

Volcanic & Magmatic Studies Group Meeting VMSG 2008, Trinity College Dublin:

- From the field to the microscope
 - Volcanotectonics, active volcanoes & eruptions
 - Mantle dynamics, sources & components
 - Igneous textures and timescales

For more info see: www.vmsg.org.uk

VMSG Meeting 2008, Trinity College Dublin January 4 & 5, The Emmet theatre, Arts Bld. Jointly supported by the Mineralogical Society of Great Britain and Ireland & the Geological Society of London. Organising committee: V.R. Troll, B. O'Driscoll & S. Jones Abstract deadline: October 19th, 2007

Hydrothermal alteration in the Miocene Tejeda Caldera, Gran Canaria, Canary Islands: insights from mineralogy, elemental and stable isotope geochemistry.

E. Donoghue^{1*}, V.R. Troll¹, C. Harris², F.J. Pérez Torrado³, T.R. Walter⁴

¹Department of Geology, Trinity College, Dublin 2, Ireland (**e-mail: donoghue@tcd.ie*)

² Department of Geological Sciences, University of Cape Town, South Africa

³ Department of Physics/Geology, University of Las Palmas de Gran Canaria, Canary Islands, Spain.

⁴ GFZ Potsdam, Telegrafenberg, 14473 Potsdam, Germany

Rhyolite-trachyte tuffs deposited within the Miocene Tejeda caldera (Mogán Group 14-13.3Ma) show evidence of severe hydrothermal alteration. The altered tuffs are restricted to a peripheral zone directly inside the caldera margin, and occur at four distinct horizons within the mid-upper Mogán ignimbrite succession. All altered horizons are characterised by pervasive intermediate argillic-phyllic alteration (illite/smectite \pm muscovite \pm zeolites \pm analcime \pm adularia) and silicification (microcrystalline quartz \pm amorphous silica), indicative of low-temperature (<250-300°C) near-neutral pH conditions. Additional quartz, calcite and late-stage kaolinite veins in mid-Mogán tuffs and breccias may reflect fault-controlled upwelling of boiling hydrothermal fluids, and a transition to more acidic, steam-heated conditions at depth.

Ca, Rb, Sr, and Pb are generally enriched in the altered intra-caldera tuffs relative to unaltered extra-caldera ignimbrites, reflecting strong mobilization and subsequent incorporation of these elements in Ca-zeolites and clay minerals during fluid-rock interaction. Na, K, and Ba are severely depleted in the altered tuffs, indicative of acid-attack and base cation leaching from e.g. primary anorthoclase and plagioclase. Zr, Nb and Y were dominantly refractory during fluid-rock interaction, and are relatively enriched in all altered samples.

The altered intra-caldera tuffs (n=65) have higher δ^{18} O values than equivalent unaltered extra-caldera ignimbrites, reflecting an overall low-temperature near-surface environment in which local meteoric water (δ D ca. -15%, δ^{18} O ca. -3%) was the dominant fluid source. An overall decrease in δ^{18} O from upper- to mid- Mogán altered tuffs is consistent with an increase in fluid temperature with stratigraphic depth. Unaltered ignimbrites have δ D values of -110 to -168% (n=6) and ≤ 0.2 wt% H₂O, indicative of Rayleigh-type H₂O-exsolution. In contrast, altered tuffs have δ D values of -52 to -117% (n=75) and up to 4wt% H₂O, reflecting interaction with steam (δ D << -15%) or an evolved, low- δ D fluid. Apparently unaltered ignimbrites between altered horizons (n=13), and shield basalts directly outside the caldera margin (n=6), have elevated δ D and H₂O values relative to equivalent unaltered rocks, indicative of minor alteration.

Supported by numerical modelling, our Gran Canaria data reflect an intrusionrelated, structurally controlled epithermal system, in which fluids and/or vapours migrated through intra-caldera tuffs via channelised, porous flow. This study may help to unravel the complex processes of fluid-rock interaction characteristic of both active and fossil caldera-hosted epithermal systems that are presently inaccessible or poorly exposed.