
ELEMENTARY PROBLEMS AND SOLUTIONS

which may be proved by induction. For m = 1, the identity holds. If it holds for some integer
m ≥ 1, then it is enough to prove that
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The last identity follows from F 2
2rm+4r − F 2

2rm = F4rF4rm+4r, which is, again, a consequence
of Catalan’s identity.

Solution 2 by the Proposer.

As a special case of Catalan’s identity, we have
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Therefore, we obtain the desired identity.

Also solved by Thomas Achammer, Michel Bataille, Brian Bradie, Steve Edwards,
Dmitry Fleischman, Robert Frontczak, G. C. Greubel, Kristen Hartz (undergrad-
uate), Won Kyun Jeong, Muzahim Mamedov, Raphael Schumacher (graduate
student), Jason L. Smith, Albert Stadler, and Andrés Ventas.
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For any positive integer n, find closed form expressions for the sums

n∑
k=1

LFk
LFk+1

FFk
FFk+1

and
n∑

k=1

LLk
LLk+1

FLk
FLk+1

.
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THE FIBONACCI QUARTERLY

Solution 1 by Jason L. Smith, Richland Community College, Decatur, IL.

The summand in each sum has the form of FGk
LGk

FGk+1
LGk+1

for a generalized Fibonacci
sequence {Gk}∞k=1. Using the Fibonacci double-angle identity FmLm = F2m, this immediately

becomes F2Gk
F2Gk+1

. Using the product formula FsFt =
1
5 [Ls+t − (−1)tLs−t], the summand

can be written as
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We now see that each sum telescopes:
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The first sum uses Gk = Fk, in which case we also observe that L2F2 + L2F1 + L2F0 =
L2 + L2 + L0 = 8. Therefore, the first sum becomes
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The second sum uses Gk = Lk, where we observe that L2L2 +L2L1 +L2L0 = L6+L2+L4 = 28.
Thus, the second sum becomes
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Solution 2 by Hideyuki Ohtsuka, Saitama, Japan.

Using the product formulas (which are easy to derive from Binet’s formulas)

FaLb = Fa+b + (−1)bFa−b, and LaFb = Fa+b − (−1)bFa−b,

we find
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Editor’s Notes: Greubel obtained 1
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Also solved by Thomas Achammer, Michel Bataille, Brian Bradie, Kenny B. Davenport,
Dmitry Fleischman, Robert Frontczak, G. C. Greubel, Albert Stadler, Seán M. Stewart,
David Terr, and the proposer.
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