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SUMMARY:: During the cruise F/S Poseidon 212/3 (September 30-October 8, 1995) determination of carbon system vari-
ables was carried out over the section of La Palma-La Graciosa and at the ESTOC station in the Canary Island area. Total
alkalinity and pH in the total scale at 25°C were determined at 24 stations from surface to bottom. In this area, the presence
of different water masses can be traced by the carbon system variables. NACW is defined by a strong gradient of A._ and
pH from 150 to 750 m. MW is characterised by high values of A} and pH between 1000 to 1200 m and AAIW signals are
found at around 900 m in the strait between Gran Canaria and Fuerteventura with low A_, low pH and a maximum of £CO,.
Assuming an atmospheric mean value of fCO, of 360 patm and an average surface value of 393+7 patm, we can conclude
that during this cruise this oceanic area tends to release CO, into the atmosphere, acting as a weak source with a carbon flux
towards the atmosphere of +8.0+1.8 mmol-m?d"!. The saturation levels in the Canary Island area have been found to be high-
er than 3600 m for calcite and 2700 m for aragonite. The inorganic carbor/organic carbon ratio (IC/QC) varies from 0.07 at
300 m to 0.5 at 3000 m. The IC/OC ratio shows that about a 34% increase in the C; of the deep water is contributed by the
inorganic CaCQ, dissolution. The IC at 300 m is around 7 pmol kg, increasing with depth to 37.5 pmol kg at 3700 m.

Key words: carbonate system, pH,, total alkalinity, total inorganic carbon, CO, fugacity.

INTRODUCTION

The carbonate system in seawater is one of the
most complex topics in oceanography. The system
has long interested many oceanographers from vari-
ous fields since it plays an important role in the bio-
geochemical cycles of three sub-spheres of the Earth,
the biosphere, the lithosphere, and the hydrosphere
(Chen and Wang 1995). More recently, the fate of
fossil fuel CO, has promoted interest in the study of
carbonate chemistry in the oceans, because of the
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greenhouse effect of carbon dioxide on the global cli-
mate. Oceanic uptake is a key part of the global bud-
get of the CO, released into the atmosphere by
human activities. Present estimates indicate that
about 40% of the anthropogenic CO, added to the
atmosphere due to the burning of fossil fuels is
absorbed by the oceans (Post er al., 1990; Hougton
etal., 1995). The capacity of the oceans for uptake of
CO, depends on the inorganic carbon chemistry and
also depends greatly on many factors such as
hydrography, circulation of water masses, mixed-
layer dynamics, wind stresses and the biological
processes in the ocean (Broecker and Peng, 1982).
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FiG. 1. — The Northeast Atlantic Ocean at the Canary Islands and stations grid for POSEIDON 212/3 cruise (September 30 - October 8, 1995).

The North Atlantic, with oceanic high latitude
regions of deep water formation, mid-latitude sites
of mode water formation and subtropical olig-
otrophic oceans, is thought to be a large sink for
atmospheric CO, (Tans et al., 1990; Takahashi et al.,
1993, 1995). The Canary Oceanic region (Fig. 1) is
situated in a peculiar area 100-600 km west of the
NW African coast in the eastern extensions of the
subtropical North Atlantic gyre at a latitude of 27-
28°N. It is part of the recirculation regime linking
the Gulf Stream with the North Equatorial Current
via the Azores and Canary Currents (Stramma and
Siedler, 1988, Klein and Siedler, 1989). The struc-
ture of the Canary Current System is strongly influ-
enced by the seasonally varying trade winds and the
resulting upwelling regime off North-West Africa
(Stramma and Siedler, 1988). The thermohaline
properties of water masses involved in the water col-
umn in the Eastern North Atlantic have been exten-
sively described in previous studies (Broecker and
Takahashi, 1981, Arhan er al.,1994, Measures et al,
1995). Below North-Atlantic Central Water
(NACW), the penetration and influence of both
Antarctic Intermediate Water (AAIW) at around 900
m and Mediterranean Water (MW) between 900 and
1500 m are clearly observed in the North Atlantic
(Fig. 2a).

During the Poseidon 212/3 cruise (30 September-
8 October 1995), the determination of carbon sys-
tem variables was carried out north of the Canary
Islands between La Palma and La Graciosa. Total
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alkalinity and pH at total scale and at 25°C were
determined at 24 stations from surface to bottom.
The main objective of this work was to study for the
first time the carbon cycle in this area in order to
evaluate the capacity of the zone for removing
anthropogenic carbon dioxide from the atmosphere
and to calculate both the saturated state of CaCO,
and the ratio of in situ inorganic and organic carbon
decomposition (IC/OC).

EXPERIMENTAL
pH

The pH in total scale (mol kg') was measured at
25°C using the potentiometric technique. The elec-
trodes used to measure the e.m.f. of the sample con-
sisted of a ROSS glass pH electrode and an Orion
double junction Ag/AgCl reference electrode, con-
nected to an Orion 720A pH meter. The electrodes
were calibrated using a TRIS/HCI buffer in synthet-
ic seawater with a salinity of 35 and corrected fol-
lowing the last recommendations by DelValls and
Dickson (1998) and Lee et al. (2000). The tris buffer
and the seawater samples were measured at 25°C,
which allows the e.m.f. of the pH cell to be mea-
sured, first in the tris buffer and then in the seawater
sample. The pH of the unknown seawater samples
was determined according to standard operating
procedures (Dickson and Goyet, 1994).

®© Universidad de Las Palmas de Gran Canaria.Biblioteca Universitaria. Memoria Digital de Canarias, 2004



Repeatedly, seawater measurements of difterent
CRM (certified reference material) samples (n = 54)
gave a standard deviation of +0.003 pH units.

Total alkalinity

The total alkalinity of seawater (A;) was deter-
mined by titration with HCI to the carbonic acid end
point using two potentiometric systems and
described in more detail in Mintrop e al. (2000).
The HCl solution (25 1, 0.25 M) was made from con-
centrated analytical grade HCl (Merck®, Darmstadt,
Germany) in 0.45 M NaCl, in order to yield an ionic
strength similar to open ocean seawater. The acid
was standardised by titrating weighed amounts of
Na,CO, dissolved in 0.7 M NaCl solutions. The total
alkahmty of seawater was evaluated from the proton
balance at the alkalinity equivalence point, PH i =
4.5, according to the exact definition of total alka-
linity {(Dickson, 1981). The performance of the titra-
tion systems was monitored by titrating different
samples of certified reference material (CRM, batch
#35) that have known inorganic carbon and A val-
ues. The agreement between our data and certified
values was within =1.5 umol kg'.

Total inorganic carbon and fCO,

Total inorganic carbon (C,) and fCO, were com-
puted from experimental values of pH, and total
alkalinity using the carbonic acid dissociation con-
stants of Dickson and Millero (1987) following the
last suggestions by Lee er al. (2000). Considering
the accuracy of potentiometric pH (£0.005) and
potentiometric total alkalinity (+1 pumol kg') deter-
minations (Mintrop et al., 2000), the accuracy of C,
and fCO, values are 4 umol kg’ and +5 patm,
respectively (Millero, 1995; Lee et al., 1997).

RESULTS AND DISCUSSION
pH and alkalinity vertical profiles

Seawater pH reflects the status of the carbon
dioxide systern, which provides the major short-
term pH buffer. In turn, the carbonate system is inti-
mately linked with biological productivity through
the processes of photosynthesis and respiration.
Biotic production and decomposition affect the pH
in line with the equation (Anderson, 1985; Fraga
and Perez, 1990; Fraga et al., 1998)

106 CO, + 16 NO, + HPO + 78 H,O &
<:>C‘06H17504,N P+ 150 O, (1)

The vertical profiles of pH on a total scale at
25°C are shown in Figure 2b. The pH reaches a max-
imum in surface waters (8.035 £0.005) due to pho-
tosynthesis. The pH then decreases due to the oxi-
dation of plant material and exhibits a sharp
decrease with depth to approximately 1000 m coin-
cident with a2 minimum in O, and maximum in
apparent oxygen utilisation (AOU) (Llinds er al.,
1999) and fCO,. The lowest values of pH at around
800-900 m (open circles in Fig. 2) trace the north-
ward advection of AAIW (Willenbrink, 1982) as a
poleward undercurrent of the Canary Current. On
the other hand, the highest pH values observed
between 800-1000 m (from 7.75 to 7.82) are due to
the presence of a Meddy (open triangles) around sta-
tion 871. Below 1000 m, an increase in pH is
observed due to the dissolution of calcium carbonate
and the advection of water masses more venulated
than the intermediate water masses.

The vertical profiles of total alkalinity show a
minimum at around 700 m (2335 pmol kg™'), a local
alkalinity maximum at 1000 m associated with the
Meddy at station 871 (2393 umol kg'), and increas-
ing alkalinity with depth below 1300 m, (Fig. 2c¢),
following the same pattern as the salinity distribu-
tion. When the alkalinity is normalized to a constant
salinity of 35 (NA = A /S-35) in order to remove the
saline effect over A (Fig. 2e), a typical nutrient pro-
file is obtained, with a surface depletion due to for-
mation of calcium carbonate and regeneration at
depth due to the temperature and pressure effect on
the solution equilibrium of calcium carbonate.

Figures 2d and 2f show the distribution of com-
puted C; and NC, (NC = C_/S-35) in the water col-
umn for the most representative stations sampled
during the Poseidon 212/3 cruise. The maximum
values of C, were found in the deepest and less

saline waters, NADW, and in the saline core of

Mediterranean water (open triangles). The redisso-

lution of calcium carbonate and remineralisation of

organic matter is responsible for the increase of C,
in NADW, whereas the high values of C in MW are
due to the saline contribution. The C_ concentration
decreases towards the surface layer due to the
uptake of the same by the phytoplankton. Thus, the
MW shows a clear signal by its low NC (2117 umol
kg"), high A (2393 pmol kg') and 1c!at1vdy high
pH. In the strait between Gran Canaria and
Fuerteventura (stations 863-865, open circles in Fig.
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FIG. 2. - Potential temperature-salinity plot (a), pH -25°C profile (b), total alkalinity (umol kg'') profiles (¢), computed total inorganic carbon

(e) and normalised (S = 35) total inorganic carbon NC, profiles (f) over
42-846 in the eastern part, closed circles correspond to ESTOC station
(stations 840, 853 and 869) and open triangles to stations 870 and 874 in the western part.

C_ (umol kg'} profiles (d), normalised (S = 35) total alkalinity (NA.

) )
selected stations. Open circles correspond to stations 863-867 and 8

2) the influence of AAIW is shown by its low pH
value (7.641), low A, (2331.3 pmol kg') and high
C, (2205.3 umol kg™') (high C, to A ratio). Below
the MW core and the poleward intrusion of AAIW,
there is a relatively homogenous layer in pH in com-
parison with the immediately higher layer.

Alkalinity and fCO, sections
The water mass characteristics observed during

the Poseidon 212/3 cruise can be considered typi-
cal for the beginning of autumn: high temperature
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at the surface and a well-developed thermocline.
Figure 3 shows the alkalinity variability over the
La Palma-La Graciosa section, The presence of
North-Atlantic Central Water (NACW) from 150 to
750 m shows a strong gradient of alkalinity. In the
intermediate water from 750 to 1500 m the influ-
ence of both Mediterranean Water (MW) and
Antarctic Intermediate Water (AAIW) is clearly
observed. The influence of AAIW has been found
by Rios ef al. (1992) at 24°N and 22°W with mini-
mum salinity (S<35.4). The minimum salinity in
the AAIW corresponds a layer of minimum pH
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FIG. 3. — Distribution of total alkalinity A ¢ (umol kg for La Palma (Station 870) - La Graciosa (Stduon 846). to the north of the Canary
Islands in October 1995. Hereafter the bottom represents the depth observed at each station and is not a typical bathymetric profile.
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FiG. 4. — The distribution of computed carbon dioxide fugacity (uatm) from La Palma (Station 870) - La Graciosa (Station 846), to the north
of the Canary Islands in October 1995,
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(Fig. 2b), minimum alkalinity (Fig. 3) and maxi-
mum fCO, (592 patm) (Fig. 4) between stations
864 and 866, which correspond with the inflow of
AAIW through the strait between Gran Canaria
and Fuerteventura. This maximum fugacity is also
observed at station 846 (La Graciosa). This north-
ern salinity minimum is the result of the northward
and eastward advection of AAIW within the Gulf
Stream-North Atlantic Current system (Measures
et al., 1995). The influence of AAIW in this area
has also been traced by minimum values of oxygen
and slightly higher nutrient concentrations (mainly
silicate) by Llinds er al. (1999). The maximum
salinity at around 1200 m with high values of alka-
linity and total dissolved inorganic carbon is due to
Mediterranean water (Fig. 2d). At station 871, a
high maximum salinity denotes the presence of a
Meddy. This Meddy also shows a relative maxi-
mum of pH (Fig. 2b) and a sharp increase in alka-
linity (Figs. 2c and 3).

The surface values of computed fCO, for this
time of the year clearly show that this area is acting
as a source of CO,. Assuming a mean atmospheric
value of fCO, of 360 patm and surface values of 385
to 400 patm, we found that during this cruise this
oceanic area tends to release CO, into the atmos-
phere. The air-sea CO, exchange (mmol-m?-d') is
calculated using the following equation

ECO, = 0.24k-S(fCO, - fCO, )  (2)

where k is the liquid phase gas transfer velocity
(cm-h'') and S is the CO, seawater solubility
(mol-kg'atm™!) (Weiss 1974). The effect of wind
speed on the transfer velocity, k, is obtained from
the equation (Wanninkhof, 1992)

k=(031%U,2 - (660/Sc)'” (3)

U,, is the wind speed at a height of 10 m (m s™'). The
averaged wind speed during this cruise was 10 £ 3
m s'. The Schmidt number, Sc, is determined from
a third-order polynomial fit for the temperature
dependence (Wanninkhof, 1992).

The resulting air-sea CO, flux was +8.0 +1.8
mmol-m2d'. Considering the observed variability
of fCO, in this area in 1996-1997 (Gonzilez-Ddvila
et al., 2000), this positive CO, flux can be consid-
ered as a maximum value on an annual scale. How-
ever, on the same scale this value is clearly compen-
sated, showing this area as a slight sink of CO,
(Takahashi ef al., 1997) ’
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State of saturation

The precipitation or formation of solid CaCO, in
surface waters and the dissolution of solid CaCO, in
deep water is very important in transferring CO,
from surface waters to deep waters. A close cou-
pling of seasonal phytoplankton maxima and parti-
cle flux peaks at the ESTOC station has been found
(Neuer et al., 1994). This characteristic of many
areas of the Atlantic has been demonstrated in the
Sargasso Sea by Deuer et al. (1990) and in the North
Atlantic Bloom Experiment (NABE , 47°N, 20°W)
by Newton et al. (1994). It was mediated by rapid
transfer of surface water production to deep ocean.
The saturation state of seawater with respect to a
carbonate phase (Q2i) can be determined by calculat-
ing the ratio of the measured total ion concentration
product to the apparent solubility product of carbon-
ate i (K,, ) according to Equation 4. The thermody-
namic index of the apparent solubility product from
which the degree of saturation is calculated depends
on fCO, and pH, pressure, T and mineralogy (arag-
onite or calcite).

Q = [Ca*][CO2VK, 4)

The surface waters in this area are well supersat-
urated with respect to both calcite and aragonite.
The surface value of £ for calcite is 5.6 +0.2 and 3.6
0.2 for aragonite, both of which decrease in deep
water. Aragonite from pteropodos is more soluble
than calcite from foraminifera and coccol-
ithophorids at a given T, p and S. During this cruise
total coccolithophore cell densities showed a strong
gradient from open ocean localization (station §70)
with 18.000 cell I'' to the near-shore location (near
the African coast) with 45.000 cell I''. Maximum
cell densities occurred in the upper photic zone
above the deep chlorophyll maximum, which was
located between the depth of 50 m and 125 m (Knoll
et al., 1998).

The saturation level for aragonite is 2700 m and
for calcite is higher than 3500 m. The greater solu-
bility of these minerals in deep waters relates to the
effect of pressure on the solubility of CaCO, .

Inorganic and organic derived carbon

The processes related to the deep dissolution of

CaCO, and decomposition of organic carbon pro-
vide a direct mechanism for the renewal of carbon
and related elements in the sea and are of funda-
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mental interest in the biogeochemical cycles of
these elements. Studying the nature of the particu-
late matter in traps in this area, Fischer et al.
(1996) found that coccolithophorids (coccoliths
and coccospheres) constitute a dominant part of
the particulate matter. The close correlation of
organic carbon and carbonate sedimentation at
1000 m and 3000 m trap depths founded by Neuer
et al. (1997) confirms the important role of coc-
colithophorids as primary producers and in the
export flux in the Canary Island region during all
seasons. These authors found a considerable
increase in particle flux with depth, probably
caused by the interaction of fast sinking particles
originating from a primary source region close to
the area with those advected laterally from closer
to the NW African upwelling margin.

To calculate the quantity of calcium carbonate
that has dissolved in the water column, the change
in salinity normalised A} and C, values must be
determined. It must be considered that the water
masses present in this area may have had different
A, and C_values at the time when the water mass-
es were formed. Therefore, to calculate properly
the ANA | and ANC,. values, the preformed values
(NA® and NC,°) must be determined. Given the
preformed values in a body of water and its present
values, it is possible to determine the ratio of in situ
inorganic and organic carbon decomposition.
Under the assumption that A_ is not affected by the

invasion of anthropogenic CO,, we do not have to
differentiate between historical and contemporary
NA,® values. However, the NC.° values must be
corrected for the injection of anthropogenic CO,.
Failure to correct the NC° values for anthro-
pogenic CO, may result in an error of 0.05-0.07 in
the inorganic carbon to organic carbon ratio (Chen,
1990). The estimated amount of excess CO, in this
area 1s =62 pmol/kg (Kortzinger et al., 1998). Sev-
eral authors (Edmon, 1974; Chen and Pytkowicz,
1979; Kértzinger et al., 1998) have reported linear
correlation between the potential temperature ©
and salinity normalized values of surface A; and
C,. The linear regressions calculated from our data
set (this cruise and unpublished data, n =42) in
order to calculate the preformed values for the deep
waters in this area are given by

NA°=22943 (#3.4) - 0.27 (£0.17) 6 5)
NC, = 2183.7 (£6.2) -10.02 (+0.80) 6 (©6)

Using Equations 5 and 6, the ratio of carbon con-
tributed to the waters from inorganic sources (IC) to
carbon derived from the decomposition of organic
matter (OC) can be calculated from Equations 7 to 9
(Chen et al., 1982; 1987; Chen, 1990)

AI\IlgT = NAT(measured) - I\I[\T0 (7)
ANC = (NCT(measum d)—NCT") + 62 &)
IC/OC =(0.15094ANC +ANA )/(2 ANC -ANA.) (9)
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FIG. 5. —~ Ratio of carbon derived from the dissolution of calcium carbonate (IC) to carbon derived from the decomposition of organic matter
(OC) calculated from Equations 7 to 9 (closed circles) and inorganic carbon in the water column contributed by the dissolution of carbonate
particles, IC, determined from Equation 10 (open squares) over the water column.
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The IC/OC was calculated for waters deeper than
300 m and is shown in Figure 5. The IC/OC ratio
increases from 0.07 at 300 m to 0.5 at 3000 m. These
values are higher than the ratio of 0.17 found in the
Sea of Japan (Chen et al., 1995) and 0.36 found in
the North Pacific (Chen, 1990), and similar to the
value of 0.52 found in the Bering Sea (Chen, 1993).
An IC/OC value of 0.5 indicates that approximately
34% of the carbon in the deep Canary area is con-
tributed by the dissolution of carbonate particles. It
should be pointed out that an error of 15% in the
amount of excess CO, in this area only contributes
in an error of 2% in the IC/OC ratio. Our results
demonstrate that far more carbon is added to the
deep ocean from the decomposition of organic mat-
ter than from the dissolution of carbonates. Neuer et
al. (1997) obtained that the flux of organic carbon
explained more than 70% of the variability of the
sedimentation of carbonate and lithogenic material.
The increase in IC/OC with depth indicates that car-
bonate dissolution increases as a function of depth
relative to the rate of decomposition. This is consis-
tent with saturation state calculations, which demon-
strate that deep waters are more undersaturated with
respect to carbonate than shallow waters.

The quantity of inorganic carbon in the water
column contributed by the dissolution of carbonate
particles may be calculated from Equation 10 con-
stdering IC + OC = ANC, (Sabine et al., 1995)

IC =0.07018 ANC, + 0.4649 ANA_ (10)

The IC at 300 m is approximately 7 pmol kg,
increasing with depth to 37.5 umol kg™ at 3700 m.
Again, an error of 15% in the amount of excess CO2
in this area only contributes in an error of less than
1 umol kg in the IC. The increase in IC demon-
strates that the dissolution of carbonate particles
(aragonite and calcite) increases with depth as they
sink through the water column. This increase in IC
must therefore be primarily due to the dissolution of
aragonite particles.
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