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Abstract: Diabetic foot ulcers represent the most frequently recognized and highest risk factor among
patients affected by diabetes mellitus. The associated recurrent rate is high, and amputation of the
foot or lower limb is often required due to infection. Analysis of infrared thermograms covering the
entire plantar aspect of both feet is considered an emerging area of research focused on identifying at
an early stage the underlying conditions that sustain skin and tissue damage prior to the onset of
superficial wounds. The identification of foot disorders at an early stage using thermography requires
establishing a subset of relevant features to reduce decision variability and data misinterpretation
and provide a better overall cost–performance for classification. The lack of standardization among
thermograms as well as the unbalanced datasets towards diabetic cases hinder the establishment of
this suitable subset of features. To date, most studies published are mainly based on the exploitation
of the publicly available INAOE dataset, which is composed of thermogram images of healthy and
diabetic subjects. However, a recently released dataset, STANDUP, provided data for extending the
current state of the art. In this work, an extended and more generalized dataset was employed. A
comparison was performed between the more relevant and robust features, previously extracted
from the INAOE dataset, with the features extracted from the extended dataset. These features
were obtained through state-of-the-art methodologies, including two classical approaches, lasso
and random forest, and two variational deep learning-based methods. The extracted features were
used as an input to a support vector machine classifier to distinguish between diabetic and healthy
subjects. The performance metrics employed confirmed the effectiveness of both the methodology
and the state-of-the-art features subsequently extracted. Most importantly, their performance was
also demonstrated when considering the generalization achieved through the integration of input
datasets. Notably, features associated with the MCA and LPA angiosomes seemed the most relevant.

Keywords: thermography; infrared; deep learning; feature extraction; diabetic foot

1. Introduction

Diabetic foot ulcers (DFUs) represent the most frequently recognized and highest risk
factor associated with diabetes mellitus [1,2]. An infection of the wound may require the
amputation of the foot or lower limb. The worldwide estimation is a limb amputation
every 20 s [3]. In addition, the recurrence rate remains at about 60% after three years [4].
DFU occurrence can be avoided, reduced, or substantially delayed by early detection,
assessment, diagnosis, and tailored treatment [1,5]. The identification of the underlying
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condition that sustains skin and tissue damage at an early stage, prior to the onset of
superficial wounds, is an emerging area of research [6–9].

Machine learning (ML) and deep learning (DL) approaches based on infrared ther-
mography have been established as a complementary tool for the early identification of
superficial tissue damage. Thermography enables real-time visualization of plantar temper-
ature distribution passively, that is, the surface to be measured remains intact [2]. However,
the heat pattern of the plantar aspect of the feet and its association with diabetic foot
pathologies are subtle and often non-linear [10]. For these reasons, ML and DL models are
selected as they offer versatile and highly accurate outputs, lessening the time burden of
demanding tasks, the associated costs, and human bias such as subjective interpretations
or inherent limitations of human visual perception. Despite the advantages provided, the
use of these models as a tool to support clinical decision support systems in real-world
scenarios has not been achieved [11]. More studies are required to consider the integration
of these models in the healthcare setting [12]. Particularly, in the case of DFUs, the use of ML
and DL models is hindered by the lack of labeled data, which causes overfitting and poor
generalization on new data if the training dataset is not large enough [13]. There are tech-
niques to mitigate this problem, such as transfer learning [14] or data augmentation [15,16].
Furthermore, these problems are magnified by the current trend towards deeper neural net-
works [17–19], where the problem of vanishing gradients [20] is very widespread; however,
skip connections have been proven to work out this limitation and provide other benefits
during the training process [21]. Additionally, the lack of standardization regarding feature
extraction may also have an impact.

Ideally, ML and DL models should classify subjects at risk of developing an ulcer from
a single thermogram containing the plantar aspect of both feet and, if possible, quantify
the severity of the lesion. In the context of healthcare, comprehensive data interpretation
is crucial. However, in the case of identifying foot disorders using thermography, many
features have been proposed in the state of the art, but it is challenging to determine which
ones are the most representative for DFUs. The presence of a high number of features
can hinder data interpretation. Misinterpretation of the data may lead to inconsistencies
among experts when diagnosing a disease, resulting in increased variability in clinical
decision-making. Therefore, the identification of foot disorders using thermography re-
quires establishing a subset of relevant features to reduce decision variability and data
misinterpretation and provide a better overall cost–performance for classification [22]. Us-
ing a subset of features with relevant information, classifiers with better cost–performance
ratios are achieved, as reducing the number of features can lessen both computational and
memory resources [23]. The lack of standardization among thermograms as well as the
unbalanced datasets towards diabetic cases hinder the establishment of this suitable subset
of features.

ML and DL models have been explored to determine relevant features for early
detection of DFUs [9,24–27]. However, except for a few cases, these studies were derived
mainly from the only publicly available dataset, the INAOE dataset (Instituto Nacional
de Astrofísica, Óptica y Electrónica) [26], which is composed of thermograms containing
the plantar aspect of both feet. Recently, a similar dataset was released, STANDUP [28],
which provides means for extending the current state of the art by simply increasing the
number of samples available to train the ML and DL models. Furthermore, the additional
dataset enables the determination of the generalizability of the set of state-of-the-art features
previously extracted by classical and DL approaches [27].

In this work, the same methodology previously described was executed in order to
extract a state-of-the-art set of features from infrared thermograms [27]. Four input datasets
were considered by merging different datasets for feature extraction. A subset of features
associated with each input dataset was extracted using classical- and DL-based approaches.
The subset of features common to all of the approaches employed were used as an input
for both a standard and an optimized support vector machine (SVM) [29] classifier. The
SVM classifier was used as a reference to assess and compare the performance of each set of



Biomedicines 2023, 11, 3209 3 of 16

extracted features from the STANDUP and extended databases. In addition, a comparison
was performed between the more relevant and robust features extracted in this work and
those extracted using solely the INAOE dataset [27] as well as those proposed in previous
studies [9].

2. Materials and Methods
2.1. Datasets Description

The datasets employed throughout this work are composed of infrared (IR) images
acquired with different sensors, ambient conditions, and sites. RGB images of the same
scene are also available for all datasets. These images are usually used to aid in the
segmentation of the feet sole from the background [30]. In addition, the corresponding
acquisition campaigns were carried out at separate time points over a different population
sample. Further details regarding the infrared sensors and the protocol employed for
image acquisition can be found elsewhere for the INAOE [26], STANDUP [28], and local
datasets [30,31].

2.1.1. STANDUP Dataset

The STANDUP dataset, released in June 2023, was generated for DFU detection based
on infrared thermography [28]. The dataset is composed of samples from 227 subjects,
145 diabetic and 82 healthy ones. For each subject, images were acquired at T0 after 10 min
in a resting position to reach a state of thermodynamic equilibrium and at T10 after a
cold stress test. The diabetic group was divided into three subgroups: R0 corresponded
to non-neuropathic and non-ischemic individuals; R1 included neuropathic individuals
without ischemia; and R2 was composed of individuals with ischemia. No distinction was
made regarding the grading of the pathology in the present work; that is, diabetic and
healthy subjects were considered for classification. Furthermore, the analysis is primarily
focused on images acquired at T0, facilitating meaningful comparisons with other existing
datasets (such as INAOE and local). That is, thermograms corresponding to subjects who
underwent a cold stress test were not considered. Thus, the STANDUP dataset was reduced
to 145 diabetic and 38 healthy subjects. Notice that, similarly to that observed for the
INAOE dataset, this dataset is strongly unbalanced toward diabetic cases.

2.1.2. INAOE Dataset

The INAOE thermogram dataset, released in December 2019, is composed of samples
from 167 volunteers, 122 diabetic and 45 non-diabetic subjects [26]. Notice that the INAOE
dataset is unbalanced toward diabetic cases. This dataset was originally intended to study
the distribution of temperature in the plantar region among diabetic and non-diabetic
subjects. However, these thermograms have been widely used for DFU detection at an
early stage [9,27,32,33].

2.1.3. Local Dataset

The local dataset was acquired in 2021 [30,31] and is being publicly released in asso-
ciation with the present work. This dataset contains samples from 22 healthy volunteers
acquired at four different time points, although only the images corresponding to the
15 min resting position prior to acquisition were employed. This dataset was merged into
the INAOE dataset, providing an extended dataset aiming to compensate the imbalance
toward diabetic cases exhibited by the INAOE dataset.

2.2. Feature Extraction

The features were extracted from the INAOE and local datasets as previously de-
scribed [27] and following the workflow initially proposed for the INAOE dataset [25,26].
However, for the STANDUP dataset, some preprocessing was required. First, as mentioned
above, only images at T0 were employed. The thermograms were provided as grayscale
images without temperature values, which prevented the extraction of certain features.
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For this reason, the color bar within each infrared image was used to define the highest
and lowest temperature. Thus, the grayscale values were converted to temperature values.
The infrared images were then segmented using the Segment Anything Model (SAM) [34].
In order to extract the angiosomes, a composite unit of tissues supplied by an artery [25,26],
the segmented images were split to process each foot separately. By considering these
angiosomes, the foot was divided into four regions: medial plantar artery (MPA), lateral
plantar artery (LPA), medial calcaneal artery (MCA), and lateral calcaneal artery (LCA).
As previously set, a temperature threshold of 18 ◦C was employed as the lower limit. This
caused the average values for certain angiosomes to be zero. Therefore, only subjects for
which all angiosomes were not null in both feet were further considered. Overall, the
dataset was reduced to 88 diabetic and 34 healthy subjects.

The nomenclature employed to name the extracted features mentioned above consisted
of using a letter to specify the foot, ‘L’ for left and ‘R’ for right, followed by the name of
the corresponding angiosome. For the features extracted using the entire foot, this second
descriptor was discarded. Then, the variable was set using lowercase letters such as mean,
std, max, min, skew, or kurtosis. Capital letters were employed for the thermal change index
(TCI), hot spot estimator (HSE), estimated temperature (ET), and estimated temperature
difference (ETD) as well as for normalized temperature ranges (NTRs) followed by the
subsequent class.

Four sets of features were extracted in this work depending on the input dataset.
The first set, henceforth named DFU, was composed of the features extracted using the
INAOE and local datasets. The second contained features solely for the STANDUP dataset,
defined as STANDUP. In addition, the STANDUP dataset was merged with the local
dataset. The set of associated features was named as STANDUP2. The final set of features,
defined as ALL, was extracted by merging all datasets: INAOE, local, and STANDUP. The
distribution between diabetic and healthy subjects for each dataset were 88/34, 88/56,
210/101 for the STANDUP, STANDUP2, and ALL datasets, respectively. As previously
mentioned [27], the input datasets, composed by the features extracted from thermograms,
were modified to compensate for the imbalance between classes using SMOTE (Synthetic
Minority Over-sampling TEchnique), which generates new samples by linear interpolation
between samples from the minority class. That is, prior to the execution of the workflow,
the input datasets are balanced by generating samples composed of features for the healthy
subjects. Therefore, 88 sets of features of thermograms for each class were available for the
STANDUP and STANDUP2 datasets, and 210 were available for the ALL dataset.

2.2.1. Feature Selection

The number of features or input variables per dataset was 188 and, as previously
reported, a detailed investigation was proposed to detect the most relevant features [27].
The approaches employed included some classical methods, random forest and lasso, as
well as two innovative ones based on DL, named concrete and variational dropout.

For the DL approaches, two methods for feature selection have been explored based
on the variational inference in the input layer. The first, based on the concrete dropout
approach [35], approximates a feature selection mechanism with a L0 regularization factor
using a Bernoulli distribution [36]. The second approach, called variational dropout,
incorporates Gaussian noise with variational parameters that are learned during training.
This method has been demonstrated to produce sparse representations [37] and, for this
reason, it has been proposed as a feature selection technique [27].

Initially, the original input set was optimized by removing highly correlated variables
using the Pearson correlation coefficient [38]. Those features with a correlation of r > 0.95
were considered highly correlated and, therefore, a reduction in the number of features
was performed. The number of features or input variables was reduced from 188 to 141 for
the DFU and STANDUP2 datasets, while for the STANDUP and ALL datasets, the final
number of features was 139 and 144, respectively. Subsequently, feature ranking based
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on logistic regression and an AUC-ROC (area under the curve of the receiver operating
characteristic) analysis [39] were proposed to select the most informative features.

Five-fold cross-validation was employed and, for each iteration, the dataset was split
into training and testing using a 80:20 ratio, respectively. Therefore, the relevance of the
features was established as the average value resulting from the five iterations. Furthermore,
as previously indicated, a batch size of 32 samples, 500 training epochs, and an ADAM
optimizer [40] were employed during the training process of the DL-based models. The
parameters β1 and β2, which control the exponential decay rates for the moment estimation,
were set to 0.9 and 0.999, respectively. The learning rate (lr) was set to 10−2 for the concrete
variational feature selector and 10−3 for the variational dropout [27].

2.2.2. Classification

The objective is to identify a set of relevant features to classify the thermograms into
diabetic and non-diabetic. An SVM [29] classifier was used with each dataset as an input to
quantify the performance of the extracted features, their rank, and selected combination.
The different steps of the entire workflow are illustrated in Figure 1.

Two settings were considered. In the first case, the SVM classifier was not optimized,
and standard hyperparameters were chosen to offer a fair comparison between the pro-
posed approaches to rank the features. In the second case, the SVM classifier was optimized
using the randomized search [41] to obtain the best parameters for each set of features.
The main hyperparameters associated with the SVM classifier were γ and C. A Gaussian
kernel, also known as the radial basis function (RBF) kernel, has a hyperparameter, γ,
which controls the spread of the Gaussian center. The hyperparameter C, used to direct the
penalty L2, controls the trade-off between decision boundary and misclassification.

Figure 1. Flowchart representing the experimental procedure.

3. Results
3.1. Selected Features

Following the workflow described [27], features were ranked for each approach: lasso,
random forest, concrete, and variational dropout. The 10 first features extracted for each
approach were considered the most relevant and were fed to the optimized and non-
optimized SVM classifier. The non-optimized SVM hyperparameters were established as
0.1 and 1 for γ and C, respectively, using an RBF kernel. For informative purposes, the first
10 features extracted from each approach using the standard SVM classifier are listed in
Appendix A.

Notice that three sets of features were employed as inputs: STANDUP, STANDUP2,
and ALL. Therefore, the respective SVM hyperparameters varied according to the input
dataset. In all cases, the best model was found using an RBF kernel. The values of the
hyperparameter γ were 0.004, 0.002, and 0.007, whereas C values were 26.827, 51.795, and
6.551 for the STANDUP, STANDUP2, and ALL datasets, respectively.
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The features that consistently appeared in all implemented approaches are listed in
Table 1, organized by their respective ranks and datasets. The ranks of these features
changed according to the approach employed; thus, the lowest rank among the different
approaches was assigned as its final rank. Notice that only features found up to a rank of
lower than 50 were considered. Additionally, the 10 best-ranked features selected by the
different feature selection methods for each dataset can be found in Appendix A.

Table 1. Most relevant features that coincide in all approaches considered, listed according to rank
and input dataset. Features that coincide among all datasets were highlighted.

Rank
Features in

Coincidence
(DFU) [27]

Features in
Coincidence
(STANDUP)

Features in
Coincidence

(STANDUP2)

Features in
Coincidence

(ALL)

Rank < 10 R_LPA_min R_MCA_std R_MCA_std R_MCA_std
R_MPA_kurtosis

Rank < 20 R_MCA_std R_MCA_kurtosis R_MCA_kurtosis L_LPA_min
L_kurtosis L_MCA_min L_MPA_std
R_kurtosis L_LPA_min R_MCA_kurtosis

Rank < 30 Foot_ETD L_min L_LCA_std R_LCA_kurtosis
LPA_ETD R_MPA_skew L_MPA_kurtosis

L_MCA_std R_LCA_kurtosis
L_kurtosis

Rank < 50 L_LPA_std L_LCA_std R_LCA_kurtosis L_MCA_std
R_kurtosis L_MPA_kurtosis R_MPA_std R_MCA_skew
R_LCA_std R_LCA_skew R_max L_MPA_HSE

R_LCA_kurtosis L_MPA_min R_LCA_min R_LPA_std
R_LPA_std L_MCA_kurtosis L_LCA_min R_LPA_skew

R_MPA_HSE R_LPA_HSE L_MPA_skew R_MPA_HSE
LCA_ETD LPA_ETD LPA_ETD

R_MCA_NRT_C4
L_min

L_MCA_skew

As can be observed, the number of features in coincidence varied depending on the
input dataset. R_MCA_std and R_LCA_kurtosis appeared as relevant features indepen-
dent of the approach and dataset (highlighted in Table 1). R_MCA_kurtosis and LPA_ETD
appeared in coincidence for three datasets. In addition, nine features were in coinci-
dence for two datasets: L_kurtosis, R_kurtosis, L_MPA_kurtosis, L_MCA_std, R_LPA_std,
R_MPA_HSE, L_min, L_LCA_std, and L_LPA_min. In summary, 13 features appeared as
relevant in at least 2 different datasets, with 3 of them corresponding to the entire foot and
the rest being distributed within the angiosomes. Three features were associated with the
MCA and LPA angiosomes, respectively, where two features were linked to the MPA and
LCA angiosomes.

3.2. Classification Using a Standard SVM

To prevent bias in the conclusion, a standard hyperparameter configuration was
employed for the SVM classifier. This approach assumed that the results were not inflated
due to an overfitting hyperparameter setting tailored to the selected features.

The top 10 ranked features from each approach and dataset (see Appendix A) were
used to train the standard SVM classifier, that is, the SVM with a fixed hyperparameter
configuration. Furthermore, the features that consistently ranked in the top 10 across all
approaches, as depicted in Table 1, were also used as input features.

In order to facilitate comparison with previous studies, two sets of features were con-
sidered. The first set was composed of the following features [27]: R_LPA_min, R_MCA_std,
Foot_ETD, LPA_ETD, L_MCA_std, L_kurtosis, L_LPA_std, R_kurtosis, R_LCA_std,
and R_LCA_kurtosis, which corresponded to the top 10 features presented in Table 1
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(first column). The second set was composed of the following ten ranked features [9]: TCI,
NTR_C4, NTR_C3, MPA_mean, LPA_mean, LPA_ET, LCA_mean, highest temperature,
NTR_C2, and NTR_C1.

The results for the standard SVM classifier for all approaches employed are listed in
Table 2–4 for the STANDUP, STANDUP2, and ALL datasets, respectively.

Table 2. Performance metrics of the approaches considered for the STANDUP dataset and the
standard SVM classifier according to the selected input features shown in Table 1. The highest value
for each performance metric is highlighted.

Input
(STANDUP) Approach Accuracy Precision Recall F1-Score

10 first features

Lasso 0.9146 ± 0.0259 0.9608 ± 0.0330 0.8604 ± 0.0524 0.9070 ± 0.0357
Random Forest 0.8811 ± 0.0785 0.8998 ± 0.0771 0.8670 ± 0.0914 0.8815 ± 0.0777

Concrete Dropout 0.8518 ± 0.0559 0.8386 ± 0.0716 0.8697 ± 0.0877 0.8509 ± 0.0608
Variational Dropout 0.9091 ± 0.0215 0.9889 ± 0.0222 0.8298 ± 0.0479 0.9011 ± 0.0231

10 first features in
coincidence

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.8579 ± 0.0478 0.8265 ± 0.0464 0.9121 ± 0.0442 0.8668 ± 0.0419

Selected features
from [27]

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.8637 ± 0.0212 0.8480 ± 0.0193 0.8883 ± 0.0291 0.8672 ± 0.0138

Selected features
from [9]

Pearson, Chi-square,
RFE, Logistics,

Random Forest, and
LightGBM

0.7337 ± 0.0937 0.7963 ± 0.1308 0.6552 ± 0.1286 0.7076 ± 0.1040

Table 3. Performance metrics of the approaches considered for the STANDUP2 dataset and the
standard SVM classifier according to the selected input features shown in Table 1. The highest value
for each performance metric is highlighted.

Input
(STANDUP2) Approach Accuracy Precision Recall F1-Score

10 first features

Lasso 0.8186 ± 0.0808 0.8302 ± 0.0634 0.8125 ± 0.1309 0.8163 ± 0.0840
Random Forest 0.8303 ± 0.0756 0.8150 ± 0.0886 0.8653 ± 0.0743 0.8363 ± 0.0662

Concrete Dropout 0.8300 ± 0.0706 0.7980 ± 0.0418 0.8929 ± 0.0932 0.8414 ± 0.0611
Variational Dropout 0.8243 ± 0.0534 0.8062 ± 0.0494 0.8672 ± 0.0676 0.8331 ± 0.0405

10 first features in
coincidence

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.7794 ± 0.0849 0.7996 ± 0.1186 0.7876 ± 0.1008 0.7834 ± 0.0620

Selected features
from [27]

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.7792 ± 0.0877 0.8256 ± 0.1233 0.7552 ± 0.1192 0.7762 ± 0.0727

Selected features
from [9]

Pearson, Chi-square,
RFE, Logistics,

Random Forest, and
LightGBM

0.7164 ± 0.0989 0.7216 ± 0.1157 0.7028 ± 0.1349 0.7064 ± 0.1161
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Table 4. Performance metrics of the approaches considered for the ALL dataset and the standard
SVM classifier according to the selected input features shown in Table 1. The highest value for each
performance metric is highlighted.

Input (ALL) Approach Accuracy Precision Recall F1-Score

10 first features

Lasso 0.8238 ± 0.0332 0.8629 ± 0.0465 0.7740 ± 0.0479 0.8144 ± 0.0315
Random Forest 0.8167 ± 0.0342 0.8931 ± 0.0167 0.7219 ± 0.0520 0.7973 ± 0.0331

Concrete Dropout 0.8333 ± 0.0337 0.8826 ± 0.0432 0.7737 ± 0.0785 0.8211 ± 0.0389
Variational Dropout 0.7976 ± 0.0328 0.7906 ± 0.0582 0.8161 ± 0.0367 0.8012 ± 0.0288

10 first features in
coincidence

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.8191 ± 0.0332 0.8873 ± 0.0608 0.7332 ± 0.0726 0.7997 ± 0.0458

Selected features
from [27]

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.8619 ± 0.0278 0.9250 ± 0.0330 0.7931 ± 0.0647 0.8513 ± 0.0279

Selected features
from [9]

Pearson, Chi-square,
RFE, Logistics,

Random Forest, and
LightGBM

0.7524 ± 0.0442 0.8220 ± 0.0665 0.6554 ± 0.0454 0.7268 ± 0.0355

The performance metrics were significantly reduced when the input dataset pre-
sented higher heterogeneity, as occurred when merging datasets. This is the case for the
STANDUP2 and ALL datasets. Regarding the best approach, for the STANDUP dataset, the
highest accuracy and F1-score were observed for the lasso approach, although very close
values were found for the variational dropout approach. The highest precision was noticed
for the variational dropout approach, whereas the best recall was shown for the workflow
described in this work to extract state-of-the-art features. For the STANDUP2 dataset, the
highest accuracy and precision were found for the random forest and lasso approaches,
respectively. Recall and F1-score were best for the concrete dropout approach. Finally, for
the ALL dataset, the highest metrics were observed for state-of-the-art features extracted
from a previous work [27].

3.3. Classification Using an Optimized SVM

In this section, the classification metrics results were depicted by using the well-fitted
hyperparameters setting per dataset. Similarly to the previous section, the results for the
optimized SVM using all approaches are shown in Table 5–7 for the STANDUP, STANDUP2,
and ALL datasets, respectively.

A consistent trend was observed with the optimized SVM, mirroring the findings for
the standard SVM. When the dataset’s heterogeneity increased, the performance metrics
decreased. In terms of the best-performing approach, for the STANDUP dataset, the highest
accuracy, precision, and F1-score were observed in the lasso approach. However, the best
recall was found for the state-of-the-art features extracted from a previous work [27]. For
the STANDUP2 dataset, the highest accuracy, recall, and F1-score were found in the random
forest approach, whereas the lasso approach provided the best precision. For the ALL
dataset, the best performance metrics were observed in the lasso approach, except for the
recall, which was best in the variational dropout approach.
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Table 5. Performance metrics of the approaches considered for the STANDUP dataset and the
optimized SVM classifier according to the selected input features shown in Table 1. The highest value
for each performance metric is highlighted.

Input
(STANDUP) Approach Accuracy Precision Recall F1-Score

10 first features

Lasso 0.8921 ± 0.0112 0.9615 ± 0.0317 0.8193 ± 0.0370 0.8834 ± 0.0099
Random Forest 0.8071 ± 0.0474 0.8009 ± 0.0363 0.8233 ± 0.0799 0.8097 ± 0.0465

Concrete Dropout 0.8348 ± 0.0429 0.8661 ± 0.0622 0.7927 ± 0.0630 0.8256 ± 0.0476
Variational Dropout 0.8808 ± 0.0328 0.9599 ± 0.0329 0.7982 ± 0.0467 0.8706 ± 0.0302

10 first features in
coincidence

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.8238 ± 0.0217 0.8370 ± 0.0319 0.8088 ± 0.0501 0.8208 ± 0.0177

Selected features
from [27]

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.8127 ± 0.0375 0.8060 ± 0.0368 0.8304 ± 0.0297 0.8174 ± 0.0259

Selected features
from [9]

Pearson, Chi-square,
RFE, Logistics,

Random Forest, and
LightGBM

0.7219 ± 0.0693 0.7799 ± 0.0734 0.6460 ± 0.1357 0.6952 ± 0.0766

Table 6. Performance metrics of the approaches considered for the STANDUP2 dataset and the
optimized SVM classifier according to the selected input features shown in Table 1. The highest value
for each performance metric is highlighted.

Input
(STANDUP2) Approach Accuracy Precision Recall F1-Score

10 first features

Lasso 0.7956 ± 0.0414 0.8244 ± 0.0790 0.7725 ± 0.0795 0.7909 ± 0.0342
Random Forest 0.8303 ± 0.0876 0.7996 ± 0.0915 0.8892 ± 0.0940 0.8396 ± 0.0803

Concrete Dropout 0.7959 ± 0.0340 0.7983 ± 0.0668 0.8087 ± 0.0494 0.7995 ± 0.0194
Variational Dropout 0.8019 ± 0.0775 0.7958 ± 0.0645 0.8245 ± 0.1035 0.8071 ± 0.0695

10 first features in
coincidence

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.8019 ± 0.0753 0.8012 ± 0.0842 0.8232 ± 0.0950 0.8074 ± 0.0620

Selected features
from [27]

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.7679 ± 0.0852 0.8152 ± 0.1170 0.7094 ± 0.0782 0.7549 ± 0.0795

Selected features
from [9]

Pearson, Chi-square,
RFE, Logistics,

Random Forest, and
LightGBM

0.7108 ± 0.0990 0.7381 ± 0.1423 0.6836 ± 0.0888 0.7030 ± 0.0967

Table 7. Performance metrics of the approaches considered for the ALL dataset and the optimized
SVM classifier according to the selected input features shown in Table 1. The highest value for each
performance metric is highlighted.

Input (ALL) Approach Accuracy Precision Recall F1-Score

10 first features

Lasso 0.8143 ± 0.0307 0.8937 ± 0.0592 0.7259 ± 0.0773 0.7956 ± 0.0291
Random Forest 0.7762 ± 0.0485 0.8095 ± 0.0825 0.7374 ± 0.0562 0.7681 ± 0.0409

Concrete Dropout 0.7810 ± 0.0267 0.8582 ± 0.0648 0.6852 ± 0.0773 0.7558 ± 0.0333
Variational Dropout 0.7762 ± 0.0243 0.7891 ± 0.0595 0.7586 ± 0.0247 0.7718 ± 0.0245

10 first features in
coincidence

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.7881 ± 0.0314 0.8447 ± 0.0693 0.7118 ± 0.0404 0.7702 ± 0.0324
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Table 7. Cont.

Input (ALL) Approach Accuracy Precision Recall F1-Score

Selected features
from [27]

Lasso, Random
Forest, Concrete, and
Variational Dropout

0.7857 ± 0.0319 0.8736 ± 0.0631 0.6796 ± 0.0802 0.7582 ± 0.0401

Selected features
from [9]

Pearson, Chi-square,
RFE, Logistics,

Random Forest, and
LightGBM

0.7333 ± 0.0561 0.8044 ± 0.0705 0.6338 ± 0.0764 0.7039 ± 0.0515

3.4. Effects of Class Balance by SMOTE

As mentioned above, SMOTE was used to compensate for the imbalance between
the classes of the respective datasets. However, the effects of this procedure were not
quantified. Therefore, the workflow illustrated in Figure 1 was additionally executed
without the oversampling step to compare the modifications observed on the performance
metrics of the respective approaches and datasets. The results are shown in Figure 2 and 3
when applying the standard and optimized SVM classifier, respectively.

Figure 2. Performance comparison of the standard SVM classifier before (above) and after SMOTE
(below). Selected features (1) [27] and Selected features (2) [9] refer to a subset of features extracted
in previous publications.

In the case of applying the SVM classifier with the standard hyperparameters, a slight
improvement in classification performance was observed with the STANDUP dataset with
oversampling. However, it decreased moderately when oversampling the STANDUP2
dataset. Moreover, while considering the ALL dataset, the more heterogeneous one, the
performance remained similar, as shown in Figure 2. In general, the variability of the
different approaches increases when using the non-oversampled ALL dataset, whereas the
opposite trend is observed for the other datasets.
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Figure 3. Performance comparison of the optimized SVM classifier before (above) and after SMOTE
(below). Selected features (1) [27] and Selected features (2) [9] refer to a subset of features extracted
in previous publications.

On the other hand, the accuracy displayed when applying the optimized SVM de-
creased for the STANDUP dataset, as can be observed from Figure 3. For the STANDUP2
dataset, the performance accuracy was maintained. Finally, for the ALL dataset, the accu-
racy increased when using the oversampling. Additionally, the variability decreased for the
oversampled STANDUP and ALL datasets, whereas it increased for the STANDUP2 dataset.
Furthermore, a steeper decrement in performance was noticed for the non-oversampled
dataset, particularly for the selected features.

It is worth noting that the features previously proposed [9] tend to have the high-
est variability among the different datasets. Moreover, the STANDUP dataset using the
lasso approach for feature selection has the highest accuracy after applying SMOTE (see
Figure 2 and 3). This may be a consequence of the linear approach used for class balance
by the SMOTE method. Nevertheless, the features selected by the variational dropout
approach provided close performance metrics. However, the features selected by the
variational dropout approach were consistent regarding the variability among the differ-
ent settings.

4. Discussion

Several approaches were considered to extract relevant features used for DFU detection
based on infrared thermograms following the same methodology previously described [27].
In this case, an extended and multicenter dataset was created by merging the INAOE,
STANDUP, and local database, which provided a generalization factor to the classification
task at hand. This was conducted to determine whether a thermogram corresponded to a
healthy or diabetic person.

To the best of the authors’ knowledge, this is the largest thermogram dataset explored,
especially regarding DFU detection at an early stage. As mentioned above, the INAOE
dataset has been the only thermogram database publicly available, and the recently released
STANDUP dataset provides the opportunity to test the methodology previously established.
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The STANDUP dataset was considered alone as well as merged with the local dataset
aiming to correct the imbalance toward diabetic cases observed. Furthermore, a more
generalized and extended dataset was created by merging all available datasets (ALL).

Classical approaches, such as lasso and random forest, were tested against two DL-
based approaches by applying the dropout techniques, concrete and variational dropout.
The dropout techniques, initially designed to address overfitting in DL models, were
employed not only in the feature selection but also across different layers using a dropout
rate of 0.5. For instance, in the case of concrete dropout, the input layer is defined by
variational parameters establishing a binomial distribution composed of d independent
Bernoulli ‘continuous relaxed’ distributions [27]. This configuration acts as a ‘gate’ to
identify irrelevant features by introducing noise [27]. In an ideal scenario, relevant features
tend to have a dropout rate of close to zero, while irrelevant features tend towards a dropout
rate of one. In essence, the proposed restriction in the model implicitly serves to mitigate
overfitting concerns inherent in DL-based models. Furthermore, it is worth noting that the
chosen models, particularly the random forest and DL-based approaches, are inherently
robust at handling data variability. While preprocessing could mitigate issues related
to feature extraction, the focus of this work was to identify the most relevant features
within the newly released STANDUP and ALL databases and compare them with previous
results [27]. Therefore, extensive hard preprocessing of the thermograms was avoided.

In the context of ML models, where the parameters are denoted as θ, theoretically,
a test could be established to validate the statistical significance of p(X, Y|θ) concerning
p(θ), where X is the dataset and Y the prediction. However, it is crucial to note that ML
models are commonly evaluated using metrics such as the mean squared error (MSE) or
the AUC-ROC. In this work, K-fold cross-validation [42] was employed to validate the
SVM model. The dataset is partitioned into ‘k’ subsets, and the model is trained on ‘k-1’
subsets while being validated on the remaining subset. This process is iterated ‘k’ times,
with each ‘fold’ serving as both a training and test set. The outcome is an estimation of
the mean error value and standard deviation, providing a robust assessment of model
performance. Specifically, a low standard deviation was observed for the standard SVM
classifier with predefined hyperparameter configurations across different experiments to
discard biased conclusions. This finding leads to the conclusion that the model effectively
fits the distribution p(X, Y) and the provided features contain sufficient information about
X for predicting Y. In general, the uncertainty is increased with the class-balanced dataset,
as noticed by the increase in the standard deviation.

The analysis of the subset of features considered relevant and the subsequent classi-
fication task for each approach provided sufficient metric values regarding performance.
For the dataset with maximum heterogeneity (ALL), the best approach varied depending
on whether the classifier was standard or optimized. For the standard SVM, in which a
true comparison can be drawn between the different approaches, the best performance
metrics were observed for the state-of-the-art features previously reported [27]. These
results support the fact that the methodology, and the subset of state-of-the-art features
subsequently derived, provide consistent and reliable descriptors to discriminate between
healthy and diabetic individuals. Despite the heterogeneity of the dataset, the performance
was suitable, although some decreases were observed precisely due to this variability. The
best F1-score reported for the DFU dataset was 0.9027 ± 0.104 [27], whereas the same
metrics was 0.8513 ± 0.0279 for the ALL dataset.

For the optimized SVM, the lasso approach provided the best performance metrics,
except for the recall, which was best in the variational dropout approach. In this case,
the F1-score for the ALL dataset was 0.7956 ± 0.0291. The reason for a decrement in the
performance may be due to oversampling. For the non-oversampled datasets, when using
the optimized SVM, the recall performance increases. This can be due to the fact that some
subjects considered as control may be diabetic. Therefore, when applying SMOTE, features
corresponding to diabetic subjects are propagated and disrupt the control group. This is
particularly noticed for the STANDUP dataset.
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Regarding the set of relevant features, R_MCA_std and R_LCA_kurtosis appeared as
relevant features independent of the approach and dataset. LPA_ETD appeared in coinci-
dence for three datasets:,DFU, STANDUP, and STANDUP2, whereas R_MCA_kurtosis also
appeared in coincidence for three datasets, STANDUP, STANDUP2, and ALL. In addition,
nine features were in coincidence for two datasets. Among all of these features found in co-
incidence, those that already appeared as relevant in our previous work are as follows [27]:
R_MCA_std, LPA_ETD, L_kurtosis, R_kurtosis, L_MCA_std, and R_LPA_std. Thus, these
features, mainly associated with the MCA and LPA angiosomes, as well as the kurtosis for
each foot, consistently appeared as relevant features independent of the input dataset.

A major limitation of the present study is the lack of an associated clinical trial. At
this stage, the main aim was focused on establishing the workflow required for data
analysis. In this work, as a proof of concept, a relevant set of state-of-the-art features
was determined. This provided a tool to successfully discriminate between healthy and
pathological subjects by measuring the temperature within the plantar aspects of both feet.
Furthermore, some insight was gained regarding the importance of the different angiosomes
and their predictive value for classification. However, the presented methodology must be
tested and validated in a standard clinical setting in order to assess the clinical relevance of
the findings. Then, the incorporation of glycemic control parameters and other diabetes-
specific factors must be included as additional features. This allows for the assessment of
whether underlying biochemical processes relate to inflammation or microvascular changes
in diabetic foot disorders.

Further studies would require more balanced datasets to classify thermograms be-
tween two classes, diabetic and healthy. The necessity of additional preprocessing to unify
different datasets must be explored. The lack of improvement noticed in this work when
merging datasets in comparison with our previous work [27] may be a consequence of
avoiding a uniform preprocessing.

Moreover, the STANDUP database provides thermographic images after thermal
stress for healthy and diabetic subjects. This could help to gain some insight regarding
dynamic thermal changes in diabetic foot disorders and whether thermal information could
contribute to early detection. Currently, these data are being preprocessed in order to
apply the methodology presented in this work. Finally, once the patient has been labeled
as diabetic, a new classification task is planned to determine the level of severity within
diabetic thermograms.

5. Conclusions

The identification of foot disorders at an early stage using thermography requires
establishing a subset of relevant features to reduce decision variability and data misinter-
pretation and provide an overall better cost–performance for classification. The lack of
standardization among thermograms as well as the unbalanced datasets towards diabetic
cases hinder the establishment of this suitable subset of features. In this work, an extended
and more generalized dataset has been employed. The suitability of the methodology em-
ployed has been confirmed and, most importantly, the performance of the state-of-the-art
features previously proposed was demonstrated, despite the generalization added by the
merged input datasets. Finally, features associated with the MCA and LPA angiosomes
seemed the most relevant.
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Appendix A

The first 10 features extracted for each employed approach are listed according to the
input dataset.

Table A1. The 10 most relevant features extracted from the STANDUP dataset, listed according to
rank for all approaches considered: lasso, random forest, concrete, and variational dropout.

Rank Lasso Random Forest Concrete Dropout Variational Dropout

1 R_MPA_kurtosis R_std L_min L_LPA_min
2 R_MCA_std R_MCA_std R_MPA_skew R_MCA_std
3 R_max R_MPA_std R_LCA_kurtosis R_MPA_skew
4 R_MPA_skew R_MPA_kurtosis R_MPA_kurtosis R_MCA_kurtosis
5 R_LPA_NRT_C7 L_LCA_std L_LPA_min R_MPA_kurtosis
6 R_MPA_NRT_C4 L_MPA_std R_MCA_kurtosis R_LPA_NRT_C7
7 R_LCA_kurtosis L_std R_MCA_std L_min
8 R_MCA_kurtosis L_kurtosis L_kurtosis R_LPA_NRT_C2
9 R_MCA_NRT_C4 R_kurtosis R_MCA_min R_max
10 L_MPA_skew R_LPA_std R_LPA_NRT_C2 L_skew

Table A2. The 10 most relevant features extracted from the STANDUP2 dataset, listed according to
rank for all approaches considered: lasso, random forest, concrete, and variational dropout.

Rank Lasso Random Forest Concrete Dropout Variational Dropout

1 R_MPA_skew R_MCA_std R_MPA_skew R_MCA_kurtosis
2 R_MPA_max R_MPA_kurtosis R_LCA_kurtosis R_MPA_skew
3 L_MCA_min L_MCA_min R_MCA_std R_LCA_kurtosis
4 R_MCA_std L_LCA_std R_MCA_kurtosis LPA_ETD
5 R_MCA_kurtosis L_LCA_max L_MCA_std R_MPA_std
6 R_MPA_std L_MPA_NRT_C4 L_LPA_min L_LPA_HSE
7 R_max R_LCA_min L_MCA_min L_LCA_std

https://ieee-dataport.org/open-access/plantar-thermogram-database-study-diabetic-foot-complications
https://ieee-dataport.org/open-access/plantar-thermogram-database-study-diabetic-foot-complications
https://www.standupproject.eu/manager/?conf=default&route=/STANDUP_Database
https://www.standupproject.eu/manager/?conf=default&route=/STANDUP_Database
https://www.iac.es/en/science-and-technology/technology-transfer-iactec/forms
https://www.iac.es/en/science-and-technology/technology-transfer-iactec/forms
https://github.com/mt4sd/DFUFeatureRankingByVariationalDropout


Biomedicines 2023, 11, 3209 15 of 16

Table A2. Cont.

Rank Lasso Random Forest Concrete Dropout Variational Dropout

8 L_LCA_min L_NRT_C4 L_MPA_HSE R_MPA_HSE
9 L_MPA_skew L_LCA_min R_LCA_min R_MCA_min
10 R_LCA_kurtosis L_MPA_std R_LPA_min R_MCA_std

Table A3. The 10 most relevant features extracted from the ALL dataset, listed according to rank for
all approaches considered: lasso, random forest, concrete, and variational dropout.

Rank Lasso Random Forest Concrete Dropout Variational Dropout

1 L_LPA_min R_MCA_std R_MCA_std R_MCA_std
2 R_MPA_max L_LPA_min R_MCA_kurtosis L_MPA_skew
3 R_MCA_NRT_C5 L_MPA_std L_MPA_HSE R_MCA_skew
4 R_MCA_std L_MPA_NRT_C3 R_MPA_skew L_MPA_std
5 L_MPA_std L_NRT_C3 L_MCA_skew R_LCA_kurtosis
6 R_LCA_NRT_C9 R_LCA_NRT_C2 R_kurtosis R_MCA_kurtosis
7 R_MPA_skew R_MPA_kurtosis L_LPA_min R_MPA_std
8 R_MCA_kurtosis R_MPA_std L_MCA_std LPA_ETD
9 L_LCA_NRT_C4 R_MCA_NRT_C2 R_LCA_kurtosis R_LCA_skew
10 R_std L_LCA_NRT_C2 L_MPA_skew L_MPA_HSE
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