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ABSTRACT: Metamorphosis is a critical process in the life cycle
of most marine benthic invertebrates, determining their transition
from plankton to benthos. It affects dispersal and settlement and
therefore decisively influences the dynamics of marine invertebrate
populations. An extended period of metamorphic competence is an
adaptive feature of numerous invertebrate species that increases
the likelihood of finding a habitat suitable for settlement and
survival. We found that crude oil and residues of burnt oil rapidly
induce metamorphosis in two different marine invertebrate larvae,
a previously unknown sublethal effect of oil pollution. When
exposed to environmentally realistic oil concentrations, up to 84%
of tested echinoderm larvae responded by undergoing metamor-
phosis. Similarly, up to 87% of gastropod larvae metamorphosed in
response to burnt oil residues. This study demonstrates that crude
oil and its burned residues can act as metamorphic inducers in
marine planktonic larvae, short-circuiting adaptive metamorphic
delay. Future studies on molecular pathways and oil-bacteria-
metamorphosis interactions are needed to fully understand the
direct or indirect mechanisms of oil-induced metamorphosis in
marine invertebrates. With 90% of chronic oiling occurring in
coastal areas, this previously undescribed impact of crude oil on
planktonic larvae may have global implications for marine
invertebrate populations and biodiversity.
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1. INTRODUCTION
The phenomenon of metamorphosis has fascinated humanity
from the earliest ancient myths to the first descriptions of life
cycles in butterflies.1 In contrast to humans and other
terrestrial vertebrates with direct development, most marine
animals have indirect development with metamorphosis
occurring at some stage during their life history, most often
at the transition from planktonic larvae to benthic juveniles in
species with biphasic life cycles.2 These larvae, known as
meroplankton, may differ from adults in form, size, feeding
behavior, habitat, locomotion, and dispersal capability.3−5 A
planktonic larval stage provides a means to disperse and
colonize new suitable habitats, reducing the risk of extinction
after local disturbances and enabling connectivity and genetic
flow among metapopulations.6−9

Metamorphosis, which terminates the larval stage, is
recognized as a critical life process in marine invertebrates
affecting dispersal, settlement, recruitment success, population
dynamics,6,10−12 and ultimately biodiversity in marine environ-
ments.13 When larvae complete their development and have
the capacity to undergo metamorphosis, they are referred to as
“competent larvae”.14 In many marine benthic invertebrates,
metamorphosis is induced by external factors detected by the
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competent larvae; thus, larvae do not settle randomly on the
seafloor but rather select sites with appropriate resources or
habitats that are needed for the survival of juveniles or
adults.15−20 Metamorphosis in invertebrate larvae is sometimes
postponed for long periods in the absence of specific chemical
cues and/or substrata that indicate favorable conditions for
settlement.14,15 Some planktonic larvae have adaptions for
long-distance dispersal across the oceans (“teleplanic larvae”),8

and their larval duration can be extraordinarily long, years in
some cases,20 in the absence of specific environmental cues.
External cues for metamorphosis may include chemicals from
needed vegetation or prey, microbial signaling molecules from
biofilms, and conspecific exudates.10,21−27 In some invertebrate
species, adverse conditions such as food limitation28 and
thermal stress29,30 may trigger metamorphosis in larvae, yet the
presence of potential competitors may stimulate delayed
metamorphosis.31,32

Delay of metamorphosis (in the sense that competent larvae
can stay in that developmental stage for extended periods of
time in the absence of a specific metamorphic trigger or cue) is
generally considered an adaptive strategy for assuring
settlement in habitats suitable for subsequent survival, growth,
and reproduction. In an extensive review, Pechenik33

documented a facultative delay of metamorphosis in 75
species of 14 phyla, including mollusks and echinoderms.
Although delay often involves trade-offs (e.g., settlement size
may be smaller because of energy depletion in larvae), it may
also improve the likelihood of postsettlement survival. An
example of the latter occurs in the sand dollar Dendraster
excentricus, one of the species we studied. Highsmith34

demonstrated that the competent larvae of this species delay
settlement until encountering peptides in sand occupied by
conspecific adults. Reworking sediment by adult sand dollars
prevents the establishment of an abundant crustacean that is a
major predator on larval and juvenile sand dollars. Thus,
gregarious settlement following metamorphic delay is an
adaptive behavior that likely ensures successful recruitment.
Pollution is a major anthropogenic stressor in coastal waters.

Studies on the effects of pollution on meroplanktonic larvae
typically have focused on the survival and growth of early
development stages in a few model species.35−37 In contrast,
we know little about the influence of pollution on larval
metamorphosis and settlement. Oil pollution in marine
environments, both acute and chronic oiling, is a major global
environmental problem.38 Crude oil is the largest primary
energy source in the world39 and is mainly transported over
maritime shipping routes and by underwater pipelines.40,41

Despite the efforts of the oil industry to reduce the number of
oil spills, accidental oil spills seem to be inevitable. The Deep-
Water Horizon oil rig explosion in the Gulf of Mexico (2010),
considered “potentially the worst environmental disaster in
American history”, (Obama 2010) and the spills from broken
pipelines in Borneo (2018) and Thailand (2022) are just some
examples of catastrophic oil spills. Coastal waters are also
exposed to chronic oil pollution from anthropogenic sources.
Dong et al. (2022) found that globally 90% of oil slicks occur
within 160 km of the coasts.38 Coastlines concentrate a large
number and biodiversity of marine benthic invertebrates. The
consequences of accidental and global chronic oiling on the
metamorphosis of invertebrates are unknown despite the
relevance of this biological process in the dynamics of marine
coastal ecosystems.

In this study, we present the first evidence that
metamorphosis in marine invertebrates can be induced by
exposure to crude oil. We investigated the effects of oil on the
metamorphosis of invertebrate larvae from two different taxa:
gastropods and echinoids. In veliger larvae of gastropods, we
demonstrated, surprisingly, that burnt oil compounds induce
metamorphosis rather than disrupting it. A similar result was
obtained in the competent echinopluteus larvae of sand
dollars: unburnt crude oil accelerated metamorphosis at all
concentrations, shortening larval life, with potentially im-
portant consequences for settlement success and survival.

2. MATERIALS AND METHODS
2.1. Experiments with Gastropod Larvae. 2.1.1. Sam-

pling of Larvae. The gastropod larvae used in the experiments
(Rissoa sp.) were obtained from zooplankton samples collected
from coastal surface waters located 5 nautical miles north of
Heraklion, Crete (35° 24.957 N, 25° 14.441 E) by horizontally
trawling a WP-2 plankton net (45 μm mesh) in May 2018. The
contents of the net cod-end were transferred to cool boxes,
diluted with in situ seawater, and transported to the laboratory
within 2 h of collection. There, the larvae were identified under
a dissecting microscope, sorted with a glass pipet, and placed in
2 L beakers with 20 μm filtered seawater (FSW).
2.1.2. Experimental Design. The experiments with gastro-

pod larvae were a side study of a joint mesocosm experiment
conducted at the Hellenic Centre for Marine Research in Crete
(Greece) to evaluate the impacts of in situ oil burning on
marine plankton.42 The mesocosms consisted of transparent
food-grade polyethylene bags mounted on circular metal
frames attached to a land-based open pool (350 m3, 5 m deep)
with a continuous flow of in situ seawater. The mesocosms
were filled with 3.5 m3 of seawater collected at 1 m depth from
a Cretan Sea coastal station (0.2 miles off the North coast of
Crete) using a rotary submersible pump in May 2018. The
surface seawater was transported to land in 100 L acid-washed
plastic containers within ∼3 h and distributed sequentially into
the mesocosms by gravity siphoning using plastic tubes
connected to a flowmeter. To simulate an oil spill burning
and wet deposition of soot, a structure was designed and built
to obtain and separate burnt oil residues and soot after crude
oil burning (Figure 1A). Briefly, 2 L of Iranian crude oil (0.57
mL L−1) were poured inside of a metal ring placed in the
middle of a mesocosm. The oil was then ignited and burned,
and the soot emissions were collected in a metal tube. The soot
was finally deposited in the designated mesocosm by rain
simulation. We repeated the procedure to obtain the soot and
burnt residues for the different mesocosm replicates. The
experimental setup involved nine mesocosms and the following
treatments: (1) residues of burnt oil (triplicates B1−B3), (2)
soot (triplicates S1−S3), and control without pollutants
(triplicates C1−C3), and exposure lasted for 26 days.
2.1.3. Exposure Experiments with Gastropod Larvae and

Chemical Analyses. Experiments with gastropod larvae were
conducted in glass bottles with water collected from the
mesocosm treatments described above. Three exposure
experiments of 72 h were carried out; in the first two
experiments, gastropod larvae were exposed to water collected
at 1 m depth from the mesocosms 1 and 6 days after oil
burning. In the third experiment, gastropod larvae were
exposed to residues of burnt oil from the B1−B3 mesocosms,
10 days after burning, with and without the addition of food ad
libitum (Isochrysis galbana, exposure concentration: 50,000
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cells mL−1) to evaluate if food limitation in the water from the
oil mesocosms could cause metamorphosis.
Before starting the experiment, gastropod larvae were

grouped in Petri dishes with 0.2 μm FSW. To start a
microcosm experiment, seawater from each mesocosm was
siphoned directly into the experimental glass bottles (1 L) and
the bottles were immediately transported to the laboratory to
add the larvae (20−25 larvae per bottle). Finally, the bottles
were hung in a “floating wheel” at 0.5 m depth in the open
pool where the mesocosms were established to ensure similar
light and temperature exposure conditions.43 After incubation
(72 h), the bottle contents were filtered through a 60 μm mesh
sieve to collect the larvae in the laboratory. We assessed
survival (beating of velar cilia for larvae, movement in
juveniles) and metamorphic success (% of juveniles in the
total number of living individuals as indicated by loss of the
velum44 using a stereomicroscope).
The concentrations of 16 parent polycyclic aromatic

hydrocarbon (PAH) compounds were determined in the
water collected from the mesocosms and used as exposure
media in the gastropod larvae tests (Figure S1, Supporting
Information). Briefly, 2.5 L of water were collected in amber
glass bottles, and after the addition of perdeuterated internal
standards, the samples were extracted with 50 mL ultrapure

hexane (SupraSolv., Merck) (n-C6).
45,46 The n-C6 extract was

filtered through activated Na2SO4 to absorb the moisture and
concentrated using a rotary evaporator to remove the n-C6
solvent, then transferred in 100 μL glass inserts, using ultrapure
dichloromethane (SupraSolv., Merck) (DCM), and analyzed
with gas chromatography−mass spectrometry (GC−MS). The
GC−MS analysis was performed using an Agilent GC−MS HP
7890/5975C system, with an Agilent HP-5 5% phenyl methyl
siloxane column (30 cm × 250 μm × 0.25 μm) (Agilent
Technologies). The analysis was carried out in single-ion
detection (SIM) mode. The samples were injected diluted in
100 μL ultrapure DCM and spiked with the IS to 100 ppb
concentration. The aromatic hydrocarbon components were
quantified against the internal standard using an assumed
response factor of 1 (see Antoniou et al. (2022)47 for further
details regarding the instrumental analysis parameters). The
precision of the analytical method, evaluated in terms of the
repeatability of the experimental results (n = 8; in spiked
samples) and expressed in terms of relative standard deviation,
was ranged from 1.6 to 4.2% for individual PAHs. Procedural
blanks were found to be free of any interference.
2.1.4. Data Analysis. Data were analyzed with IBM SPSS

Statistics 25.0. The assumptions of normality and homogeneity
of variances were tested with the Shapiro−Wilk test and the

Figure 1. Survival and metamorphosis of gastropod (Rissoa sp.) veliger larvae after 3 days of exposure to oil burning byproducts (soot and burnt
oil). (a) Experimental setup used to obtain soot and residues of burnt oil in the mesocosms (1: crude oil burning, 2: soot emissions collected, 3:
rain simulation, 4: deposition of soot on the mesocosm). (b) Plankton net sample with high concentration of gastropod larvae (left) and individual
gastropod larva (right), scale bar = 100 μm. (c) Effect of oil burning byproducts 1 day after burning on survival and metamorphosis of gastropod
veliger larvae. (d) Effect of oil burning byproducts 6 days after burning on survival and metamorphosis of gastropod veliger larvae (Ctrl= control
without pollutants, Soot, Oil= burnt oil). Lowercase italic letters (a, b) indicated different statistical groups (p < 0.05).
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Levene test, respectively. When the data followed the
assumptions for parametric tests, a one-way analysis of
variances (ANOVA) and Tukey’s HSD post hoc test were
used to assess statistically significant differences among
treatments (p < 0.05). When the data did not follow these
assumptions, we used nonparametric Kruskal−Wallis tests with
pairwise comparisons to determine significant differences
between treatments (p < 0.05).
2.2. Experiment with Echinoderm Larvae. 2.2.1. Adult

Sampling and Larval Culturing. Adult sand dollars
(Dendraster excentricus) were collected by dredging outside
of Coos Bay, Oregon (43° 24′21 N, 124° 19′43 W) at a depth
of 12−20 m. They were kept in the laboratory in a flow-
through seawater system with sand at the Oregon Institute of
Marine Biology (OIMB), USA. Spawning was induced by
injecting 1 mL of a 0.55 M potassium chloride (KCl) solution
into the coelom by inserting a needle in the peristomial
membrane near the mouth. Released gametes were collected in
beakers with FSW, and gamete quality was checked with a
stereomicroscope. A small amount of sperm was added to a
diluted egg suspension for fertilization. Successful fertilization
was confirmed by observing the development of the
fertilization envelopes around most eggs. The suspension was
divided into four glass bowls, diluted with FSW, and kept in a
flow-through sea table at 13 °C. One day post fertilization
(dpf), cellular debris and unfertilized eggs were carefully
removed from the bowls with glass Pasteur pipettes. Since the
embryos in all four bowls were developing well, they were
mixed 2 dpf and divided into two 1.5 L glass jars. The number
of individuals was adjusted to 2 mL−1. The jars were placed on
the sea table with constant, gentle stirring. At 5 dpf, we started
feeding the cultures with a mixture of Rhodomonas salina and
Dunaliella salina. From then on, the cultures were fed twice per
week, following a water change, in which approximately 80% of
the water in the culture jars was removed by reverse filtration
with a 110 μm sieve. This was replaced with fresh FSW. The
larval development was checked regularly with a microscope,
and the experiment was performed when competent larvae
were observed at 11 weeks old.
2.2.2. Crude Oil Preparation and Chemical Analysis. The

crude oil used in this experiment was a Light Louisiana Sweet
oil. A suspension of oil droplets was prepared by adding oil to
seawater under high-speed magnetic stirring. The detailed
method is described in Almeda et al. (2021).48 This procedure
results in oil droplets with a mean diameter of 8 μm (95% of
droplets between 1 and 20 μm), which has previously been
analyzed with an imaging particle analysis system (Flow-
Sight).49 The concentration and composition of PAHs in the
crude oil suspensions were measured by using solid-phase
extraction (SPE) and GC−MS. Briefly, a 100 mL sample was
extracted using ENVI-18 SPE cartridges (6 mL, 1 g, Supelco).
The columns were conditioned by 2 × 6 mL toluene:methanol
9:1 (v/v) followed by 6 mL methanol and 6 mL Milli-Q grade
water. The sample was loaded at 10 mL min−1, and the
columns were vacuum-dried for 1 h after loading. The PAHs
were eluted using 2 mL of toluene:methanol 9:1 (v/v). For
analysis, chromatographic separation was achieved on a Trace
1300 gas chromatograph (Thermo Scientific) equipped with a
60 m × 0.25 mm i.d × 0.25 μm film thickness HP-5 ms column
(Agilent Technologies). A 1 μL sample was injected in splitless
mode with the sample inlet held at 300 °C. The oven was
programmed to 70 °C, then 20 °C min−1 to 300 °C, and then
50 °C min−1 to 325 °C held for 10 min. Helium was used as

the carrier gas with a 1 mL min−1 constant flow. Detection was
achieved on a Thermo Fischer ISQ-7000 mass-selective
detector operated in SIM mode with the MS source at 230
°C and the quadrupole at 150 °C.
2.2.3. Exposure Experiment with Competent Larvae.

Competent larvae, which are recognizable by a clearly visible
well-developed juvenile rudiment, were sorted from the culture
and kept in a beaker of seawater until the start of exposure.
The experiment had a full two-factorial design with the first
factor being crude oil concentration and the second factor
being temperature. Crude oil concentration had six levels (0, 5,
10, 25, 50, and 100 μL L−1), and temperature had two levels
(ambient temperature at 13 °C and increased temperature at
18 °C). The increased temperature was chosen to reflect a
marine heat wave, such as the eastern Pacific experienced in
2014−2016.50 We had triplicates of all 12 treatments.
Exposures were conducted in 20 mL glass scintillation vials

with aluminum foil under the lid to prevent contact between
the water and the plastic lid. All glassware was acid-washed and
subsequently rinsed with reverse osmosis (RO) water prior to
the experiment. Exposure vials were prepared as follows: Vials
were almost filled with FSW and the desired volumes of the
crude oil suspension were added using a micropipet with a
glass tip. Then, vials were vigorously shaken before 10
presorted larvae were added using glass Pasteur pipettes.
Lastly, vials were topped up with FSW to reach a total volume
of 20 mL. All vials were wrapped in aluminum foil to exclude
any influence of light. The vials for all ambient temperature
treatments were placed in a sea table with flow-through of
seawater from the bay close to the OIMB. The vials for the
heat wave treatments were placed in a water bath in a
temperature-controlled room. Every 12 h, the vials were
inverted three times and water temperatures were recorded. At
the end of exposure after 72 h, the content of each vial were
poured into a small glass bowl. All larvae and juveniles were
transferred to watch glasses for easier observation. Each
individual was checked for the state of metamorphosis, signs of
malformations, and survival.
2.2.4. Data Analysis. All statistical analyses were done with

the software R (version 3.6.3).51 For each measured response
variable (i.e., percent metamorphosis, percent mortality, and
percent malformations), a two-factorial ANOVA was con-
ducted to check for main effects of the two independent
variables (crude oil concentration and temperature) as well as
their interaction. When no interaction was found, individual
one-way ANOVAs were performed for each temperature. In
the case of a significant finding, a post hoc test (Tukey’s HSD)
was conducted. The assumption of normality of the residuals
was tested with the Shapiro−Wilk W test, and the
homogeneity of variances was tested with the Fligner-Killeen
test. For mortality, we additionally calculated the relative
median lethal concentration LC50 (i.e., the concentration at
which 50% of individuals die) with the drc package.

3. RESULTS
3.1. Effects of Burnt Oil and Soot on Survival and

Metamorphosis of Gastropod Larvae. Mortality of larvae
in the first two exposure experiments was very low in all
treatments (0−8%) except for the burnt oil treatment in the
second experiment, where mortality increased to 19% (Figure
1c,d). However, there were no statistically significant differ-
ences in mortality among treatments in the first (Kruskal−
Wallis H test: χ2(2) = 2.047, p = 0.300) or second experiment
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Figure 2. Effect of burnt oil on survival (left panel) and metamorphosis (right panel) of gastropod (Rissoa sp.) veliger larvae after 3 days of
exposure to water collected from the mesocosms (10 days after burning) with or without the addition of food ad libitum (Isochrysis galbana, 50000
cells mL−1) (Ctrl= control without pollutants, Oil= burnt oil). Lowercase italic letters (a, b) indicated different statistical groups (p < 0.05).

Figure 3. Survival and metamorphosis of competent sand dollar (Dendraster excentricus) larvae after 3 days of exposure to crude oil. (a) Schematic
of the normal life cycle. (b) Effect of crude oil on metamorphosis (Amb = ambient temperature treatment (13 °C), HW = heat wave treatment (18
°C)). Data are presented as means (n = 3) with standard deviations. Lowercase italic letters (a, b, c) indicate different statistical groups (p < 0.05)
and refer to the color-matching temperature treatment. (c) Effect of crude oil on survival at ambient temperature (left panel) and in the heat wave
treatment (right panel).

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c05194
Environ. Sci. Technol. 2023, 57, 19304−19315

19308

https://pubs.acs.org/doi/10.1021/acs.est.3c05194?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c05194?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c05194?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c05194?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c05194?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c05194?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c05194?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c05194?fig=fig3&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c05194?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Kruskal−Wallis H test: χ2(2) = 5.793, p = 0.055). In the first
experiment (1 day after oil burning), 33% of larvae exposed to
burnt oil compounds had metamorphosed after 72 h, which
was 10 times higher than in the control (ANOVA: F(2,5) =
42.501, p = 0.001; Tukey’s HSD: p < 0.05) (Figure 1c). In the
second experiment (6 days after oil burning), the fraction of
metamorphosed larvae in the oil treatment was nine times
higher than in the control (ANOVA: F(2,6) = 198.379, p <
0.0001; Tukey’s HSD: p < 0.0001) and reached 87%. There
was no statistically significant difference in metamorphosis
between the control and the soot treatment in the two first
experiments (ANOVA: p > 0.05) (Figure 1c,d).
In the third experiment (10 days after oil burning), to test

the potential effect of food availability on metamorphosis, we
found larval mortality of 16−18% in the oil treatment, which
was significantly higher than the mortality in the control
(Kruskal−Wallis H test: χ2(3) = 8.781, p = 0.032). Both for
the oil and control treatments, there were no differences with
or without added food (Figure 2). Similar to the two first
experiments, metamorphosis increased up to 10 times when
larvae were exposed to burnt oil compounds compared to the
control (ANOVA: F(3,8) = 48.345, p <.0001) (Figure 2).
Again, the addition of food did not affect metamorphosis
(ANOVA: p > 0.05) (Figure 2).
The concentration and composition of PAHs detected in the

exposure solutions (control, soot, and burnt oil residue) used
in the gastropod larva experiment can be found in the
Supporting Information (Figure S1). The highest concen-
tration of PAHs was found in the water from the burnt oil
treatment. The concentration of PAHs decreased with time
after oil burning (1 > 6 > 10 d). Naphthalene, dibenzothio-
phene, phenanthrene, dibenzo[a,h]anthracene, benzo[a]-
pyrene, and fluorene were the most abundant PAHs in the
burnt oil exposure solution (Figure S1).
3.2. Effects of Crude Oil on Sand Dollar Larvae. The

sand dollar larvae in the control treatments barely showed
changes in the studied end points within the 3 days of the
experiment (Figures 3 and 4). In contrast, crude oil exposure

markedly affected metamorphosis, mortality, and malforma-
tions at all studied oil concentrations (Figures 3 and 4).
Exposure to crude oil led to a substantial increase in
metamorphosed juveniles at all concentrations and at both
temperatures (Figure 3). While only 3.3 and 0% of the larvae
had metamorphosed in the controls at ambient and increased
temperature, respectively, between 30.7 and 84.2% of the oil-
exposed larvae had undergone metamorphosis after 72 h
(Figure 3). Metamorphosis was highest (84.2%) at the lowest
crude oil concentration of 5 μL L−1 at ambient temperature
(Figure 3). From 10−100 μL L−1, there was a slight but
nonsignificant trend of decreasing levels of metamorphosis,
especially at increased temperature (Figure 3). Metamorphosis
was consistently higher at ambient temperature, and the
difference between temperature treatments was almost
significant (ANOVA: F = 4.69, p = 0.05).
While there was no mortality in the two controls, it

continuously increased with increasing crude oil concentration,
from 9.4 and 15% at 5 μL L−1 to 63.3 and 75.9% at 100 μL
L−1, at ambient and increased temperature, respectively
(Figure 3). There was a significant effect of temperature on
larval mortality, with consistently higher levels of mortality at
increased temperature (ANOVA: df = 1, F = 12.19, p = 0.002).
The LC50 value in the heat wave treatment was 31 μL L−1 in
comparison to 102 μL L−1 at ambient temperature.
We found malformations of larvae in all treatment groups

exposed to crude oil (Figure 4). These included regression of
soft tissues around the rods of the arms, complete regression of
arms, and a substantial decrease in size (Figure 4). No larvae in
the controls showed signs of malformations. The percentage of
larvae with malformations ranged from 15.8 to 43.3% at
ambient temperature and from 20 to 55.2% at increased
temperature (Figure 4). Malformations were generally higher
between 10 and 100 μL of crude oil L−1, in comparison to 5 μL
L−1, except for 25 μL L−1 at increased temperature (Figure 4).
In all but this treatment group, the level of malformations was
higher at increased temperature, although this difference was
not significant. There was no interaction between the factors

Figure 4. Development of competent sand dollar (Dendraster excentricus) larvae after 3 days of exposure to crude oil. (a) Fraction of larvae with
malformations (Amb = ambient temperature treatment (13 °C), HW = heat wave treatment (18 °C)). Data are presented as means (n = 3) with
standard deviations. Lowercase italic letters (a, b, c) indicate different statistical groups (p < 0.05) and refer to the color-matching temperature
treatment. (b−e) Images of larvae at the end of exposure: (b) competent larva that has not metamorphosed, (c) metamorphosed larva, and (d, e)
malformed larvae. Scale bar = 200 μm.
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“crude oil concentration” and “temperature” for any of the
studied end points (ANOVA: p > 0.05).
The concentration of total PAHs in the exposure oil

solutions ranged between 4.7 and 53.9 μg L−1 (Table S1).
Naphthalene, acenaphthylene, fluorene, and phenanthrene
were the main PAHs found in the crude oil exposure solution
used for the echinoderm larva test (Table S1).

4. DISCUSSION
Our results demonstrate that exposure to crude oil triggers
metamorphosis in marine invertebrates, indicating that
petroleum compounds can act as metamorphic inducers.
This discovery is groundbreaking since known metamorphosis-
inducing substances are typically chemicals from appropriate
substrata, microbial biofilms, or conspecifics (pheromones).
This is the first evidence that a pollutant of global concern can
have this effect on marine animals.
4.1. Crude Oil as an Exogenous Chemical Cue

Triggering Metamorphosis. Previous studies have pointed
out that certain pollutants (e.g., metals, phenols, and
petroleum hydrocarbons) can have an inhibitory effect on
metamorphosis in marine invertebrates52 and that the
settlement of some marine invertebrates is reduced in polluted
areas.53 However, we found that exposure to raw or burnt
crude oil can act as a trigger for metamorphosis in invertebrate
larvae. Metamorphic and settlement triggers are diverse and
commonly species-specific.15−20,54−56 Although there is solid
evidence that natural chemical cues are primary inducers for
metamorphosis in invertebrate larvae, the identification and
chemical characterization of the specific molecules acting as
metamorphic triggers are still developing.12,13 Identified
natural metamorphic inducers include microbial lipidic,
polysaccharide, or proteinogenic compounds from biofilms,13

degradation products from riboflavin (vitamin B2) such as the
lumichrome,57 and different metabolites such as purines.56

Crude oil contains hundreds of different chemical
compounds including organic (e.g., alkanes, cycloalkanes, and
polycyclic and heterocyclic aromatic hydrocarbons) and
inorganic substances (e.g., sulfides, metals). The concen-
trations of the individual PAHs in the exposure solutions of
burnt oil and soot were low (<20 ng L−1) since most PAHs are
destroyed after burning. The concentrations of PAHs in the
mesocosms decreased from day 1 to day 10 (Figure S1), likely
due to bacterial degradation, but metamorphosis in gastropod
larvae was consistently induced in all the experiments with
burnt oil even at the low concentrations of PAHs found in the
experiment with water collected on day 10 (Figure S1). Thus,
it is unclear if the measured PAHs were the main triggers of
metamorphosis or if other oil compounds present in the
exposure water induced this effect. Sulfides (e.g., H2S), natural
anaerobic degradation products of organic matter, induce
metamorphosis and settlement in the polychaete Capitella sp.58

Sulfides are also present in crude oil, but it is unknown if this
toxicant can act as a metamorphic inducer for other species not
adapted to live in sediments/habitats rich in sulfides. Some of
the chemically characterized natural metamorphic inducers like
lumichrome and corallinafuran contain aromatic groups in
their molecular structure, which could be mimicked by some
aromatic compounds in crude oil. However, since we found
crude oil to trigger metamorphosis in larvae from two different
phyla, the possibility that certain oil compounds mimic two
different natural specific metamorphic inducers seems
improbable. This could indicate that the oil induction of the

metamorphic pathway is rather unspecific, similar to the effect
of organic solvents.59,60 Pennington and Hadfield (1989)61

found 10 organic solvents to induce metamorphosis of
competent larvae of the nudibranch Phestilla sibogae. Based
on the diversity of solvents acting as artificial inducers, they
concluded that specific functional groups of the solvent
molecules were not required. Our two experiments taken
together show that the inducing compounds were present in
raw as well as burnt crude oil but not in the soot. We hope that
our findings stimulate future research to chemically identify if
and what specific petroleum compounds are the primary
metamorphic inducers for invertebrate larvae. This is
particularly relevant to evaluate if other petroleum products
(e.g., gasoline and other light distillates) could have the same
harmful sublethal effect on marine invertebrates.
4.2. Influence of Environmental Stressors on Meta-

morphosis: Oil-Triggered Metamorphosis as a Stress
Response in Marine Invertebrate Larvae? Metamorphosis
of benthic invertebrate larvae is particularly sensitive to
environmental changes/stressors, including pollution.52 Be-
sides specific chemical cues, stressful environmental conditions
can induce metamorphosis in some invertebrates.28,31,62,63

There is also the possibility that the presence of oil causes a
stress response that triggers changes in gene expression and
molecular processes in the metamorphosis pathway in marine
larvae.
Food limitation is an environmental stressor that stimulates

metamorphosis of the marine gastropod Crepidula fornicata.28

We did not find any effect of food availability on
metamorphosis in our studied gastropod larvae, which
indicates that the observed metamorphosis in the experimental
oil treatments was not caused by food limitation. Thermal
stress, in the form of a sudden increase in temperature (heat
shocks), also induces metamorphosis in some invertebrate
species, such as the hydroid Hydractinia echinata, the tunicate
Ciona intestinalis, and the gastropod C. fornicata.31,62 In
contrast, we found no induction of metamorphosis by
increased temperature in our studied echinoderm species but
rather a consistent pattern of lower metamorphosis in
comparison to that of the ambient temperature. This may be
a taxon-specific difference or related to the fact that the
increase in temperature (5 °C) was lower than those causing
metamorphosis in other invertebrate larvae,31,62 and our
exposure temperature was within the thermal tolerance limit
of D. excentricus.64 Although oil-triggered metamorphosis was
not significantly affected by the temperature, a higher
temperature increased the mortality caused by crude oil.
Synergistic effects of combined exposure to pollutants and
increased temperature have been reported for many marine
invertebrates.65 Here, this could be the result of the higher
bioavailability of toxic dissolved petroleum compounds since
the solubility of PAHs increases with temperature.66

Furthermore, higher temperatures increase the metabolic
rates of poikilothermic organisms, which results in a higher
energy expenditure.67 This may have led to less energy being
available for stress response mechanisms.
Any of these factors signal unfavorable conditions in the

water column, promoting larval metamorphosis to change
habitats and thereby increase the survival probability. Similarly,
toxicants like petroleum hydrocarbons can be sensed by
planktonic organisms such as copepods, which swim away to
avoid petroleum hydrocarbon patches.68 From an evolutionary
point of view, we hypothesize that the metamorphosis
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response of competent larvae to the presence of crude oil in
the water column may be a strategy to change the habitat. As
our results show, crude oil exposure has detrimental effects on
the development and survival of larvae. Thus, moving from the
polluted water column to the benthos could increase survival
probability, albeit with the trade-off of nonsubstrate selection.
4.3. Influence of Bacteria on Metamorphosis. A

growing body of literature shows that specific bacterial cues
can stimulate larval metamorphosis and settlement in different
invertebrate taxa.12,15,54,69−73 The characteristics of microbial
biofilms seem to have a decisive role in the metamorphosis of
some species,12,54,69,74 but the actual metamorphosis-signaling
cues associated with biofilm communities remain largely
unknown.54,71 Bacterial compounds stimulating metamorpho-
sis are multiple and diverse, including biofilm surface-bound
compounds such as protein-lipopolysaccharides, and stimula-
tory proteins injected into the larvae by certain bacteria.70−76

Among the different marine bacteria that can induce the
metamorphosis of larvae, species of Pseudoalteromonas (γ-
proteobacterium) has been shown to produce metamorphic
cues for several species.15,54,71 Interestingly, whereas some
marine bacteria are negatively affected by crude oil (e.g.,
SAR11), the growth of Pseudoalteromonas spp. is stimulated by
oil, becoming dominant in the microbial community of oil-
polluted water.77,78 In this study, competent gastropod larvae
were exposed to natural microbial communities from the water
collected in the mesocosms; thus, the exposure media
contained bacteria. In the case of the sand dollar larvae, the
natural seawater was filtered by 1 μm, which can reduce but

not completely avoid the presence of planktonic bacteria in the
exposure solutions. Therefore, there is a possibility that oil
stimulated certain bacteria related to metamorphosis activa-
tion, causing the observed effect indirectly. Future research on
the interactions among petrogenic compounds, bacteria, and
metamorphosis is needed to assess the influence of oil on
bacterially induced metamorphosis and to evaluate direct or
indirect mechanisms of oil-induced metamorphosis.
4.4. Is Crude Oil an Agonist “Endocrine-Disrupting

Chemical” (EDC) in Marine Invertebrates? Physiological
and molecular mechanisms underlying metamorphosis are
well-known for amphibians and insects79,80 but not fully
understood for marine invertebrates.81−83 Endocrine systems
in marine invertebrates are primarily composed of neuro-
endocrine components, except for crustaceans, which present
endocrine glands.84 Thyroid hormone receptors and adrener-
gic receptors were found to play a role in the induction/
regulation of metamorphosis in various marine invertebrate
larvae, and a number of inducing and inhibiting compounds
have been identified.85−90 Neurotransmitters are mediators
between exogenous metamorphic cues detected by sensory
organs (e.g., serotonergic cells in the apical organ of Aplysia
gastropod veliger) and subsequent metamorphic changes in
invertebrate larvae.86,91 The potential of chemical pollutants to
interfere with endocrine systems was raised several decades
ago,92 and EDCs have been identified mostly for vertebrates.84

Crude oil compounds like PAHs and their alkylated analogues
can cause steroidogenic alteration in vitro human cells, acting
as potential endocrine disruptors.93 However, the underlying

Figure 5. Schematic of the normal life cycle of gastropods with planktonic larvae (left side) and the potential impact of oil pollution on this process
(right side). After hatching, larvae swim in the plankton and disperse. Once they reach competence, they can react to chemical cues indicating
suitable settlement substrates, undergo metamorphosis, and settle. Oil pollution can trigger metamorphosis and settlement in the absence of
appropriate cues and result in settlement in unsuitable habitats.
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molecular mechanisms of metamorphosis activation and the
role of hormones or neurohormones in marine invertebrates
are still poorly understood. Our findings suggest that crude oil
may directly activate the chemical messengers involved in
signal transduction for metamorphosis or indirectly enhance
bacterially induced metamorphosis. The first case implies that
certain petrogenic compounds could act as agonist EDCs in
marine invertebrates, a hypothesis that requires further work at
the molecular level to be validated.
4.5. Ecological Implications. The application of remote

sensing to investigate oil pollution has demonstrated the
concerning current level of global chronic oiling in the oceans,
particularly in coastal areas.38,94 Based on our results, the
concentrations of crude oil that can induce metamorphosis in
invertebrate larvae can be found in coastal areas exposed to
chronic pollution and after accidental oil spills.95−99 For
instance, concentrations of up to 241 μg L−1 for total
petroleum hydrocarbons were detected in surface waters at
Shandong Peninsula (China)100 while concentrations of total
petroleum hydrocarbons in the highly industrialized Gulf of
Trieste, Italy reached 43.2 μg L−1.101 In both cases, this was
mainly attributed to oil pollution from shipping. The observed
oil exposure concentration causing the highest metamorphosis
induction in the echinoderm larvae experiment (5 μL L−1,
∼4.2 ppm) is also environmentally relevant considering the
legal upper limits for oil discharges from shipping effluents (15
ppm) and the oil extraction industry (30 ppm for “produced
water”).102−104 In our studied echinoderm larvae, a total PAH
concentration of 4.68 μg L−1 was detected in the exposure
solution of 5 μL of L−1 (Table S1). Although it is not clear
whether PAHs are the primary drivers of metamorphic
induction, the exposure PAH concentrations are also in the
range of concentrations found in the water column in coastal
areas.105−108 Therefore, there is a high risk of marine
invertebrate metamorphic induction by oil compounds in
coastal areas that are exposed to oil spills or chronic oiling.
As mentioned before, marine invertebrate larvae can detect

specific chemical cues that indicate favorable conditions for
settlement, “metamorphic triggers” (Figure 5). In the absence
of metamorphic triggers, competent larvae can delay
metamorphosis and continue dispersing; an adaptive strategy
that increases the likelihood of settlement in habitats suitable
for survival and reproduction.33,44,109 This has been demon-
strated for the studied echinoid species D. excentricus, which
can delay settlement until being exposed to chemical cues from
conspecific adults. This increases survival probability since the
reworking of sediments by adults reduces the occurrence of
predators of larvae and juveniles.34,110 Delay of metamorphosis
has also been observed in gastropods,33 and depending on the
species, gastropod larvae can detect cues related to appropriate
food for juveniles, their algal substrate, and/or conspecific cues
(Figure 5). In the presence of oil pollution, oil-induced
metamorphosis short-circuits this adaptive metamorphic delay,
reducing dispersal and preventing the selection of a suitable
habitat for settlement, with potentially severe consequences for
the survival of juveniles and recruitment (Figure 5). To
determine the potential scale of this effect, more research with
different taxa is urgently needed. The ecological consequences
of oil-induced metamorphosis are unknown, but it can be
surmised to negatively affect the recruitment success of marine
invertebrates and consequently marine biodiversity, partic-
ularly in coastal ecosystems.
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