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Substation automation systems (SAS) are critical infrastructures whose design and maintenance must be optimised to guarantee
a suitable performance. In order to provide a collection of solutions that balance availability and cost, this paper explores the
optimisation of the design and maintenance of a section of SAS. Multiobjective evolutionary algorithms are combined with
discrete event simulation while the performance of two state-of-the-art multiobjective evolutionary algorithms is studied. On the
one hand, the nondominated sorting genetic algorithm II (NSGA-II), and on the other hand, the S-metric selection evolutionary
multiobjective optimisation algorithm (SMS-EMOA). Such a problem is solved from 2 and 3-objective approaches by attending to
the multiobjectivisation concept. Te robustness of the methodology is brought to light, and benefts were observed from the
multiobjectivisation approach. Decision-makers can employ this knowledge to make informed decisions based on economic and
reliability criteria.

1. Introduction

Te greater the technological improvement, the greater the
energy demand from modern societies. In order to meet this
demand, power systems must face several challenges. Nu-
merous standards are employed to integrate substation
gadgets, which are provided by several manufacturers, en-
abling peer-to-peer communications among such gadgets
[1]. Standards are a research topic due to the fact that the
designers of systems must propose the architectural design.
Teymust decide on the design according to the criticality of
the applications [2].

Reliability and maintenance data are needed to evaluate
the reliability, communication, and design of SAS [3].
According to the design, the reliability of SAS has been
widely studied by employing reliability block diagrams
[4–7], fault tree analysis [8], Monte Carlo simulation [2], and
Markov chain analysis [1]. Using discrete event simulation

allows a closer approximation to reality when the behaviour
of the system must be emulated. It is possible through
building the system’s functionality profle. It allows the use
of nonconstant failure and repair rates. Instead of reliability,
the term availability should be used to refer to repairable
systems. Availability encompasses the whole process of
failure and recovery. Terefore, maintenance is also con-
sidered when the term availability is used. Several studies
contemplated corrective maintenance of SAS [1, 2, 4, 5], but,
none of them took preventive maintenance into account.
Preventive maintenance improves the SAS availability;
nevertheless, it was not considered by many studies. Diaz
et al. [9] conducted a study where a model to quantify the
proft-cost of a process bus solution was developed. Tey
considered preventive maintenance activities by fxing
a period based on either business experience or historical
data. Nevertheless, there are no contributions focused on the
simultaneous optimisation of SAS design and maintenance.
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Multiobjective optimisation has been widely employed
to manage complex engineering problems with conficting
objectives. Finding out the best solution for such problems is
a difcult task, since there are a large number of feasible
solutions. Nevertheless, some good solutions can be found to
meet the engineers’ requirements [10, 11]. Several authors
have considered the possibility of using multiobjective al-
gorithms that rely exclusively on genotypic values to en-
hance the performance of single-objective optimisation
problems [12]. Te term multiobjectivisation has been used
in order to refer to such a technique. Although its principles
had already been discussed by Louis and Rawlins [13],
Knowles et al. frst employed the term multiobjectivisation
[14]. Two multiobjectivisation approaches were distin-
guished by the authors: decomposition, which consists of
breaking down the main objective into a number of ob-
jectives, and aggregation, which consists of taking into ac-
count some additional objectives (helper objectives) to
combine them with the main objective. Complex optimi-
sation problems have been solved employing multi-
objectivisation [15–18]. Some performance advantages have
been reported. Nevertheless, employing multiobjectivisation
to solve multiobjective problems has not received as much
attention. In Ishibuchi et al. [19], a 2-objective problem is
solved after converting it into a four-objective problem.Tey
used a decomposition approach. On the other hand, in
Zheng et al. [20], in order to foster intertask understanding
transfer in a multitask optimisation problem, a helper task is
employed by using an aggregation approach.

SAS designers want optimum performance, so max-
imising the system availability is vital in order to meet the
demand from customers. In the present research, based on
work belonging to the doctoral thesis of the frst author [21],
Multiobjective evolutionary algorithms and discrete event
simulation are combined. Te main target consists in
optimising both the design and the maintenance strategy for
SAS. Such a procedure was previously studied by some of the
authors of this research [22–24]. Such studies considered
hydraulic systems whose design and maintenance strategy
were optimised by using Unavailability and operational cost
as objective functions. In the present study, a decomposition
approach is explored to assess the performance when
studying two and three objectives. To solve the 2-objective
problem, the objectives to be managed are unavailability and
cost. Both the acquisition and operational costs are con-
sidered by the cost model. Te cost model is decomposed
between the acquisition cost and the operational cost when
considering the multiobjectivisation approach. Hence, the
objectives in the 3-objective problem are unavailability,
acquisition cost, and operational cost. To summarise the
contributions of the study:

(i) Te present paper explores a methodology, which is
considered a powerful tool to assist SAS designers in
the sensitive process of simultaneously proposing
the architectonic design and the maintenance policy
for SAS. Te architectonic design consists of the

automatic selection of gadgets while the preventive
maintenance policy consists of establishing the
optimum times to initiate the preventive mainte-
nance activities regarding the gadgets included in
such a design. Te simultaneous optimisation of the
design andmaintenance of SAS has not been tackled
before. It allows a more efcient system life cycle
because maintenance activities are fully optimised
and customised to the architectonic design.

(ii) Multiobjective evolutionary algorithms are combined
with discrete event simulation.When the behaviour of
the system wants to be emulated by building its
functionability profle, discrete event simulation al-
lows a closer approximation to reality than other
methods used in the literature. Previously, such
a methodology was analysed by some authors of the
present research as explained above. Unavailability
and operational cost were taken into account as ob-
jectives of the multiobjective problem. However, in
this case, the cost model is renewed in order to
consider both the acquisition and the operational cost.

(iii) A comparative study is developed to study the
impact of multiobjectivisation. Such an approach
has never been applied in the feld of system re-
liability. First, the 2-objective problem is solved by
attending to unavailability and cost (including both
operational and acquisition costs) as objectives.
Second, the 3-objective problem is addressed by
considering a multiobjectivisation approach. In this
case, acquisition and operational costs are taken
from the cost model previously used. Hence, the
problem to solve presents three objectives: un-
availability, operational cost, and acquisition cost.
Finally, a comparative analysis of the performance
under both approaches is supplied. Te multi-
objectivisation approach presents some advantage.

In this paper, Section 2 summarises the methodology. A
case study is presented in Section 3. Section 4 shows and
discusses the results, and fnally, the conclusions are dis-
played in Section 5.

2. Materials and Methods

Tis paper explores the simultaneous optimisation of the
design and maintenance of SAS in relation to the avail-
ability and cost objective functions, which are extensively
described in Subsection 2.1. To compute these objectives, it
is necessary to build the functionability profle of the
system, which emulates its behaviour over time. Tis is
explained in Subsection 2.2. From the multiobjective op-
timisation point of view, the multiobjectivisation technique
is explored, as described in Subsection 2.3. Tese mathe-
matical models and the procedures are shown below, while
the methodology is applied to a case study (as described in
Section 3).

2 Journal of Engineering



2.1. Availability and Costs Models. Te availability of
a gadget can be computed by using equation (1) when its
failure and repair rates are constant. In this case, the mean
time to failure (MTTF) and the mean time to repair (MTTR)
are considered as operation and recovery time, respectively
[25]. Terefore, the model exclusively refects corrective
maintenance.

A �
MTTF

MTTF + MTTR
. (1)

When such rates are not constant, computing the
availability of the gadget can be a difcult task. In this case, it
is useful to consider a simulation approach. Such an ap-
proach is used in this study to compute the system avail-
ability. Instead of using the MTTF, each time to failure (TF)

is randomly produced from the density function that rep-
resents the times to failure. Furthermore, each time to repair
(TR) is randomly generated from the density function that
characterises the times to repair. In this way, the corrective
maintenance is considered by the model. Apart from that, in
order to consider preventive maintenance, the operation
time must contemplate both times of failure and times to
initiate a preventive maintenance activity (TM). Further-
more, the recovery time must consider both times to repair
and times to carry out a preventive maintenance activity
(TCM). Taking these considerations, the model to compute
the system availability is shown in equation (2), which is the
objective function 1, to be maximised in the 2-objective
problem.

A �
􏽐itoi

􏽐itoi
+ 􏽐jtrj

. (2)

In equation (2), i expresses the count of operation times,
toi

indicates the i-th operation time with the hour as the unit
of measurement (it can be a time to failure or a time to
initiate a preventive maintenance task), the count of re-
covery times is expressed by j and trj

is the j-th recovery
time with the hour as the unit of measurement (due to
a repair or a preventive maintenance task). For the avail-
ability model, some considerations are taken into account:

(i) Operating or recovery states are the feasible states
for the gadgets.

(ii) Tese gadgets are not dependent, so the failure of
one of them does not afect to the other one.

(iii) A corrective maintenance activity consists of
replacing the failed gadget.

(iv) Preventive and corrective maintenance tasks are
initiated immediately after stopping,

(v) A gadget is giving back to its as-good-as-new state after
both preventive and corrective maintenance tasks.

Equation (3) shows the cost model adopted in the
present paper when two objectives are considered. Tis is
objective function 2, to be minimised in the 2-objective
problem.

C � 􏽘
k

Cak + 􏽘
ki

Dki
+ Ccki

􏼐 􏼑 + 􏽘
kj

Cpkj

⎛⎜⎜⎝ ⎞⎟⎟⎠, (3)

where C is the Cost (€), k expresses each one of the gadgets to
consider for the design of the system, Cak is the acquisition
cost in relation to the k-th gadget, ki denotes the i-th cor-
rective maintenance activity regarding the k-th gadget, Dki

is
the cost in relation to the i-th replace for the k-th gadget, Ccki

is the cost regarding the i-th corrective maintenance activity
in relation to the k-th gadget, kj denotes the j-th preventive
maintenance activity regarding the k-th gadget, and Cpkj

is
the cost in relation to the j-th preventive maintenance
activity regarding the k-th gadget. To compute Ccki

and Cpkj

the number of hours that are dedicated to each maintenance
activity and the cost per hour regarding the respective
maintenance activities must be multiplied.

Te cost model from equation (3) considers jointly the
acquisition cost and the operational cost. In order to de-
compose such a model, the acquisition cost and the oper-
ational cost are considered as separated objectives when the
3-objective problem is solved. Terefore, equations (2), (4),
and (5) (objective functions 1, 2, and 3, respectively) are
employed to solve the 3-objective problem.

Cac � 􏽘
k

Cak( 􏼁, (4)

Cop � 􏽘
k

􏽘
ki

Dki
+ Ccki

􏼐 􏼑 + 􏽘
kj

Cpkj

⎛⎜⎜⎝ ⎞⎟⎟⎠, (5)

where Cac is the acquisition cost and Cop is the operational
cost. To estimate the maintenance costs, a cost per hour is
considered for both corrective and preventive maintenance
activities. Recovery times regarding corrective maintenance
tasks present uncertainty and are longer than recovery times
due to preventive maintenance tasks. Preventive mainte-
nance tasks are planned for shutdowns. Terefore, a better
control can be considered.

Depending on the architectural design of the system, the
number of decision variables changes. Tere are decision
variables dedicated to design and dedicated to maintenance.
Decision variables dedicated to design (D) establish whether
to include a redundant gadget. Decision variables in relation
to maintenance (M) establish the periodic time to initiate
a maintenance task regarding each gadget included in the
architectural design. More details are shown later when the
case study is solved.

Te decision variables have lower and upper values, as
shown in the following equations:

0≤D≤ 1, (6)

TMmin ≤M≤TMmax, (7)

where TMmin is the minimum time to initiate a preventive
maintenance activity regarding a specifc gadget and TMmax
is the maximum time to initiate a preventive maintenance
activity regarding such a gadget.
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2.2. Simulating the Life Cycle of the System. To compute the
objective functions, the functionability profle or life cycle of
the systemmust be simulated. For this purpose, a population
of individuals or candidate solutions is suggested by the
multiobjective evolutionary algorithm. Tese individuals
codify both the system design and its preventive mainte-
nance strategy. Te maintenance strategy contains the pe-
riodic timing to initiate preventive maintenance tasks in
relation to each gadget integrated into the design. Based on
such a maintenance strategy, the life cycle of the system can
be created by employing discrete event simulation. Tere-
fore, having information regarding how to depict both
operation (toi

) and recovery (trj
) times is vital. As explained

above, operation times can be times to failure (TF) or times
to initiate a preventive maintenance task (TM), while re-
covery times can be times to repair (TR) or times to carry
out a preventive maintenance activity (TCM). Te life cycle
of the gadgets must be built to create the life cycle of the
system. Figure 1 illustrates the process of creating the life
cycle of the system. It is explained as follows:

(1) Te duration of the life cycle of the system is pre-
viously fxed. Te process must cover the gadgets
included in the system design.

(2) Te life cycle (LC) of a gadget must be initiated.
(3) Te multiobjective evolutionary algorithm provides

the time to initiate a preventive maintenance activity
(TM), which is taken out of the respective variable of
the chromosome. Next, a time to carry out such
a preventive maintenance task (TCM) must be
randomly created. Such a random value is obtained
from the density function in relation to the time to
carry out a preventive maintenance activity.

(4) An operation time to failure (TF) must be randomly
created from the failure density function.

(5) If TM is smaller than TF, the preventive maintenance
activity will be carried out before failing. Terefore,
the TM value (as an operation time) is used to build
this segment of the life cycle of the gadget. Te TM
value must be followed by the TCM value (as a re-
covery time).

(6) If TM is bigger than TF, the failure occurs before
initiating the preventive maintenance activity. In
such a case, a time to repair (TR) must be randomly
generated from the repair density function. Tere-
fore, this segment of the life cycle of the gadget is
built by the TF value (as an operation time) followed
by the TR value (as a recovery time).

(7) Te steps 4 to 6 must be replicated until the end of
the life cycle of the gadget.

(8) Te steps 2 to 7must be replicated until the life cycles
of all gadgets have been built.

(9) Finally, the life cycle of the system is created in
relation to the system architecture.

Once the life cycle of the system is built, the availability
can be computed by using equation (2) Some considerations
must be taken into account regarding the cost computation.
When the 2-objective problem is solved, the cost model
includes the acquisition and the operational costs equation
(3). Nevertheless, both the acquisition cost and the opera-
tional cost are managed as diferent objectives when the 3-
objective problem is considered (equations (4) and (5),
respectively).

2.3. Multiobjective Optimisation. In this paper, evolutionary
algorithms are used as optimisation methods. Such algo-
rithms are based on populations of individuals, which are
solutions to the problem. Such individuals are symbolised by
chromosomes. In Ref. [26], detailed information regarding
multiobjective evolutionary optimisation algorithms is

System LC duration adjustment

Device LC restarting

Extract TM from the individual

Generate TF

¿TF > TM?

YES

NO

LC = LC+TM+TCM
CP = CP+TCM·costp

NO
¿End of life?

¿All devices?

Generate (TR)

Compute the System LC,
Cost & Unavailability

Beginning

Generate TCM

LC = LC+TF+TR
CC = CC+TR·costc

NO

YES

YES

Compute Acquisition Cost

Extract an individual from the population

Figure 1: Creating the life cycle of the system.
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supplied. In the present study, each individual is formed by
a string of variables (both reals and binaries, attending to the
coding) where both the system design and its periodic times
to initiate a preventive maintenance task are coded. It is
explained in detail in the case study section. When a mul-
tiobjective approach is considered, the solution to the
problem arises from a set of solutions. Te best compromise
among objectives is represented by such a set [26, 27]. A
minimisation multiobjective problem is described by
equation:

min
x

f(x) � min
x

f1(x), . . . , fk(x)􏼂 􏼃. (8)

Te k functions must be simultaneously minimised when
the problem is defned by this way. In the current study, both
the availability of the system and its cost are considered as
objectives to be maximised and minimised, respectively. When
the 2-objective problem is solved, such objectives must be
computed by employing equations (2) and (3), respectively.
Equations (2), (4), and (5) must be employed when the 3-
objective problem is solved. When the 2-objective problem is
multiobjectivisated, the cost is decomposed in order to consider
separate the acquisition cost equation (4) and the operational
cost equation (5). Furthermore, in this study, limited values are
considered regarding times to failure, times to initiate pre-
ventive maintenance tasks, times to repair, and times to
conduct preventive maintenance activities.

Nowadays, multiobjective evolutionary optimisers
(EMOs) can be classifed into three groups [26, 28]:

(i) Indicator-based selection EMO: Tis kind of opti-
misers employs some unary indicator to lead the
search.

(ii) Decomposition/aggregated-based selection EMO:
Tis kind of optimisers decomposes the search
space, optimising a set of scalarizing functions.

(iii) Dominance-based selection EMO: Tis kind of
optimisers employs the Pareto dominance selection.

In order to solve the problem, representative algorithms
based on the indicator-based selection and the dominance-
based selection paradigms were chosen from the state-of-
the-art. Concretely, in the present research, the multi-
objective evolutionary algorithms employed are as follows:

(i) Te S-metric selection evolutionary multiobjective
optimisation algorithm (SMS-EMOA) [29], which
uses the multiobjective selection based on domi-
nated hypervolume, as a representative method of
the indicator-based selection EMO.

(ii) Te nondominated sorting genetic algorithm II
(NSGA-II) [30], which uses the Pareto dominance
criterion, as a representative method of the
dominance-based selection EMO.

SMS-EMOA and NSGA-II are state-of-the-art standard
solvers to face real-world multiobjective optimisation
problems [26, 31]. Tese methods employ simulated binary
crossover [32] to create new individuals when real encoding
is used. Terefore, these multiobjective evolutionary

algorithms are employed to optimise the system design and
its maintenance strategy. To do that, it is possible to min-
imise both the system unavailability (equivalent to max-
imising the system availability) and the cost.

3. The Case Study

3.1. Substation Layout and Data Description. Te case study
consists of applying the methodology to a specifc section of
a subsystem of a substation automation system (SAS).Te T1-
1 substation design [4] is a small transmission substation,
which is designed to transform energy (220 kV⟶ 132 kV).
Te substation is formed by 5 bays (1 for bus, 3 bay lines, and 1
for transformer). For one of the line bays, the methodology is
employed for the combined optimisation of the design and its
maintenance strategy. A star topology has been assumed [2]
for the connection of the equipment in the line bay. Such
a circumstance indicates that the Cnt. IED (control intelligent
electronic device), the MU (merging unit), and the Prt. IED
(protection intelligent electronic device) are connected to the
ESW (ethernet switch). Furthermore, a TS (time synchro-
nisation source) is linked to the MU [4]. In Figure 2, the
common architecture for a line bay is shown.

Figure 3 shows the reliability block diagram. It can be
seen that, as a redundant gadget, a second Prt. IED can be
considered. Te testing and calibration of protective relays,
as well as the verifcation of system telecommunications
equipment, are examples of typical preventive maintenance
activities for such gadgets [33].

In order to apply the methodology, specifc data about
the system’s gadgets are needed. Tis information is defned
as follows (the hour is used as the unit of measurement):

(1) TFmin �Minimum value for the time to failure
regarding a gadget.

(2) TFmax �Maximum value for the time to failure
regarding a gadget.

(3) TFλ � Failure rate regarding a gadget.
(4) TRmin �Minimum time to repair or time to carry

out a corrective maintenance task for a gadget.
(5) TRmax �Maximum time to repair or time to carry

out a corrective maintenance task for a gadget.
(6) TRμ �Mean in relation to the normal distribution

that describes the time to conduct a corrective
maintenance (time to repair) regarding a gadget.

(7) TRσ � Standard deviation in relation to the normal
distribution that describes the time to conduct
a corrective maintenance (time to repair) regarding
a gadget.

(8) TMmin �Minimum time to initiate a preventive
maintenance activity regarding a gadget. Before this
time, initiating a preventive maintenance task for
a gadget is not required.

(9) TMmax �Maximum time to initiate a preventive
maintenance activity regarding a gadget. Initiating
a preventive maintenance task for a gadget is
a recklessness after this time.
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(10) TCMmin �Minimum time to carry out a preventive
maintenance activity in relation to a gadget. It is the
minimum time needed to conduct such a preventive
maintenance task.

(11) TCMmax �Maximum time to carry out a preventive
maintenance activity in relation to a gadget. It is the
maximum time needed to conduct such a pre-
ventive maintenance task.

Te case study was conducted over a mission time or life
cycle of 525,600 hours. Te corresponding set of values can
be found in Table 1. Te costs were provided by the Instituto
Universitario de Sistemas Inteligentes y Aplicaciones
Numéricas en Ingenieŕıa (SIANI) and the Instituto Superior
Técnico (IST) [34], from the Universidad de Las Palmas de
Gran Canaria and Universidade de Lisboa, respectively. Te
failure rates (λ) were taken from the studies conducted by
Scheer and Dolezilek [35] and CISCO [36]. Both studies
employ reliability data referring to solvent organisations and
manufacturers. Such entities provide reliability data based
on research and experience in real-world power systems.Te
failure rates can be obtained from the mean time between
failures (MTBF) provided by these references (MTBF� 1/λ).
When the devices were not directly cited, an approximation
by similitude was employed (in the case of the merging unit,
λ for and IED were considered). In the case of the time
synchronisation source, λ for a generic network element was
used. Given the fexibility of the methodology, reliability
data provided by other manufacturers could be used. Te
means about the time to repair (TRμ) were taken from
Kanabar and Sidhu [4] and CISCO [36].Te TFmin value was
taken as 1 hour, and the TFmax value was taken as the
mission time or life cycle. However, the TMmax value limits
the TFmax value since the operation time considered is the
smaller one. According to the data sources, the TRmin value
was set at 2 hours for the MU, Cnt. IED, ESW, and Prt.IED,
and 1 hour for the TS. Since a normal distribution with μ as
the mean considered regarding the time to repair,

a mathematical relationship was employed to set the TRσ.
For a normal distribution, it is well known that 99.7% of
values fall within the interval μ± 3σ. Terefore, it was
considered to defne both the TRσ value and the TRmax value.
Te TMmax value was set to 6months, as stated by NERC
2007 [37]. Moreover, the TMmin value was set at half. Finally,
the TCMmin value and the TCMmax value were set at half of
the TRmin value and the TRmax value, respectively.

As it was exposed above, the system availability and the
costs are the objectives to be maximised and minimised,
respectively. To do that

(i) For each gadget, the optimum periodic time to
initiate a preventive maintenance task must be de-
termined (optimisation of the maintenance
strategy), and

(ii) It must be decided whether or not to include a Prt.
IED as a redundant gadget (optimisation of the
automatic selection of gadgets). To do this, it is
necessary to evaluate the design alternatives.

3.2. Optimisation Details. As explained above, evolutionary
algorithms (EAs) use a population of individuals that denote
possible solutions to the problem. In this case, both binary
and real coding are used. Terefore, two codifcations are
explored:

(i) When real coding is used: A string of real
numbers, which take values between 0 and 1, is
used to represent each individual. Such a string is
coded by using the variables
[D1M1M2M3M4M5M6]. D1 indicates whether the
redundant gadget (Prt. IED2) is included in the
design while M1 to M6 indicate the optimum time
to initiate a preventive maintenance activity re-
garding each gadget, respectively. However, to
compute the objective functions, such variables
must be transformed:

TS MU Cnt. IED ESW

Prt. IED

Prt. IED

Figure 3: Reliability blocks diagram for a line bay.

Prot. IED-1

Prot. IED-2
Cnt. IED

MU

TS

ESW

Figure 2: Star topology for a line bay.
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Table 1: Data set regarding the gadgets.

Parameter Value Source
Preventive maintenance 110 €/h SIANI-IST
Corrective maintenance 100 €/h SIANI-IST
TS acquisition cost 7,000 € IST [34]
TS TFmin 1 h —
TS TFmax 525,600 h Mission time
TS TFλ 0.1·10−6 failures/h CISCO [36]
TS TRmin 1 h —
TS TRmax 7 h TRμ+ 3·TRσ
TS TRμ 4 h CISCO [36]
TS TRσ 1 h (TRμ–TRmin)/3
TS TMmin 2,190 h TMmax/2
TS TMmax 4,380 h NERC 2007 [37]
TS TCMmin 1 h Round (TRmin/2)
TS TCMmax 4 h Round (TRmax/2)
MU acquisition cost 3,500 € IST [34]
MU TFmin 1 h —
MU TFmax 525,600 h Mission time
MU TFλ 6.0047·10−6 failures/h Scheer and Dolezilek [35]
MU TRmin 2 h —
MU TRmax 14 h TRμ+ 3·TRσ
MU TRμ 8 h Kanabar and Sidhu [4]
MU TRσ 2 h (TRμ–TRmin)/3
MU TMmin 2,190 h TMmax/2
MU TMmax 4,380 h NERC 2007 [37]
MU TCMmin 1 h Round (TRmin/2)
MU TCMmax 7 h Round (TRmax/2)
Cnt.IED acquisition cost 3,537.50 € IST [34]
Cnt.IED TFmin 1 h —
Cnt.IED TFmax 525,600 h Mission time
Cnt.IED TFλ 6.0047·10−6 failures/h Scheer and Dolezilek [35]
Cnt.IED TRmin 2 h —
Cnt.IED TRmax 14 h TRμ+ 3·TRσ
Cnt.IED TRμ 8 h Kanabar and Sidhu [4]
Cnt.IED TRσ 2 h (TRμ–TRmin)/3
Cnt.IED TMmin 2,190 h TMmax/2
Cnt.IED TMmax 4,380 h NERC 2007 [37]
Cnt.IED TCMmin 1 h Round (TRmin/2)
Cnt.IED TCMmax 7 h Round (TRmax/2)
ESW acquisition cost 2,600 € IST [34]
ESW TFmin 1 h —
ESW TFmax 525,600 h Mission time
ESW TFλ 9.9265·10−6 failures/h Scheer and Dolezilek [35]
ESW TRmin 2 h —
ESW TRmax 14 h TRμ+ 3·TRσ
ESW TRμ 8 h Kanabar and Sidhu [4]
ESW TRσ 2 h (TRμ–TRmin)/3
ESW TMmin 2,190 h TMmax/2
ESW TMmax 4,380 h NERC 2007 [37]
ESW TCMmin 1 h Round (TRmin/2)
ESW TCMmax 7 h Round (TRmax/2)
Prt.IED acquisition cost 3,537.50 € IST [34]
Prt.IED TFmin 1 h —
Prt.IED TFmax 525,600 h Mission time
Prt.IED TFλ 6.0047·10−6 failures/h Scheer and Dolezilek [35]
Prt.IED TRmin 2 h —
Prt.IED TRmax 14 h TRμ+ 3·TRσ
Prt.IED TRμ 8 h Kanabar and Sidhu [4]
Prt.IED TRσ 2 h (TRμ–TRmin)/3
Prt.IED TMmin 2,190 h TMmax/2
Prt.IED TMmax 4,380 h NERC 2007 [37]
Prt.IED TCMmin 1 h Round (TRmin/2)
Prt.IED TCMmax 7 h Round (TRmax/2)
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(a) D1 must be rounded at the nearest integer.
Terefore, if its value is 1 a redundant Prt. IED is
included in the design. Conversely, the value of
0 indicates the noninclusion of the redundant
Prt. IED in the design.

(b) Employing equation (9), the variables M1 to M6
must be scaled, where TMi is the true time to
initiate a preventive maintenance activity for the
i-th line bay gadget, Mi denotes the value of the
decision variable in relation to the i-th line bay
gadget, and fnally, TMmaxi

and TMmini
are the

limit values regarding TMi for the i-th line bay
gadget (1≤ i≤ 6).

TMi � round TMmini
+ Mi∙ TMmaxi

− TMmini
􏼐 􏼑􏼐 􏼑,

(9)

(ii) When binary coding is used: A string of binary
numbers forms each individual in the population.
Such numbers can take values of 1 or 0. Te string
consists of 73 bits, where

(a) D1 indicates whether a redundant Prt. IED is
included in the system design. Again, the value of
1 involves the inclusion of the redundant Prt.
IED in the design, and the value of 0 indicates the
opposite.

(b) M2 to M13 represent the optimum time to initiate
a preventive maintenance activity in relation to the
gadget TS. In order to obtain its true TM value,
a binary scale to represents the numbers from
TMmin and TMmax values is required. For instance,
the value for TMminTS is 2,190hours, and it is
4,380hours for TMmaxTS. Hence, the necessary
scale steps are 4,380−2,190=2,190, where
2,190hours are represented by the step zero and
4,380hours are represented by the step 2,189. In
order to cover 2190 steps, the condition 2n > 2, 190
must be satisfed, where n is the bits number.
Consequently, 12 bits are needed. Whereas 212 �

4, 096 steps are available, only 2,190 steps are
needed. Terefore, a relationship between such
scalesmust be employed. In the scale of 4,096 steps,
each one represents 2,190 ÷ 4,096=0.53466796875
steps regarding the scale of 2,190 steps. Tus, the
transformation provided by equation (10) must be
used to obtain the true time to initiate a preventive
maintenance activity.

TMi � round TMmini
+ Mi∙(0.53466796875)􏼐 􏼑,

(10)

(c) Te process must be repeated in order to obtain
the true TM value for the MU (bits M14 to M25),
the Cnt. IED (bits M26 to M37), the ESW (bits
M38 to M49), the Prt. IED1 (bits M50 to M61),
and the Prt. IED2 (bits M62 to M73).

Table 2 shows the multiobjective algorithms employed
and their parameters.

Due to the fact that multiobjective evolutionary algo-
rithms require intensive computation, the parameters were
chosen on the basis of the most relevant factors related to
a proper balance of exploration-exploitation. Tey were set
from previous studies conducted by the authors of this
research as explained above [22–24]. Te parameters are as
follows:

(i) Mutation probability (PrM): Number of genes
mutating. 1/(decision variables) is considered as the
primary value. Two additional values were utilized
for comparison, one being lower (0.5/(decision
variables)) and the other higher (1.5/(decision
variables)) than the primary value. Furthermore, on
the one hand, simulated binary crossover is used as
a recombination mechanism when the real code is
employed. On the other hand, 2-point crossover is
used as a recombination mechanism when the bi-
nary code is employed.

(ii) Mutation distribution (disM): When the real code is
used, this parameter denotes the distribution index
of polynomial mutation. A standard value of 20 was
established after confrming its minimal impact
through various alterations.

(iii) Crossover probability (PrC): When the simulated
binary crossover is employed, this parameter de-
notes the probability of doing crossover. When new
individuals are created, the crossover operator
presents a considerable impact. It is set to 1 to
promote the efect from such an operator.

(iv) Crossover distribution (disC): Tis is the crossover
distribution index when the simulated binary
crossover is employed. A standard value of 20 was
established after confrming its minimal impact
through various alterations.

A population size of 150 individuals was considered. Six
confgurations were processed, and 21 executions each were
carried out for statistical purposes. 10,000,050 evaluations of
the objective functions were computed (stopping criterion).

Table 2: Parameters regarding the optimisation process.

Method Encoding PrM disM PrC disC

SMS-EMOA Real
0.5

20 1 201.0
1.5

SMS-EMOA Binary
0.5

— 1 —1.0
1.5

NSGA-II Real
0.5

20 1 201.0
1.5

NSGA-II Binary
0.5

— 1 —1.0
1.5
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Several scale factors were taken into account to normalize
the values of the objective functions. Tese values were
obtained by evaluating the objective functions at the start of
the process. Tis approach anticipates that the values of the
objective functions will improve as the simulation process
progresses. To address the 2-objective problem, the fol-
lowing scale factor values were set:

(i) A scale factor of 740,000 € was considered when
evaluating the cost.

(ii) A scale factor of 0.01 was used when calculating the
unavailability.

When the 3-objective problem was solved, the set values
of the scale factors were as follows:

(i) A scale factor of 24,000 € was applied when
assessing the acquisition cost.

(ii) A scale factor of 740,000 € was employed during the
evaluation of the operational cost.

(iii) A scale factor of 0.01 was considered when calcu-
lating the unavailability.

Finally, a reference point must be established to compute
the hypervolume, depending on the number of objectives.
Te reference points should encompass the limits set by the
scale factors. In this case, the points (2, 2) and (2, 2, 2) were
used as reference points. Te Platform PlatEMO [38] was
employed to optimise the problem, which includes multi-
tude of multiobjective evolutionary algorithms, a variety of
multiobjective test problems and various performance in-
dicators. Hence, the design and maintenance strategy
problem was developed and integrated into PlatEMO.

4. Results and Discussion

Te experiments were simulated using a high-performance
computer (HPC). Such a HPC has six calculation nodes.
Furthermore, it has a front-end node. Two processors Intel
Xeon E5645 Westmere-EP form each node. Each processor
consists of six cores with 48GB of RAM.

Useful information is provided from the results:

(1) Information about the computational process is
supplied.Te computational cost for simulating each
method and coding is supplied.

(2) Regarding each confguration, the evolution of the
average hypervolume [39] (HV) value (in twenty-
one executions) is supplied.

(3) For the distribution of hypervolume values fnally
reached, box plots are supplied.

(4) Some statistical measurements are displayed. Such
statistical measurements are, for the hypervolume,
the average, median, maximum, minimum, and
standard deviation.

(5) To identify signifcant diferences among the
methods’ performance, a hypothesis test is carried
out. Te Friedman’s test is employed to detect dif-
ferences among performances and rejecting the null

hypothesis (H0) in such a case. A post hoc test is
conducted when such diferences are detected. Te
lowest signifcant value to reject H0 is indicated by
the p value. Te p value provides evidence about the
signifcance of a test: a p value lower than 0.05
implies the rejection of H0. Benavoli et al. [40]
described the procedure to carry out the pairwise
comparisons.

(6) Te Hypervolume is evaluated [41] for the accu-
mulated nondominated solutions. Te best balance
among objectives is supplied by these solutions.

Next the results are exposed.

4.1. 2-Objective Problem Results. Each execution consumed
an average time of 3 days and 16minutes. Te whole process
involves a sequential time of 2 years, 28 days, and 20 hours.
Te simulation process is possible due to the parallel process
allowed by the HPC. Columns 1 to 4 (Table 3) show the
correlation between the identifers of confgurations and the
methods.

Figure 4 shows the evolution of the average hypervolume
relative to the number of evaluations. At the end of the process,
the highest average hypervolume value is produced by the
confguration identifed as ID2, which uses real coding and 1.0
gene per chromosome with the NSGA-II method.

In Figure 5, box plots are employed to show the dis-
tribution of hypervolume values fnally achieved. Table 3
(columns 5 to 9) summarises the statistical information
provided by these box plots. Te best average hypervolume
value is achieved by the confguration identifed as ID2,
which uses real coding with the NSGA-II method and 1.0
gene per chromosome. Furthermore, the best median
hypervolume value is achieved by the confguration iden-
tifed as ID7, which employs real coding with the SMS-E-
MOA method and 0.5 gene per chromosome. Te best
maximum hypervolume value is provided by the confgu-
ration identifed as ID1, which uses real coding with the
NSGA-II method and 0.5 gene per chromosome. Te
confguration identifed as ID9, which uses real coding with
the SMS-EMOA method and 1.5 gene per chromosome,
supplies the best minimum hypervolume value. Finally, the
smallest standard deviation value is found by the confgu-
ration identifed as ID4, which uses binary coding, with 0.5
gene per chromosome and the NSGA-II method.

Next, it is necessary to check whether one confguration
works better than another. Terefore, a hypothesis test of
statistical signifcance is performed. Employing Friedman’s
test, the average ranks were computed and ordered. In
Table 3 (column 10), such average ranks are shown.Te best
average rank (when the problem considers maximising the
hypervolume, the average rank must be as low as possible) is
achieved by the confguration identifed as ID2, which
employs real coding and 1.0 gene per chromosome for the
NSGA-II method. Nevertheless, the obtained p value of
0.2787 does not allow the rejection of H0 (p value >0.05).
Terefore, it cannot be concluded that “any one confgu-
ration works better than another.”
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Figure 6 displays the nondominated solutions. Tese
solutions were obtained once the whole simulation pro-
cess was completed, and they are described in Table 4. Te
solutions with worse unavailability are frstly ordered. In
such a table, the unavailability (Q) is shown in the second
column, the cost in the third column, and the optimum
times to initiate a preventive maintenance task regarding
each gadget are shown from columns four to nine,
respectively.

It can be seen that the less reliable and inexpensive solu-
tions are identifed as ID1 and ID2 in Table 4, and they are
marked asO in Figure 6.Tese are designs without a redundant
Prt. IED. Terefore, for the redundant Prt. IED, Table 4 does
not present a value regarding the time to initiate a preventive
maintenance activity. On the contrary, the more reliable and
expensive solutions are identifed as ID3 to ID8 in Table 4, and
they are marked as × in Figure 6.Te inclusion of a redundant
Prt. IED is considered for such solutions.
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Figure 4: Average hypervolume vs. number of evaluations (2-objective problem).

Table 3: Statistical analysis (2-objective problem) of hypervolume indicator.

ID Method Encoding Mutation Average Median Maximum Minimum Standard deviation Average rank
(Friedman test)

1 NSGA-II Real 0.5 3.4404 3.4340 3. 192 3.4044 0.0258 7.5714
2 NSGA-II Real 0.1 3.449 3.4456 3.4898 3.4141 0.0192 4.7619
3 NSGA-II Real 1.5 3.4439 3.4356 3.4786 3.4160 0.0189 6.0952
4 NSGA-II Binary 0.5 3.4393 3.4428 3.4645 3.4107 0.0126 6.1428
5 NSGA-II Binary 1.0 3.4397 3.4370 3.4746 3.4119 0.0149 6.8095
6 NSGA-II Binary 1.5 3.4332 3.4340 3.4674 3.4064 0.0149 7.8571
7 SMS-EMOA Real 0.5 3.4471 3.4474 3.4800 3.4166 0.0150 5.3333
8 SMS-EMOA Real 1.0 3.4391 3.4364 3.4812 3.4125 0.0163 6.7142
9 SMS-EMOA Real 1.5 3.4389 3.4421 3.4635 3.4111 0.0144 6.6666
10 SMS-EMOA Binary 0.5 3.4414 3.4368 3.4916 3.4075 0.0213 7.0952
11 SMS-EMOA Binary 1.0 3.4413 3.4391 3.4824 3.4095 0.0193 6.4761
12 SMS-EMOA Binary 1.5 3.4401 3.4373 3.4747 3.421 0.0145 6.4761
p value 0.2787
Best values (column-wise), in bold type.

10 Journal of Engineering



Te maximum value for the time to initiate a preventive
maintenance activity is 4,380 hours (from Table 1, see TMmax
values). It can be seen that the times provided by the al-
gorithms in Table 4 are close to such a value. Terefore, the
time among preventive maintenance activities is being

maximised as much as possible by the optimisers. Never-
theless, for themain Prt. IED, a value of 2,805 hours is shown
in the solution ID8 (see Table 4). Tis means that more
preventive maintenance activities must be conducted, so
more investment is needed.
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Figure 6: Accumulated nondominated front (2-objective problem).

Table 4: Nondominated solutions obtained for the 2-objective problem.

ID Q Cost
(€) TS (h) Mu (h) Cnt.

IED (h) ESW (h) Prt.
IED (h)

Prt.
IED (h)

1 0.001197 112,750.00 4,369 4,350 4,298 4,342 4,322 0
2 0.001189 152,022.50 4,353 4,380 4,173 4,377 4,380 0
3 0.001022 156,712.50 4,372 4,282 4,352 4,239 4,235 3,752
4 0.000982 156,762.50 4,380 4,333 4,369 4,321 4,317 3,306
5 0.000980 166,782.50 4,349 4,360 4,337 4,285 4,022 3,250
6 0.000892 186,565.00 4,380 4,380 4,082 4,195 4,271 3,761
7 0.000877 195,675.00 4,376 4,245 4,309 4,376 4,183 4,129
8 0.000759 232,682.50 4,349 4,377 4,380 4,380 2,805 3,279
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Figure 5: Box plots for the achieved hypervolume (2-objective problem, the identifers as in Table 3).
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Finally, the accumulated hypervolume for the front of
solutions achieves a value of 3.5239, which was computed as
described in Ref. [41]. Terefore, this value overcomes the
value of 3.5192, which is the maximum value in Table 3. Tis
is expected because the accumulated hypervolume is ob-
tained considering the nondominated solutions from all
confgurations.

4.2. 3-Objective Problem Results. Each execution consumed
an average time of 4 days, 3 hours, and 5minutes. Columns 1
to 4 (Table 5) show the correlation between the identifers of
confgurations and the methods.

Figure 7 shows the evolution of the average hypervolume
relative to the number of evaluations. At the end of the
process, the highest average hypervolume value is produced
by the confguration identifed as ID8, which uses real
coding with 1.0 gene per chromosome and the SMS-EMOA
method.

In Figure 8, box plots are employed to show the dis-
tribution of hypervolume values fnally achieved. Table 5
(columns 5 to 9) summarises the statistical information
provided by these box plots. Te confguration identifed as
ID8, which employs real coding with 1.0 gene per chro-
mosome and the SMS-EMOA method, achieves the best
average, median, and minimum hypervolume values. On the
other hand, the confguration identifed as ID6, which uses
binary coding with 1.5 gene per chromosome and the
NSGA-II method, achieves the best maximum hypervolume
value. Finally, the smallest standard deviation is presented by
the confguration identifed as ID11, which considers binary
coding with 1.0 gene per chromosome and the SMS-EMOA
method.

Next, it is necessary to check whether one confguration
works better than another. Terefore, a hypothesis test of
statistical signifcance is performed. Employing Friedman’s
test, the average ranks were computed and ordered. In
Table 5 (column 10), such average ranks are shown.Te best
average rank is supplied by the confguration identifed as
ID8, which uses real coding with 1.0 gene per chromosome

and the SMS-EMOA method. Nevertheless, the obtained p

value of 0.0260 allows the rejection of H0 (p value <0.05).
Hence, it can be concluded that “at least the confguration
ID8 works better than some other confguration.” Te
Wilcoxon signed-rank test was employed to carry out
pairwise comparisons. In Table 6, the outcomes of using
such a test are shown. Te confguration identifed as ID8
works better than the confguration identifed as ID3, which
uses real coding with 1.5 gene per chromosome and the
NSGA-II method; the confguration identifed as ID11,
which employs binary coding with 1.0 gene per chromosome
and the SMS-EMOA method; and the confguration iden-
tifed as ID12, which uses binary coding with 1.5 gene per
chromosome and the SMS-EMOA method.

Figure 9 displays the nondominated solutions. Tese
solutions were obtained once the whole simulation process
was completed, and they are described in Table 7. Te so-
lutions with worse unavailability are frstly ordered. In such
a table, the unavailability (Q) is shown in the second column,
the operational cost is shown in the third column, the ac-
quisition cost is shown in the fourth column, and the op-
timum times to initiate a preventive maintenance task in
relation to each gadget are shown in columns fve to ten,
respectively.

It can be seen that the less reliable and inexpensive
solutions are identifed as ID1 to ID3 in Table 7, and they are
marked as O in Figure 9. Tese are designs without a re-
dundant Prt. IED. Terefore, for the redundant Prt. IED,
Table 7 does not present a value regarding the time to initiate
a preventive maintenance activity. On the contrary, the more
reliable and expensive solutions are identifed as ID4 to ID11
in Table 7, and they are marked as × in Figure 9. Te in-
clusion of a redundant Prt. IED is considered for such
solutions.

Te maximum value for the times to initiate a preventive
maintenance activity is 4,380 hours (from Table 1, see TMmax
values). It can be seen that the times supplied by the al-
gorithms in Table 7 are close to such a value. It shows that the
time among preventive maintenance activities is maximised
by the optimisers as much as possible.

Table 5: Statistical analysis (3-objective problem) of hypervolume indicator.

ID Method Encoding Mutation Average Median Maximum Minimum Standard deviation Average rank
(Friedman test)

1 NSGA-II Real 0.5 4.0442 4.0420 4.0862 3.9998 0.0229 6.2857
2 NSGA-II Real 0.1 4.0422 4.0394 4.0856 4.0144 0.0167 6.4761
3 NSGA-II Real 1.5 4.0377 4.0372 4.0613 4.0066 0.0158 7.6190
4 NSGA-II Binary 0.5 4.0473 4.0445 4.0716 4.0184 0.0151 5.4285
5 NSGA-II Binary 1.0 4.0453 4.0413 4.0948 4.0053 0.0228 5.9523
6 NSGA-II Binary 1.5 4.0436 4.0430 4.1269 4.0002 0.0265 6.4761
7 SMS-EMOA Real 0.5 4.0527 4.0480 4.1046 4.0160 0.0259 5.3809
8 SMS-EMOA Real 1.0 4.0 31 4.0 12 4.1035 4.02  0.0191 4.9 23
9 SMS-EMOA Real 1.5 4.0487 4.0472 4.0892 4.0177 0.0192 5.8095
10 SMS-EMOA Binary 0.5 4.0382 4.0383 4.1104 4.0056 0.0261 7.5714
11 SMS-EMOA Binary 1.0 4.0373 4.0352 4.0704 4.0168 0.0147 7.3809
12 SMS-EMOA Binary 1.5 4.0301 4.0308 4.0603 4.0069 0.0148 8.6666
p value 0.0260
Best values (column-wise), in bold type.
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Finally, the accumulated hypervolume for the front of
solutions achieves a value of 4.1702, which was computed
as described in Ref. [41]. Terefore, this value overcomes
the value of 4.1269, which is the maximum value in
Table 5.

4.3. Discussion. Previously, the case study was solved from
2- and 3-objective approaches. Both approaches consider
unavailability and cost as objective functions. However, the
3-objective approach considers separately the acquisition
cost and the operational cost. Te robustness of the 2-
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Figure 7: Average hypervolume vs. number of evaluations (3-objective problem).
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objective approach is highlighted, since nonsignifcant sta-
tistical diferences were found while several confgurations
were studied. Nevertheless, it can be seen that the problem is
more complex when the 3-objective approach is considered
because signifcant statistical diferences were found.
Friedman’s test brings to light that a better order was
reached when real coding and 1 gene per chromosome were
used with the SMS-EMOA method. Hence, such a confg-
uration could be recommended to SAS designers.

Table 3 displays the confgurations with the best av-
erage ranks when two objectives were considered. Tese
are identifed as ID2, which uses the NSGA-II method

with a mutation probability of 1.0 gene per chromosome
(real coding), and ID7, which uses the SMS-EMOA
method with 0.5 gene per chromosome (real coding).
Moreover, Table 5 (column 10) displays the confgura-
tions with the best average ranks when three objectives
were considered. Tese are identifed as ID8, which
employs the SMS-EMOA method with 1.0 gene per
chromosome (real coding), and ID7, which uses the
SMS-EMOA with 0.5 gene per chromosome (real coding).
In the following subsection, all of them are considered to
compare the performance among the approaches used to
solve the problem.

Table 6: p values from the Wilcoxon signed-rank test.

Comparison p value Conclusion H0

ID8–ID12 0.0017< 0.05 Rejected
ID8–ID11 0.0057< 0.05 Rejected
ID3–ID8 0.0117< 0.05 Rejected
ID10-ID8 0.0582> 0.05 Not rejected
ID2–ID8 0.0680> 0.05 Not rejected
ID1–ID8 0.2305> 0.05 Not rejected
ID8-ID9 0.2586> 0.05 Not rejected
ID6–ID8 0.2736> 0.05 Not rejected
ID5–ID8 0.3392> 0.05 Not rejected
ID4–ID8 0.4342> 0.05 Not rejected
ID7-ID8 0.7677> 0.05 Not rejected
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Figure 9: Accumulated nondominated front (3-objective problem).
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4.4.Comparing theSolutions. In order to compare the results
of the two approaches, the results of the 3-objective ap-
proach must be transformed. Terefore, before computing
the hypervolume, the operational cost, and the acquisition
cost must be added. In columns 1 to 5 of Table 8, it is

displayed the relationship between the confguration iden-
tifers and the methods.

Figure 10 shows the evolution of the average hyper-
volume values related to the evolution of evaluations. Te
best average hypervolume value is reached by the

Table 7: Optimum solutions obtained for the 3-objective problem.

ID Q
Operational

cost
(€)

Acquisition
cost
(€)

TS (h) Mu (h) Cnt.
IED (h) ESW (h) Prt.

IED (h)
Prt.

IED (h)

1 0.001256 92,645.00 20,175.00 4,295 3,937 4,270 4,140 4,174 0
2 0.001242 98,637.50 20,175.00 4,302 4,303 4,360 4,355 4,050 0
3 0.001145 124,582.50 20,175.00 4,364 4,225 4,088 4,364 4,378 0
4 0.001035 130,177.50 23,712.50 4,282 4,238 4,294 3,974 4,263 3,989
5 0.000997 139,962.50 23,712.50 4,316 4,358 4,351 4,328 3,953 4,337
6 0.000995 153,815.00 23,712.50 4,380 4,378 4,279 4,227 4,214 4,344
7 0.000951 157,527.50 23,712.50 4,355 4,369 4,234 4,369 4,374 3,726
8 0.000938 158,160.00 23,712.50 4,275 4,275 4,364 4,260 4,364 4,178
9 0.000780 167,982.50 23,712.50 3,758 4,221 4,221 4,365 4,336 4,317
10 0.000763 206,047.50 23,712.50 4,380 4,380 4,380 4,357 4,122 3,537
11 0.000744 274,085.00 23,712.50 4,380 4,380 4,380 4,380 3,946 3,889

Table 8: Statistical analysis for the best average rank confgurations from both 2-objective and transformed 3-objective problems.

ID Objectives Method Encoding Mutation Average Median Maximum Minimum Standard
deviation

Average
rank

1 2 NSGA-II Real 1.0 3.4495 3.4456 3.4898 3.4141 0.0192 2.5238
2 2 SMS-EMOA Real 0.5 3.4471 3.4474 3.4800 3.4166 0.0150 2.7142
3 3 SMS-EMOA Real 1.0 3.4517 3.4513 3.4965 3.4274 0.0166 2.3809
4 3 SMS-EMOA Real 0.5 3.4513 3.4470 3.4965 3.4191 0.0225 2.3810
p value 0.8150
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Figure 10: Average hypervolume vs. number of evaluations (comparison between approaches).
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confguration identifed as ID3, which uses real coding with
the SMS-EMOA and 1.0 gene per chromosome.

In Figure 11, box plots are employed to show the dis-
tribution of hypervolume values fnally achieved. Table 8
(columns 6 to 10) summarises the statistical information
provided by these box plots. Te confguration identifed as
ID3, which employs real coding with the SMS-EMOAmethod
and 1.0 gene per chromosome, achieves the best average,
median, minimum, and maximum hypervolume values. Fi-
nally, the confguration identifed as ID2, which employs real
coding with the SMS-EMOA method and 0.5 gene per
chromosome, presents the smallest standard deviation value.

Next, it is necessary to check whether one confguration
works better than another. Terefore, a hypothesis test of
statistical signifcance is performed. Employing the
Friedman’s test, the average ranks were computed and

ordered. In Table 8 (column 11), such average ranks are
shown. Te best average rank is supplied by the confgu-
ration identifed as ID3, which employs real coding with
1.0 gene per chromosome and the SMS-EMOA method.
Nevertheless, the obtained p value of 0.8150 does not allow
the rejection of H0 (p value >0.05). Hence, the conclusion
“at least the confguration ID3 performs better than some
other confguration” cannot be established. However,
based on the Friedman test, it can be established that
a better order was obtained for the 3-objective approach.
SAS designers could therefore be advised to use the
multiobjectivisation approach, and in particular, the use of
the SMS-EMOA method and real coding.

Figure 12 displays the nondominated solutions. Such
solutions were obtained once the whole simulation process
was completed from both approaches. Such a fgure shows,
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Figure 11: Box plots of the fnal hypervolume (comparison, identifers as in Table 8).
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on the one hand, the solutions marked as O, which were
achieved from the 2-objective approach. On the other hand,
the solutions marked as × are shown, which were achieved
from the 3-objective approach. Te accumulated Hyper-
volume for the solutions front reaches a value of 3.5539.
Such a value is higher than 3.4965, which is the maximum
value in Table 8.

5. Conclusions

In order to provide a methodology for the reliable archi-
tectural design of substation automation systems (SAS),
multiobjective evolutionary algorithms, and discrete event
simulation are combined. Te joint optimisation of design
and maintenance strategy is considered by using such
a methodology. Both corrective and preventive maintenance
are contemplated in the maintenance strategy. Regarding
preventive maintenance, the main target consists of deciding
the periodic time to initiate such activities. Te confict
between cost and availability is addressed when both ac-
quisition and operational costs are managed. A population
of individuals is evolved by the multiobjective evolutionary
algorithm until it reaches the stopping criterion. Each in-
dividual denotes a feasible design and preventive mainte-
nance strategy for the system. Discrete event simulation is
then employed to emulate the behaviour of the system and
evaluate the objective functions. A case study is developed in
which twomultiobjective approaches are studied: on the one
hand, a 2-objective approach that considers both availability
and cost as objectives, and on the other hand, a 3-objective
approach that considers availability and cost as objectives
again. Nevertheless, in this second approach, the cost is
decomposed between operational and acquisition cost such
a procedure is termed multiobjectivisation. Availability-
cost-balanced solutions are provided when the methodology
is applied. A thorough hypothesis test is conducted in order
to fnd out which approach is the most appropriate.

Te case study consists of a section of a subsystem, which
is included in SAS. It is a bay line of a single bus of a small
transmission substation, which is employed to transform
energy (220 kV. ⟶ 132 kV). In this case, two state-of-
the-art multiobjective evolutionary algorithms are employed
to compare their performances: Te S-metric selection
evolutionary multiobjective optimisation algorithm (SMS-
EMOA) and the nondominated sorting genetic algorithm II
(NSGA-II).

Both approaches produced a collection of nondominated
solutions. When the 2-objective approach was employed, all
confgurations worked analogously. Nevertheless, when the
3-objectives approach was considered, signifcant diferences
were found. It can be concluded that the complexity of the
problem is greater when the multiobjectivisation approach is
considered.

After conducting the Friedman´s test, a pairwise com-
parison was carried out for the best-ordered confgurations
from both approaches. As a result, the 3-objective approach
were frstly ordered. Terefore, the multiobjectivisation
approach showed a positive efect. Furthermore, the method
based on the hypervolume indicator (SMS-EMOA) with real

coding performed better than the method based on Pareto
dominance (NSGA-II). Tus, it could be recommended to
use the multiobjectivisation approach and the SMS-EMOA
method to obtain a set of availability-cost balanced solutions.
Considering unavailability-cost constraints, the decision
makers can select the desirable solution from such a set of
solutions.

In the future, it is proposed to extend the analysis to
more complex architectures to test the multiobjectivisation
efect when more complex designs are considered.

Data Availability

Te data that support the fndings of this study are available
from the corresponding authors upon reasonable request.

Conflicts of Interest

Te authors declare that there are no conficts of interest
regarding the publication of this paper.

Acknowledgments

Tis research was partially supported by ACIISI-Gobierno
de Canarias and European FEDER Funds Grant EIS 2021 04.
Te authors are grateful for supporting to A. Cacereño, who
was previously contracted from the Program of Training for
Pre-doctoral Research Staf of the University of Las Palmas
de Gran Canaria (PIFULPGC-2017-ING-ARQ-1), and
currently contracted from the Program “Ayudas para la
recualifcación del sistema universitario español para
2021–2023” (Margarita Salas), from the University of Las
Palmas de Gran Canaria, supported by Ministerio de Uni-
versidades of Gobierno de España (Orden UNI/501/2021,
May 26th) and European Union Next Generation Funds EU.
Furthermore, part of this paper was developed during
a research stay of the frst author in Lisbon University, which
was possible via the ERASMUS+ SMT program. Also, the
second author acknowledges partial Project support funding
from theMinisterio de Ciencia, Innovación y Universidades,
Gobierno de España (PID2019-110185RB-C22), and from
the Agencia Canaria de Investigación, Innovación y Socie-
dad de la Información, Consejeŕıa de Economı́a, Con-
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