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ABSTRACT 

A ROC curves estimation method is proposed, based on the nonparametric 

estimation of the distribution function. An optimal bandwidth expression based on 

the mean integrated squared error is estimated by means of a crossvalidation 

function. A simulation study is carried out and the methodology is applied to a set 

of patients data with diabetic diseases. 

l. INTRODUCTION 

Diseases, as a general rule, alter the standard values of severa} numeric 

variables. Thus, a CD4 lymphocytes depletion account may indicate a VIH 

infection and high basal glucose levels may suggest a diabetic illness. When a 

determined pathology diagnosis entails sorne risks to the patient or can be 

economically very costly, the variables presumably affected can be the basis of an 

alternative diagnosis. Thus, when certain pathology causes a decrease of the usual 

levels of certain variable, it can be possible to work on an alternative diagnosis 

tria!, which consists on a patient classification as sick or healthy according to 
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whether the variable measurement is lower or not that certain cut-off value C. The 

medica! practitioner will then choose that value of C whose sensibility and 

specificity is considered more acceptable. If the basic aim of a diagnosis trial 

consists on rejecting or not the disease in the patient, it would be essentially 

interesting that the test would have a high sensitivity even if that implies a high 

false positive coefficient too. The ROC curve gives the trial sensitivity as a 

function of the false positive coefficient. Each point of the curve will be 

associated to a cut-off value and therefore, it is enough to choose a point to fix the 

cut-off value, the false positive coefficient and the diagnosis trial sensibility. 

The ROC curves estimation basically depends on the estimation of the 

probability distributions considered in the cases and controls populations. These 

distributions are frequently estimated supposing the data are normally distributed 

or, since the data present long queues to the right, considering that the log

transformations of the data follow normal distributions. However, it is very 

unusual to make this type of transformations to reach normality in the usual 

practice. More general transformations as those of Box-Cox can be used but 

generally it is very difficult that the same transformation will lead to normality for 

both populations. On the other hand, when the number of data is scarce, the test to 

determínate the goodness of the fit does not really clarify if the data are normally 

distributed. 

An alternative methodology to estimate the ROC curve is based on the 

estimation of the probability distribution functions for the marker considered in 

the disease cases and controls groups by means of nonparametric methods. The 

density function estimation methodology for kernel estimates introduced by 

Rosenblatt (1956) is widely developed (Hlirdle, 1991; Cao et al., 1994). Azzalini 

(1981) considered the kernel estimation of the distribution function integrating a 

kernel estimate of the function density. Recently, Bowman et al. (1998) discussed 

a procedure to estimate the smoothing parameter or bandwidth. In this paper we 

will consider kernel estimates of the distribution function and to obtain therefore 

148 



©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7

an estimate of the ROC curves. Two log-normal distributions with specific 

parameters that correspond to the characteristic considered for both groups will be 

simulated. Graphically we will compare the theoretical ROC curve with the 

obtained by means of the proposed methodology and with the curve obtained 

under data normality hypothesis. 

2. ROC CURVES 

Let's considera population whose individuals can or not have certain illness 

for whose diagnosis we dispose of a numeric marker X. Let Fj(x) and Fz(x) be the 

probability distribution functions of that characteristic over the sick and healthy's 

populations respectively. Let's suppose that the disease produces a diminishing of 

the normal X values. The diagnosis criteria based on X will therefore consists on 

determining a cut-off value C such that a subject is diagnosed as sick when X~ C 

and as healthy otherwise. Then, the sensitivity and the positive false coefficients 

of the diagnosis trial are defined as F¡ ( C) and Fz ( C) respectively. Therefore, the 

established ROC curve is then defined as the graph that results from plotting the 

sensibility versus the false positive coefficient. In those cases where the disease 

produces a rise of the characteristic considered, the individual is diagnosed as 

being ill when the corresponding X value will be over the cut-off value C. In this 

case, the sensibility of the diagnosis trial is given by 1- F; ( C) and the positive 

false coefficient by 1 - F; ( C). The diagnostic power of the marker X can be 

measured as the area under the corresponding ROC curve. Obviously, areas close 

to one indicate a high diagnostic power, while values close to 0.5 or less show a 

poor diagnostic power. 

In what follows, it will be considered that the distributions F; and F; are 

absolutely continuous and therefore, have a density function that it will be 

represented by fi(x ) and fi(x) respectively. This supposes that the functions F; 

and F; are continuous and strictly increasing in their density functions supports. 
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Thus, the inverse function F'-z-1 gets defined over ]0,1[ . Let's also define 

F'-z-1(0) = sup{x; F;(x) =O} and F'-z-1(1) = inf{x;F'-z(x) = l} . 

If </J is the positive false coefficient and S the sensibility, it is easy to prove 

that the ROC curve corresponds to the graph of the function S(</J) = F¡ o F'-z-1(</J), 

</J E ]0,1[, which is obviously a continuous function. 

3. KERNEL ESTIMA TES OF THE DISTRIBUTION FUNCTION 

Let's suppose that F(x) is the probability distribution function of a random 

variable X and let X1, ••• ,Xn be a random sample of F(x). The kernel estímate of 

the distribution function F( x) is defined as: 

(1) 

where W is a distribution function and h the smoothing parameter or bandwidth. 

We call the function Wthe integrated kernel since its derivative, if there exists, is 

a kernel function in the ordinary sense. In this paper we consider integrated 

kernels W, such that the ordinary kernel K(x) = W'(x) is lipschitzian, of compact 

support, continuous and with a finite second order moment. 

In order to be able to define an optimal bandwidth for the distribution 

function of the kernel estimate (1), it should be first calculated the expressions for 

the bias and the variance of that estímate. 

Theorem l. Let's suppose that W(x) is derivable with W'(x) = K(x), K(x) 

verifying the conditions aforementioned and FE C2 • Then: 
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ii) var(fr,,(x;h))= F{x){l-F{x)) F'(x)µ,((wz).) h+o(h), h~O (2) 
n n 

The proof is deferred to appendix. 

If the function properties of the empirical distribution are compared with 

those of the estimate F,, ( x; h), we may observe that the later implies a bias of order 

h2 , though its variance is lower. 

We will then consideras optima! bandwidth ~. that which minimizes the 

mean integrated squared error, given by: 

MISE{h) = E{f {fr,,(x,h)-F(x)r dx J (3) 

which is equal to 

MISE{h) = f var(fr,,(x;h))dx + j {E[fr,,(x;h)]-F(x)r dx 

According to theorem 1, the asymptotically optima! bandwidth is given by: 

µ, w. { ( 2) }1/3 
(4) 

where llF"ll~ = J F"{x)2 dx. 

Since ~ is unknown, we use a crossvalidation method due to Bowman et 

al for their estimation. Let the crossvalidation function be given by: 
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1 n { A }2 cv{h)=;~J lco.->(x-X;)-F:-;(x,h) dx (5) 

where F_-;(x,h) denotes the kernel estimate evaluated at observation x, but 

constructed from the data with observation X; omitted. The optima! smoothing 

parameter ho is then estimated by hn, such that cv( hn} = rnjn cv( h) . 

A property of this approach follows by considering: 

1 n { }2 H{h)=cv(h)-;~ 110 ... >(x-X;)-F(x) dx (6) 

The new term does not involve h and so the crossvalidatory procedure is 

unaffected. lt is straightf orward to prove that: 

E[ H(h)] = e[J { fr,,_1(x,h)-F{x)}2
] (7) 

This equation suggests that H(h) might be a good approximation to MISE{h) . 

Bowman shows that under certain conditions, h)ho ~ 1 with probability 1 as 

n ~ oo, being ho the optima! bandwidth and hn the one that minimizes cv( h) . 

4. ROC CURVE ESTIMA TION 

Let X1,1, X1,2 , ••• , X1,n1 and X2,1, X2,2 , ••• , X2.ni be simple random samples of the 

.F¡{x) and f2{x) distributions respectively introduced in section 2. We consider for 

each distribution the estimate given in (1) 

A ( ) 1 ~ (x- x .. ) F;,nl x ; h¡ = - ,¿,,¡ w --'1 , i = 1,2 
n¡ J=I h¡ 

(8) 
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X 

where W(x) = J K(t)dt, and K(t) is a kernel function that verifies the properties 

given in section 3. Taking into account the properties of the integrated kernel 

W(x) , it is obvious that the function Íi'.i.,., (x;h.z) is strictly increasing in 

{ x; O < Íi'.i .,., ( x; 11.z) < 1} . We also define ¡;;~~ (O; 11.z) = sup{ x; Fz.,., ( x; 11.z) = O} and 

¡;;~;2 (1) = inf{x;Fz,n2 (x;h.z)=1} as in section 2. In this way, we estimate the ROC 

curves as: 

S(<P;h¡,hz) = Íi'i,n, 0 Pi~;2 (<P); tP E [0,1] (9) 

For each considered cut-off value C, the estimated sensibility of the 

diagnosis trial is Íi'i.n, ( C;h.z) and the estimated false positive coefficient is given by 

Íi'.i.,., ( C; 11.z) . 

The consistency of the kernel estimates of the distribution functions implies 

the consistency of the ROC curves estimation given by (9), in the sense of that, for 

each cutt-off C, Íi'i ,n, ( C, h )-7 F¡ ( C) and Íi'.i,n2 { C, h) -7 F; { C) , when 

min{ni ,n2}-7 oo . 

lt is well known that estimates as (1) produce bias, whose asymptotic 

expressions are given by (2). Then, the estimate ROC curve can accumulate the 

biases corresponding to both of the estimated distribution functions. Such biases 

can be approximate estimating f'(x) from the data as: 

]'(x)=-4 Í,K'(x-X;) 
n[ i=I [ 

(10) 

where K(x ) is a function kernel and 1 the corresponding bandwidth. According to 

(2), the expression for the estimated bias is ]'( x) · µ 2 ( K) · h2 /2. Thus, the 

estimation of the distribution function corrected by bias is: 
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A 2 
- A f'(x) · µ (K) · h 
F(x;h) = F(x;h)- ; (11) 

5. APPLICATIONS 

A simulation study is carried out in this section; the theoretical ROC curve is 

compared with the one obtained by means of the methodology based on the 

nonparametric estimation of the distribution functions; it is also compared with 

the one obtained supposing normality of the variables within each group. The 

ROC curve calculated by using the nonparametric method proposed for the 

diabetes diagnosis from the basal glucose determination is given too. For each 

group, we ha ve used the Epannnenikov kernel gi ven by K( t) = 3( 1- t 2 ) • l¡- i.!J ( t) / 4. 

5.1. Simulation study. Let's suppose that a marker X follows a probability 

distribution log-normal such that log(X) is N(2,l) in the sick group and N(3,1/2) 

in the healthy group. A random sample of size 60 has been simulated for each 

group. We have estimated the ROC curves by using the proposed method based 

on the nonparametric estimation of the distribution function. Figure 1 shows a 

simultaneous representation of the theoretical ROC curve, the one obtained by 

means of the method based on the nonparameric estimation of the distribution 

functions and finally, the one obtained under the normality assumptions. Figure 2 

shows the theoretical ROC curve jointly with the nonparametric estimation with 

and without correction by bias. 

5.2. Diabetes diagnosis. The diabetes diagnosis requires to make severa! trials, 

e.g. the preparation of a glucose metabolic curve. However, the determination of 

basal glucose can be used as a tria! to discard the disease. Therefore, we have 

made a ROC curve (figure 3) based on the measurement of the basal glucose in 67 

patients having a confirmed diagnosis of diabetes type 2 with 73 controls carried 

out at the Hospital Insular of Gran Canaria. The area under ROC curve is 0.7636. 
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Since the main purpose of the diagnosis tria! is to discard the disease, the tria! 

must have a high sensibility, in spite of the fact that in this case the false positive 

coefficient has to be high too. In order to obtain a 80% sensibility a very high false 

positive coefficient is required ( 41 % ). That produces a cut-off value C=97 ,64 

gram/dl and supposes that for a basal glucose lower than this value, the illness can 

be reasonably discarded. However, higher values would require to make 

complementary trials. Figure 3 provides the different sensibilities as a function of 

the chosen cut-off value C. Figure 4 shows the ROC curve corresponding to 

Glucose Tolerance Test (GTT). Fifty-one diabetics patients and the same amount 

of controls received the load of glucose, and then, its concentration in blood was 

measured. Afterwards, the area under the ROC curve is 0.9549, which it implies a 

higher diagnostic capacity. Both ROC curves have been estimated by using the 

bias correction given by F(x;h). 
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0,0 ,2 ,4 ,6 

False positive 

,8 1,0 

· NORMAL 

· Nonparametric -· True 

Figure 1. Simulation study. Estimated roe curve by the nonparametric method and 
under the hypothesis ofnormality. 

~ 
:o ·¡¡; 
e: 
Ql en 

without correction 

Correction by bias 

True 
o.o ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 1,0 

False positive 

Figure 2. Simulation study. Theoretical roe curve jointly with the nonparametric 
estimation with and without correction by bias. 
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Figure 3. Roe curve of basal glucose 
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Figure 4. Roe curve of GIT 

157 



©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7

BIBLIOGRAPHY 

Azzalini, A. (1981), "A note on the estimation of a distribution function and 

quantiles by a kernel method". Biometrika, 68, 326-328. 

Bowman, A., Hall, P. and Prvan, T. (1998), "Bandwidth selection for the 

smoothing of distribution functions". Biometrika, 85, 799-808. 

Cao, R., Cuevas, A. and González Manteiga, W. (1994), "A comparative 

study of several smoothing methods in density estimation". Computational. 

Statistics. and Data Analysis., 1, 153-176. 

Hardle, W. (1991), Smoothing Techniques. Springer-Verlag. 

Rosenblatt, M. (1956), "Remarks on sorne nonparametric estimates of a 

density function". Annals of Mathematical Statistics, 21, 832-837. 

APPENDIX 

Proof of theorem 1. 

A 1 n w(x-X.) Let F,,(x,h) =-}: --' . Then, 
ni=I h 

i) 

i;f A ] J (x-X)] -w(x-u) -~LF,,(x;h) = ~L W -h- = l -h- f(u)du = hlW(y)f(x-hy)dy = 

ooy oo oo oo 

h J J K(z)f(x-hy)dzdy = h J K(z)f f(x-hy)dydx = J K(z)F(x-hz)dz = 

F(x)+ F"(x)µ 2 (K) h2 +o(h2 ), for h~ O. 
2 

ii) 
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~ a ~ a 
LF(x-hy) ay (w2 )(y)dy = F(x)-h· f(x) Ly· dy (w2 )(y)dy+o(h), for 

In this way, 

~ a 
F(x)-F2 (x)-h · f(x) J y·-(W2 )(y)dy+o(h) 

- dy 

Finally, having in mind that var(F;,(x;h)) = ~var( w( x ~X) J the resultfollows. 
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