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ABSTRACT: Herein, we present a biomimetic method for the
catalytic deammoniation of diverse primary amines, including
amino acids, natural products, and pharmaceuticals. This innovative
approach, characterized by its operational simplicity and high
selectivity, provides a rapid and easily accessible pathway to a wide
range of olefin products derived from nonfossil-based chemicals. The transformation relies on the utilization of two readily available
photoactive catalysts: acridinium salt and cobaloxime. Through a combination of experimental and theoretical studies, we have
gained valuable insights into the fundamental steps underlying this unconventional dehydroamination process.
KEYWORDS: visible light, excited-state, base metals, biomimetic, desaturation

Biomimetic organic synthesis, inspired by nature’s efficient
and selective pathways, has emerged as a powerful

strategy for the development of novel chemical transformations
that mimic enzymatic processes.1 Deammoniation plays a
crucial role in a range of biological processes, including the
biosynthesis of natural products and the metabolism of amino
acids. For instance, phenylalanine ammonia lyase converts L-
phenylalanine to cinnamic acid,2 a critical precursor for the
biosynthesis of lignols, flavonoids, coumarins, aurones, and
stilbenes (Scheme 1a).3

Despite recent advancements in biomimetic synthesis and
the growing interest in replacing fossil-based chemicals with
biobased alternatives in the chemical industry, it is surprising
that there is a lack of readily available and mild in vitro
methods for converting primary amines into alkenes.4,5 To the
best of our knowledge, two classical methods are known for
this transformation: Hofmann elimination,5 which involves
exhaustive methylation of primary amines to quaternary
ammonium salts, followed by counterion exchange with
stoichiometric silver oxide. While Cope elimination6 involves
the oxidation of t-amines with peroxides. The production of
the alkenes mostly requires harsh thermal and vacuum
conditions (Scheme 1b).7 In addition, unlike alcohols, Burgess
reagent proved to be an unsuccessful defunctionalization
reagent.8

We envisage the feasibility of mimicking the natural
reactivity via the development of a nonenzymatic process
(Scheme 1c). Our design makes use of the recent progress on
the mild generation of C-centered radicals from activated
primary amines such as pyridinium salt.9−11 A major challenge
is the subsequent fast reduction of the formed radicals and the
generation of the corresponding alkanes.12 To solve the
problem, we decided to employ cobaloxime catalysis, a model
of vitamin B12, for the mild conversion of the alkyl radicals to
the corresponding olefin.13 Indeed, this concept draws

inspiration from the natural ability of methylcobalamin to act
as a reversible free radical carrier that effectively stabilizes
highly reactive methyl radicals via the formation of weak
carbon−cobalt bonds.14 Thus, we reported herein the first
example of mild dehydroamination of primary amines enabled
by a synergistic combination of two photoactive catalysis:
organic dye and cobaloxime.15−17 It is noteworthy that in
1982, Katritzky converted primary amines into tetrahydroben-
zoacridium salts, followed by thermolysis at 150−180 °C,
yielding the respective olefins.18

Our mechanistic proposal is initiated by the generation of α-
amino radical A from N,N-diisopropylethylamine (i-Pr2NEt)
upon the use of highly oxidizing excited-state organic dye such
as [Mes-Acr-Me+]* (E1/2

red = +2.06 V vs SCE).19 The formed
α-amino radical A enables the single electron transfer (SET)
reduction of the pyridinium salt, producing the corresponding
C-centered radical B. Subsequently, the open-shell species B
are intercepted by a persistent 17-electron [Co]II radical,20

forming an alkyl-[Co]III intermediate C that undergoes C−
cobalt bond homolysis upon light irradiation. At this stage,
[Co]II performs α,β-hydrogen abstraction, resulting in the
formation of the desired olefin and a [Co]III−H species. The
cobalt and photoredox catalytic cycles culminate through a
simultaneous SET event between the [Co]III intermediate
(E1/2

red = −0.68 V vs SCE)21 and the reduced form of the
photocatalyst (PC) Mes-Acr-Me•. By employing this envi-
sioned approach, we aim to provide a milder and more
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accessible alternative for dehydroamination, contributing to
the development of sustainable and efficient synthetic organic
chemistry (Scheme 2).

The optimization of the reaction conditions for the
synergistic combination of photoredox and cobalt catalysis is
summarized in Table 1. Initially, the evaluation focused on
essential amino acid derivative 1, mimicking the transformation
by phenylalanine ammonia lyase (Scheme 1a). Optimized
conditions applied the use of two commercially available
catalysts: Mes-Acr-MeClO4 (1 mol %) and Co(dmgH)2PyCl
([Co]-1, 5 mol %). The reaction was carried out in a 0.1 M
dichloromethane (DCM) solution with 2 equiv of diisopropy-
lethylamine (i-Pr2NEt) as a base at room temperature, using

blue light-emitting diodes for irradiation. This condition
yielded the desired methyl cinnamate product 31 in 84%
nuclear magnetic resonance (NMR) yield and excellent E-
selectivity (>20:1) (Table 1, entry 1). The use of Mes-Acr-
MeBF4 as a PC led to comparable results (Table 1, entry 2).
However, less oxidizing photosensitizers, such as Eosin Y*
(E1/2

red = +0.83 V vs SCE),22 4CzIPN* (E1/2
red = +1.35 V vs

SCE),23 and Riboflavin* (E1/2
red = +1.50 V vs SCE),24 resulted in

lower product yields (Table 1, entries 3−5). This suggests that
the reaction pathway likely involves SET from an electron
donor to the excited-state PC. Similar results were obtained
when the reaction was conducted in acetonitrile instead of
DCM (Table 1, entry 6). Screening of different organic and

Scheme 1. State-of-the-Art of the Dehydroamination

Scheme 2. Our Envisioned Mechanistic Proposal
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inorganic bases revealed that i-Pr2NEt is the optimal choice
(Table 1, entries 7−9). Furthermore, the use of Co(dmgH)2(i-
Pr)(py) [Co]-225 resulted in an NMR yield of 82% (Table 1,
entry 10). Importantly, the application of the bifunctional
[Co]-SnPh3 catalyst [Co]-3 as a single catalyst26 led to a
significant decrease in yield and selectivity (Table 1, entry 11).
Finally, we conducted control experiments by individually
omitting the PC, [Co] catalyst, base, or light. In each instance,
no product was detected (Table 1, entry 12).

After establishing optimal conditions, we investigated the
dehydroamination of various Katritzky salts9 (Scheme 3). Our
visible-light protocol demonstrated tolerance toward a wide
range of primary amines, amino acids, natural products, and
drug molecules (1−30). We initiated the substrate scope
exploration with different amino acids, including a variety of
common amino acids. Methyl and benzyl phenylalanine
derivatives could be transformed to the corresponding
cinnamates 31 and 32 with isolated yields of 82% and 85%,
respectively. Phenylalanine derivatives bearing electron-with-
drawing groups provided the desired α,β-unsaturated esters
(33−35) along with varying amounts of saturated products.
Conversely, the electron-rich tyrosine selectively furnished the
corresponding trans-cinnamate 36.

Furthermore, homophenylalanine successfully underwent
our protocol, yielding ester 37 with an 80% yield and
moderate E/Z selectivity. Aliphatic amino acids such as
leucine and norleucine readily afforded the corresponding
α,β-unsaturated esters 38 and 39 with excellent yields and
selectivity. Also, isoleucine yielded the trisubstituted olefin 40

with a high yield and an E/Z ratio of 1.2:1. Notably, the sulfur-
containing amino acid methionine could be selectively
converted to E-alkene 41 in 71% yield. Aspartic acid and
glutamic acid, which are dicarboxylic amino acids, furnished
the desired selective E-olefins 42 and 43 with yields of 60 and
71%, respectively. Additionally, the carboxamide-containing
amino acid asparagine produced the olefin 44 with an 86%
yield and excellent stereocontrol, while glutamine resulted in
the unsaturated ester 45 with moderate selectivity. Lysine was
successfully converted to alkene 46 in 59% yield with complete
selectivity. Furthermore, tryptophan, a heterocyclic-based
amino acid, tolerated our system and provided excellent yields
and selectivity for products 47 and 48.

Next, we explored primary amines beyond amino acids.
Gratifyingly, 2-aminoindane, a designer drug, yielded indene
(49) in 70% yield. Amphetamine resulted in a 58% yield
mixture of terminal and internal olefins (ratio 2:1) due to the
competitive nature of the Co catalyst in abstracting both the
reactive benzylic and less hindered terminal hydrogen atoms.
In contrast, 4-phenyl-2-butanamine exclusively formed termi-
nal alkene 51. Cyclic amines were amendable to the reaction,
delivering the desired products 52−55. It is worth noting the
excellent regioselectivity of the formation of olefin 54. This
highlighting the tendency of the cobaloxime to abstract the less
hindered β-hydrogen atom. Gratifyingly, phenylalaninol also
delivered cinnamyl alcohol (56) in 65% yield. In addition, a
testosterone derivative underwent dehydroamination to
produce olefin 58, albeit in a mixture of regioisomers. The
cardic drug mexiletine was also converted to its corresponding
terminal olefin 59 with moderate regioselectivity. Interestingly,
the application of a β-aminoglucose derivative led to the
formation of the unsaturated deoxysugar 60 with the
elimination of the β-OAc group instead of the β-hydrogen.

To confirm the proposed reaction mechanism of the
synergetic photoredox-cobalt catalytic system depicted in
Scheme 2, a combination of experimental and theoretical
methods was applied. Fluorescence measurements were
conducted under inert conditions at room temperature to
differentiate between oxidative and reductive quenching of the
acridine PC. No quenching of the excited state PC was
observed with the substrate and cobaloxime catalyst, while i-
Pr2NEt effectively quenched the excited state of the PC,
supporting the proposed reductive quenching pathway. Figure
1a shows the Stern−Volmer plot for the fluorescence
quenching of Mes-Acr-MeClO4 with i-Pr2NEt. Further
electron paramagnetic resonance (EPR) measurements at
room temperature of the irradiated [Mes-Acr-Me+ClO4]* did
not show any EPR signal. However, a gradual development of a
new EPR signal at g = 2.004 was observed with time in the
presence of i-Pr2NEt due to the formation of Mes-Acr-Me•
(Figure 1b).27 The formed spectra are in accordance with the
theoretical simulation of Mes-Acr-Me• (See Supporting
Information for details).

Density functional theory (DFT) calculations shown in
Figure 2 supported the fluorescence and EPR results, showing
that PC undergoes light-induced vertical (Franck−Condon)
excitation to triplet state [PC(FC)] at 45.3 kcal/mol. After
relaxation, PC transitions to the relaxed triplet state [PC(T1)]
at 38.4 kcal/mol. The highly oxidizing excited-state species
undergoes SET from i-Pr2NEt, leading to the reduction of the
acridine PC to the radical Mes-Acr-Me• in the double state.
The reductive quenching process is spontaneous, releasing
17.2 kcal/mol. As depicted in Figure 2, the complex of i-

Table 1. Reaction Developmenta

entry deviation from the standard conditions yield (%) E/Z ratio

1 none 84 >20:1
2 Mes-Acr-MeBF4 as PC 82 >20:1
3 Eosin Y as PC 22 >20:1
4 Riboflavin as PC 38 10:1
5 4CzIPN as PC 40 >20:1
6 CH3CN as solvent 80 >20:1
7 DBU as base 37 >20:1
8 K2CO3 as base Trace
9 Et3N as base 30 10:1
10 [Co]-2 instead of [Co]-1 82 >20:1
11 [Co]-3 (single catalyst) 23 15:1
12 no light/PC/[Co]/base n.r

aStandard conditions: substrate 1 (0.2 mmol), [Co]-1 (0.005 mmol,
4 mg), Mes-Acr-MeClO4 (0.002 mmol, 0.8 mg), i-Pr2NEt (0.4 mmol,
70 μL), DCM (2 mL), RT, 16 h, NMR yields.
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Pr2NEt•+ and HBF4 facilitates the exergonic formation of a
carbon-centered radical, releasing 36.5 kcal/mol. Subsequent
addition of pyridinium salt 1 to the reaction mixture results in
the formation of organic radical intermediate sub (D). This

was confirmed by a spin trapping experiment using 5,5-
dimethyl-1-pyrroline-N-oxide (DMPO), resulting in a six-line
EPR signal due to the formation of a DMPO-•R adduct
(Figure 1c). According to the proposed reaction mechanism,

Scheme 3. Scope of Visible Light Induced Dehydroamination of Primary Amines.a-c(See Supporting Information
a

a

Standard conditions: pyridinium salt (0.2 mmol), [Co]-1 (0.01 mmol, 0.8 mg), Acr-MeClO4 (0.002 mmol, 0.8 mg), i-Pr2NEt (0.4 mmol, 70 μL),
DCM (2 mL), RT, 16 h, the reported yields refer to the conversion of the pyridinium salts to the olefins (see supporting information for details).
bNMR yield. cContains minor amount of hydrodeamination by-product.
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Figure 1. (a) Stern−Volmer plot for fluorescence quenching of Mes-Acr-MeClO4 with i-Pr2NEt; (b) EPR spectra recorded at room temperature of
the mixture of PC and i-Pr2NEt before and after the irradiation; (c) Experimental and simulated EPR spectrum of the irradiated mixture between
PC and i-Pr2NEt after the addition of substrate and DMPO; (d) EPR spectra recorded at −173 °C of the irradiated mixture of PC and i-Pr2NEt
with the addition of [Co]-1, then subsequential addition of the irradiated solution of PC, i-Pr2NEt, and substrate.

Figure 2. Potential energy surface (PES) for the light-assisted deamination process constituted by the photocatalytic cycle, substrate radical
formation, and the metal-assisted desaturation cycle. Free energies (room temperature) are shown in kcal mol−1 at the BP91/TZVP//BP91/SVP
computational level, using acetonitrile (ε = 35.688) as solvent.
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the organic radical intermediate is trapped by the [Co]II

species to form [Co]III-substrate. Low-temperature EPR
measurements at −173 °C were performed to monitor the
[Co] species since it is EPR-inactive at reaction temperature.
As we mentioned before, the photocatalytic radical generation
cycle results in the formation of a PC radical anion. This
radical was also detected at −173 °C, however, with a much
higher signal intensity (Figure 1d, black line). Upon the
addition of [Co]-1 to PC and i-Pr2NEt mixture, the EPR signal
of the reduced PC vanished with time, accompanied by
appearing of a new signal at g⊥ = 2.299 and g∥ = 2.011 (Figure
1d, red and blue lines) due to the formation of EPR-active
[Co]II species. DFT calculations revealed that this SET process
is spontaneous, with an energy release of −10.0 kcal/mol. The
presence of pyridinium salt 1 caused the disappearance of the
[Co]II signal and the in-situ-generated substrate radical due to
the formation of EPR-silent [Co]III-substrate (Figure 1d, green
line). DFT calculations supported the formation of the highly
stable complex C(S0) at −21.1 kcal/mol (Figure 2). This can
be attributed to the photolysis of relatively weak C(sp3)−
[Co]III bonds (BDE < 30 kcal/mol). In more detail, the
excitation of C(S0) by light leads to the formation of the
Franck−Condon triplet state, C(FC), and its subsequent
relaxation to the triplet state, C(T1), accompanied by the
release of pyridine. In this spin state, the subsequent
elimination of the hydrogen at the β-position occurs, resulting
in the desaturation of the substrate and the formation of
[Co]III-H, D(S0), via homolytic cleavage of the C(sp3)−[Co]III

bond. This transition state, TS(T1), was located and found to
be only 12.8 kcal/mol higher in free energy relative to C(T1).
Finally, the [Co]III-hydride complex regenerates i-Pr2NEt and
complex A(S0), completing the cycle.

In conclusion, we have reported a straightforward con-
version of various primary amines, including amino acids,
natural products, and drug molecules, into their respective
alkenes with selectivity for the trans-configured isomers. This
biomimetic transformation was achieved using a dual organic
dye/photoexcited base metal28 catalysis system under visible
light irradiation at room temperature. The protocol offers the
flexibility to employ a diverse range of common amino acids
and allows for late-stage functionalization of drug molecules.
Given its simplicity, effectiveness, mild reaction conditions,
and broad applicability, we anticipate that this photocatalytic
dehydroamination method will find widespread use in both
academic and industrial settings.
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