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Simple Summary: The study delves into how environmental conditions impact metal concentrations
in Sparisoma cretense tissues, crucial for advising the species’ health and broader implications for
food security. Spanning 2022–2023, it notes variations in Al, Zn, Cd, Pb, Fe, and Cu levels across
islands, with significant increases during warm seasons in 2023. The fluctuations arise from multiple
factors: rising temperatures, marine activity, weather shifts, water quality, and human influences.
Geological composition, marine currents, and sediment patterns also contribute. Understanding
these complexities through ongoing research and surveillance is vital for conserving and managing
marine ecosystems in the Canary archipelago.

Abstract: This study investigates the impact of varying environmental conditions on the metal
composition within the tissues of Sparisoma cretense, contributing to the understanding necessary to
offer scientifically sound advice regarding the health status of this species. This knowledge extends
beyond fishery production, encompassing implications for food security. The data span the years 2022
and 2023, encompassing both cold and warm climatic seasons. The concentrations of various metals,
such as Al, Zn, Cd, Pb, Fe, and Cu, exhibited noteworthy variations across the islands, with significant
increases recorded in 2023, particularly during the warm season. The intricate interplay between
multiple factors shaped the availability of the analyzed elements in S. cretense. Factors such as rising
temperatures during the warm season increased biological activity in marine ecosystems, seasonal
fluctuations in weather conditions, water quality, and anthropogenic influences, all contributing to the
observed variations in metal concentrations. Additionally, the geological composition of each island
and the patterns of marine currents and sediment transport play pivotal roles in these differences.
Comprehensive scientific research, monitoring, and environmental surveillance are essential for a
holistic understanding of this variability and providing valuable insights for the conservation and
management of marine ecosystems in the Canary archipelago.
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1. Introduction

Heavy metals are chemical elements such as mercury, lead, cadmium, and copper,
among others, that can naturally occur in oceans, but their presence in high concentrations
due to human activities poses a serious threat to marine organisms. These metals can enter
the water through industrial discharges, urban runoff, agriculture, and other contaminating
sources. Once in the aquatic environment, these metals can accumulate in sediments or be
absorbed by marine organisms. As these organisms are consumed by others in the food
chain, heavy metals bioaccumulate, meaning that they progressively concentrate at higher
levels at each trophic level. This bioaccumulation can have severe adverse effects on the
health and functioning of marine organisms, causing harm to their reproduction, growth,
immune system, and in some cases, even death. Moreover, heavy metals can be transferred
to humans who consume contaminated marine products, posing a risk to human health.
The monitoring and controlling of heavy metal levels in marine organisms are crucial to
preserve the health of aquatic ecosystems and ensure food safety [1–9]. Marine fish act
as bioindicators, aiding in the assessment of heavy metal concentrations within marine
ecosystems. As the levels of heavy metals rise in water (due to industrial contamination,
agricultural runoff, natural occurrences, etc.), fish, like most marine organisms, have the
capacity to absorb and retain these metals in their tissues over their lifetimes [10–15].
Analysis of metal accumulation in fish provides scientists with valuable insights into water
quality and the overall well-being of marine ecosystems. Moreover, these data are crucial
in evaluating potential health risks to humans, as heavy metals can accumulate in fish
that eventually become part of our diet. Consequently, monitoring marine fish plays an
indispensable role in the supervision and preservation of the health of marine ecosystems
and food safety [16–19].

In this context, the Canary Islands represent an interesting study case due to the unique-
ness of this marine ecosystem. Positioned in the central eastern Atlantic, the oligotrophic
waters surrounding these islands support a quite high marine biodiversity and play a fun-
damental role in the local economy, particularly for artisanal fishing and tourism [20–24].
Nevertheless, the increasing human activity (mainly encompassing both industry and
agriculture) has raised concerns regarding potential heavy metal contamination [25–27],
with a proven anthropic impact. For example, a significant drop in the metal content of a
common marine bioindicator (i.e., Anemona sulcate) has been found in the Canary Islands,
probably linked to the radical stop of the majority of the human activities derived from the
measures taken for COVID-19 restraints [28].

The parrotfish Sparisoma cretense (Linnaeus, 1758) is a demersal species living in
shallow waters up to 50 m deep, along rocky shores, in temperate-subtropical seas. In the
eastern Atlantic, S. cretense is present in coastal waters from Portugal to Senegal, including
Azores, Madeira, the Canary Islands, and Cape Verde, and in the Mediterranean Sea, the
species is more common in the eastern and southern coasts. Parrotfish is considered an
omnivorous species, feeding on algae and small invertebrates which browse on rocks,
occupying a trophic level of 2.9 ± 0.27 [29–32]. In the Canary Islands, it is one of the most
appreciated and emblematic fish and constitutes the most important demersal species
(in terms of landings), included as a separated stock in the framework of the Fishery
Committee for the Eastern Central Atlantic (FAO/CECAF), in which the assessment has not
been possible so far [33]. In the changing context among islands in the Canary archipelago,
adapted management strategies to sustain healthy and sustainable fishing practices must
include the potential intra-islands variability, a supposedly significant challenge for fishery
management [34–39]. Therefore, investigating how different environmental conditions
affect the metal composition in S. cretense tissues may contribute to the knowledge necessary
to provide sounded scientific advice about the health status of this species, not only in
terms of fishing production, but also relating food security, via analysis of the variability of
the metal content (Al, Cd, Cu, Fe, Pb and Zn) in parrotfish along with its the longitudinal
distribution in the Canary Islands.
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2. Material and Methods

For this study, a total of 120 Sparisoma cretense specimens were collected in 2022 and
2023 from commercial landings produced in the islands of Lanzarote, Gran Canaria and
El Hierro, including the longitudinal range of the Canary Islands (Figure 1). The island
of El Hierro was chosen because it is the island with the lowest population and tourist
density and also because it is the westernmost island of the archipelago. The island of
Gran Canaria is located in the center of the archipelago and has a high population and
tourist density. Finally, the island of Lanzaorte is the easternmost island of the archipelago
along with La Graciosa [35,40,41]. Two samplings were carried out each year, in February
(the cold season) and September (the warm season). Specimens were captured employing
artisanal fishing fleets specific to each of the islands with a deliberate attempt to select
specimens of matching. We have avoided variation in size. Since we sampled specimens of
similar sizes, we also avoided sampling with sandstorm phenomena that frequently hit the
archipelago and are rich in Cu, Fe, and Zn minerals. On each island, we chose areas with
similar orography, geology, and oceanographic conditions. The specimens were purchased
at the fish markets of the study areas.
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Figure 1. Map of the study locations.

2.1. Sampling and Analysis

Five grams of muscle tissue was extracted from the dorsal area above the pectoral
fin from each sample collected. These samples were then subjected to drying in an oven
at a temperature of 70 ◦C for 24 h. Once completely dried, they were introduced into a
muffle furnace and exposed to a temperature of 450 ◦C ± 25 ◦C until they turned into
white ashes. These ashes were subsequently filtered and diluted to a total volume of 25 mL,
utilizing a 1.5% HNO3 solution. The content of Al, Cd, Cu, Fe, Pb, and Zn in the samples
was quantified using Inductively Coupled Plasma-Optical Emission Spectrophotometry
(ICP-OES), Thermo Scientific iCAP PRO (Waltham, MA, USA). These metals were chosen
because they are anthropogenic, and all samples were above the detection limit, with a
recovery of between 97 and 103.1 [42–44]. To assess the precision of the determinations, a
quality control solution was employed after every ten samples. Furthermore, the accuracy
of the analytical procedure was assessed through the analysis of the international standard
reference materials DORM-1 and DORM-5, which were provided by the National Research
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Council of Canada. The use of these reference materials yielded a recovery rate exceeding
97%. Both the blanks and standard reference materials were analyzed alongside the
samples. For accuracy, the recovery of the elements studied in the reference material was
>94% in all cases. Therefore, the method used met the criteria of accuracy (established as
recovery), precision (established as reproducibility), and specificity as established in the EC
Regulation No. 333/2007 [45–47] (Table S1). The standards for the calibration curves were
based on certified standard solutions. Specifically, for the metals (Al, Cd, Cu, Fe, Pb, and
Zn), the SCP Science Multi-Element Std, SCP28AES certified standard was used, with a
certified concentration of 100 mg/L for each of the metals. From these and for each of the
metals analyzed in this study, the different concentrations of the calibration standards were
prepared for the elaboration of the calibration curves, all of them in sufficient quantity for
100 mL in 1.5% nitric acid. The instrumental conditions were as follows: RF power, 1150 W;
nebulizer and auxiliary gas flow, 0.5 L/min; coolant gas flow, 12.5 L/min; nebulizer gas
pressure, 0.2 L/min; pump speed, 45 rpm.

2.2. Statistical Analysis

To assess the potential disparities in heavy and trace metal content and their relative
composition in the analyzed samples, we conducted a permutational multivariate analysis
of variance (PERMANOVA) using Euclidean distances. This analysis followed a 3-way
design, with the fixed factors being "Island", "Year", and "Season", each having varying
levels. The "Island" factor had three levels (Lanzarote, Gran Canaria, and El Hierro), the
"Year" factor had two levels (2022 and 2023), and the "Season" factor had two levels (Cold
and Warm). The metal and trace elements considered in the analysis included Al, Zn, Cd,
Pb, Fe, and Cu. For the statistical tests, we performed 9999 permutations of interchangeable
units and conducted post hoc comparisons to confirm the differences between the levels of
significant factors (p-value < 0.05). To identify clusters, we employed principal coordinate
analysis (PCoA), representing elements as vectors. We carried out these statistical analyses
using the software packages PRIMER 7 and PERMANOVA þ v.1.0.1. [48,49].

3. Results

Table 1 shows the concentrations of the metals and trace elements analyzed in spec-
imens of S. cretense collected from commercial landings in El Hierro, Gran Canaria, and
Lanzarote (comprising a W–E distribution across the Canary Islands) in 2022 and 2023,
during both climatic seasons (cold and warm).

For Al, noticeable fluctuations in concentrations were observed across the different
islands and seasons. In all islands, increases were recorded in 2023 compared to 2022,
mainly for the warm season. For example, in Gran Canaria, Al concentrations increased
from 0.542 mg/kg (cold, 2022) to 1.21 mg/kg (warm, 2023). Similarly, in Lanzarote,
concentrations increased during the same period.

As for Zn, concentrations also underwent significant variations, with higher levels in
the warm season of 2023. In Gran Canaria, Zn increased from 0.829 mg/kg (cold, 2022)
to 1.272 mg/kg (warm, 2023). Likewise, in El Hierro, Zn concentrations increased from
0.632 mg/kg to 0.692 mg/kg between 2022 and 2023 in the warm season.

For cadmium and lead, there were increases in 2023, particularly in the warm sea-
son. In Gran Canaria, Cd increased from 0.006 mg/kg (cold, 2022) to 0.009 mg/kg
(warm, 2023). Similarly, in Lanzarote, the Pb concentration increased in the warm season of
2023 (Figure 2).
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Table 1. Descriptive statistics of the metal content in mg/kg.

El Hierro Gran Canaria Lanzarote

2022 2023 2022 2023 2022 2023

Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

Al 0.542 ± 0.114
(0.372–0.688)

0.604 ± 0.153
(0.391–0.825)

0.516 ± 0.102
(0.38–0.682)

0.669 ± 0.169
(0.434–0.914)

0.838 ± 0.147
(0.668–1.135)

1.210 ± 0.112
(1.029–1.398)

0.889 ± 0.145
(0.744–1.192)

1.391 ± 0.153
(1.131–1.676)

0.642 ± 0.108
(0.409–0.756)

0.793 ± 0.06
(0.674–0.86)

0.722 ± 0.072
(0.634–0.832)

0.911 ± 0.074
(0.808–1.026)

Zn 0.632 ± 0.14
(0.458–0.9)

0.625 ± 0.166
(0.346–0.87)

0.609 ± 0.097
(0.454–0.719)

0.692 ± 0.184
(0.383–0.964)

0.829 ± 0.159
(0.645–1.109)

1.272 ± 0.153
(1.01–1.485)

0.893 ± 0.151
(0.678–1.164)

1.462 ± 0.187
(1.11–1.636)

0.695 ± 0.154
(0.503–0.989)

0.798 ± 0.151
(0.569–1.017)

0.741 ± 0.139
(0.554–0.948)

0.914 ± 0.157
(0.683–1.118)

Cd 0.004 ± 0.001
(0.003–0.005)

0.004 ± 0.001
(0.003–0.005)

0.004 ± 0.001
(0.003–0.005)

0.005 ± 0.001
(0.003–0.006)

0.006 ± 0.002
(0.004–0.009)

0.009 ± 0.001
(0.007–0.011)

0.006 ± 0.002
(0.004–0.009)

0.01 ± 0.002
(0.008–0.013)

0.004 ± 0.001
(0.003–0.006)

0.005 ± 0.001
(0.004–0.007)

0.005 ± 0.001
(0.004–0.006)

0.006 ± 0.001
(0.004–0.008)

Pb 0.004 ± 0.001
(0.004–0.005)

0.005 ± 0.001
(0.004–0.005)

0.004 ± 0.001
(0.004–0.005)

0.005 ± 0.001
(0.004–0.006)

0.006 ± 0.001
(0.005–0.009)

0.008 ± 0.002
(0.006–0.011)

0.006 ± 0.001
(0.005–0.009)

0.009 ± 0.002
(0.007–0.013)

0.005 ± 0.001
(0.004–0.008)

0.006 ± 0.002
(0.005–0.01)

0.006 ± 0.002
(0.005–0.009)

0.007 ± 0.002
(0.006–0.011)

Fe 0.251 ± 0.043
(0.198–0.326)

0.277 ± 0.042
(0.224–0.343)

0.246 ± 0.045
(0.196–0.333)

0.306 ± 0.047
(0.248–0.38)

0.314 ± 0.05
(0.244–0.402)

0.458 ± 0.085
(0.365–0.619)

0.332 ± 0.041
(0.295–0.41)

0.528 ± 0.11
(0.413–0.742)

0.276 ± 0.047
(0.217–0.358)

0.327 ± 0.066
(0.246–0.441)

0.312 ± 0.039
(0.264–0.394)

0.374 ± 0.063
(0.295–0.485)

Cu 0.155 ± 0.027
(0.126–0.199)

0.172 ± 0.03
(0.138–0.215)

0.156 ± 0.028
(0.125–0.203)

0.19 ± 0.033
(0.152–0.238)

0.191 ± 0.033
(0.155–0.245)

0.28 ± 0.056
(0.199–0.377)

0.199 ± 0.032
(0.166–0.25)

0.322 ± 0.067
(0.238–0.452)

0.171 ± 0.029
(0.139–0.218)

0.202 ± 0.039
(0.157–0.269)

0.191 ± 0.027
(0.169–0.24)

0.231 ± 0.04
(0.188–0.295)
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Figure 2. Mean line graph for each metal in mg/kg. Gran Canaria—orange; Lanzarote—blue;
El Hierro—green. Continuous lines—cold seasons; doted lines—warm seasons.

Regarding the iron (Fe) concentrations, they were notably higher in Gran Canaria
compared to El Hierro and Lanzarote, with higher values in the warm season of 2023.

Finally, copper (Cu) also exhibited a similar trend, with higher concentrations in Gran
Canaria, reaching up to 0.28 mg/kg in the warm season of 2023.

Table 2 presents a summary of the results of the three-factor analysis of variance
(ANOVA), revealing significant disparities in metal concentrations across islands, years
and climatic seasons. Overall, substantial variations were noted in the levels of Al, Zn,
Cd, Pb, Fe, and Cu when making various comparisons. In fact, significant differences
were observed among islands concerning the concentrations of Al, Zn, Cd, Pb, Fe, and Cu.
Furthermore, disparities in the concentrations of certain metals seem linked to the climatic
seasons (cold and warm).

The three-factor analysis of variance (ANOVA) revealed significant disparities in metal
concentrations between the years 2022 and 2023 across the islands of Lanzarote, Gran
Canaria, and El Hierro, as well as in the cold and warm seasons (Table 3). In general,
notable distinctions were observed in the levels of Al in Lanzarote during both seasons and
in Gran Canaria during the cold season. Moreover, significant variations were noted in
the concentrations of Zn in Lanzarote during the cold season and in El Hierro during the
warm season. However, for Cd, Pb, Fe, and Cu, most of the comparisons did not reveal
significant differences.



Animals 2023, 13, 3787 7 of 14

Table 2. Results of pairwise tests examining the significant factor “Year” and “Season”: a three-way
ANOVA; * p < 0.05.

2022 2023

Cold Warm Cold Warm

Al
Lanzarote vs. Gran Canaria 0.003 * 0.001 * 0.004 * 0.001 *

Lanzarote vs. El Hierro 0.120 * 0.004 * 0.001 * 0.001 *
Gran Canaria vs. El Hierro 0.002 * 0.001 * 0.001 * 0.001 *

Zn
Lanzarote vs. Gran Canaria 0.097 0.007 * 0.067 0.001 *

Lanzarote vs. El Hierro 0.390 0.051 0.052 0.001 *
Gran Canaria vs. El Hierro 0.020 * 0.001 * 0.001 * 0.001 *

Cd
Lanzarote vs. Gran Canaria 0.080 0.001 * 0.371 0.001 *

Lanzarote vs. El Hierro 0.123 0.052 0.001 * 0.021 *
Gran Canaria vs. El Hierro 0.001 * 0.001 * 0.001 * 0.001 *

Pb
Lanzarote vs. Gran Canaria 0.356 0.001 * 0.971 0.001 *

Lanzarote vs. El Hierro 0.654 0.065 0.001 * 0.001 *
Gran Canaria vs. El Hierro 0.002 * 0.001 * 0.001 * 0.001 *

Fe
Lanzarote vs. Gran Canaria 0.135 0.001 * 0.327 0.001 *

Lanzarote vs. El Hierro 0.278 0.080 0.001 * 0.038 *
Gran Canaria vs. El Hierro 0.015 * 0.001 * 0.001 * 0.001 *

Cu
Lanzarote vs. Gran Canaria 0.119 0.001 * 0.584 0.001 *

Lanzarote vs. El Hierro 0.278 0.091 0.029 * 0.040 *
Gran Canaria vs. El Hierro 0.031 * 0.001 * 0.011 * 0.001 *

Table 3. Results of the pairwise tests examining the significant factor “Island” and “Season”:
a three-way ANOVA comparing “Years”; * p < 0.05.

2022 vs. 2023
Lanzarote Gran Canaria El Hierro

Cold Warm Cold Warm Cold Warm

Al 0.098 0.004 * 0.467 0.070 0.673 0.444

Zn 0.509 0.150 0.654 0.063 0.543 0.432

Cd 0.213 0.651 0.551 0.099 0.761 0.129

Pb 0.195 0.343 0.172 0.981 0.431 0.421

Fe 0.121 0.152 0.451 0.170 0.801 0.206

Cu 0.163 0.150 0.611 0.187 0.921 0.245

The three-factor analysis of variance (ANOVA) unveiled noteworthy variations in
metal concentrations between the cold and warm climatic seasons, considering the islands
of Lanzarote, Gran Canaria, and El Hierro, along with the years 2022 and 2023 (Table 4). The
p-values denote statistical significance, and in the majority of the comparisons, significant
differences (p < 0.05) were observed. Specifically, during the cold seasons, substantial
disparities were evident in the concentrations of the elements analyzed across various
islands and year combinations. In the warm seasons, significant differences were mainly
detected in the concentrations of Al, Zn, Pb, Fe, and Cu. Nevertheless, significant differences
were not found for some comparisons, such as between the concentrations of Al in El Hierro
during both seasons in 2023, and the concentrations of Cd in Gran Canaria during both
seasons in 2022.
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Table 4. Results of pairwise tests examining the significant factor “Island” and “Year”: a three-way
ANOVA comparing “Season”; * p< 0.05.

Cold vs. Warm
Lanzarote Gran Canaria El Hierro

2022 2023 2022 2023 2022 2023

Al 0.001 * 0.001 * 0.001 * 0.001 * 0.394 0.051

Zn 0.181 0.031 * 0.001 * 0.001 * 0.889 0.542

Cd 0.098 0.078 0.001 * 0.001 * 0.338 0.077

Pb 0.211 0.654 0.001 * 0.001 * 0.543 0.001 *

Fe 0.087 0.032 * 0.001 * 0.001 * 0.239 0.019 *

Cu 0.081 0.030 * 0.002 * 0.001 * 0.245 0.045 *

4. Discussion

Since parrotfish S. cretense is a browser omnivorous species, its metal concentrations are
closely linked to the pollutants released into the marine coastal environment, and primarily
absorption by lower trophic levels significantly depends on the elemental availability in the
water mass and substrate. The metal concentrations found in the parrotfish in the Canary
Islands show an overall increase during the warm season that may be ascribed to a network
of interconnected factors, underscoring the intricate interplay of multiple factors shaping
the availability of the analyzed elements, which is not addressable with the information
obtained by the present research [50–52]. Firstly, the rise in temperatures during the
warm season may exert an influence on the presence of metals in the aquatic environment.
Elevated water temperatures typically enhance the solubility and mobility of metals in
the water, potentially resulting in an increased uptake by marine organisms, including
S. cretense. Moreover, an increase in biological activity is usually observed in marine
ecosystems during the warm season [53–56]. This surge could encompass increased food
consumption and metabolic processes in fish, which could lead to a greater accumulation
of metals by consuming prey that could contain metals in their tissues or by ingesting
particles suspended in water. In addition, seasonal fluctuations in weather conditions and
water quality can also impact the metal concentrations in the available food for S. cretense.
Changes in precipitation patterns, runoff from rainwater, erosion processes, etc., can affect
the amount of elements transported into bodies of water and, eventually, the marine food
chain [57–59].

The fluctuations in metal concentrations within the S. cretense species across the
Canary Islands (i.e., Lanzarote, Gran Canaria, and El Hierro) are ascribed to an intricate
interplay of environmental and anthropogenic factors. In the case of Gran Canaria, which is
characterized by a high population density and bustling tourism sector, more pronounced
human influence would be expected compared to the other islands. This intense human
activity significantly contributes to the variability in metal concentrations [41,60–63]. The
tourism sector is leading to an expansion of coastal infrastructure and increased maritime
traffic, frequently resulting in an increase in the metallic pollutants released into the marine
environment. Furthermore, the population density and industrial activities in Gran Canaria
probably exacerbate terrestrial pollution sources, consequently impacting coastal waters
and marine ecosystems. Nevertheless, variations in the geology and physical attributes
of the islands also play a pivotal role in shaping the differences in metal concentrations
found in marine organisms [28,64–67]. On the one hand, the geological composition of
each island influences the marine substrate and, in turn, the metal availability in the
aquatic environment. On the other hand, geologic processes, such as erosion and leaching,
may liberate metals into the water, affecting marine organisms [68–71]. Additionally, the
patterns of marine currents and sediment transport contribute to the dispersal of metals
along the coastline and among the islands [22,72].

Finally, the metal concentration differences observed among S. cretense in Lanzarote,
Gran Canaria, and El Hierro occur because of a multifaceted interplay between natural
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variables and human activities. This intricacy underscores the significance of compre-
hending the consequences of pollution in marine ecosystems in this particular and unique
region. In order to provide scientific advice for the conservation and management of
marine ecosystems within the Canary archipelago, further scientific research, surveillance,
and environmental monitoring are indispensable for a comprehensive assessment of this
variability [73–76].

The use of the fish species S. cretense as a bioindicator of heavy metal pollution in the
Canary archipelago holds significant scientific and environmental relevance. S. cretense,
commonly known as parrotfish or vieja, has emerged as a crucial biological indicator to
assess the presence and impact of heavy metals in the marine ecosystems of the Canary
Islands. These fish, due to their trophic position and feeding habits, act as accumulators of
contaminants, reflecting the environmental quality of their habitats. Heavy metals such as
mercury, lead, cadmium, and copper, among others, pose significant concerns due to their
persistence and toxicity in aquatic environments [10,30,77,78]. Analyzing concentrations of
heavy metals in S. cretense provides valuable insights into pollution and its potential impacts
on the marine ecosystems of the Canary Islands. Given its widespread distribution across
different marine habitats of the islands, this species offers the opportunity to study the
spatial and temporal variability in heavy metal contamination in the region [10,79,80]. The
process of bioaccumulation of heavy metals in S. cretense is fundamental for understanding
pollution dynamics in the marine food chain. These fish can accumulate heavy metals in
their tissues over time through the ingestion of contaminated food and direct exposure to
polluted water. This progressive accumulation of heavy metals in the tissues of S. cretense
allows for the assessment of chronic exposure of marine organisms to pollution and,
therefore, the estimation of potential impacts on the health of the biological community and
potentially human health [81–84]. The selection of S. cretense as a bioindicator is based on its
ability to reflect the variability in heavy metal levels within different marine environments
of the Canary Islands. Comparing concentrations of heavy metals in this species among
different locations and over time provides valuable information on pollution sources and
patterns in the region.

The present study aims to analyze the concentrations of lead and cadmium in S. cretense
fish, in order to assess food safety and compliance with the limits established by current
regulations. The results obtained reveal that the concentrations of lead and cadmium in
S. cretense samples are below the maximum values allowed according to the established
regulations. These findings indicate that the consumption of this specific fish within our
study area does not pose a significant risk in terms of exposure to these heavy metals,
thus providing a solid scientific basis to support its food safety and promote responsible
consumption within established regulatory parameters [85–88].

5. Conclusions

The study of metal concentrations in the parrotfish S. cretense in the Canary Islands
highlights a complex relationship between natural ecological dynamics and anthropogenic
influences in the marine coastal environment. The findings reveal a notable increase in
metal concentrations during the warm season, a trend that appears to be influenced by
various interconnected factors. Firstly, the rise in temperatures during the warm season
plays a role in the presence of metals in the aquatic environment. Elevated temperatures
enhance metal solubility and mobility in water, potentially leading to an increased uptake
by marine organisms like S. cretense. Moreover, heightened biological activity in marine
ecosystems during this period could result in greater metal accumulation through increased
food consumption and metabolic processes in fish.

Seasonal fluctuations in weather conditions, water quality, and precipitation patterns
also impact the availability of elements in the marine food chain. Changes in runoff
from rainwater, erosion processes, and other environmental factors affect the amount
of elements transported into bodies of water, influencing metal concentrations in the
marine environment.
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The variations in metal concentrations among the Canary Islands—Lanzarote, Gran
Canaria, and El Hierro—stem from a combination of environmental and anthropogenic
factors. Gran Canaria, with its high population density and bustling tourism sector, exhibits
more pronounced human influence, significantly contributing to the variability in metal
concentrations. The expansion of coastal infrastructure and increased maritime traffic
associated with tourism often results in a higher release of metallic pollutants into marine
environments. Moreover, population density and industrial activities in Gran Canaria
contribute to terrestrial pollution sources affecting coastal waters.

However, the geological and physical attributes of the islands also play a pivotal role
in the metal concentrations found in marine organisms. Geological composition influences
marine substrate and metal availability, while geologic processes like erosion and leaching
can release metals into the water. Marine currents and sediment transport patterns further
disperse metals along the coastline and among the islands.

The observed differences in metal concentrations among Lanzarote, Gran Canaria,
and El Hierro reflect the complex interplay between natural variables and human activities.
Understanding the consequences of pollution in marine ecosystems in this unique region is
crucial. Comprehensive assessment through further scientific research, surveillance, and
environmental monitoring is essential for providing scientific guidance for the conservation
and management of marine ecosystems within the Canary archipelago.

The use of S. cretense as a bioindicator of heavy metal pollution in the Canary archipelago
is essential for the evaluation and understanding of the environmental quality of marine
ecosystems. This scientific approach offers key perspectives for the environmental monitor-
ing and effective management of ocean health in this unique and biodiverse region.

The monitoring of this species should continue in the same locations and be increased
to one or two more islands. We will also proceed to analyze samples from Morocco and the
Mediterranean, Spain, and Greece in future studies.
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