number of | Classifier | Accuracy | Observation

Features

15 Features ANN 79.00% For 1400 neurons in the hidden layer
SVM 81.00% Using kernel RBF

19 Features ANN 83.20% For 1400 neurons in the hidden layer
SVM 83.50% Using kernel RBF
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It is worth noting that the results produced by combining all of the estimated
characteristics (19 features) outperform those obtained by the 15 features.
Furthermore, around 1400 neurons in the neural network's buried layer provide the best
results for all studies. Indeed, the precision of the outcome is improved by utilizing GLCM
properties of the yellow hue.
Figure 3.20 depicts the ANN's most excellent accuracy in a confusion matrix (Dghim,

Travieso-Gonzdlez, Dutta, & Hernandez, 2020).

Confusion Matrix
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Figure 3.20 Best result accuracy given by the implemented ANN

3.6.2. Results of classification with CNN and transfer learning: the use of DS2

3.6.2.1. CNN result

CNNs had an accuracy rate of 92.50%. It outperforms the ANN and SVM techniques. The
first block differentiates this type of neural network since it works as a feature extractor.

It does this by incorporating convolutional filtering algorithms with template matching.
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The first layer filters the image with numerous convolution kernels and creates "feature

maps" normalized through an activation function (see Figure 3.21).
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Figure 3.21 Example of the output of the first layer

-

This operation can be repeated as many times as necessary: the feature maps obtained
with new kernels are filtered, providing new feature maps for normalization and
resizing. These can then be filtered further, resulting in a recurrent cycle. Finally, the
latest feature map values are concatenated into a vector. This vector determines the
first block's output and the second block's input.

The second block lacks distinguishing CNN characteristics: It is usually found near the
end of all neural networks used for classification. The values of the input vector are
changed (through numerous linear combinations and activation functions) to generate
a new output vector. This final vector has as many components as classes; the element
i represents the probability that the image belongs to class i. As a result, each element
is between 0 and 1, and the total is 1. The last layer of this block (and hence of the
network) computes these probabilities as an activation function using a logistic function

(binary classification) or a SoftMax function (multi-class classification).
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The parameters of the layers, like those of ordinary neural networks, are determined
using gradient backpropagation; cross-entropy is reduced during the training phase.
However, in the case of CNNs, these parameters are particular to picture properties.

3.6.2.2. Transfer learning results
3.6.2.2.1. Result for AlexNet

The findings achieved after applying the transfer learning methods to categorize two
sorts of objects or Nosema object recognition, are presented in the table below. Table
3-7 provides the most significant findings, i.e., those with the highest occurrences, which

are as follows: 50%, 60%, 70%, and 80% for training and the others for testing.

Table 3-7: Best classifications results for AlexNet fine-tuned classifier

Trained Data Validation Data Accuracy Epochs Number
0.5 0.5 84.58% 6
0.6 0.4 83.98% 6
0.7 0.3 86.98% 6
0.8 0.2 85.28% 6

The experiment using 70% training data and 30% validation data, and a number of
epochs equal to 6 yields the best accuracy result, as shown in table 3-7. The number of
epochs was increased in the following experiment. However, six epochs consistently

delivered the best accuracy.

3.6.2.2.2. Results for VGG16 and VGG19

The findings of the retrained VGG16 and VGG19 models for the three most significant
trials are shown in Tables 3-8. The best accuracy attained by a VGG16 fine-tuned model
is 96.25% when the data is divided into 80% for training and 20% for testing, as shown
below.

Table 3-8: Best classifications results for VGG16 and VGG19 fine-tuned classifiers

Experiments Epochs Accuracy
VGG-16 VGG-19
0.7 6 76.29% 71.95%
6 92.50% 93.00%
08 12 94.50% 82.00%
20 96.25% 92.32%
25 93.00% 93.50%
0.9 6 88.00% 77.00%
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These findings are depicted in the figures below:
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Figure 3.22 Best simulation results for VGG16 (a) and VGG19 (b): 70% of data for
training and 30% of data for validation with 6 epochs.
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Figure 3.23 Best simulation result of VGG16 (a) and VGG19 (b): for 80% for training
and 20% for validation and with 20 epochs for VGG16 and 25 epochs for VGG19.
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Figure 3.24 Best simulation result of VGG16 (a) and VGG19 (b): for 90% for training and
10% for validation, with 6 epochs for VGG16 and 30 epochs for VGG19

As indicated in Table 3-8, VGG16 demonstrated competence in picture classification
between Nosema and non-Nosema images with a success accuracy of 96.25% (see

Figure 3.25).
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Figure 3.25 Best succes accuracy (96.25%) given by VGG16 fine-tuned model

3.7 Discussion

In addition, we have included contemporary research in the bibliography that uses

chemical simulations and powerful technical devices to identify bee illnesses or

disturbances inside bee colonies. In this section, we evaluate our provided method and

compare it to earlier efforts in the literature that exclusively employed image processing

and computer vision techniques to identify and recognize Nosema spores.

Table 3-9: Comparison of proposed method with existed method in the literature using
different image processing tools (%)

Authors Year Methods Dataset | Accuracy
Alvarez-Ramos, 2013 | Nosema classification : - -
Nino, & Santos, SIFT+SVM
2013
Patricio-Nicolas, Nosema counting 12 92.00%
Mauro-German, 2016 predefined functions in | microscopic
Sergio-Damidn, the OpenCV Library images

83




Identification Of Nosema Cells Using Microscopic Images

Paola-Verodnica, &
Hector-Luis, 2016

Prendas-Rojas, Nosema detection and 375 84.00%
Figueroa-Mata, counting: Binary and | microscopic
Ramirez-Montero, mathematical images
Calderodn-Fallas, 2018 morphologies

Ramirez- Bogantes,
& Travieso-
Gonzalez, 2018

Proposed Method Nosema recognition: 185 91.10%
(Dghim, Travieso- 2020 Binary and mathematical | microscopic
Gonzales, Dutta, & morphologies + ANN images

Hernandez, 2020)

Nosema recognition: 2000 96.25%
Bi h cal | mi .
Proposed Method | 2021 inary and n.lat ematica ml.CI'OSCOplC
morphologies + ANN+ images
SVM+ CNN+

AlexNet+VGG16+VGG19

This part is dedicated to evaluating the implemented approach and carrying out various
comparisons with those previously described in the literature.

The comparison of the methodologies used in this study to cutting-edge approaches
highlights their effectiveness. As seen in the table above, the findings described in this
PhD document surpass those reported in the literature. This is explained by the
suggested model's ability to extract characteristics from microscopic images of Nosema
illness and the performance of the classifiers utilized.

In (Alvarez-Ramos, Nifo, & Santos, 2013) employed images in which the spores were
accentuated against the background. This approach demands a substantial level of
quality in the photographs, in addition the number of used images and the success
accuracy rate were not mentioned. In (Patricio-Nicolas, Mauro-German, Sergio-Damian,
Paola-Veronica, & Hector-Luis, 2016), authors relied on a small dataset of microscopic
images (only 12 images) and extract a few numbers of features to identify and count

Nosema spores, with this amount it gives the impression that it is only a training process,
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if so, a high accuracy is misleading 92%. Compared to our method in

in which we relied on 85 typical images obtained
from the microscope, in them it is clearly noticed that there is a lot of noise and
extracted 9 features that we used later with an ANN classifier to recognize Nosema cells,
and we obtained a success accuracy of 91.10%. In
authors extracted three principals features to characterize Nosema cells and worked on
375 images to test their method; the accuracy was 84%. When compared to the three
previous studies, this accuracy appears commendable, particularly considering the
limited number of utilized microscopic images (more than the three previous works).
Through this, we conclude that the number of the images in the dataset makes a big
difference in the success accuracy of the method, as well as the exactitude, the precision
and the choice of calculated features that describe the Nosema cell surely contribute to

the amelioration of this accuracy.

The presented method consists of two main parts. The first part is the study of
microscopic images and the extraction of the most relevant characteristics that can
describe a Nosema cell. The second part is the use of different kinds of classification
systems to recognize the Nosema cells. Some of those classifiers used the extracted
features to the recognition process like ANN and SVM while the other deep learning and
transfer learning classifiers used microscopic images of Nosema cells, these classifiers
are an implemented method CNN, AlexNet, VGG16, and VGG19 pretrained models. In
contrast to prior literature, our approach demonstrated richness, diversity, and
distinctiveness across multiple facets: from the computed cell features and employed
classifiers to the chosen datasets and the attained success accuracy, which surpassed
the literature's figure (96.25%). Moreover, this reaffirms the efficacy of deep learning
tools in the recognition of Nosema images, as posited in the Hypothesis within the thesis

introduction section.

The next section delves into fine-tuned models to conduct more experiments for
Nosema recognition. These experiments use a new environment of work with Python
3.7.9 amdé64, and a machine equipped with an i7-9700/8GB, and a GPU processor.

MATLAB was initially utilized for image processing to highlight its strengths in this
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sector. As the project continues, Python will be used for machine learning tasks
because of its large libraries and frameworks that are well-suited for complex
computational tasks. We will use data augmentation techniques in this phase, and the
dataset will be increased to contain thousands of photographs. Python's versatility
and the availability of image augmentation tools make it an excellent choice for this
stage of the study, allowing us to improve the dataset's resilience and variety for more

successful machine learning model training.

The new experiment uses many and various fine-tuning models involving an increasing
number of epochs to improve the recognition accuracy of Nosema as much as possible.
In fact, the first part of experiments is done simply by fine tuning the pretrained models
and the second phase is done by exploiting the efficiency of data augmentation to

increase the accuracy of recognition.

3.8 Fine-tuned models without data augmentation
3.8.1 Methodology

In the previous sections of this chapter, the models AlexNet, VGG16, and VGG19 were
employed to initiate transfer learning. This initial endeavor was aimed at assessing the
efficacy of these models in recognizing disease cells and juxtaposing their performance
against other machine learning techniques (ANN and SVM) and deep learning
techniques (CNN). Transfer learning models have shown their high efficiency compared
to different classifiers and have achieved an accuracy of 96.25% in Nosema cell
recognition. Despite reaching the highest accuracy reported in the literature, we were
excited to conduct more experiments using several transfer learning models to get a
better result. As such, the concept involves manipulating the number of epochs, mainly
since we previously relied on a limited number of them, that was, at most, 30.
Additionally, leveraging a GPU processor is crucial to expedite simulation time and

achieve outstanding image display, responsiveness, and visual smoothness outcomes.

In this experiment, we fine-tuned around 19 transfer learning models, which are
EfficientNetBO, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4,
EfficientNetB5, EfficientNetB6, EfficientNetB7, and Inception. ResNetV2, InceptionV3,
MobileNet, MobileNetV2, ResNet50, ResNet50v2, ResNet101, ResNet152V2, VGG16,
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VGG19, and Xception. Prior to each experiment, a specific training dataset is designated
for training the model. Additionally, a validation dataset might be employed to ascertain
the model's aptness and pinpoint optimal classifier hyperparameters. Lastly, a set of
tests allows us to get an idea of the real performance of the model. In this case, the
chosen approach ideally involves a ten-cross-validation strategy. Out of these, eight
folds exist for training and 2 for testing. The models are initialized with pre-trained
ImageNet weights, and we fine-tuned them with our dataset, DS1, which contained
2000 images each of Nosema and non-Nosema. All the pre-trained models will be used
as feature extractors. To fine-tune the pre-trained models, for every one of them, the
last predicting layer will be placed by our own predicting layer of two classes, Nosema
and non-Nosema, using a sigmoid activation function. The weights are used as feature
extractors and are frozen and not updated during the training. The fine-tuned models

have the same architecture as shown in Figure 3.26.

Class Nosema
—

ou: [T !

—, Class Non-Nosema

Conv3

Conv3 Weights are frozen
—

Conv2

Conv2

Convl

Figure 3.26 Pipeline of fine-tuned models

|

Input data

The information Images are standardized to a common size of 200 by 200 pixels and
include three RGB channels (Red, Green, and Blue). The first nine normalized images

with labels are shown in Figure 3.27.
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Figure 3.27 Prepared Input Images for fine-tuned models

The parameters of each model must then be set, as is customary. Furthermore, the
number of epochs must be determined. The accepted approach in our setting is as
follows:

1-Start training the models with 50 epochs. It should be noted that convergence might
take up to 50 epochs, depending on the learning rate used. Ifimage augmentation layers
are not used, validation accuracy may be as low as 60%.

2-After training, discard the models that reach an accuracy less than 96.25% (the
maximum accuracy in the prior tests) and keep the others.

3-Run a second experiment with conserved models for a total of 100 epochs.

4- Throughout the experiment, certain models were halted before reaching 100 epochs.
This decision was based on their consistent decline in accuracy over a span of 12 epochs,
coupled with their failure to surpass the 96.25% benchmark. Continuing their training in

such cases would have been inefficient and time-consuming.
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5- Ultimately, only the models with the highest performance across the 100 epochs will
be used for the following experiment. In fact, it should be mentioned that all models
begin to decrease before completing the 100 epochs, which is why we did not do

another experiment with more than 100 epochs.

3.8.2 Experiment results

The accuracies are given by a 5-fold cross-validation strategy. This approach involves
randomly dividing the set of observations into five groups, or folds, of approximately
equal size. The first fold is treated as a validation set, and the method is fit on the
remaining 5-1 folds. Every particular result of a particular folder was given in the form
of an accuracy model, a loss model, and a confusion matrix, which show the exact
precision of the folder. After that, the mean accuracy was calculated to have the final
precision of the fine-tuned model.

Like said in the methodology, the 19 models were first trained during 50 epochs. Next,
the 7 models in Table 3.10 below were eliminated because of their low accuracies or
because they continued to decrease after 50 epochs. All models approve different
frozen weights. The best mean accuracy result during 50 epochs of training was 93,88%,
and it was given by the pretrained model EfficientNetB5. Note that some of them have
stopped before achieving 50 epochs. Table below can show the results of this
experiment.

Table 3-10: Experiment results for fine-tuned models with 50 epochs

Fine-Tuned Model Epochs Frozen weights | Mean accuracy %
EfficientNetB4 50 17.673.823 93.28 +1,83
EfficientNetB5 50 28.513.527 93.88+1.59
EfficientNetB6 50 40.960.143 93.28+1.74
InceptionResnetV2 20 54.336.736 60.07£3.58
InceptionV3 40 21.802.784 73.74+1.77
Xception 30 20.861.480 81.91+6.39
ResNet152V2 20 58.331.648 60.82+2.76
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In the next of this subsection the results of fine-tuned models on 100 epochs will be

shown. Note that some of them have stopped before achieving 100 epochs.

Table 3-11: Experiment results of fine-tuned models with 100 epochs

Fine-tined Epochs Frozen Weights | Mean Accuracy
Model %
EfficientNetBO 100 4.049.571 95.84+0.87
EfficientNetB1 90 6.575.239 96.29+0.86
EfficientNetB2 100 7.768.569 95.59+1.19
EfficientNetB3 80 42.658.176 94.89+0.66
EfficientNetB7 60 64.097.687 93.63+0.65
ResNet50 70 23.587.712 95.84+1.32
ResNet50V2 60 58.370.944 96.59+1.06
ResNet101 70 42.658.176 95.94+0.51
MobileNet 90 3.228.864 95.04+0.66
MobileNetV2 90 2.257.984 96.34+0.64
VGG16 100 14.714.688 97.64+0.75
VGG19 100 20.024.384 96.79+0.58

Table 3-11 shows that the VGG16 fine-tuned model has the highest precise accuracy of
Nosema identification at 97.64%. It must be stated that we have increased the
accuracy of recognizing Nosema cells by 1.39% (previously 96.25%).

The third step of this experiment involves applying augmentation data to the model that
provides the greatest recognition accuracy (VGG16) in order to measure the skills of the

latter in the improvement of the prediction of the fine-tuned model.

3.9 Fine-tuning VGG16 with Data augmentation

Deep neural networks' robustness is highly related to the image number computed in
the datasets. This is due to the fact that the training process involves dealing with

millions of parameters. This way during the training, it becomes imperative to acquaint

the system with an exponential number of parameters, which must be matched by a
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proportional number of examples, if it is not the case, the network will learn more than
what is supposed and generate the over-fitting problem. In the case of very deep
architectures like VGGNet and GooglLeNet, the problem is more complicated, and the
number of parameters is very large. On the other hand, many applications need very
deep architectures to increase the number of extracted features and cross the deepest
component or propriety describing this pattern. In this study, the efficiency of data
augmentation is utilized to address this challenge, a strategy that is commonly employed
in the existing literature, as seen in
’ , and

many architectures used this metric and approved their efficiency
to overcome the over-fitting problem. This technique consists of the transformation of
the training set (varied size, angles, contrast...etc.) with the purpose to increase the
generalization and improve the ability of the model to recognize different versions of
the same image. In this work, the data augmentation technique was utilized as a crucial
approach to enhance the training dataset's size and enhance the efficiency of the
proposed method. The objective is to assess the impact of data augmentation on the
development of Al (artificial intelligence) models by improving the performance of

transfer learning models in disease recognition

The Nosema images underwent various degrees of rotation using a specific Python code.
The images were randomly rotated at angles of 20, 30, 60, and 180 degrees, utilizing the
rotation range parameter. Subsequently, the augmented dataset of images was used for
training purposes. A 5-fold cross-validation methodology was applied, and the training

was done during 100 epochs. VGG16 is fine-tuned as previously.

As a result, the proposed method achieved a mean accuracy of 99.35% showing an
improvement of 1.71% compared to the fine-tuned VGG16 without augmentation data.
Moreover, the highest precision given by the VGG16 fine-tuned model was 99,70% with
the particular 2-fold using a +30 2 rotation of the images showing an improvement of
3.45% compared to the first experiment did previously. The next tables and figures show

the detailed result.
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Figure 3.28 9 first augmented images with 30-degree rotation
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Figure 3.29 Experiment setting for VGG16
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Table 3-12: Experiment results for fine-tuned VGG16 model with Augmentation Data

Rotation Mean Accuracy during 100 epochs
. %
VGG16 fine-tuned
model using +20 98.57+0.27
Augmentation
+30 99.35+0.14
Data
+60 99.25+0.12
+180 97.89+0.09
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Figure 3.30 Accuracy and loss models for best precision given with 2-fold cross
validation strategy.
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Figure 3.31 Confusion matrix for best accuracy (99.70%) given by VGG16 with
Augmentation Data.

The experiments demonstrate that data augmentation method improves the
classification performance. As a result, the proposed method enabled VGG16 to achieve
99.70% accuracy, showing an increase in recognition performance improvement by
3.45% compared to its first experiment (see table 3.4) like shown in table and figure
below. This leads us to conclude that several factors can affect the work of a transfer
learning model, and this thesis presents many factors such as the number of images in
the dataset, the choice of parameters setting of the model, the choice of epochs number
during the training, and especially the use of the data augmentation method. Moreover,
the most important of all is to solve a recognition or identification problem and
achieving the optimal outcome needs exploring different architectures and conducting

numerous experiments on the dataset.
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Table 3-13: Comparison between proposed methods

VGG16 Proposed method 2021 | Proposed method 2022

Performance without 20 epochs 100 epochs

Augmentation Data 96.25% (particular file | 97.64% (mean accuracy)
accuracy)

Performance with 99.35% (mean accuracy)

Augmentation Data - 99.70% (particular file accuracy)

Figure 3.32 The increment of VGG16 precision accuracy from the first to the last
experiment

From 20,000 images, there are only 7 Nosema images and 14 non-Nosema images that
have been misclassified as shown in the confusion matrix above (Figure 3.31), and this
essentially related to the quality of the used images in this doctoral thesis. This problem
was mentioned and studied in chapter 2. Let’s see an example of a Nosema image which

has been classified as non-Nosema image in Figure 3.33.
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Falla en imagen 1846
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Figure 3.33 An example of a misclassified Nosema image

The image is a Nosema cell superimposed on the counting grid. Its location gives it a very
different shape from a normal cell because of the color of the grid, despite this, the
identification result is close to 100%. Our challenge was identification of Nosema cells

despite the defective and noisy quality of the used images.

3.10 Conclusion

The application of Al in the real world makes systems easier and smarter. For instance,
it enhances the comprehension of disease systems, enhances the reproducibility of
diagnoses, and can even substitute experts in certain repetitive tasks, thus undeniably
benefiting various domains. In this area, disease analysis becomes a very interesting
research domain in Al, looking for understanding the symptoms, doing the diagnosis
automatically and rapidly take a decision. In these axes, we presented our contribution
by trying to answer the questions related to the recognition of Nosema in the

microscopic images.

In this chapter, the recognition method is presented. The contribution in this domain is
delineated through three algorithms. The initial algorithm entails the extraction of
features from the Nosema cell, which are subsequently fed into ANN and SVM classifiers
to facilitate cell recognition based on the extracted features. In the second one, the
images of Nosema cells and other objects in the digital images are used in deep learning
and transfer learning models to recognize the disease. Lastly, in the third one a data

augmentation method was implemented to enhance the functionality of the model.
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In this work, the process of calculating Nosema features and their application in
supervised recognition has been outlined. Additionally, various classifier models have
been discussed to showcase the effectiveness of the approach and the noteworthy
outcomes achieved. Especially for the use of transfer learning with augmentation data

to do the recognition task.
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4 Chapter 1V: Automatic
Algorithm for Nosema
Identification & Counting

4.1 Introduction

Nasema was recognized in earlier chapters by analyzing individual cell images, collecting
the cell's properties, and using them in the classification procedure. Individual cell
photos were also used to retrain several Nosema detection methods. The previous two
approaches identified sick cells from other things by using their individual cropped sub-
pictures, which were cropped from the original microscopic images (Nosema and non-
Nosema items). Based on the information put within the VGG16 model in the previous
chapter, this chapter tries a fresh approach. Indeed, the work in this chapter is entirely
automated; the methods for automatic recognition and counting of cells inside
microscopic pictures based on VGG16-constructed information will be shown and
detailed in this chapter. To be more exact, the cells will be detected and gathered within
the main microscopic image to establish the disease stage. A computerized program will
count the infected cells in the microscopic picture and classify them as very mild, mild,
moderate, semi-strong, or strong. This established strategy, along with the accurate

diagnostic, assists in streamlining the infection level.

The experiments in this chapter make use of a Python 3.7.9 amd64 environment and a

system outfitted with an i7-9700/8GB and a GPU processor.

4.2 The automatic algorithm

One of the main problems that can appear when developing a computer vision system
is being able to choose the appropriate processing techniques to extract the necessary
information (Gonzalez & Woods, 2008) and achieve the stated objective. As a result,
various techniques built upon distinct automated systems developed within the same

domain were evaluated (Alvarez-Ramos, Nino, & Santos, 2013).

Chapter 3 described the usage of numerous classifier models to demonstrate the

efficacy of this work’s proposed technique and its highly interesting findings particularly
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regarding the use of transfer learning with augmentation data to perform the cells
recognition task. As shown previously, the trials undertaken allowed the fine-tuned

VGG16 model to achieve 99.70% identification accuracy of Nosema cells.

In this chapter, the automatic algorithm makes use of the VGG16's expertise and results
to identify the needed items in microscopic images. In other words, the main role of this
algorithm is to perform object detection on an input image using a sliding window
approach and a pre-trained model (VGG16). This section of the work is implemented
with Python. Python was chosen because of its library richness, allowing to push the
language's limits and undertake ambitious and hard projects in various application
fields. In a scientific study, for example, the biopython library makes it easier to process
and interpret biological data. The pyGame library is utilized in the area of video games
to construct 2D or 3D video games. Python modules, therefore, contribute to the
language's two key strengths: simplicity of use and diversity. In figure 4.1 there's an
overview of the implemented methodology followed. The steps of this method will be

detailed in this chapter.

n Load lebraries |
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numpy, Kera
Cakulate step Load the
sipe o slicie —— prEtrainad
wiirndowey ViEG 16 modal
Sliding =
weird on Generabe an
—
functiorabity image Pyramid
Extract RO Resize image
{Mosema cedll) R

Record the result
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Figure 4.1 Pipeline of the proposed algorithm for the automatic detection.

In the subsections below there's a step-by-step explanation of the automatic algorithm

implementation and functionalities.
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4.2.1 Used libraries

The algorithm accepts an RGB microscopic image as input and produces an output a file
containing images of the identified cells. Additionally, a text file is generated, providing
the count of cells identified in each sliding window. The algorithm starts by calling the

necessary libraries and the required packages.

Figure 4.2 Used libraries

A brief description of the used libraries and their functions are detailed below:

e TensorFlow: is a deep learning package that was created by the Google Brain
team (Mattman, 2021). It offers a versatile and effective framework for
developing various machine learning models, particularly neural networks.
TensorFlow provides automated differentiation, GPU support for rapid
computing, distributed training, and platform-independent deployment.

e Keras (tf.keras): is a popular deep learning library option because it is tightly
linked with TensorFlow (Géron, 2022), which is well-known for its dependability
in production deployments. TensorFlow also includes tools for production
deployment and management, debugging and visualization, and running models
on embedded devices and browsers. Keras is utilized by Google, Netflix, Uber,
and NVIDIA in the technology business. We picked tf.keras as our primary tool
for this project since it is a library focused to expediting the building of deep
learning models, and also it is used to upload our model VGG16.

e Cv2:is a Computer Vision Library, often known as OpenCV, that will be used to
execute image processing tasks.

e Numpy: is a package that allows to work with multidimensional arrays and

matrices.
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e Datetime: is a built-in Python module that contains classes for manipulating
dates and timings. It enables to work with dates, times, and time intervals,
making it easy to execute time and date calculations.

e Imutils: is a set of functions that make it easier to interact with OpenCV, a
famous computer vision library. It offers a set of simple and straightforward tools
for performing typical image processing tasks and operations. Imutils' primary
functions include the ability to resize pictures, rotate images, translate images,
conduct color conversions, and operate with contours and bounding boxes.

e 0S:isaPython built-in module that allows to interface with the operating system
and execute actions on directories, files, and system data. Some of the most
important functions of Os include the ability to create, delete, and navigate
directories, operate with files (reading, writing, and deleting), and access

environment variables.

Both imutils and OS are strong packages that complement other libraries such as
OpenCV and TensorFlow, making it easier to work with pictures and handle files and

directories in Python applications.

4.2.2 Variables configuration

The next step involves configuring the required parameters for object detection
method:

Windows= [(30,30), (30,30)]: represents the size of a window for object detection. The
windows are 30x30 pixels in size. Additionally, there are two window sizes available. A
series of trials tested the available window sizes to determine the dimension and see
which size yielded the best Nosema number.

Overlap percentages = [0, O]: creates a two-valued list named overlap percentages.
During the object detection procedure, each number reflects the proportion of overlap
between adjacent sliding panes. Both values are set to zero in this case, indicating that
there is no overlap between windows. Based on a specified window size and an overlap
percentage, the step size for sliding windows is calculated. The function is as follows:
Overlap = (window size * overlap percentage) / 100: This calculates the amount of
overlap based on the specified percentage of overlap and the width of the window. The

overlap is calculated as a fraction of the window width, so it's divided by 100.
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Step = window size - overlap: This computes the step size by subtracting the overlap
from the window’s width. Step size is an integer value. The step determines how much
the sliding window will move horizontally and vertically between consecutive positions

during object detection or feature extraction processes.

The filename template of the input image used for object recognition is 'Image.JPG'. The
last variable is name-trained-model = 'modelol rep 0': represents the filename or

identifier of the pre-trained model that will be used for object detection.

In summary, this code snippet initializes various parameters for object detection. It sets
up the window sizes, overlap percentages, the filename of the image template, and the

identifier of the pre-trained model to be used in the subsequent parts of the algorithm.

4.2.3 Load the pretrained model: VGG16

A function was implemented to load the pre-trained VGG16 model: using a tf.keras
command called tf.keras.models.load_model(), this function takes one parameter
file_name, which represents the file name of the pre-trained model to be loaded. The
function uses a default value of 'modelol rep 0.h5' if no filename is provided when the
function is called. Inside the function, a new variable name is created by concatenating
the value of file_name with the file extension '.h5'. The '.h5' extension is typically used
for saving Keras models in HDF5 format. The described function loads the model
architecture, model weights, and optimizer state from the specified file. The loaded
model is assigned to a new variable called new_model. The function then calls
new_model.summary(), which prints a summary of the model architecture to the
console. The summary includes information about the layers in the model, the number
of parameters, and the output shape of each layer. Finally, the function returns the
new_maodel, which is the pre-trained model loaded from the specified filename.

To summarize, this function is a useful tool that loads a pre-trained Keras/TensorFlow
model from a file and returns the loaded model object. Moreover, this tool allows one

to reuse and train the pre-trained model again, or to utilize it for inference on new data.

In this method, transfer learning is conducted. Transfer learning means that the VGG16
pre-trained model is loaded using tensorflow/keras and a final layer is added that

performs classification to this model. If the classification is accurate, a new training of
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the model is performed, but just on the last layer created (to fit the images); during this
training, all elements of the pre-trained model are not trained anymore; they are in

feature extraction mode.

4.2.4 Pyramid Function

The function pyramid involves three parameters: image, which is the input image, scale,
which is the scaling factor for resizing the image, and minSize, which is the minimum
size threshold for stopping the pyramid generation. Below there are the steps followed
to create a pyramid image:

1-The function starts by yielding the original image as the first element in the pyramid.
This is done to include the original image scale in the pyramid.

2-The function enters an infinite loop while remaining True.

3-Inside the loop, the width w of the image is calculated by dividing the original width
(image.shape[1]) by the scale parameter. This resizes the image to a smaller size at each
iteration of the loop.

4-The imutils.resize function is called to resize the image to the calculated width w.
5-The imutils.resize function is a convenient method from the imutils library that resizes
the image while maintaining its aspect ratio.

6-The function checks if the resized image's height (image.shape[0]) is less than the
minSize[1] or if its width (image.shape[1]) is less than the minSize[0]. If either condition
is true, it means the image has become too small to continue generating the pyramid,
and the loop is broken.

7-If the conditions in step 5 are not met, the current resized image is yielded as the next
element in the pyramid.

8-The loop continues, and the process of resizing and yielding the image is repeated until
the conditions in step 6 are met, and the loop is exited.

In summary, the pyramid function generates an image pyramid from the input image. It
starts with the original image and then iteratively resizes the image at different scales
by the specified scale factor. The process continues until the image becomes smaller
than the specified minSize, and the pyramid generation stops. The resulting pyramid
contains multiple scales of the input image, which is useful for applying multi-scale

object detection or processing tasks.
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4.2.5 Sliding window function

The Python method sliding window creates sliding windows over an input image that
have a certain size. Sliding windows travel sequentially over the picture, collecting
various sections of interest, and are used for localized processing, such as object

detection or feature extraction.

1-The function sliding_window requires three inputs: image, the input picture, stepSize,
the step size or stride of the sliding window, and windowsSize, a tuple indicating the
sliding window's size (height, width).

2-Two nested loops are used at the function's beginning. The inner loop iterates over
the image's horizontal coordinates (x), while the outer loop iterates over the image's
vertical places (y).

3-The values for y and x are generated using the range function. The range for y has a
step size of stepSize and extends from 0 to the image's height (image.shape[0]). Similar
to y, the range for x has a step size of stepSize and ranges from 0 to the image's width
(image.shape[1]).

4-Asliding window generator is made using the yield statement inside the stacked loops.
For each point (x, y) in the picture, the generator produces a tuple (x, y, window) after
iterating over it.

5-The window is extracted from the image using slicing. The slicing notation image[y:y
+ windowSize[1], x:x + windowSize[0]] extracts a subregion from the image starting at
position (y, x) and with the size specified by windowSize.

6-As long as there are valid positions in the image, the generator keeps producing sliding
windows for those points.

Figure 4.3 shows the movement of the sliding window in the same microscopic image,

and Figure 4.4 shows some details.
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Figure 4.4 Sliding window Details

In summary, the sliding_window function constructs a series of sliding windows that
travel over the input picture at a predetermined step size. The function iterates over all
potential places for the sliding windows using nested loops, returning a set of integers
comprising the position (x, y) and the matching window data taken from the image at
each point. This generator may be used to perform localized operations on distinct parts
of a picture, such as object recognition, feature extraction, or other activities that

involve inspecting numerous sections of the input image.
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4.2.6 Record Results

The code initiates by opening a file in append mode to record the output of the image
processing and object detection activities. It then reads an image from a file and loads a
pre-trained model. Following this, a directory is created with a timestamped name to
store the results, and another file is opened in append mode to record the output of the

image processing and object detection processes (see Figure 4.5).

Input RGB image Authomatic Algorithm Cutput results

Filel: detected

‘ Image processin object images
+* +
-; object detection ‘ File2: calculated
+ MNosema number
‘ transfer learning in eviery resined
image

Figure 4.5 Record results description

4.3  Results and discussion
4.3.1 Experimental results

As stated in the introduction to the thesis paper, the used dataset is initially divided into
5 files initially labeled by the experts based on the degree of infection. A clean
microscopic picture is required for the “very mild”” infection category. The mild level
contains [5-30[ spores, moderate has [30-80[, semi-strong has [80-120[, and strong has
more than 120 spores in a single microscopic image.

Several algorithm tests were performed on many microscopic pictures of various
infection levels. Consequently, we assessed the algorithm based on the number of
spores or cells present in each microscopic picture. As an example, the outcomes of

small images from each level are presented Below.
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Figure 4.7 Detection and result on an input image of moderate level
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Figure 4.8 Detection and counting result on an input image of semi-strong level
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Figure 4.9 Detection and counting result on an input image of strong level

Table 4.1 shows the results of the automated counting algorithm on around twenty
randomly chosen images for the experiment.

Table 4-1: Experiment results for the Automatic Algorithm

Image label/ infection Manuel | Automatic Level %Absolut | %Success
level Counting | Counting | confirmation error

Centr194.JPG/Strong 143 143 confirmed 0 100
centrl78.JPG/Moderate 38 38 confirmed 0 100
Inf der201.JPG/Semi- 87 87 confirmed 0 100
strong
Sup der185.JPG/Semi- 94 94 confirmed 0 100
strong
1- Sup 1z2231.JPG/Strong 161 160 confirmed 0.62 99.38
Centr240.JPG/Moderate 50 50 confirmed 0 100
4-Inf izq292.JPG/Mild 22 22 confirmed 0 100
4-Inf 51 51 confirmed 0 100
izq243.JPG/Moderate
Centro254.JPG/Semi- 92 92 confirmed 0 100
strong
Inf izq278.JPG/Strong 164 165 confirmed 0.60 99.40
Sup der213.JPG/Moderate 73 73 confirmed 0 100
2- Inf izq184.JPG/Semi- 107 107 confirmed 0 100
strong
Centro213.JPG/Semi- 91 91 confirmed 0 100
strong
Sup der201.JPG/Semi- 95 95 confirmed 0 100
Strong
4- Supder255.JPG/Semi- 85 85 confirmed 0 100
strong
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5- Centr184.JPG/Semi- 118 118 confirmed 0 100
strong

5- Centro292.JPG/Mild 19 19 confirmed 0 100
2-Sup der292.JPG/Mild 31 31 confirmed 0 100
1-Sup izq290.JPG/Semi- 93 93 confirmed 0 100
strong

Centro277.JPG/Strong 221 222 confirmed 0.45 99.55
Total% 100% 0.01 99.99

To calculate the percentage of absolute error (%AE) between the manual counting (MC)
and the automatic counting (AC), we used the following formula:

%AE= (AE/MC) x 100

Where AE determinate the absolute difference between (AC) and (MC), AE=|AC-MC].

The success accuracy (%S) was calculated using a simple substruction function:

%S= 100% — %AE

4.2)

Table 4-2: Performance of the automatic algorithm in predicting infection level

level Algorithm Level
Precision validation
Mild 100% true
Moderate 100% true
Semi-strong 100% true
Strong 99.05% true

Table 4-2 provides information about the performance of the automatic algorithm in

predicting the different infection levels of Nosema using precision metrics. The accuracy

of positive predictions is assumed, it is calculated as the ratio of true positives to the

sum of true positives and false positives. In this table, the values under the "Algorithm

Precision" column indicate the precision of the algorithm for each level. The algorithm

achieved 100% precision for predicting "Mild," "Moderate," and "Semi-strong," and

99.05% precision for predicting "Strong". The value "true" suggests that the predictions
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for each level were validated or confirmed, meaning that the algorithm's predictions

matched the actual and real observations.

The algorithm's precision is very high for all levels, ranging from 99.05% to 100%. This
indicates that when the algorithm predicts a certain level, it tends to be correct with a

high degree of accuracy.

4.3.2 Discussion

The findings of the automated Nosema algorithm match the actual number of cells in
the microscopic pictures studied. Manual cell counting in microscopic images may differ
somewhat between persons, with variances often not surpassing 1 or 2 cells (due to
poor image quality). For example, one individual can count 42 cells in the same picture
whereas another can count 43 cells. This minor difference has no effect on the overall
analysis of the picture. In the experiment, a code was run on a set of randomly chosen
microscopic images. None of the images analyzed were improperly categorized by the
algorithm; the system still detects a number of cells within the required range of the
input image type, and the number given is nearly equal to the number counted
manually. Although the chance of categorization mistakes persists, it can be confidently
said that the error rate is extremely low at 0.01%. With this assumption, we can state
that the accuracy of this automated algorithm's Nosema identification is expected to be
99.99%. We attempted to be truthful, and the success now has the highest accuracy in
comparison to all previous works. Furthermore, the algorithm works effectively across
levels, with great precision, and its predictions have been confirmed for all of the stated
levels. The observed accuracy for the 'Strong' level is not 100%, and this can be
attributed to challenges associated with the quality of microscopic images. The presence
of a significant number of objects in the images, possibly affecting clarity or introducing
noise, poses a difficulty for the algorithm in accurately giving the true number of Nosema
cells in the image. Despite this challenge, the algorithm still demonstrates notable
precision, indicating its effectiveness in the presence of such complexities. Ongoing
efforts to address image quality concerns may further enhance the algorithm's

performance for this particular level.
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Table 4-3 below details a comparison between our approaches and the automatic

algorithm and other existing methods in the literature.

Table 4-3: Comparison of the automatic Algorithm with previous works in the literature

(%)

Authors Year Methods Dataset | Accuracy
Alvarez-Ramos, Nino, & Nosema classification : - -
Santos, 2013 2013 SIFT+SVM
Patricio-Nicolas, Mauro- Nosema counting 12 92.00%
German, Sergio-Damian, 2016 predefined functions in the | microscopic
Paola-Veronica, & OpenCV Library images
Hector-Luis, 2016
Prendas-Rojas, Figueroa- Nosema detection and 375 84.00%
Mata, Ramirez-Montero, counting: Binary and microscopic
Calderodn-Fallas, mathematical morphologies | images
Ramirez- Bogantes, & 2018
Travieso-Gonzalez, 2018
Proposed Method Nosema recognition: Binary 185 91.10%
(Dghim, Travieso- 2020 and mathematical microscopic
Gonzales, Dutta, & morphologies + ANN images
Hernandez, 2020)

Nosema recognition: Binary 2000 96.25%
2021 and mathematical microscopic
Proposed Method morphologies + ANN+ images
(Dghim, Travieso- SVM+ CNN+
AlexNet+VGG16+VGG19
Gonzales, Burguet, 2021)
Proposed Method 2022 Nosema recognition: 10000 99.70%
VGG16+ Data Microscopic
Augmentation images
Automatic counting 2023 Nosema detection and 99.99%

Algorithm

counting:

Imageprocessing+VGG16
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4.4 Conclusion

Nosema cells are recognized in their major pictures in this chapter. The approach
developed is entirely automated, relying on the essential information extracted by the
transfer learning model VGG16, which was employed for detecting Nosema cells in the
preceding chapter. This program tries to search for regions of interest using image
processing techniques and then calls the retrained model to determine whether the
region is Nosema. The results are flawless, and the program achieves the maximum

identification accuracy 99.99%.

The automatic algorithm demonstrates excellent performance and effectiveness in the
diagnosis task, as indicated by its precision metrics. With precision rates ranging from
99.05% to 100% across different severity levels, the algorithm consistently provides
accurate and reliable predictions. These results affirm the algorithm's capability to
reliably diagnose and classify different levels, making it a robust tool for the diagnosis

task.
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S Chapter V: Conclusions

5.1 Synthesis

As the main conclusion of this Doctoral Thesis, the objectives initially marked have been
achieved and a Nosema recognition automatic algorithm has been made. The
hypothesis initially set in this thesis was confirmed, and an automatic algorithm was
implemented, and it is effective in achieving its intended purpose, which is the diagnosis
of Nosema disease. The implemented algorithm in this thesis differs from those found
in the literature because it relies on a variety of image processing and deep learning

tools.

The work presented in this thesis is marked by a cohesive and progressive flow,
seamlessly connecting from Chapter 2 to Chapter 4, ensuring a logical and integrated
development of ideas and methodologies:

-This thesis has proposed a segmentation approach for microscopic images of Nosema
disease. This segmentation method provides a set of operational tools that makes it
possible to extract in an automatic and robust way the most useful features of Nosema
cell.

-For the calculation of features, mathematical and binary morphologies have been
adapted, so this method groups several types of parameters that can characterize an
object in a microscopic image; these parameters concern its shape, color and texture
how chapter 2 showed.

-For the recognition of Nosema cells from the other objects in the microscopic image,
two ways were approved. The first method is to identify them using their calculated
features relied on ANN and SVM classification systems. The second way is to classify the
images between Nosema and non-Nosema, relying on deep learning tools (an
implemented CNN). In Chapter 3, there are various transfer learning models and
augmentation data that suggest that transfer learning is more successful in recognition
and identification tasks. The combination of the VGG16 transfer learning model and
Data augmentation improves disease cell detection accuracy to 99.70%.

-Finally, in chapter 4, the fully automatic algorithm was implemented for Nosema

detection and counting from the background of the image achieving an accuracy of
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99.99% in Nosema counting and diagnosis. The automatic algorithm exhibits
commendable performance in the diagnosis task, demonstrating high precision across
various severity levels: Mild, Moderate, Semi-strong, and Strong. The algorithm
consistently achieves precision rates of 100% for 'Mild,' 'Moderate,' and 'Semi-strong'
levels, showcasing its robustness in accurately classifying instances within these
categories. Although the accuracy for the 'Strong' level is slightly below 100%, attributed
to challenges related to the quality of microscopicimages and the abundance of objects,
the algorithm's precision remains noteworthy. These findings suggest that the
automatic algorithm is a valuable tool for the diagnosis task, with potential applications

in the accurate classification of different severity levels.

5.2 Future works

Exploring alternative methods for detection and identification of disease cells. One
potential approach could involve removing the counting grid from the microscopic
images. This adjustment might lead to a more accurate determination of the detected
cell count. The characterization of the counting grid in the images will be carried out by
relying on its frequency nature and using filtering in the FFT (Fast Fourier Transfer)
. The preparation of the image for cell counting (preprocessing),
it is obtained by erasing the grid while keeping intact the cells in the image. This method
is based on the substitution of the grid signature in the FFT. The objectives to achieve
future works will be the following:
- The absence of human intervention for the processing of images. The proposed
method for the characterization and erasure of the grid has the advantage of not
requiring any manual adjustment. This advantage is obtained by searching for the
signature of the grid in Fourier space: in this space, this signature has a constant width

of one pixel regardless of the image.
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7 Resumen en Espanol

Identificacion de células de Nosema usando imagenes

microscopicas

Capitulo I- Introduccion

1.1 Motivacion

En los estudios microbioldgicos centrados en las enfermedades, los investigadores
emplean frecuentemente métodos de observacién directa para obtener una
comprensién mas profunda de los comportamientos expuestos por los microorganismos
o células enfermas dentro de condiciones especificas. Esta observacion puede llevarse a
cabo a diferentes escalas, ofreciendo informacién sobre las caracteristicas y dinamicas
de las entidades microbianas investigadas. A nivel de una colonia, los investigadores a
menudo se dedican a los procedimientos de conteo. Esto implica cuantificar el niUmero
de microorganismos presentes dentro de un grupo colectivo, proporcionando una visién
macroscopica de su poblacién y distribucion. La observacion a nivel de colonia es
especialmente atil para evaluar la salud general, los patrones de crecimiento y las

interacciones entre los microorganismos.

Por el contrario, la observacién a nivel celular implica el examen de microorganismos o
células individuales. Este enfoque a escala mas fina tiene como objetivo desentranar
detalles intrincados sobre la morfologia y la estructura de las entidades individuales. Los
investigadores se centran en parametros como la forma, el tamafio y la textura de las
células, tratando de discernir patrones o irregularidades que podrian indicar

caracteristicas o comportamientos especificos.

En el caso de Nosema, se sabe que es una enfermedad que causa la degeneracién del
tejido digestivo en las abejas, lo que conduce al hambre agudo y, por consiguiente, a la
mortalidad precoz. Esta degeneracién también puede afectar el comportamiento
volador de las abejas, lo que resulta en una reduccion de la poblacion de las (Eiri,
Suwannapong, Endler, & Neih, 2015). El impacto de Nosema va mas alla de las propias

abejas; tiene efectos adversos sobre la diversidad de las especies vegetales y la
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productividad de los cultivos. Esto, a su vez, conduce a escasez de polinizacién y pérdidas
econdmicas sustanciales en la produccién de miel (Gisder, Schuler, Horchler, Groth, &
Genersch, 2017), lo que afecta tanto a la produccién como a la eficiencia de la

polinicacion.

La motivacién detrds de la realizacién de esta tesis radica en el reconocimiento de las
importantes deficiencias y pérdidas derivadas del impacto de las enfermedades
infecciosas en los animales productores de alimentos, en particular las abejas. Las
deficiencias y pérdidas identificadas sirven de fuerza motriz para la investigacion llevada
a cabo en el presente documento. La polinizacién es un proceso ecolégico fundamental
que facilita la reproduccidn de las plantas florecientes, contribuyendo a la biodiversidad
y a la salud general de los ecosistemas. Las posibles consecuencias de una ruptura en el
proceso de polinizacidn se extienden mas alla del impacto inmediato en las abejas. Sino
se dispone de medidas de diagndstico eficaces para identificar y combatir las
enfermedades infecciosas en las abejas, es posible que no se apliquen medidas cruciales
para tratar a las abejas afectadas. Este fracaso en el diagndstico y el tratamiento
posterior tiene el potencial de agravar la propagacion de enfermedades letales entre las
poblaciones de abejas. Las repercusiones de este escenario podrian ser graves, no sélo
para las abejas, sino también para el ecosistema mas amplio, la agricultura y los sistemas
de produccién de alimentos que dependen de los servicios de polinizacion

proporcionados por estos polinizadores vitales.

En resumen, el estudio de Nosema es crucial no sélo para entender la salud de las
colonias de abejas, sino también para evaluar sus ramificaciones ecolégicas y
econdmicas mas amplias, incluyendo efectos en las especies vegetales, la productividad

de las cosechas y el ecosistema de polinizacion.

En esencia, esta tesis busca abordar estas cuestiones criticas contribuyendo al desarrollo
de herramientas y estrategias de diagnostico eficaces para combatir las enfermedades
infecciosas en las abejas. Al hacerlo, pretende mitigar las posibles pérdidas y deficiencias
en los procesos de polinizacion, salvaguardando la salud de los ecosistemas y el papel
esencial que desempefian los polinizadores en el mantenimiento de la biodiversidad y
la produccién de alimentos. Ademas, en los esfuerzos de investigacidon anteriores, ha

habido una notable brecha en la lucha eficaz contra esta enfermedad desde una
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perspectiva tecnoldgica. Para hacer frente a esta deficiencia, la presente tesis pretende
aprovechar un conjunto amplio de herramientas en el procesamiento de imagenes
microscopicas junto con métodos avanzados de aprendizaje automatico. La intencidn es
mejorar la identificacion de esta enfermedad mediante la aplicacién de enfoques

tecnoldgicos robustos e innovadores.

Esta tesis presenta un nuevo algoritmo automatico disefiado para detectar y contar
células Nosema dentro de imagenes microscopicas. El objetivo primordial es identificar
y cuantificar estas células para evaluar el nivel de infeccidn, proporcionando asi un

valioso apoyo para diagnosticar la enfermedad asociada.

1.2 Hypotésis

Mediante la utilizacion de herramientas avanzadas en el procesamiento de imagenes
microscdpicas, metodologias de aprendizaje automatico, incluido el aprendizaje de
transferencia y aprendizaje profundo, esta tesis tiene como objetivo desarrollar un
algoritmo automatico para la deteccidn y conteo de células de Nosema. Se hipoteca que
el algoritmo propuesto no sélo superara los métodos tradicionales en precision y
eficiencia, sino que también contribuird significativamente al diagndstico de Ia
enfermedad de Nosema. Se espera que la aplicacidn exitosa de este algoritmo mejore
la comprension de la enfermedad, proporcione un valioso apoyo a los bidlogos y
contribuya a la conservacion de las poblaciones de abejas y la salud general del
ecosistema. Ademas, se prevé que el algoritmo automatico simplifique el proceso de
deteccion y diagndstico, ahorrando tiempo y esfuerzo a los bidlogos implicados en el
reconocimiento de la enfermedad de Nosema y contribuyendo a intervenciones mas

eficientes y oportunas.
1.3 Objetivo

Debido a los altos costos y la complejidad de los sistemas manuales y comerciales de
deteccién de enfermedades, esta investigacion se aleja de sistemas tradicionales y
adopta un enfoque mas nuevo. Mas alla de las muchas ventajas del andlisis de imagenes,
estos nuevos métodos automatizan el complejo proceso de detectar y distinguir las
células enfermas de otros tipos de células presentes dentro de la misma imagen

microscopica.
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El objetivo fundamental de esta investigacion es desarrollar un algoritmo capaz de la
identificacion automatica y el conteo de células, que permitira a los bidlogos medir los
niveles de infeccidon y proporcionar diagndsticos precisos. Para alcanzar este objetivo

general hay que cumplir una serie de tareas o objetivos consecutivos:

1. Creacion de conjuntos de datos de imagen: Generar un conjunto de datos completo
de imagenes mediante el recorte de fotografias individuales de células Nosema y otros

objetos coexistentes de las imagenes microscdpicas primarias.

2. Investigacion de las Células de Nosema: Investigar cuidadosamente las caracteristicas
distintivas de las células de nosema y calcularlas. Esta investigacion implica evaluar
meticulosamente diversas herramientas en el procesamiento de imagenes y el
reconocimiento de patrones dentro de la vision por computadora. El objetivo es
seleccionar una metodologia existente o formular una nueva y compilar un conjunto de

datos de caracteristicas.

3. Prueba con diversas técnicas de aprendizaje automatico: Utilice los dos conjuntos de
datos construidos para probar un amplio abanico de modelos de machine learning, deep
learning y transfer learning para conocer el método mas competente para identificar las
células Nosema. Este proceso tiene como objetivo establecer un modelo simplificado,

rapido y fiable para el reconocimiento de los esporos.

4. Creacion y implementacion de modelos: Implementar un algoritmo automatico para

el conteo y diagndstico de Nosema utilizando el modelo establecido en el paso anterior.

Si bien la metodologia propuesta en este proyecto se aplico a las imagenes de la
enfermedad de Nosema, sus principios fundamentales siguen siendo versatiles y
aplicables a otras categorias de imagenes, siempre y cuando se ajusten a los mismos
criterios estadisticos. Esta adaptabilidad subraya el potencial impacto mas amplio del

enfoque propuesto en el analisis de imagenes y el reconocimiento de patrones.
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1.4 Metodologia

Este trabajo es parte de la frontera de dos disciplinas: microbiologia y procesamiento de
imagenes. Buscamos desarrollar un protocolo metodolégico adaptado a la deteccién e
identificacidon de células de la enfermedad de Nosema en las imagenes microscépicas
mediante nuevas herramientas de procesamiento de imagenes. Es fundamental adoptar
una estrategia de analisis coherente desde la adquisicién de imagenes hasta la

extraccion de informacion relevante.

El conjunto de datos utilizado en esta investigacion se obtuvo del “Centro de

III

Investigacion Nacional de Apicultura Tropical” (CINAT), perteneciente a la Universidad

Nacional de Costa Rica.

En primer lugar, se presenta el conjunto de datos de imagenes a estudiar (origen, datos
y estructura de las mismas, etc.). Trabajamos con un total de 400 imdgenes
microscopicas agrupadas en archivos de 7, las cuales fueron previamente etiquetadas
segun el nivel de infeccidon (muy leve, leve, moderada, semi-severa, semi-fuerte, fuerte

y muy fuerte).

En segundo lugar, la construccién de un conjunto de datos de subimagenes DS1 derivado
del conjunto de datos original, este conjunto de datos se utiliza posteriormente para el
calculo de caracteristicas de sus imagenes, se aplicaron las técnicas de segmentacion de
imagenes, caracterizacién de objetos y, en consecuencia, el nacimiento de un nuevo

conjunto de datos de caracteristicas. llamado DS2.

En tercer lugar, se reprodujeron y aplicaron automaticamente varios sistemas de

clasificacién a cada conjunto de datos para el reconocimiento de las esporas de Nosema.
Capitulo II: Analisis y Segmentacion de Imagenes Microscopicas

2.1 Introduccion

Después de presentar nuestras motivaciones, hipodtesis, objetivos y estado del arte en
el Capitulo 1, describiremos en este Capitulo 2 la primera parte de nuestro método para
identificar las células de Nosema. Esta primera parte consiste en la extraccién de objetos

gue existen en imagenes microscopicas para:
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1. Construir la base de datos de subimagenes de objetos extraidos de las imagenes
principales y que son imdagenes RGB. Estas subimagenes se utilizaran en la
identificacion de Nosema segun las técnicas de transferencia de conocimientos
del capitulo 3.

2. Preprocesarlos y segmentarlos para calcular su caracteristica mas util que bien
pueda caracterizar y definir un objeto en una imagen microscopica y asi construir
una segunda base de datos en forma de archivo Excel para luego utilizarla en el
reconocimiento de Nosema utilizando las técnicas de CNN y SVM en el capitulo

3.

El preprocesamiento y preparacién para la segmentacion de objetos extraidos de estas
imagenes, asi como la segmentacion de imagenes en escala de grises y colores, y estos
principios bdasicos, se han detallado bien en este capitulo. Estos ultimos estan
condicionados por criterios de brillo y textura de las imagenes microscopicas estudiadas.
Asi, proponemos en el contexto de esta tesis un algoritmo de segmentacidn
autoadaptable al contexto de la imagen que utilizamos en esta tesis. La originalidad de
este algoritmo es que tiene capacidades de genericidad, flexibilidad y adaptabilidad a la

variabilidad de contextos.

2.2 Creacion de DS1 (el primer Base de Datos) a partir de subimagenes

extraidas de imagenes microscopicas

En base a los problemas detallados mas adelante, concluimos que, si hacemos el
procesamiento de la imagen microscépica completa, muchas de las células de Nosema
desapareceran o seran consideradas como ruido en la imagen, y también objetos que
tengan una forma cercana a la de Nosema. seran consideradas como células de Nosema.
Es por eso que decidimos estudiar primero las caracteristicas de estas células recortando

la imagen de la célula de la imagen digital (ver figura 7.1).
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Figura 7.1 Ejemplo de extraccidon de conjunto de datos para células de Nosema y otros

objetos que existen en las imagenes microscopicas

Se selecciona la regidn de interés (ROI), por lo que para ello se ha desarrollado un
sencillo algoritmo semiautomatico para capturar la imagen de la celda, indicando y
recortando nuestro ROI, y luego, se preprocesa automaticamente para detectar laforma
de la célula. Dado que nuestras imdagenes estdn cargadas por muchos objetos y se puede
decir que son muy borrosas y ruidosas, seleccionamos la celda de Nosema, recortando
una imagen de Nosema que esta claramente aislada de otros objetos y asegurdndonos
de que solo se extraiga la fuente potencial de informacién para el estudiar,
preferiblemente; un area, lo mds pequefia posible, donde haya una celda aislada (ver
Figura 7.2). Por lo tanto, cada subimagen de células de Nosema contiene solo una celda
clara. El mismo trabajo se aplica a los objetos que no se consideran células de Nosema.
Sobre la base de los pasos descritos anteriormente, se cred una base de datos DS1 que
contiene un total de 2000 imdagenes de muestra. DS1 consta de 1000 muestras de
imagenes de células de Nosema y 1000 imdagenes, que no se consideran células de
Nosema (es decir, cualquier otro objeto existente en imagenes microscdpicas). La Figura

A.2 a continuacidn describe el proceso de construccién de DS1.
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Figura 7.2 Construccién de la base de datos de imagenes: contiene tanto los tipos de

objetos Nosema (N) como el nombre Nosema (n-N)

2.3 Segmentacion automatica y extraccion de caracteristicas: Creacion

de un conjunto de datos DS2 de caracteristicas extraidas:

Es necesaria una etapa de preprocesamiento antes de la extraccion de las
caracteristicas. El punto inicial es una imagen RGB. El primer paso es convertir la imagen
de RGB a una imagen en escala de grises. El segundo paso consiste en la binarizacion de
laimagen mediante la creacién de umbrales mediante el método Otsu. En el tercer paso,
la operacion de relleno por inundacion se usé en pixeles de fondo de la imagen binaria
de entrada para llenar el agujero del objeto desde sus ubicaciones especificas y luego
ignorar todos los objetos mas pequeiios existentes en la imagen del objeto deseado.
Como paso final, el perimetro del objeto se mejora mediante el método de dilatacién.
Entonces, la forma deseada del objeto se obtiene calculando la diferencia entre las dos
imagenes, antes y después de la mejora del perimetro. El resultado del paso final es una

imagen de forma, que se extrajo de la subimagen del conjunto de datos (ver Figura 7.3).

MNasema Call Preprocessing

No-Nosema Cell . Preprocessing .
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Figura 7.3. Resultados de la forma de dos ejemplos antes y después del
preprocesamiento. La primera muestra es Nosema y la segunda es un objeto no

Nosema.

De laimagen de la forma, se extrajeron en total 9 caracteristicas. Describen la estructura
de la celda de Nosema y constan de 6 caracteristicas geométricas y 3 estadisticas.
Ademas, a partir de las subimagenes extraidas, se calcularon 6 caracteristicas de textura

y 4 caracteristicas de color de matrices de co-ocurrencia de nivel de gris (GLCM).

Una vez extraidas las caracteristicas de los diferentes objetos, se genera el conjunto de
datos de caracteristicas: consta de 19 caracteristicas para 2000 objetos, es decir, un
valor de 38000 dividido en partes iguales entre dos tipos de objetos: uno para las
caracteristicas calculadas de los objetos de interés. (Células de Nosema), y el otro para
otro objeto existente en las imagenes microscopicas. Esta parte del trabajo fue
significativamente exigente desde el punto de vista informatico, ya que la extraccion de
2000 subimagenes, asi como el calculo de 19 funciones para cada imagen, costdo muchos
dias de cdlculos, utilizando una CPU, en particular, PcCom Basic Elite Pro Intel Core i7-

9700. / 8GB / 240SSD.
Capitulo III: Reconocimiento de Nosema

3.1 Introduccion

En este capitulo, explicaremos nuestro enfoque para identificar las células de Nosema o
diferenciarlas de los objetos que existen con ellas en la misma imagen microscépica.
Aparece una nocién de clase de celda, que intuitivamente, requiere saber si los métodos
cldsicos de clasificacion de formas pueden caracterizar las celdas, y dar un buen
resultado, luego compararlas con los métodos mas recientes de clasificacion de objetos.
Aqui, nos enfocamos en el uso de herramientas de aprendizaje ANN y SVM como
métodos de clasificacidon clasicos, herramientas de aprendizaje profundo de CNN y
herramientas de transferencia de conocimiento como AlexNet, VGG-16 y VGG-19 como
métodos modernos en la clasificaciéon de objetos. Para el primer tipo de métodos
utilizaremos los vectores de caracteristicas extraidos de los objetos estudiados y para el
segundo tipo de métodos utilizaremos las imagenes RGB de los objetos estudiados. La

eleccion de las arquitecturas Transfer Learning se basé en una prueba de muchos tipos
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de arquitecturas y las que dieron los mejores resultados fueron elegidas para ser

estudiadas en esta tesis.

En este capitulo hemos sefialado que el reconocimiento de una celda se puede realizar
por varios métodos, pero, a modo de comparacién, mostraremos cual es el método de

identificacion mas util.
3.2 Estrategia 1: Reconocimiento de esporas de Nosema con

procesamiento de imagenes y aprendizaje automatico

En este capitulo, se utilizaron redes neuronales para la deteccion automatica de
enfermedades Nosema en abejas. Las redes neuronales demostraron su calidad en
muchas aplicaciones del mundo real, asi como para tareas de clasificacién. Por lo
general, una red neuronal se compone de dos partes que constituyen el conjunto de
funcionalidades de aprendizaje utilizadas para entrenar el modelo NN, mientras que un
conjunto de funciones de prueba se utiliza para verificar la correccion del modelo NN
entrenado. Se debe configurar el disefio de red adecuado, incluido el tipo de red, el
método de aprendizaje y con una o dos capas ocultas. En la fase de aprendizaje, los
pesos de conexidn siempre se actualizaron hasta que alcanzaron el nimero de iteracién
definido o el error aceptable. Por lo tanto, la capacidad del modelo ANN para responder
con precisidon se asegurd utilizando el criterio del error cuadratico medio (MSE) para
enfatizar la validez del modelo entre la entrada y la salida de la red. Ademas, la red
calcula las salidas y ajusta automaticamente los pesos para reducir errores y reconocer

los objetos.

Para el experimento, el conjunto de datos se dividié en una parte de aprendizaje del
modelo y otra parte de prueba y validacion. Durante el enfoque propuesto, se llevaron
a cabo dos tipos de experimentos: en el primero, el modelo se probd con solo las 15
caracteristicas geométricas, estadisticas y de textura sin contar las caracteristicas de
color amarillo calculadas con el GLCM. El segundo experimento se implementd
concatenando las 19 caracteristicas. Ademas, estos dos experimentos se realizaron para
demostrar la fuerte presencia de color amarillo en la célula de Nosema. Los
experimentos se realizaron aplicando una precision diferente de la division de datos

entre los datos para el entrenamiento y los datos para las pruebas. El experimento se
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realizd con varias arquitecturas de redes neuronales diferentes; en particular, se ha
experimentado con el nUmero de neuronas en la capa oculta. Cada prueba se repitio al
menos 30 veces para obtener el valor éptimo de precisién en el reconocimiento del
éxito. En primer lugar, el programa se probd con una cantidad de neuronas igual a la
cantidad de caracteristicas de entrada extraidas de las imagenes (15 o0 19) en las que se
agrega el peso de forma aleatoria, y después de eso, se aumentd la cantidad de

neuronas en el oculto. capa por 50 en cada nuevo experimento.

3.3 Estrategia 2: Reconocimiento de esporas de Nosema mediante

enfoques de aprendizaje profundo

Experimento 1

Otro enfoque para trabajar con aprendizaje profundo es utilizar una red neuronal
profunda previamente entrenada. Para el primer enfoque, la ventaja es su estructura;
Se utiliza un modelo de una red neuronal profunda ya existente mediante la aplicacion
de algunos cambios simples. En el dltimo caso, se utiliza un conjunto de datos limitado
y el conocimiento se transfiere de este modelo a una nueva tarea. También se dice que
transfiere las caracteristicas aprendidas de una CNN previamente entrenada a un nuevo
problema con un conjunto de datos limitado. El aprendizaje de transferencia implica
formar una CNN con datos de origen etiquetados disponibles (llamado alumno de
origen) y luego extraer las capas internas que representan una representacion genérica
de entidades de nivel medio para un alumno de CNN de destino. Se agrega una capa de
adaptacion al alumno de CNN de destino para corregir las diferentes distribuciones
condicionales entre los dominios de origen y destino. Los experimentos se realizan sobre
la clasificacion de la imagen del objeto, donde la precision media se mide como una
medida de rendimiento. El primer experimento se realizo utilizando el conjunto de datos
Pascal VOC 2007 como objetivo e ImageNet 2012 como fuente. El segundo experimento
se realizo utilizando el base de datos Pascal VOC 2012 como objetivo de ImageNet 2012
como fuente. Las pruebas han demostrado con éxito la capacidad de transferir
informacién de un alumno de CNN a otro. Los modelos preajustados utilizados en este
trabajo son AlexNet, VGG16 y VGG19. En comparacion con publicaciones anteriores

encontradas en la literatura, nuestro método fue rico, variado y diferente en términos
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de las caracteristicas calculadas de la celda, los clasificadores utilizados, los conjuntos
de datos adoptados y la precision de éxito obtenida que es mayor que la encontrada en
la literatura. (96,25%). Por otro lado, esto confirma el mérito de las herramientas de
aprendizaje profundo en el reconocimiento de imagenes de Nosema, que se asume en

la Hipdtesis en la seccidn de introduccion de esta tesis.

Experimento 2

En el secundo, nos interesamos en modelos ajustados para realizar mas experimentos
para el reconocimiento de Nosema. Estos experimentos utilizan un nuevo entorno de
trabajo con Python 3.7.9 amd64 y una maquina equipada con un i7-9700/8GB y un
procesador GPU.

El objetivo de este experimento es utilizar muchos y varios modelos de ajuste fino que
implican un numero cada vez mayor de épocas para mejorar la precision de
reconocimiento de Nosema tanto como sea posible. De hecho, la primera parte de los
experimentos se realiza simplemente ajustando los modelos previamente entrenados y
la segunda fase se realiza explotando la eficiencia del aumento de datos para aumentar
la precision del reconocimiento. En este experimento, ajustamos alrededor de 19
modelos de transferencia de aprendizaje que son: EfficientNetBO, EfficientNetB1,
EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6,
EfficientNetB7, InceptionResNetV2, InceptionV3, MobileNet, MobileNetV2, ResNet50,
ResNet50v2, ResNet101, ResNet152V2, VGG16, VGG19 y Xception.

La metodologia aprobada es la siguiente:

1- Comenzd con el Entrenamiento de los modelos durante 50 épocas. Tenga en cuenta
gue la convergencia puede tardar hasta 50 épocas dependiendo de la eleccidn de la tasa
de aprendizaje. Si no se aplicaron capas de aumento de imagen, la precision de

validacién solo puede alcanzar ~60%.

2- Después del entrenamiento, elimine los modelos que tengan una precisién inferior al
96,25% (que es la precision mas alta en los experimentos anteriores) y conserve los

demas.
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3- Realizar un segundo experimento entrenando los modelos conservados aprobando

un numero de épocas igual a 100.

4- Durante el experimento, hubo modelos que decidimos detener su entrenamiento
antes de alcanzar las 100 épocas porgue contindan disminuyendo sus precisiones a lo
largo de 12 épocas y al mismo tiempo, no superaron el 96,25%, por lo que sera inusual.

para continuar su formacién y perder el tiempo.

5- finalmente, solo se conserva el modelo que tiene mayor ocurrencia en las 100 épocas.
De hecho, cabe mencionar que todos los modelos comienzan a decrecer antes de

completar las 100 épocas, por eso no hicimos otro experimento con mas de 100 épocas.

Experimento 3

En este trabajo, empleamos la técnica de aumento de datos como una tarea importante
para aumentar los datos de entrenamiento y mejorar la eficiencia del trabajo propuesto.
Intentaremos evaluar el impacto del aumento de datos en el desarrollo de modelos de
IA (inteligencia artificial) mejorando el rendimiento de los modelos de aprendizaje de
transferencia en el reconocimiento de enfermedades. los datos de aumento se aplicardn
al modelo que dara la mejor precision. La transformacion aplicada a las imagenes de
Nosema fue de diferentes grados de rotacién con un cddigo Python particular. Rotamos
las imagenes aleatoriamente 20, 30, 60 y 180 grados usando el parametro de rango de
rotaciéon. Mas tarde, el nuevo conjunto de datos de imdgenes fue llamado para
entrenamiento. Se aplicd una metodologia de validacion cruzada de 5 veces y el

entrenamiento se realizé durante 100 épocas.
3.4 Resultados

Nuestro objetivo es comparar los resultados entre los enfoques tradicionales de
clasificacion y los enfoques mas desarrollados de Transferencia de aprendizaje.
Comenzamos presentando los resultados de la aplicacion de ANN y SVM en base a las
caracteristicas calculadas DS1, y los resultados de la aplicacion de CNN y los modelos
reentrenados AlexNet, VGG16 y VGG19 basados en imagenes DS2. Luego,

examinaremos y discutiremos los resultados de los métodos de clasificacion aprobados
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en esta tesis. Luego mostramos nuestra idea para nuestro articulo que se esta

preparando para conteos de células de Nosema en imagenes microscopicas.

Una segunda seccion definird nuestro método de segmentacion celular a partir de sus

antecedentes.

Resultado experimento 1

Las tablas siguientes muestran los resultados dados tras la aplicacion de los

clasificadores.

Tabla 7.1: Mejores resultados dados por ANN y SVM.

Numero de | Clasificador | Precision Observacion

caracteristicas

15 Features ANN 79.00% Para 1400 neuronas en la capa oculta
SVM 81.00% Usando el nticleo RBE

19 Features ANN 83.20% Para 1400 neuronas en la capa oculta
SVM 83.50% Usando el nticleo RBE

Tabla 7.2: Mejores resultados de clasificaciones para el clasificador optimizado AlexNet.

Experimento (datos entrenados, Precision Numero de épocas
el resto para validacion)
0.5 84.58% 6
0.6 83.98% 6
0.7 86.98% 6
0.8 85.28% 6

Tabla 7.3: Mejores resultados de clasificacidon para clasificadores ajustados VGG16 y

VGG19
Experimentos Epocas Precision

VGG-16 VGG-19

0.7 6 76.29% 71.95%

6 92.50% 93.00%

08 12 94.50% 82.00%

20 96.25% 92.32%

25 93.00% 93.50%

0.9 6 88.00% 77.00%
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se puede concluir que ya sea el conjunto de datos mas grande o el conjunto de datos
mas pequefio, el nivel de aprendizaje de la red con modelos de aprendizaje por
transferencia es obviamente mejor que los modelos tradicionales, especialmente las
ANN se examinan en este estudio y SVM que acerco los resultados. Ademas, se observa
una clara tasa de convergencia del modelo de transferencia VGG-16 y VGG-19 al nivel
de los resultados proporcionados. Ademas, estos modelos de transferencia son un poco
mas rapidos que ANN y SVM, al menos en este caso. CNN ha demostrado su eficacia en
este problema de reconocer o clasificar las células de Nosema como modelo de
aprendizaje profundo. CNN era casi comparable a VGG-19. Por otro lado, hay que decir
gue las opciones de formacién de las RNA, asi como los algoritmos de aprendizaje por

transferencia, marcan la diferencia en los resultados.

Frente a AlexNet, VGG-16, VGG-19 y CNN han demostrado su fuerte efectividad en este

trabajo en la clasificacion de patrones, celdas y objetos.

Para la parte de extraccion de caracteristicas, se evaluaron varias caracteristicas
diferentes de las subimagenes: caracteristicas geométricas, estadisticas, textura y GLCM
extraidas del canal amarillo. Este experimento utilizd una gran base de datos, los
resultados dados tanto por la ANN como por la SVM son buenos ya que es la primera
vez. La calidad de las imagenes microscdpicas utilizadas en este trabajo no siempre
ayudd a extraer objetos claros y nitidos. Al calcular los resultados con un numero
diferente de caracteristicas (15 y 19), se aprobd la importancia de los datos extraidos

por el GLCM en la mejora resultante.
Discusién

Ademas de las herramientas de procesamiento de imdgenes, citamos en la bibliografia
algunos trabajos recientes que utilizaron simulaciones quimicas y corrientes
tecnoldgicas para detectar enfermedades de las abejas o alteraciones dentro de las
colonias de abejas. En esta seccion, estamos evaluando nuestro método presentado y
comparandolo con los trabajos anteriores encontrados en la literatura que solo usaban
las técnicas de procesamiento de imagenes y vision por computadora para detectar,

contar o clasificar las esporas de Nosema.

Resultado experimento 2
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Las precisiones vienen dadas por una estrategia de validacion cruzada de 5 veces. Este
enfoque consiste en dividir aleatoriamente el conjunto de observaciones en 5 grupos, o
pliegues, de aproximadamente el mismo tamafo. El primer pliegue se trata como un
conjunto de validacion y el método se ajusta a los 5-1 pliegues restantes. Cada resultado
particular de una carpeta en particular se proporciondé en forma de un modelo de
precision, un modelo de pérdida y una matriz de confusion que muestran la precisiéon
exacta de la carpeta. Después de eso, se calculé la precisién media para tener la

precision final del modelo ajustado. La tabla describe los resultados de 100 épocas.

Tabla 7.4: Resultados de modelos ajustados con 100 épocas

Modelos afinados Epocas Pesos Congelados % De precision
media
EfficientNetBO 100 4.049.571 95.84+0.87
EfficientNetB1 90 6.575.239 96.29+0.86
EfficientNetB2 100 7.768.569 95.59+1.19
EfficientNetB3 80 42.658.176 94.89+0.66
EfficientNetB7 60 64.097.687 93.63+0.65
ResNet50 70 23.587.712 95.84+1.32
ResNet50V2 60 58.370.944 96.59+1.06
ResNet101 70 42.658.176 95.94+0.51
MobileNet 90 3.228.864 95.04+0.66
MobileNetV2 90 2.257.984 96.34+0.64
VGG16 100 14.714.688 97.64+0.75
VGG19 100 20.024.384 96.79+0.58

El modelo ajustado VGG16 ofrece la maxima precision en el reconocimiento de Nosema.
Hay que decir que hemos conseguido aumentar la precisidén del reconocimiento de las
células de Nosema en un 1,39 % (anteriormente era del 96,25 %). Ahora, la tercera fase
de este experimento es aplicar datos de Aumento al modelo que brinda la mejor
precision de reconocimiento (VGG16) para estimar las habilidades de este ultimo en la

mejora de la prediccidon de los modelos ajustados.
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Resultado de experimento 3

La transformacion aplicada a las imagenes de Nosema fue de diferentes grados de
rotacion con un cédigo Python particular. Rotamos las imagenes aleatoriamente 20, 30,
60y 180 grados usando el parametro de rango de rotacién. Mas tarde, el nuevo conjunto
de datos de imagenes fue llamado para entrenamiento. Se aplicé una metodologia de
validacion cruzada de 5 veces y el entrenamiento se realizé durante 100 épocas. VGG16

estd afinado como antes.

Como resultado, el método propuesto logrd una precisién media del 99,35 %, lo que
muestra una mejora del 1,71 % en comparacién con el VGG16 ajustado sin datos de
aumento. Ademas, la precision mas alta proporcionada por el modelo de ajuste fino
VGG16 fue del 99,70 % con el particular 2 veces usando una rotacién de +30 2 de las
imagenes mostrando una mejora del 3,45 % en comparacion con el primer experimento

realizado anteriormente.

Capitulo IV: Algoritmo automatico para la identificacion y conteo de
Nosema

Resumen

Este capitulo adopta un enfoque nuevo y diferente. De hecho, el trabajo en este capitulo
es totalmente automatico. Mas concretamente, para determinar el estadio de la
enfermedad, las células serdn identificadas dentro de la imagen microscdpica principal
y recogidas. Un algoritmo automatico contard las células enfermas en la imagen
microscopica para clasificarlas como muy suaves, leves, moderadas, semi-fuerte o

fuertes. Este enfoque implementado ayuda a racionalizar el proceso de deteccién.

Los hallazgos del algoritmo automatico Nosema coinciden con el nimero real de células
en las imdagenes microscopicas estudiadas. El conteo manual de células en imagenes
microscopicas puede diferir ligeramente entre las personas, con variaciones que a
menudo no superan 1 o 2 células. Por ejemplo, un individuo puede contar 42 células en
la misma imagen mientras que otro puede contar 43 células. Esta diferencia menor no
tiene efecto en el analisis general de la imagen. En el experimento, se ejecutd un cédigo
sobre un conjunto de imagenes microscdpicas seleccionadas aleatoriamente. Ninguna

de las imagenes analizadas fue categorizada incorrectamente por el algoritmo; el

145



sistema todavia detecta un numero de células dentro del rango requerido del tipo de
imagen de entrada, y el nimero dado es casi igual al nUmero contado manualmente.
Aunque persiste la posibilidad de errores de categorizacién, se puede decir con
confianza que la tasa de error es extremadamente baja en el 0,01%. Con esta suposicion,
podemos afirmar que la exactitud de la identificacion de Nosema de este algoritmo
automatizado se espera que sea del 99,99%. Intentamos ser sinceros, y el éxito ahora
tiene la mayor precisidén en comparacién con todas las obras anteriores. Ademas, el
algoritmo funciona eficazmente a través de los niveles, con gran precisién, y sus
predicciones se han confirmado para todos los niveles indicados. La precisién observada
para el nivel de "fuerza" no es del 100%, y esto se puede atribuir a los retos asociados
con la calidad de las imagenes microscopicas. La presencia de un nimero significativo
de objetos en las imagenes, posiblemente afectando la claridad o introduciendo ruido,
plantea una dificultad para el algoritmo en dar con precision el nUmero verdadero de
células Nosema en la imagen. A pesar de este desafio, el algoritmo sigue demostrando
notable precisién, indicando su eficacia en presencia de tales complejidades. Los
esfuerzos en curso para abordar las preocupaciones de calidad de la imagen pueden

mejorar aun mas el rendimiento del algoritmo para este nivel en particular.

Capitulo V: Conclusiones

Sintesis

Como principal conclusion de esta tesis doctoral, se han logrado los objetivos
inicialmente marcados y se ha hecho un algoritmo automatico de reconocimiento de
Nosema. La hipdtesis inicialmente establecida en esta tesis se confirmd, y se
implementod un algoritmo automatico, y es eficaz en el logro de su propdsito previsto,
que es el diagndstico de la enfermedad de Nosema. El algoritmo implementado en esta
tesis difiere de los encontrados en la literatura porque se basa en una variedad de

procesamiento de imagenes y herramientas de aprendizaje profundo.

El trabajo presentado en esta tesis se caracteriza por un flujo cohesivo y progresivo,
conectando sin problemas del capitulo 2 al capitulo 4, asegurando un desarrollo légico
e integrado de ideas y metodologias:

-Esta tesis ha propuesto un enfoque de segmentacion para imagenes microscopicas de
la enfermedad de Nosema. Este método de segmentacion proporciona un conjunto de
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herramientas operativas que permite extraer de forma automadtica y robusta las
caracteristicas mas utiles de la célula Nosema.

-Para el calculo de las caracteristicas, se han adaptado morfologias matematicas y
binarias, por lo que este método agrupa varios tipos de pardmetros que pueden
caracterizar un objeto en una imagen microscdpica; estos parametros se refieren a su
forma, color y textura como se mostré en el capitulo 2.

-Para el reconocimiento de las células Nosema de los otros objetos en la imagen
microscopica, se aprobaron dos vias. El primer método es identificarlos utilizando sus
caracteristicas calculadas basadas en los sistemas de clasificacion ANN y SVM. La
segunda forma es clasificar las imagenes entre Nosema y no-Nosema, basandose en
herramientas de aprendizaje profundo (CNN). En el Capitulo 3, existen varios modelos
de aprendizaje de transferencia y datos de ampliacidon que sugieren que el aprendizaje
en transferencia es mas exitoso en las tareas de reconocimiento e identificacion. La
combinacion del modelo de aprendizaje de transferencia VGG16 y la ampliacién de
datos mejora la precision de deteccion de células de enfermedad hasta el 99,70%.
-Finalmente, en el capitulo 4, se implementd el algoritmo totalmente automatico para
la deteccion y el conteo de Nosema desde el fondo de la imagen alcanzando una
exactitud del 99,99% en la contabilidad y el diagndstico de los Nosema. El algoritmo
automatico muestra un rendimiento encomiable en la tarea de diagndstico,
demostrando una alta precisién en varios niveles de severidad: Mild, Moderate, Semi-
strong, y Strong. El algoritmo consigue constantemente tasas de precisién del 100% para
los niveles 'Mild', 'Moderate' y 'Semi-strong', mostrando su robustez en la clasificacidon
precisa de instancias dentro de estas categorias. Aunque la precisidon para el nivel de
"fuerza" esta ligeramente por debajo del 100%, atribuido a los desafios relacionados con
la calidad de las imagenes microscépicas y la abundancia de objetos, la exactitud del

algoritmo sigue siendo notable.

Estos hallazgos sugieren que el algoritmo automatico es una herramienta valiosa para la
tarea de diagnostico, con posibles aplicaciones en la clasificacion precisa de diferentes

niveles de gravedad.

Trabajos futuros
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Exploracion de métodos alternativos para la deteccidn e identificacién de las células de
la enfermedad. Un enfoque potencial podria implicar la eliminacién de la red de conteo
de las imagenes microscdpicas. Este ajuste podria conducir a una determinacién mas
precisa del nimero de células detectadas. La caracterizacién de la red de conteo en las
imagenes se realizard basandose en su naturaleza de frecuencia y utilizando la filtracién
en el FFT (Fast Fourier Transfer) (Cooley & Tukey, 1965). La preparacién de la imagen
para el conteo de células (preprocesamiento), se obtiene borrando la rejilla
manteniendo intactas las células en la imagen. Este método se basa en la sustitucion de
la firma de la red en el FFT. Los objetivos para lograr futuras obras seran los siguientes:
- La ausencia de intervencién humana para el procesamiento de imagenes. El método
propuesto para la caracterizacidn y el borrado de la red tiene la ventaja de no requerir
ningun ajuste manual. Esta ventaja se obtiene buscando la firma de la rejilla en el espacio
de Fourier: en este espacio, esta firma tiene una anchura constante de un pixel

independientemente de la imagen.
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