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Abstract 

Background Broodstock nutritional programming improves the offspring utilization of plant‑based diets in gilthead 
sea bream through changes in hepatic metabolism. Attention was initially focused on fatty acid desaturases, but it 
can involve a wide range of processes that remain largely unexplored. How all this can be driven by a different genetic 
background is hardly underlined, and the present study aimed to assess how broodstock nutrition affects differentially 
the transcriptome and genome‑wide DNA methylome of reference and genetically selected fish within the PRO‑
GENSA® selection program.

Results After the stimulus phase with a low fish oil diet, two offspring subsets of each genetic background received 
a control or a FUTURE‑based diet. This highlighted a different hepatic transcriptome (RNA‑seq) and genome‑wide 
DNA methylation (MBD‑seq) pattern depending on the genetic background. The number of differentially expressed 
transcripts following the challenge phase varied from 323 in reference fish to 2,009 in genetically selected fish. The 
number of discriminant transcripts, and associated enriched functions, were also markedly higher in selected fish. 
Moreover, correlation analysis depicted a hyper‑methylated and down‑regulated gene expression state in selected 
fish with the FUTURE diet, whereas the opposite pattern appeared in reference fish. After filtering for highly repre‑
sented functions in selected fish, 115 epigenetic markers were retrieved in this group. Among them, lipid metabolism 
genes (23) were the most reactive following ordering by fold‑change in expression, rendering a final list of 10 top 
markers with a key role on hepatic lipogenesis and fatty acid metabolism (cd36, pitpna, cidea, fasn, g6pd, lipt1, scd1a, 
acsbg2, acsl14, acsbg2).

Conclusions Gene expression profiles and methylation signatures were dependent on genetic background in our 
experimental model. Such assumption affected the magnitude, but also the type and direction of change. Thus, 
the resulting epigenetic clock of reference fish might depict an older phenotype with a lower methylation for the epi‑
genetically responsive genes with a negative methylation‑expression pattern. Therefore, epigenetic markers will be 
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specific of each genetic lineage, serving the broodstock programming in our selected fish to prevent and mitigate 
later in life the risk of hepatic steatosis through changes in hepatic lipogenesis and fatty acid metabolism.

Keywords Fish, Nutritional programming, Genetic background, Fish oil, Epigenetics, Transcriptomics, Lipid 
metabolism, Lipogenesis, DNA‑methylation, MBD‑seq

Background
Many studies in humans and animal models have dem-
onstrated that sub-optimal nutrition during pregnancy 
and neonatal stages induced metabolic changes that can 
manifest at the tissue, cellular and molecular levels, lead-
ing marked physiological consequences for the offspring 
[1, 2]. Indeed, nutritional stresses act on genes or gene 
pathways common to most insults (gatekeeper genes), 
and such knowledge has contributed to prevent diseases 
in humans [3] or improve performance in sheep [4] or 
beef cattle [5]. In fish, early nutritional programming also 
results in developmental adaptations [6–10], including 
the improved acceptance and utilization of plant-based 
diets in a typically marine fish such as gilthead sea bream 
[11–13]. Such nutritional intervention operates among 
other paths through changes in the offspring hepatic lipid 
metabolism, being attention initially focused on fatty acid 
desaturase 2 (Fads2) that shared a clear functional diver-
sification across fish species [14, 15]. Certainly, Fads2 
(Δ6-desaturase) catalyses the first and rate limiting step 
in the biosynthesis of n-3 long-chain polyunsaturated 
fatty acids (LC-PUFA) to convert α-linolenic acid (ALA, 
18:3n-3) into eicosapentaenoic acid (EPA, 20:5n-3). How-
ever, the loss of Fads1 (Δ5-desaturase) in marine fish 
blocks the availability of these animals to elongate and 
desaturate EPA until docosahexaenoic acid (DHA, 22:6n-
3). Alternatively, Fads2 of some marine herbivorous fish 
is able to produce DHA from EPA through the Δ4 desat-
uration pathway [16–19]. Such discovery highlighted 
that the fish biosynthetic capacity of n-3 LC-PUFA not 
only depends on the dichotomy between freshwater and 
marine fish species, but also on the trophic level [20].

Altogether, the above findings reinforce the role of 
Fads2 as a rate-limiting step in the biosynthesis of n-3 
LC-PUFA in marine fish [21, 22], and selective breed-
ing for enhanced broodstock fads2 expression improved 
the offspring utilization of plant-based diets (limited 
supply of n3-LC-PUFA) in gilthead sea bream  (Sparus 
aurata) [23]. Otherwise, de novo fatty acid biosynthesis 
(Δ9-pathway) offers the possibility to mitigate the signs of 
deficiencies in essential fatty acids through the increased 
production of monounsaturated fatty acids (oleic acid, 
18:1n-9) instead of EPA and DHA. Such adaptive feature 
will contribute to preserve the fatty acid unsaturation 
index of membrane phospholipids, and juveniles of gilt-
head sea bream fed semi-synthetic diets formulated to be 

deficient in n-3 LC-PUFA shared a marked up-regulated 
expression of the novo hepatic lipogenic genes, elongase 
6 (elovl6) and stearoyl-coenzyme A desaturase 1a (scd1a) 
[24]. However, the risk of hepatic steatosis cannot be 
underestimated with exaggerated or poorly regulated 
hepatic lipogenesis [25], and broodstock nutritional pro-
gramming with an enriched-ALA diet served to maintain 
regulated the enhanced expression of scd1a in the gilt-
head sea bream offspring. This thing resulted in a nega-
tive correlation between the hepatic scd1a expression 
and the DNA methylation level of several CpG sites of a 
CG island of the proximal promoter region that contains 
a PUFA responsive element [24]. All this supports the 
highly epigenetic regulated expression of scd1a in gilt-
head sea bream, though further research is needed when 
considering the extent to which such response might 
involve other processes, directly or indirectly related to 
lipid metabolism, and more importantly how all this can 
be driven by a different genetic background.

The aim of this study is to contribute to solve the 
gap of knowledge for the interplay between epigenetics 
and genetics in gilthead sea bream, combining massive 
gene expression analysis (RNA-seq) with genome-wide 
DNA methylation approaches, for which the gold-
standard technique is the whole genome bisulphite 
sequencing (WGBS). This precise method provides a 
single-base CpG resolution [26–28], but sequencing 
to a sufficient coverage can result economically unaf-
fordable. Reduced representation bisulphite sequenc-
ing is a cost-effective alternative [29, 30] that has been 
used in aquaculture for targeting the CG-rich genomic 
regions of a wide range of species, including Euro-
pean sea bass [31, 32], Atlantic salmon [33], rainbow 
trout [34], and Nile tilapia [35]. However, bisulphite 
conversion-based assays fail to differentiate between 
5-methylcytosine and other epigenetic modifications 
[36–38]. Instead, despite not allowing for a single-base 
CpG resolution, the methyl-binding domain sequenc-
ing (MBD-seq) offers an economical alternative for 
a large coverage of the CpG methylome [39–41] that 
approximates the sensitivity/specificity of WGBS [42]. 
Such approach was successfully employed in human 
and animal studies [43–46], including fish [47, 48] 
and it was applied herein to underscore how brood-
stock nutrition with low fish oil feed formulations was 
affected by selective breeding within the PROGENSA® 
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gilthead sea bream program, which selected for fast 
growth [49] and a low incidence of skeletal deformi-
ties [50], but also for changes in behaviour and swim-
ming performance [51, 52], and intestinal microbiota 
plasticity to cope with changes in diet composition 
[53–55].

Results
Fish performance
Data of fish performance are shown in Table  1. Initial 
body weight was similar in all animals, regardless of 
diet and genotype. Reference (REF) fish presented a sig-
nificantly lower final body weight (BW) compared to 
genetically selected (GS) fish (P < 0.001). Similarly, diet 
affected gilthead sea bream weight gain, presenting fish 
fed FUTURE diet lower final BW than fish fed control 
(CTRL) diet (P < 0.001) within the same genotype. At the 
end of the experimental period, as shown by the daily 
growth index (DGI), GS fish fed the CTRL diet grew sig-
nificantly (P < 0.05) better than the animals used for the 
rest of the treatments, whereas GS fish fed the FUTURE 
diet performed similarly to those REF fish fed the CTRL 
diet, and REF fish fed the FUTURE diet presented the 
lowest (P < 0.05) values. Statistical analysis revealed also a 
significant effect of genotype and diet on specific growth 
rate (SGR; P < 0.001). Additionally, either fish genotype 
or diet formula affected diet utilization, presenting GS 
gilthead sea bream better feed conversion ratio (FCR) 
than the REF animals (P < 0.001) as well as fish fed the 
CTRL diet showed lower FCR than fish fed FUTURE diet 
(P < 0.05).

Patterns of offspring gene expression
Illumina sequencing of offspring mRNA liver samples 
from crosses of REF or GS fish challenged with a CTRL or 
FUTURE diet generated ~ 2,008 million paired-end (PE) 
reads (2 × 150), with an average of ~ 83 million reads per 
sample (Additional file 1: Supplementary Table 1). After 
trimming and quality filtering, around 9% of all liver reads 
were discarded, and the remaining reads ranged between 
49 million (~ 7.35 Gb) and 106 million (~ 15.9 Gb) in all 
samples. Up to 92% of these pre-processed reads were 
mapped against the IATS-CSIC gilthead sea bream ref-
erence genome, which retrieved 46,545 expressed coding 
transcripts (94.8% of total predicted unique transcripts), 
corresponding to 20,177 unique descriptions (UD). Dif-
ferential gene expression analysis resulted in 10,859 
transcripts significantly changing among groups when 
One-way ANOVA (P < 0.05) was applied. The number 
of differentially expressed (DE) transcripts decreased 
to 2,958 with FDR-adjusted P < 0.05, being used this set 
of genes for initial comparisons among groups. Such 
approach yielded 2,009 DE transcripts (1324 UD) when 
comparing the diets (FUTURE vs CTRL) within the GS 
lineage, whereas the same comparison in REF fish only 
disclosed 323 DE transcripts (207 UD) (Fig.  1). On the 
other hand, similar results were found when compar-
ing genotypes (GS vs REF) within the CTRL-fed fish 
(406 DE, 263 UD) or within the animals receiving the 
FUTURE diet (372 DE, 233 UD). These findings indicate 
a strong interaction between nutritional programming 
and genetic background when matching the differential 
offspring transcriptional response to diet for a given gen-
otype, but not for a given diet and the achieved response 

Table 1 Growth and feed utilization parameters in genetically selected fish (GS) and reference fish (REF) fed either FUTURE or CTRL 
diets during the challenge phase

Values expressed in mean ± SD. (n = 4 tanks/diet/genotype). When the interaction GxD is significant, means bearing different superscript letters differ significantly
1 Body weight (BW)
2 Standard length (SL)
3 Condition factor (K) = [(weight)*100/(length)3]
4 Specific Growth Rate (SGR) = (Ln (final weight)—Ln (initial weight)) * 100/feeding period (days)
5 Feed Conversion Ratio (FCR) = (total feed fed/total weight gained)
6 Daily Growth Index (DGI) = [(final  weight1/3—initial  weight1/3) * 100 / number of days]

GS REF ANOVA P values

CTRL FUTURE CTRL FUTURE Genotype (G) Diet (D) GxD

Initial  BW1 (g) 12.54 ± 0.2 12.52 ± 0.6 12.5 ± 0.5 12.4 ± 0.3 0.954 0.963 0.921

Final  BW1 (g) 143.5 ± 5.4 139.9 ± 3.3 133.7 ± 4.1 123.7 ± 7.9 0.0001 0.0001 0.081

SL2 (cm) 18.7 ± 0.3 18.2 ± 0.4 18.2 ± 0.3 17.8 ± 0.3 0.621 0.125 0.078

K3 2.4 ± 0.1 2.2 ± 0.3 2.1 ± 0.1 2.0 ± 0.1 0.001 0.01 0.067

SGR4 1.62 ± 0.04 1.61 ± 0.02 1.58 ± 0.04 1.53 ± 0.05 0.0001 0.0001 0.056

FCR5 1.19 ± 0.1 1.17 ± 0.1 1.21 ± 0.2 1.32 ± 0.1 0.0001 0.02 0.061

DGI6 1.94 ± 0.1a 1.91 ± 0.0b 1.86 ± 0.1b 1.78 ± 0.1c 0.0001 0.02 0.01
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with REF and GS fish genotypes. As a validation proce-
dure, six genes covering a wide range of up- and down-
regulation between FUTURE and CTRL diets in GS fish 
were selected, and their fold-change values calculated 
using real-time PCR were quite consistent (r = 0.998) 
with those of the RNA-seq analysis (Additional file  2: 
Supplementary Table 2).

Discriminant and Gene Ontology analysis
To better explore the different nutritionally mediated 
response of the offspring with a different genetic back-
ground, a partial least squares-discriminant analysis 
(PLS-DA) was conducted with the data filtered by One-
Way ANOVA in GS fish fed CTRL or FUTURE diets, and 
REF fish fed CTRL or FUTURE diets (Fig. 2). The two dis-
criminant models were validated significantly for either 
GS fish (Additional file 3: Supplementary Fig. 1A) or REF 
fish (Additional file 3: Supplementary Fig. 1B), being all 
animals correctly classified in each group by hierarchical 
cluster analysis (Additional file 3: Supplementary Figs. 1D 
and E). However, the number of discriminant transcripts 
(VIP ≥ 1) was greater in GS fish than in REF fish (3,648 vs 
2,909). Indeed, the explained variance was similar in the 
two genetic groups of fish (R2X = 93%-99%), whereas the 
predicted variance was higher in GS fish (Q2 = 74%) than 
in REF fish (Q2 = 21%) (Fig. 2).

The over-representation analysis of the list of dis-
criminant transcripts discerned a larger number of 
enriched functions (Gene ontology—Biological process, 
GO-BP, unique terms) that was higher in GS fish (546) 
than in REF fish (242) (Additional file 4: Supplementary 
Tables  3A and B). For the simplification of the analysis, 
data were filtered for the enriched functions of upper lev-
els of GO-BP categories, reducing the numbers of terms 
to 185 in GS fish and 118 in REF fish (Figs. 2A and B). The 
resulting over-represented functions were clustered in 39 
supra-categories (GO-BP ancestors), and the different 
numbers of DE transcripts within each one are presented 
in Figs. 3A and C. In both GS and REF fish, the GO-BP 
supra-categories Localization and Response to stimulus 
showed the largest number of DE transcripts, although 
other relevant supra-categories, such as Lipid meta-
bolic process or N compound metabolic process were 
largely represented. Interestingly, most of these supra-
category transcripts (nearly 92%) were down-regulated 
by FUTURE diet in the offspring of challenged GS fish, 
whereas the opposite trend occurred in REF fish (nearly 
65% of all transcripts were up-regulated). Networks were 
also performed to show the associations among the dif-
ferent supra-categories of over-represented GO-BP 
terms, which in turn resulted in an extensive number of 
links in both GS (Fig. 3B) and REF fish (Fig. 3D).

Fig. 1 Differentially expressed (DE) transcripts in genetically selected fish (GS) and reference fish (REF) fed either FUTURE or CTRL diets 
during the challenge phase. Numbers indicate differentially expressed transcripts (FDR‑adjusted P < 0.05)
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Patterns of offspring DNA methylation
Using MBD-seq, ~ 750 million single-end (SE) reads 
(1 × 75), containing at least one methylated CpG, were 
obtained, with an average of ~ 31 million reads per 
sample (Additional file  1: Supplementary Table  1). 
After trimming and quality filtering, around 6% of all 
liver reads were discarded, and the remaining reads 
ranged between 22 million (~ 1.65  Gb) and 40.5 mil-
lion (~ 3 Gb) in all samples. Up to 84% of these pre-pro-
cessed reads were mapped against the CSIC gilthead sea 
bream reference genome (1.6  Gb), which was divided 
in 25-bp windows (the unit for calculating the level of 
methylation). Such analysis identified a total of ~ 10 M 
25-bp genomic regions that appeared to contain CG 
dinucleotides susceptible to be altered by methylation. 
These methylated regions spanned ~ 263 Mb of the total 
gilthead sea bream genome, and comprised ~ 13.6  M 
CpG (74.3% of the total 18.3 M CG in the gilthead sea 
bream genome).

Differential methylation studies detected a total 
of ~ 553,000 25-bp genomic regions changing (P < 0.05), 
at least, in one comparison within the four experimental 
groups. The normalized methylation values (rpkm, reads 
per kilo base per million mapped reads) of these differ-
entially methylated (DM) regions were used as input in 
discriminant analysis to assess the effect of nutritional 
programming and genetic background over DNA-meth-
ylation patterns. Unlike RNA-seq results, when both 
dietary groups were compared within each genetic back-
ground, the discriminant separation was not statistically 
significant (P > 0.05). Nonetheless, when the four groups 
were analysed together, the discriminant model was sta-
tistically validated (Additional file  3: Supplementary 
Fig.  1C), being 21 out of 24 fish correctly classified by 
hierarchical clustering analyses (Additional file 3: Supple-
mentary Fig. 1F). The resulting model showed percentage 
values of explained (R2X) and predicted (Q2) variance 
that remained above 60% and 38%, respectively (Fig. 4). 

Fig. 2 Scores plot of partial least‑squares discriminant analysis (PLS‑DA) of hepatic transcripts after the challenge phase with CTRL and FUTURE 
diets in GS (A) and REF (B) fish. RNA‑seq data in the analysis were normalized values of differentially expressed transcripts (One‑way ANOVA, 
P < 0.05). The number of discriminant transcripts (VIP ≥ 1; in grey), together with the filtered and enriched functions (GO‑BP; in purple) are shown 
at the bottom right of each plot
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Fig. 3 Bar plot depicting the results of an over‑representation test performed over the GO‑BP terms of the filtered transcripts for the GS (A) and REF 
(C) fish. These transcripts were classified in the different GO‑BP ancestors presented in the figures. The size of the bars represents the number 
of transcripts, which are up‑regulated (in black) or down‑regulated (in grey). Network layout representing the associations between the assigned 
GO‑BP ancestors according to their shared allocated genes in the GS (B) and REF (D) fish. Node size represents the number of transcripts and node 
colours, the representative name of GO‑BP ancestor. Edge width represents the number of shared genes between two supra‑categories. * indicates 
that the supra‑category appears in both GS and REF fish. Met., metabolic; Cel., cellular; Reg., regulation; Multicel. org., multicellular organismal
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When VIP threshold (VIP ≥ 1) was applied in the vali-
dated PLS-DA model, up to 223,154 25-bp DM genomic 
regions drove the separation between experimental 
groups. These DM regions of discriminant value were 
found to be located in the promoter/coding sequence of 
over 34,000 DM transcripts.

Differential gene expression and DNA methylation 
overlapping
When the previously mentioned discriminant DE and 
DM transcripts were matched, a total of 1,785 (1,592 
UD) and 1,548 (1,397 UD) transcripts were overlap-
ping in GS (Fig. 5A) and REF (Fig. 5B) fish, respectively. 
Functional network analysis of these overlapping genes 
of fish receiving FUTURE or CTRL diets displayed 195 
(854 transcripts; 751 UD; 4,975 DM regions) and 42 (383 
transcripts; 327 UD; 2,856 DM regions) different GO-BP 
terms in GS (Fig. 5A) and REF (Fig. 5B) fish, respectively 
(Additional file  4: Supplementary Tables  3C and D). 
Then, we kept with those DM regions that showed an 
opposite trend for DNA-methylation and expression (i.e., 
hyper-methylated regions with down-regulation of the 
matching transcript or vice versa), and after filtering for 
transcripts with at least 80% of their DM regions with a 
negative correlation, we displayed a total of 2,348 and 805 
DM regions in GS fish (Fig. 6A) and REF fish (Fig. 6C), 
respectively. Of note, DM regions corresponding to 
30 GO-BP ancestors were located in 264 (246 UD) and 
99 (96 UD) DE transcripts of GS (Fig. 6B) and REF fish 
(Fig. 6D), respectively. Most of these DM regions (nearly 
88%) were hyper-methylated in GS fish fed FUTURE diet 
compared to those receiving the CTRL diet, and subse-
quently their matching genes were down-regulated. Con-
versely, the opposite pattern occurred in REF fish, where 

around 66% of all DM regions were hypo-methylated in 
animals fed FUTURE diet vs those ingesting the CTRL 
diet. The distinct effect of diet depending on the genetic 
background seems to indicate again a clear interaction 
between genetic lineage and nutritional programming. 
The wide distribution of DM regions across introns 
(48%), exons (27.4%) and promoters (24.6%) is shown 
for GS and REF fish in Additional file 5: Supplementary 
Fig. 2.

Candidate offspring epigenetic markers
Among the 30 selected GO-BP ancestors, we filtered 
those (11) with over 85% of genes allocated to the 
enriched GO-BP terms of GS fish (Fig.  5A), and not to 
the enriched ones of the REF fish (Fig. 5B). For that, the 
top-five GO-BP ancestors ordered by the number of 
genes were Cell cycle, Viral process, Protein transport, 
Lipid metabolic process, and Cellular process (Fig.  7A). 
These path ancestors allocated 115 transcripts (106 UD) 
(Additional file  6: Supplementary Table  4), which were 
further ordered by their expression fold-change when 
comparing challenged FUTURE and CTRL dietary 
groups (Fig. 7B). As a result of this, Lipid metabolic pro-
cess showed the greatest percentage of genes within the 
first quartile (~ 40%), followed by Cell cycle (~ 25%). The 
rest of GO-BP ancestors (Protein transport, Cellular pro-
cess and Viral process) remained below 20%. Regarding 
the in-depth study of the 23 genes related to Lipid meta-
bolic process, the position of the DM regions and the 
number of CpGs are presented in Table 2 and Additional 
file  7: Supplementary Fig.  3. The genomic organization 
and number of position of DM CpGs was graphically 
represented for the top-ten genes (cd36, fatty acid trans-
locase; cidea, cell death-inducing DNA fragmentation 

Fig. 4 Scores plot of partial least‑squares discriminant analysis (PLS‑DA) of methylated regions in GS and REF fish fed the FUTURE (in red) 
or the CTRL (in black) diet after the challenge phase. MBD‑seq data were the normalized values of differentially methylated 25‑bp genomic regions 
(One‑way ANOVA, P < 0.05). Graphical representation of the goodness‑of‑fit of the PLS‑DA model is presented at the upper left of the plot
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factor; fasn, fatty acid synthase; g6pd, glucose-6-phos-
phate dehydrogenase; acsbg2, long-chain-fatty-acid-
CoA ligase; pitpna, phosphatidylinositol transfer protein 
alpha; acsbg2, long-chain-fatty-acid-CoA ligase; lipt1,  
lipoyltransferase; scd1a; acsl4, acyl-CoA synthetase 4) 
within the category of Lipid metabolic process (Fig.  8A). 
Within this top list, those transcripts with a DM region 
spotted in the promoter presented a higher average value of 

 Log2 fold-change in their expression (~ 2.5) than those with 
their DM regions in exon (~ 1.6) or intron (~ 1.5) genomic 
regions (Fig.  8B). When searched for enriched transcrip-
tion factor binding sites (TFBS), hepatocyte nuclear fac-
tor 3-beta (HNF-3) and transforming growth factor-beta 1 
(AP-1) appeared, but none of them were located within the 
DM regions of any of the 23 genes related to Lipid metabolic 
processes (Fig. 8A, Additional file 7: Supplementary Fig. 3).

Fig. 5 Venn diagrams showing the results of overlapping differentially methylated (DM) transcripts by MBD‑seq (One‑way ANOVA, P < 0.05, VIP ≥ 1) 
and differentially expressed (DE) transcripts by RNA‑seq (One‑way ANOVA, P < 0.05; VIP ≥ 1) following the challenge phase with FUTURE and CTRL 
diets in GS (A) and REF (B) fish. The numbers of unique gene descriptions corresponding to the overlapping genes are in blue. The numbers 
of enriched functions (GO‑BP terms, in green) and their unique gene descriptions (in red) are also presented
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Fig. 6 Correlation analysis between differentially methylated (DM) genomic regions and their corresponding transcripts (both as  log2 
fold change in rpkm values between FUTURE and CTRL‑fed fish) in GS (A) and REF (C) fish. Significance of correlation is shown. The results 
of an over‑representation test performed over the GO‑BP terms of filtered DM regions showing opposite trends for DNA methylation 
and the expression of the matching gene are also presented for GS (B) and REF (D) fish. The GO‑BP ancestors assigned to these selected transcripts 
are presented. The size of the bars represents the number of DM regions, which are hyper‑methylated (in black) or hypo‑methylated (in white).  
* indicates that the supra‑category appears in both GS and REF fish
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Discussion
Evidences showing a link between maternal and early life 
nutrition and epigenetics have been shown and reviewed 
by several authors in farmed fish [56, 57]. Hence, the 
transcriptional impact of epigenetic modifications has 
an effect on the organism’s phenotype that results in 
developmental adaptations that permanently change the 

structure, physiology and metabolism of affected ani-
mals during adult life [58]. Thus, it is well recognized 
that environmental regulation of economically impor-
tant aquaculture traits (e.g., growth, disease resistance, 
low oxygen and warmer temperature tolerance, etc.) 
is mediated, at least in part, at the level of epigenetic 
regulation, and such environment-induced epigenetic 

Fig. 7 Bar chart representing the top five GO‑BP supra‑categories of GS fish showing a negative correlation for at least the 80% of differentially 
methylated regions and their associated differentially expressed transcripts (A). Green colour indicates hyper‑methylation (FUTURE vs CTRL fed 
fish), whereas red means hypo‑methylation. List of all the genes represented in A are ordered by the value of  log2 fold‑change in gene expression, 
together with a bar chart with the percentage of genes falling within the first quartile of the mentioned list (considering the absolute value 
of the  log2 fold‑change) (B). In the ordered list, each colour represents a different supra‑category, being in blue the genes of the supra‑category 
Lipid metabolic process. The down‑regulated genes appear above the line on the left (indicated by a blue arrow) and the up‑regulated genes 
below (green arrow)
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Table 2 Differential expression  (log2 fold‑change FUTURE vs CTRL diet,  log2 FC (exp)) and location (scaffold and chromosome, 
chr) of the selected 23 genes (potential epigenetic markers) belonging to the supra‑category Lipid metabolic process and their 
corresponding putative differentially methylated (DM) regions. The genomic area (Feature: promoter, Prom, exon or intron) where 
these DM regions are positioned and their differential methylation  (log2 fold‑change FUTURE vs CTRL diet,  log2 FC (met)) are also 
shown

Gene Log2 FC (exp) Scaffold (chr) Position 
DM region

Feature Log2 FC (met) Nº CpG

Platelet glycoprotein 4 (cd36) 3.98 2479 51726‑51750 Prom ‑0.043 1

51751‑51775 Prom ‑0.043 2

63226‑63250 Exon ‑0.066 1

63251‑63275 Exon ‑0.066 3

63401‑63425 Exon ‑0.154 1

63426‑63450 Exon ‑0.154 1

63451‑63475 Exon ‑0.154 1

63476‑63500 Exon ‑0.154 1

63501‑63525 Exon ‑0.154 1

Cell death activator CIDE‑A (cidea) ‑3.34 2849 (chr1) 106101‑106125 Prom 0.262 1

Faty acid synthase (fasn) ‑2.05 3645 (chr20) 8587626‑8587650 Intron 1.452 1

Glucose‑6‑phosphate 1‑dehydrogenase (g6pd) ‑1.71 3626 (chr7) 5318751‑5318775 Exon 0.226 1

5318776‑5318800 Exon 0.127 1

5318801‑5318825 Exon 0.127 1

5318901‑5318925 Intron 0.291 1

5318926‑5318950 Exon / Intron 0.228 1

Long‑chain‑fatty‑acid‑CoA ligase ACSBG2‑like – 2 
(acsbg2)

‑1.65 3556 126776‑126800 Prom 0.710 1

126926‑126950 Prom 0.701 1

126951‑126975 Prom 0.701 1

126976‑127000 Prom 0.701 2

127001‑127025 Prom 0.701 2

Phosphatidylinositol transfer protein alpha isoform 
(pitpna)

‑1.44 3450 (chr17) 157751‑157775 Exon 1.767 1

163426‑163450 Exon 1.767 1

166901‑166925 Prom 0.053 3

167076‑167100 Prom 0.376 1

168076‑168100 Prom 0.070 2

168151‑168175 Prom 0.070 1

168176‑168200 Prom 0.060 1

168201‑168225 Prom 0.060 3

168226‑168250 Prom 0.060 2

168251‑168275 Prom 0.060 2

168276‑168300 Prom 0.060 3

168301‑168325 Prom 0.017 1

Long‑chain‑fatty‑acid‑CoA ligase ACSBG2‑like – 1 
(acsbg2)

‑1.40 3556 109101‑109125 Exon 1.174 1

109201‑109225 Intron 1.243 1

109226‑109250 Intron 1.243 1

110201‑110225 Exon 1.209 1

110251‑110275 Exon 1.209 1

110301‑110325 Exon /Intron 1.209 1

110351‑110375 Intron 1.209 1

Lipoyltransferase 1, mitocondrial (lipt1) ‑1.39 3028 167676‑167700 Exon 0.315 1

167701‑167725 Exon 0.362 1

Acyl‑CoA desaturase (scd1a) ‑1.33 3325 (chr15) 360376‑360400 Intron 0.712 1

Long‑chain acyl‑CoA synthetase 9, chloroplastic (acsl4) ‑1.29 3628 (chr18) 450476‑450500 Intron 0.588 1
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Table 2 (continued)

Gene Log2 FC (exp) Scaffold (chr) Position 
DM region

Feature Log2 FC (met) Nº CpG

Acetyl‑CoA carboxylase 1 (acac) ‑1.12 3342 (chr23) 36801‑36825 Intron 0.360 1

36876‑36900 Intron 0.360 3

36976‑37000 Exon / Intron 0.341 1

37001‑37025 Exon 0.341 2

37026‑37050 Exon 0.341 2

37076‑37100 Exon 0.341 1

37126‑37150 Intron 0.090 3

Methylsterol monooxygenase 1 (msmo1) ‑1.10 3027 30476‑30500 Prom 0.640 1

30526‑30550 Prom 0.640 1

30601‑30625 Prom 0.640 1

30626‑30650 Prom 0.640 1

Hydroxymethylglutaryl‑CoA synthase, cytoplasmic 
(hmgcs1)

‑1.05 3483 (chr15) 18201‑18225 Exon 2.807 1

18276‑18300 Intron 2.807 2

18301‑18325 Intron 2.807 1

ATP‑citrate synthase (acly) ‑0.99 3591 (chr20) 1499501‑1499525 Exon 0.148 1

1499551‑1499575 Exon 0.215 3

1499576‑1499600 Exon 0.215 2

1499601‑1499625 Exon 0.139 1

1499626‑1499650 Exon 0.139 2

1499651‑1499675 Exon 0.139 2

1499776‑1499800 Intron 0.645 1

1499826‑1499850 Exon /Intron 0.647 1

1499851‑1499875 Exon 0.706 2

Acetyl‑coenzyme A synthetase, cytoplasmic (acss2) ‑0.99 3644 (chr21) 558951‑558975 Intron 0.264 1

559001‑559025 Intron 0.213 1

559076‑559100 Intron 0.134 1

559101‑559125 Intron 0.134 1

559176‑559200 Intron 0.134 1

Phosphatidylinositol transfer protein beta isoform 
(pitpnb)

‑0.95 433 2201‑2225 Intron 0.171 1

Alkyldihydroxyacetonephosphate synthase, peroxisomal 
(agps)

‑0.89 3567 (chr9) 85801‑85825 Intron 0.555 2

85951‑85975 Intron 0.555 1

86026‑86050 Intron 0.555 2

86151‑86175 Intron 0.546 1

86176‑86200 Intron 0.546 1

N‑alpha‑acetyltransferase 40 (naa40) ‑0.87 3225 556751‑556775 Exon / Intron 1.192 2

556776‑556800 Exon 1.192 1

556801‑556825 Exon / Intron 1.192 1

Dolichyldiphosphatase 1 (dolpp1) ‑0.80 3620 1620326‑1620350 Intron 1.685 1

1620401‑1620425 Intron 1.605 1

1620451‑1620475 Intron 1.605 1

1620476‑1620500 Intron 1.605 1

1620501‑1620525 Intron 1.608 1

1620526‑1620550 Intron 1.608 1

Cytochrome b5 (cyb5) ‑0.79 3635 (chr4) 2932701‑2932725 Prom 0.227 1

2932801‑2932825 Prom 0.097 2
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changes appeared to be intergenerationally inherited, 
though evidences for transgenerational inheritance are 
still limited [59]. The fine interplay of genetics and epi-
genetics is thereby hardly underlying, though a recent 
study highlighted that the global hepatic methylome 
landscape and the expression level of DNA (de)methyl-
ation-related genes were differentially regulated in trout 
isogenic lines [60]. In the same line, we found herein 
that nutritional programming differentially affects the 
hepatic transcriptome and genome-wide DNA methyl-
ome of farmed gilthead sea bream depending on genetic 
background. Certainly, the offspring of GS fish within the 
PROGENSA® breeding program shared a better perfor-
mance than those of REF animals during the challenge 
phase, and differences observed between fish fed with the 
CTRL or FUTURE-based diet seemed to be lower in GS 
lineage. This nutritional challenge was in turn associated 
with a great impact on the number of genes and func-
tions potentially altered by epigenetic mechanisms, espe-
cially in GS animals. Such statement about the latter fish 
was especially evident for the GO-BP term Lipid meta-
bolic process after the application of different filters that 
ultimately reflected in a consistent manner the offspring 
epigenetic-mediated changes on hepatic lipogenesis and 
fatty acid metabolism. This, together with the observa-
tion that, during the challenging phase, the number of 
DE genes and the associated GO-BP terms was larger in 
GS fish than in REF fish highly supported an improved 
metabolic plasticity of GS lineage (Figs. 1, 2 and 3), which 
was first evidenced herein by a wide-liver transcriptome 
response. Likewise, previous microbiota studies also sup-
ported an improved resilience and functional plasticity of 
GS fish that can become especially relevant in a scenario 
of climate change. Certainly, using metatranscriptomic 
and inferred-metagenome approaches, we found that 
the adherent intestinal microbiota of GS fish may change 

their function and activity instead of their composition to 
cope with changes in diet composition. Such statement 
was first evidenced at harvest with the offspring of F1/F2 
crosses farmed in a Mediterranean experimental facility 
[53, 54], and thereafter this has been confirmed on a tem-
poral basis through the production cycle of F3/F4 crosses 
at Canary Islands [55].

Concerning DNA methylation, a large body of evidence 
in a wide range of fish links changes in epigenetic sig-
natures with a different genetic background [59, 61, 62]. 
This can also apply to gilthead sea bream and accordingly, 
in the present study, important differences in the methyl-
ation patterns were found when comparisons were made 
between GS and REF fish (Fig.  4). Moreover, when DM 
regions were matched with DE transcripts, a remarkable 
number of DM regions corresponding to DE transcripts 
were found in response to nutritional programming 
in either GS or REF animals (Fig.  5), which is in agree-
ment with previous studies in the same [24, 63] or other 
fish species [8, 10, 64]. However, the number of GO-BP 
functions associated to DE transcripts whose expression 
could be potentially altered by different DNA methyla-
tion patterns was over 4-fold larger in GS than in REF 
fish (Fig. 5), which might also imply a greater functional 
plasticity of the GS linage in terms of epigenetic regula-
tory mechanisms.

Methylated CpGs are usually associated with the 
silencing of gene expression [65], so we retained those 
transcripts showing negative correlation between DNA 
methylation and their expression level in FUTURE 
vs. CTRL-fed animals within each fish lineage (Fig.  6). 
Interestingly, most of these DM regions (approximately 
88% of all) were hyper-methylated in GS fish receiv-
ing the FUTURE diet, whereas in REF animals most of 
them (approximately 66% of all) were hypo-methylated. 
These percentages of hyper and hypo-methylation were 

Table 2 (continued)

Gene Log2 FC (exp) Scaffold (chr) Position 
DM region

Feature Log2 FC (met) Nº CpG

Glycerol‑3‑phosphate acyltransferase 1, mitocondrial 
(gpam)

‑0.64 3591 (chr20) 1271726‑1271750 Intron 0.870 1

1271751‑1271775 Exon / Intron 0.870 1

1271776‑1271800 Exon 0.870 2

1271826‑1271850 Exon 0.870 1

1282876‑1282900 Intron 1.253 1

1282901‑1282925 Intron 1.253 1

1282951‑1282975 Intron 1.253 1

Peroxisome proliferator‑activated receptor Alpha (ppara) 0.62 3594 (chr14) 2131726‑2131750 Prom ‑0.360 2

2151576‑2151600 Intron ‑0.405 1

Microsomal glutathione S‑transferase 3 (mgst3) ‑0.51 3644 (chr21) 7756501‑7756525 Prom 0.524 2

7756526‑7756550 Prom 0.475 3
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similar to those calculated for down (almost 92%) or up-
regulated (nearly 65%) DE transcripts in the offspring of 
GS and REF fish during the challenge phase (Fig. 3). Such 
analogy further supports the relevance of DNA methyla-
tion in the regulation of gene expression in fish and in our 
experimental model in particular [9]. Otherwise, like in 

humans and other animal models [66, 67], a global DNA 
hypo-methylation and site-specific hyper-methylation 
could be associated with aging in marine fish [68, 69]. We 
may then speculate that changes in the epigenetic clock 
of REF animals might occur, reflecting perhaps an aging 
phenotype with an overall impairment of performance 

Fig. 8 Genomic organization of the 10 top genes belonging to the GO‑BP Lipid metabolic process with the greatest absolute change in gene 
expression during the challenge phase in genetically selected fish (A). Red boxes indicate the location of the differentially methylated regions. The 
number of CpGs within each region is shown below the gene representation and the coloured squares refer to the presence of transcription factor 
binding sites (green for AP‑1 and blue for HNF‑3). Bar chart representing the average absolute value of  log2 fold‑change in gene expression (FUTURE 
vs CTRL) for the genes shown in A whose differentially methylated regions appear in promoter, exon or intron genomic areas (B)
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that affects among other traits, growth, swimming behav-
iour and the incidence of skeletal deformities [49–52]. All 
this reinforces the role of differentially DNA methylation 
patterns as key epigenetic markers, and after applying 
stringent filters focused on the differential response of GS 
fish, up to 23 genes with the GO-BP term Lipid metabolic 
process were retained as powerful epigenetic markers 
of early nutritional programming of hepatic metabo-
lism with FUTURE-based diets. An initial prospect of 
DM regions revealed their wide distribution across the 
genome, but it is usually believed that differentially meth-
ylated CpG sites in the promoter region exert a stronger 
regulatory effect upon gene expression [70]. Accordingly, 
when responsive genes related to lipid metabolism were 
ordered by fold-change in expression, the top 10 genes 
showed a higher concentration of differentially methyl-
ated CpG sites in their promoter region (Fig. 8B). None-
theless, it should be born in mind that the relationship of 
the epigenetic modifications with gene expression seems 
to be far more complex than initially thought [71], and 
regulatory DM regions in areas different to promoters 
have been reported across all vertebrate species [31, 72, 73].

Regarding in-depth the list of the top 10 candidate epi-
genetic markers, scd1a was among the selected genes. 
This gene encodes for the stearoyl-CoA desaturase, which 
has a role in the synthesis of 18C and 16C monounsatu-
rated fatty acids (oleic acid and palmitoleic acid) from 
stearoyl-CoA and palmitoyl-CoA, respectively [74]. In a 
previous gilthead sea bream study, a reduced expression 
of scd1a was concurrent with a higher DNA methylation 
level in the gilthead sea bream offspring of parents fed 
an ALA-enriched diet with a limited supply of n-3 LC-
PUFA [24]. In particular, that regulation was associated 
to an increased methylation at a regulatory region in the 
proximal scd1a promoter, a genomic area rich in hypo-
methylated CGI [75]. Conversely, in the present study a 
differentially methylated cytosine was found in the sec-
ond intron instead of the promoter region (Fig.  8A). It 
can be argued that fish and experimental conditions are 
not the same in this and the previous study, but impor-
tantly Perera et  al. [24] focused on CGI of the proxi-
mal promoter that mostly becomes hypo-methylated, 
especially in the case of genes with a constitutive high 
expression level [76]. By contrast, we used herein a wide-
genome approach (MBD-seq) that primes the recogni-
tion of differentially methylated CpG sites on methylated 
genomic regions [41]. In this regard, the no coincidence 
of DM regions in this and the previous [24] study could 
be mainly attributed to the complementarity of method-
ologies rather than to the discordance of results.

Besides scd1a, other candidate epigenetic markers are 
the g6pd gene that encodes for the glucose-6-phosphate 
dehydrogenase, a major regulatory enzyme involved in 

the generation of NADPH, which is required by the fasn 
for catalysing all the reaction steps involved in the con-
version of acetyl-CoA and malonyl-CoA to palmitate 
[77, 78]. Other important lipogenic enzyme is lipt1, a 
lipoyltransferase that is required for 2-ketoacid dehydro-
genase function and mitochondrial fatty acid synthesis 
[79]. The relative contribution of all these genes, in addi-
tion to that of scd1a, on the resulting lipid metabolism 
phenotype remains elusive, but all of them showed sig-
nificantly hyper-methylated CpG sites with a concurrent 
down-regulated expression in the offspring of GS fish fed 
the FUTURE diet. Similar DNA-methylation and gene 
expression patterns were found for cidea and pitpna. The 
former is a key landmark of apoptosis that plays a crucial 
role in lipid and energy metabolism including lipolysis, 
lipid oxidation and lipid droplet formation, resulting its 
low expression in a reduced accumulation of lipid depots 
[80]. Likewise, the pitpna gene encodes for a lipid-bind-
ing protein that catalyzes the transfer of phosphatidylino-
sitol and phosphatidylcholine from the Golgi apparatus 
to the endoplasmic reticulum [81], and its up-regulated 
expression in zebrafish is concurrent with signs of hepatic 
steatosis [82]. Overall, this gene expression and epige-
netic down-regulated pattern would drive the hepatic 
lipid metabolism towards reduced hepatic fatty acid bio-
synthesis and lipid storage, which will act limiting the 
lipogenic pathway in response to a low fish oil diet dur-
ing the challenge phase [24]. The fact that this outcome 
appeared in GS animals is consistent with a recent study 
where the expression of several hepatic gene markers of 
lipid metabolism, including scd1a, were down-regulated 
in gilthead sea bream differentially selected for improved 
feed conversion ratio, suggesting that more efficient fish 
are also likely to present lowered hepatic lipogenesis and 
fat deposition rates [83].

Acyl-CoA synthetases, encoded by acsl4 and acsbg2 
genes, were also identified as robust epigenetic mark-
ers of nutritional programming in our model of GS fish. 
These genes encode for enzymes catalysing the conver-
sion of long-chain fatty acids to their active form acyl-
CoA for both synthesis of cellular lipids and degradation 
via β-oxidation. The Acsl4 enzyme shows preference for 
arachidonic acid and EPA as substrates [84], whereas the 
latter has increased ability for oleic acid and linoleic acid 
[85]. We may then speculate that, in our experimental 
conditions, with a low fish oil diet, the enhanced DNA 
methylation and down-regulated expression of acsl4 
and acsbg2 genes will serve to limit and preserve the 
use of unsaturated fatty acids for vital functions of the 
organism. This would be consistent with the idea of an 
enhanced mobilization of LC-PUFA from liver to other 
tissues in response to similar attempts of nutritional 
programming in the same species [23]. Lastly, among 
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the 10 top selected genes, the only one showing hypo-
methylation and up-regulation (FUTURE vs CTRL) was 
cd36, whose encoded protein is an important fatty acid 
transporter associated with long-chain fatty acid trans-
membrane uptake [86–88]. This would favour the uptake 
of available fatty acids, which would be compatible with 
the described down-regulation of genes related to lipo-
genesis and hepatic fat storage. Accordingly, Turkmen 
et  al. [13] allowed that early nutritional programming 
with linseed oil-rich diets reduced the risk of hepatic ste-
atosis in gilthead sea bream. Overall, all this agrees with 
the initial statement that the epigenetic regulation of 
gene expression due to nutritional programming works 
towards a balanced physiological response of the animals 
by means of precluding an over-expression of specific 
genes that might result counterproductive in a changing 
environment [24]. Likewise, experimental evidences in 
salmon indicated that this general view not only applies 
to nutritional programming, but also to DNA methyla-
tion dynamics of fish challenged with high temperature 
and moderate hypoxia in a context of global warm [76]. 
Whether those induced epigenetic marks (mediating the 
response to nutritional programming) might be transmit-
ted over generations cannot be assessed in this study and 
further research about their transgenerational inherit-
ance needs to be addressed for its application in aquacul-
ture practice.

Conclusions
Gene expression profiles and DNA methylation signa-
tures following nutritional programming were clearly 
dependent on genetic background in our experimen-
tal model. Such assumption affected the magnitude, but 
also the type and direction of change when comparing 
GS and REF fish. Accordingly, the resulting epigenetic 
clock of REF fish might depict an older phenotype with 
a lower DNA methylation state of DE transcripts dur-
ing the challenging phase with the FUTURE-based 
diet formulation. Therefore, attempts to search and 
validate robust epigenetic markers will be specific of 
each lineage, and focusing on GS fish we successively 
applied different filters summarized in Fig.  9, which 
allows us to reduce the search to 115 candidate epige-
netic markers. However, genes with the GO-BP term 
Lipid metabolism were markedly reordered after filter-
ing by fold-changes in expression. This rendered a final 
list of top 10 epigenetic markers ordered by the magni-
tude of response (cd36 > cidea > fasn > g6pd > acbsg2 > pit-
pna > acsbg2 > lipt1 > scd1a > acsl4), which reinforces the 
key role of maintaining regulated hepatic lipogenesis and 
fatty acid metabolism when precluding the over-expres-
sion of specific genes that might result counterproductive 
in a changing environment.

Methods
Ethics statement
All procedures of animal rearing and sampling were 
carried out according to European animal direc-
tives (2010/63/EU) and Spanish laws (Royal Decree 
RD53/2013) for the protection of animals used in sci-
entific experiments. The Bioethical Committee of the 
University of Las Palmas de Gran Canaria approved all 
the protocols used in the present study (approval no. 
OEBA_ULPGC_26/2019).

Broodstock crosses
A population of 6,122 adult fish from the Canary Islands 
at the  3rd generation of National Breeding Program 
(PROGENSA®) were evaluated for growth. The esti-
mated breeding values (EBV, expressed as g of whole 
body) ranged between -159.14 for reference fish (REF) 
and + 223.18 for the selected fish (GS) with an average 
value of 8.59 and a standard deviation value of 52.84. 
A subset of 196 fish (98 fish per broodstock) was then 
selected as breeders with values for the EBV varying from 
-25.95 in the group of REF fish to + 39.68 in the group 
of GS fish, comprising almost the 47% of the evaluated 
population.

Diets and experimental design
Two experimental, with a varying granule size and com-
position, and the broodstock diets were employed in 
this study. The control diet (CTRL) contained fish meal 
(15%) as the main protein source. The alternative diet 
(FUTURE) was half-reduced in fish meal (7.5%). Fish oil 
was added at a relatively high level (5.7–7.6%) in CTRL 
diet, whereas the FUTURE diet was completely devoid 
of fish oil. Ingredients and composition are presented 
in Tables 3 and 4. Gilthead sea bream brood fish were 
used in this study, belonging to fish genetically selected 
for high growth (GS) or to Reference fish (REF) within 
the PROGENSA® selection program. Briefly, both 
groups, GS and REF, were kept in 1,000 L tanks in a 
flow-through system with filtered seawater, strong aera-
tion, natural photoperiod and temperature conditions 
in Canary Islands latitude (27º 59’ N; 15º 22’ W) in the 
experimental facilities of IU-ECOAQUA (University 
of Las Palmas de Gran Canaria, Spain). All broodstock 
animals were fed a low fish oil diet for several months 
prior to the spawning season (stimulus phase; Fig. 10). 
Ingredients and composition of the broodstock diet 
are given in Additional file  8: Supplementary Table  5. 
Eggs were collected at spawning from the two brood-
stocks and the offsprings were reared under standard 
conditions for approximately 5  months (intermediate 
phase). For further details on the broodstock diet and 
the spawning quality please see Ferosekhan et  al. [89]. 
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Fig. 9 Chart representing the filters and criteria applied for matching wide‑transcriptomics (RNA‑seq) and wide‑genomic DNA methylation 
(MBD‑seq) approaches for recording robust epigenetic markers of special relevance to evaluate the success of nutritional programming 
in genetically selected (GS) gilthead sea bream within the PROGENSA® program. For the 10 top genes identified as candidate markers, blue colour 
indicates down‑regulation in GS fish challenged with the FUTURE diet, whereas green refers to up‑regulation
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Then, 1,600 fish (approximately 12  g weight) from the 
two broodstock groups (800 fish per genotype) were 
distributed in 24 500 L tanks and fed (6 days per week) 
either the FUTURE or the CTRL diet twice a day (08:00 
and  14:00  h) for approximately 6  months (challenge 
phase; Fig. 10). At the end of the trial, 24 h-fasted juve-
nile fish (6 per diet) were anaesthetized using an over-
dose of natural clove oil. Livers were rapidly excised, 
frozen in liquid nitrogen and stored at − 80  °C until 
RNA and DNA extraction for analyses of gene expres-
sion and DNA methylation, respectively.

DNA and RNA Extraction
Liver DNA was extracted using the Quick-DNA™ Mini-
prep Plus Kit (Zymo Research, Irvine, CA, USA) following 

the manufacturer’s instructions. The quantity and quality 
of DNA were assessed by a NanoDrop 2000c Spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA), 
and DNA integrity was assessed in 1% agarose gels. Total 
RNA (70–100 μg) from liver was extracted with the Mag-
MAX™-96 Total RNA Isolation Kit (Applied Biosystems, 
Foster City, CA, United States). The RNA concentration 
and purity was determined using a NanoDrop 2000c 
Spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA). Quality and integrity of the isolated RNA 
were checked on an Agilent Bioanalyzer 2100 total RNA 
Nano series II chip (Agilent, Amstelveen, Netherlands), 
yielding RNA integrity numbers (RINs) between 8 and 
10. Samples were stored at -80 ºC until DNA and RNA 
sequencing.

DNA and RNA Illumina sequencing
For the methyl-CpG-binding domain sequencing (MBD-
seq) analysis, 300  ng of DNA were fragmented to 200–
550 bp using the methylation-insensitive restriction 
enzyme MseI (New England Biolabs, United States), 
which recognizes genomic T↓TAA sites, typically found 

Table 3 Ingredients and proximate composition of the 
experimental diets (control, CTRL, and FUTURE) with different 
pellet sizes (1.8 and 3 mm)

Yttrium premix: 0.1%
a Soya bean meal: CJ Selecta S.A (Brasil)
b Faba beans: Cefetra BV (The Netherlands)
c Soya protein concentrate: CJ Selecta S.A (Brasil)
d Fish oil: Copeinca, S. A. (Perú)
e Fish meal: Norsildmel AS (Norway)
f Mineral and Vitamin premix: Trouw Nutrition (The Netherlands)
g Poultry meal: Sonac (Belgium)
h Poultry oil: Sonac (Belgium)
i DHA: Veramaris (Evonik)

Ingredients (%): CTRL-1.8 FUTURE-1.8 CTRL-3 FUTURE-3

Corn gluten 7.95 4 5 5

Hi Pro Soy bean  meala 6.5 9.29 6 5.08

Wheat gluten 17.86 18.34 14.90 14.44

Faba bean  dehulledb 8 8 8 8

Wheat 12.0 11.04 19.01 19.0

Soy protein 
 concentratec

20 20 17 17

Fish  oild 5.75 6.71

Fish  meale 15 7.5 15 7.5

Rapeseed oil 3.79 4.65 5.16 6.52

Phosphate 0.75 0.35 0.82 0.44

Vitamin & mineral  mixf 0.3 0.3 0.3 0.3

Poultry  mealg 10 10

Poultry  oilh 2.21 2.1

DHA  oili 2.22 2.53

Lecithin 2 2 2 2

Proximate composition
 Dry matter 93.0 93.0 93.0 93.0

 Moisture 7.0 7.0 7.0 7.0

 Crude protein 48.3 48.7 43.0 43.5

 Crude fat 16.0 16.0 18.0 18.0

 Ash 5.5 5.5 5.3 5.3

Table 4 Fatty acid composition (% of Total Fatty Acids—TFA) of 
the experimental diets (control, CTRL, and FUTURE)

n.d. not determined, PUFA polyunsaturated fatty acids

Fatty acid CTRL FUTURE Fatty acid CTRL FUTURE
14:0 2.67 2.27 20:0 0.48 0.43

14:1n-5 n.d 0.03 20:1n-11 0.30 0.33

14:1n-7 0.07 0.06 20:1n-9 3.93 3.32

15:0 0.22 0.22 20:1n-7 0.10 0.08

16:0 10.99 10.97 20:2n-6 0.22 0.19

16:1n-7 2.52 2.21 20:3n-9 n.d 0.02

16:2n-4 0.29 0.20 20:3n-6 0.04 0.03

16:4n-1 0.36 0.22 20:4n-6 0.14 0.15

18:0 2.25 1.99 20:3n-3 0.07 0.06

18:1n-9 32.94 35.02 20:4n-3 0.21 0.20

18:1n-7 2.34 2.44 20:5n-3 3.91 3.77

18:1n-5 0.11 0.12 22:0 0.62 0.26

18:2n-6 16.84 17.97 22:1n-11 5.44 4.65

18:2n-4 0.05 0.05 22:1n-9 0.96 0.42

18: 3n-6 0.04 0.03 22:1n-7 0.06 0.05

18:3n-3 4.93 5.27 22:5n-3 0.33 0.32

18:4n-3 1.56 1.26 22:5n-6 0.07 0.07

18:4n-1 0.05 0.04 22:6n-3 4.33 4.71

CTRL FUTURE
∑ Saturated 17.47 16.32

∑ Monounsaturated 49.13 49.11

∑ n-3 15.46 15.71

∑ n-6 17.20 18.35

∑ n-3 PUFA 8.96 9.18

n-3/n-6 0.90 0.86
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outside of CGIs. The enzyme action and inactivation 
temperatures, as well as its actuation times and con-
centration were fixed according to manufacturer’s indi-
cations. Products were obtained using AMPure beads 
and checked and quantified with Picogreen (Invitrogen, 
Carlsbad, United Stated). Fragmented DNA was then 
submitted to methylation enrichment using the Methyl-
Collector™ Ultra kit (Active Motif, Carlsbad, CA, United 
States), following the instructions. Briefly, methylated 
DNA was captured from 75  ng of fragmented DNA via 
binding to the methyl-CpG binding domain of the MBD2 
protein. Illumina MBD-seq libraries were prepared from 
15  ng of methylated DNA fragments using the NEB-
Next® Ultra™ II DNA Library Prep Kit (Illumina Inc. 
San Diego, CA, USA) according to the manufacturer’s 
instructions. All libraries were sequenced on an Illumina 
NovaSeq 6000 sequencer as a 1 × 75 nucleotides SE read 
format, according to the manufacturer’s protocol. Raw 
sequenced data were deposited in the Sequence Read 
Archive (SRA) of the National Center for Biotechnol-
ogy Information (NCBI) under the Bioproject accession 
number PRJNA915228 (BioSample accession numbers: 
SAMN32381315-SAMN32381338).

Illumina RNA-seq libraries were prepared from 
500 ng total RNA using the Illumina TruSeq™ Stranded 
mRNA LT Sample Prep Kit (Illumina Inc. San Diego, 
CA, USA) according to the manufacturer’s instructions. 
All RNA-seq libraries were sequenced on an Illumina 
NovaSeq 6000 sequencer as 2 × 150 nucleotides paired-
end (PE) read format according to the manufacturer’s 
protocol. Raw sequenced data were deposited in the 
Sequence Read Archive (SRA) of the National Center for 

Biotechnology Information (NCBI) under the Bioproject 
accession number PRJNA915228 (BioSample accession 
numbers: SAMN32381339-SAMN32381362).

Bioinformatics analyses
After sequencing, the quality of the RNA-seq and MBD-
seq resulting raw reads was evaluated with FASTQC 
(https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
fastqc/ accessed on 16 April 2020). In the case of RNA-
seq data, libraries were filtered with Trimmomatic 
(RRID:SCR_011848) [90] eliminating those with qual-
ity < 18, length < 200 bp, and > 5% of Ns in the sequence. 
Cleaned reads were mapped against gilthead sea bream 
reference genome [91] (available at https:// seabr eamdb. 
nutri group- iats. org/), using STAR (RRID:SCR_004463) 
[92]. Unique transcript hit counts were calculated by 
using featureCounts from the Subread package [93].

In the case of MBD-seq data, pre-processing was per-
formed with Prinseq (RRID:SCR_005454) [94], eliminat-
ing those with quality < 26, length < 60  bp, and > 5% of 
Ns in the sequence. Before mapping, the repeat regions 
of the gilthead sea bream reference were masked using 
the BSgenome R package. Then, high-quality reads were 
aligned to this masked genome using the Bowtie2 soft-
ware (RRID:SCR_016368) [95]. After MBD-seq mapping, 
the methylated reads were located in their correspond-
ing genomic region using five training sets created ad-
hoc for this analysis. The exon and intron training sets 
contained the coordinates of these elements along the 
genome. The promoter region of a gene was considered 
5,000 bp before its start codon. Finally, two training sets 
were established for CGI, depending on if these islands 

Fig. 10 Diagram of the experimental design

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://seabreamdb.nutrigroup-iats.org/
https://seabreamdb.nutrigroup-iats.org/
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were found in promoters or intergenic regions. Predic-
tions of CGI were done with NewCpGReport tool from 
the EMBOSS suite [96]. Search parameters for CGI were: 
length ≥ 200, C + G content ≥ 50%, ratio of observed/
expected CpGs ≥ 0.60 and window size = 100.

Statistical analysis
Data of fish performance were analysed using the analy-
sis of variance (ANOVA) at a significance level of 0.05. 
Two-way ANOVA was applied to these results to deter-
mine the combined effects of genotype (GS or REF), diet 
(FUTURE or CTRL) and their interaction, using the pro-
gram IBM SPSS version 20 for Windows (IBM SPSS Inc., 
Armonk, NY, USA).

DE transcripts in RNA-seq data were retrieved using 
DESeq2 at two significance thresholds (P < 0.05 and 
FDR < 0.05) [97]. DM regions in MBD-seq data were 
obtained using the MEDIPS R package (P < 0.05) [98] over 
regions of 25-bp size, containing at least one dinucleotide 
CG. To study the separation of the experimental groups, 
we performed several partial least-squares discriminant 
analysis (PLS-DA) using EZinfo v3.0 (Umetrics, Umeå, 
Sweden). DE transcripts and DM regions with a P < 0.05 
were introduced in the analyses. The fitness and predict-
ability of these models were validated by a 500 random 
permutation test (pR2Y < 0.05; pQ2 < 0.05) using the ropls 
R package [99]. The discriminant ability of each marker 
was ranked after the creation of the models according to 
its Variable Importance in the Projection (VIP), and use-
ful markers were detected under a VIP ≥ 1 [100]. Over-
representation tests of GO-BP terms and TFBS were 
implemented in the goseq R package [101] and statisti-
cal significance was accepted at FDR < 0.05. GO-BP lev-
els and supra-categories were retrieved using GOATools 
[102]. All the networks in this work were performed with 
Cytoscape (RRID:SCR_003032) v2.8 [103]. Pearson cor-
relation coefficients between the expression and methyla-
tion  Log2FC were performed using the SigmaPlot v14.5 
(Systat Software Inc.) software. Gene structure repre-
sentations were obtained using the genemodel R package 
(https:// github. com/ greym onroe/ genem odel) and the 
IBS software [104].
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