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This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling
decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance-
reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration
in the design variables.The simultaneousminimization of the constrainedweight (adding structural weight and average distribution
of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other
are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The
optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level)
in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including 𝑆-metric statistics
in a structural frame test case with uncertain loads show considerable reductions in computational costs without harming the
nondominated front quality, obtaining a design set that makes it possible to select minimum weight and maximum robustness
optimum designs.

1. Introduction

Evolutionary algorithms have been applied since their origins
[1] in the mechanical and structural optimization field. Their
global optimization nature, derived from the fact that they
are based on population searches, enables them to avoid the
stagnation in frequent local minima that occurs in structural
problems. In addition, they permit discrete optimization,
matching real requirements in metallic bar structures. They
have been applied in bar structures, trusses, and frames, as
well as in metallic or concrete structures; surveys of the state
of the art can be found in [2–4]. Their principal aim has
been focused on the weight minimization problem, which is
directly related with the raw material cost. It is an ongoing
active field in mechanical and structural design (see e.g., [5]).

Evolutionary multiobjective algorithms have been devel-
oped since the mid nineteen eighties, but their success in
a wide range of science and engineering fields has really
taken off since the late nineties [6]. These population-based
global search algorithms also have extensive applications
in the structural design field, for example, in [7–9]. The

incorporation of engineer/decision maker preferences in the
evolutionary multiobjective optimization process has been a
topic of increasing interest in recent years (e.g., [10–13]). This
is particularly so, when engineer/decision maker preference
information is considered to constitute desirable aspiration
levels for objective functions; the use of a reference point
when using evolutionary multiobjective computation has led
to various recent proposals: Ben Said et al. propose the r-
dominance in [14], Deb et al. propose the r-NSGAII in
[15], and Thiele et al. [16] and Molina et al. propose the g-
dominance in [17].

There has been a general move to include uncertainties in
optimum engineering design and this has played a key role
in the field of multidisciplinary design optimization (MDO)
[18]. In particular, in the field of structural design opti-
mization, two approaches are considered: reliability-based
design optimization (RBDO) and robust design optimization
(RDO) (see [19–21]). Some recent research work in structural
engineering design is by Coelho [22] and by Greiner and
Hajela [23].
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A review of structural optimization for robust design
[24] can be found by Doltsinis et al. [25], where robust
truss design is performed by optimization of the mean
and variance of the fitness function considering a weighted
approach for optimization and a Taylor series approach
for simulation. A Monte-Carlo simulation coupled with a
hybrid optimization is carried out by a single-objective
genetic algorithm for topology identification and conven-
tional nonlinear programming for continuous cross-section
design; reducing the response of fluctuations is performed by
Sandgren and Cameron [26]. Structural truss robust design
has been handled by Lagaros et al. in [27, 28] consider-
ing multiobjective optimization evolutionary methods with
a priori articulation of preferences (cascade evolutionary
algorithm), for simultaneous minimization of the weight and
response (characterized by one point displacement), as well
as in [29, 30]. A review of robust optimal design in dynamics
is also done by Zang et al. [31].

Although other approaches are possible, Monte-Carlo
simulations are still useful tools when dealingwith uncertain-
ties in multiobjective design [22]. A structural robust design
optimization of frames with engineering knowledge-based
variance-reduction simulation that allowed a high reduction
in computational cost in terms of the required number of
fitness function evaluations versus a previous conventional
approach was proposed by Greiner et al. [32]. This paper
proposes to combine that approach with the consideration
of the engineer/decision maker’s preference information as
desirable aspiration levels for objective functions (reference
point(s)) when using evolutionary multiobjective compu-
tation. These aspiration levels are materialized in the case
of robust design as the values of the fitness function of
the optimum design of the deterministic problem (without
considering uncertainties) as well as zero variation of the
performance function, as proposed by Greiner et al. [33]. In
this paper we introduce a methodology that consists of the
combination of preference-basedmultiobjective evolutionary
algorithms introducing aspiration levels as a reference point;
here, the g-dominance is used, with engineering knowledge
variance reduction in theMonte-Carlo simulation process for
improving computational performance of robust design in
structural engineering.

The structure of the paper is as follows. In Section 2
the structural problem addressed is presented, introducing
first the deterministic problem and later a design dealing
with uncertainties. Section 3 briefly describes evolutionary
multiobjective algorithms and the incorporation of prefer-
ence information as aspiration levels with reference point
information, used in the optimization procedure. Later,
Section 4 explains the structural frame test case considered.
Then, Section 5 gives the results and discussion, including
a comparison between the standard and proposed reduced
simulation procedures. Finally, the paper ends with the
conclusions section.

2. The Structural Problem

2.1. Deterministic Design. The fitness function, in order to
perform the constrained weight minimization, has to take

into account those proper requirements of the bar structure
to perform its mission. Its value is directly related with
the acquisition cost of raw material of the metallic frame.
The information needed by the fitness function is obtained
through the direct stiffness method and the following con-
straints are applied, in order to guarantee the appropriate
functionality of the structure.

(a) Stresses of the bars, where the stress limit depends
on the frame material (e.g., common construction
steel has a stress limit of 2600 kgp/cm2) and the stress
compared takes into account the axial and shearing
stresses by the shear effort and also the bending effort,
using Von Misses yield criteria. For each bar, (1) has
to be accomplished. Consider

𝜎co − 𝜎lim ≤ 0, (1)

where 𝜎co refers to the comparing stress (maximum
stress of the bar) and 𝜎lim refers to the limit stress.

(b) Compressive slenderness limit, for each bar where the
buckling effect is considered (the value in question
may vary, depending on the particular code used) (2)
has to be satisfied. Consider

𝜆 − 𝜆lim ≤ 0, (2)

where𝜆 refers to the slenderness compared (compres-
sive slenderness of the bar) and 𝜆lim refers to the limit
slenderness.

(c) Displacements of joints ormiddle points of bars are also
possible requirement, as observed in (3). Consider

𝑢co − 𝑢lim ≤ 0, (3)

where 𝑢co refers to the displacement compared and
𝑢lim refers to the limit displacement.

With these constraints, the fitness function constrained
weight integrates the constraints violations as weight penal-
ties, as shown in

Fitness Function

= [

𝑁bars

∑

𝑖=1

𝐴
𝑖
⋅ 𝜌
𝑖
⋅ 𝑙
𝑖
][

[

1 + 𝑘 ⋅

𝑁viols

∑

𝑗=1

(viol
𝑗
− 1)]

]

,

(4)

where 𝐴
𝑖
is the area of the bar section type 𝑖; 𝜌

𝑖
is the density

of bar 𝑖; 𝑙
𝑖
is the length of bar 𝑖; 𝑘 is the constant that regulates

the equivalence between weight and restriction (suitable
values around one); viol

𝑗
, for each violated restriction 𝑗, is

the quotient between the violated restriction value (stress,
displacement, or slenderness) and its reference limit.

2.2. Robust Design

2.2.1. Introduction. The deterministic optimum design of a
bar structure is frequently defined by the constraints imposed
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in terms of stress, displacement, or buckling, which are taken
up to, but not over, their limit values.

In real structures, loads often vary and this is taken
into consideration in the design codes. So, a deterministic
optimized structure, in which the corresponding constraints
come close to limit values, is expected to be more sensitive to
those random variations. An analysis of those uncertainties is
required to guarantee a robust design.The principal objective
of robust design is to find a solution in which structural
performance is less sensitive to the fluctuations of parameters
without eliminating their variation.

The variation in load actions that act on a structure
from the viewpoint of probabilistic or semiprobabilistic safety
criteria is related to the consideration of loads as random
variables and with the existence of some ultimate limit states
that lead to total or partial ruin of the structure and some
serviceability limit states that they, when reached, produce
malfunction [34–36]. In order to define the actions, it is
assumed here that the corresponding variation follows a
Gaussian probability density function. The characteristic
value of an action is defined as the value that belongs to the
95% percentile; that is, the probability of it being exceeded is
0.05 (see (5)). Consider

𝐹
𝑘
= 𝐹
𝑚
(1 + 𝑘 ⋅ 𝛿) , (5)

where 𝐹
𝑘
is the characteristic value, 𝐹

𝑚
is the average value, 𝑘

is the coefficient corresponding to the percentile of 5% = 1.64,
and 𝛿 is the typical deviation of the average value expressed
per unit variation. A structure is usually calculated taking
into account the characteristic values of the actions, which are
defined based on said actions and depending on the specific
national code in question.

2.2.2. Problem Definition. The mathematical formulation of
the robust design problem is as follows.

One individual is a structure 𝐸 of cross sections
(CS
1
,CS
2
,CS
3
, . . . ,CS

𝑟
), 𝑟 being the total number of bars

in the structure, with weight 𝑤 and statistical parameters
(Constraint

𝐸
, 𝜎Const𝐸) that are the average and standard

deviation, respectively, of the constraint violations (the total
number of constraint violations per structure is numviol), as
shown in

Constraint
𝐸
=

∑
𝑚
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𝑗=1

viol
𝑗
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, (6)
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𝐸
)
2
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,

(7)

where 𝑚 is the number of Monte-Carlo simulation samples.
In this paper,𝑚 is evaluated by two different procedures.

(a) Standard Monte-Carlo:𝑚 = 30𝑛, 𝑛 being the number
of random variables.

(b) Reduced procedure (engineering knowledge-based
variance-reduction Monte-Carlo): 𝑚 = card(𝑄), 𝑄
being the set of samples such that

𝐹
1
> 𝐹
𝑘1

OR 𝐹
2
> 𝐹
𝑘2

OR 𝐹
3
> 𝐹
𝑘3

OR ⋅ ⋅ ⋅ 𝐹
𝑖
> 𝐹
𝑘𝑖
⋅ ⋅ ⋅OR 𝐹

𝑛
> 𝐹
𝑘𝑛
.

(8)

𝐹
𝑖
is the effective applied load and 𝐹

𝑘𝑖
the characteristic

value; those samples belonging to 𝑚 are the only cases
proposed to be evaluated by the finite element code; the
contribution of the rest of the cases to the constraint violation
distribution is estimated to be zero; therefore, they do not
need to be evaluated by the finite element code with the
corresponding computational cost saving [32].

Multiobjective robust design problem (as opposed to
the formulation of deterministic design that does not take
uncertainties into consideration, shown in (4)) consists in
finding 𝐸 such that (9) and (10) hold. Consider

Min Fitness Function 1

= [

𝑁bars
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][
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,

(9)

Min Fitness Function 2 = 𝜎Constraint𝐸 . (10)

3. Evolutionary Multiobjective
Algorithms and Preferences
Inclusion through Reference Point

Here, the g-dominance approach (as amethod of considering
desirable aspiration levels in evolutionary computation) has
been used in two evolutionary multiobjective algorithms:
NSGAII [37] and SPEA2 [38], although the methodology
would be equally valid using other approaches with similar
characteristics. G-dominance enhances those solutions that
either (a) dominate the reference point or (b) are dominated
by the reference point, discriminating all the others. So, when
we are interested in the environment of a certain point in the
objective space, it is a very useful tool. From the perspective of
decision making, the preference information of the decision
maker is given here as the reference point coordinates. Two
ways of implementing g-dominance are proposed in [17]: (a)
changing the dominance-checking function and (b) changing
the evaluation of the objective functions by greatly penalizing
those solutions which do not belong to the area of interest as
described previously. Here, the latter option (in [17] claimed
to be the simplest) is used.

The use of g-dominance for robust optimization of
structural bars was first introduced by Greiner et al. [33]. In
our structural problem, there is engineering knowledge that
can help in defining our aspiration levels (i.e., our reference
point in the g-dominance). When no uncertainties are taken
into account, the optimum design is a deterministic one,
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and when constraints are present, it should satisfy all of
them (i.e., no constraint violations are allowed). By contrast,
when some of the external variables/parameters are random
variables, we are dealing with uncertainties. The above-
mentioned deterministic optimum design often lies on the
boundary of the constraints violation and when considering
the external random variables, then it is highly probable that
this deterministic optimum violates the constraints in this
uncertain environment. In our structural frame optimization
problem, a robust design implies the achievement of designs
with (1) average low constrained weight (good performance)
and (2) low constraint violation standard deviations (sensi-
tivity to external variations is minimum: zero variation in
the deterministic case). Both 1 and 2 are two simultaneous
minimization objectives.Therefore, we consider the function
values of the deterministic optimum design as estimators of a
lower limit of the solutions when considering uncertainties in
the optimization, because it is expected that those determin-
istic optimum values dominate the designs of the problem
when considering random variables. That is, those values are
the aspiration levels considered as a reference point in the g-
dominance criterion.

Therefore, the deterministic optimumdesign fitness func-
tion values are taken as the reference point in g-dominance
for multiobjective optimization when considering uncertain-
ties in the design.The advantages of combining this approach
with the engineering knowledge-based variance reduction
simulation in terms of computational time reduction are
shown in the results section.

4. Test Case

The reference test case considered is based on a problem
taken from [39] for single objective weight minimization
using continuous variables. The solution reported in the
previous reference using classical optimization methods was
improved using evolutionary algorithms from [40, 41], where
the discrete optimization problem using real cross-section
types and including the buckling effect was also solved.
This last deterministic evolutionary optimum design is taken
as a reference in this work and compared with the robust
optimum design nondominated front.

The test case is depicted in Figure 1, where the spot
lengths (10 and 20) and height (6) are in meters, the loads
in kN/m, 14.7, 9.8, and 1.96, and there is a constraint of
maximum displacement of middle point of bar 2 equal to
length/300, that is, 6.67 ⋅ 10−2m. It is a discrete domain
problem, belonging the cross-section types to the European
IPE class (16 different types per bar). The buckling effect and
its own gravitational load have been taken into account. The
density considered (7.85 ⋅ 10−3 kg/m3) and Young modulus
(205.8 ⋅ 109 Pa) are common steel values and the yield stress
is 235.2 ⋅ 106 Pa (the structure is assumed to be in elastic
behaviour).

In addition, a second test case is analysed (incremented
loading test case), where all the loads are increased by 5%
in value, maintaining the rest of the characteristics as in the
previous test case.

14.7kN/m 9.8kN/m

1
.9
6

kN
/m1 2

3 4

10m 20m

6
m

Figure 1: Frame test case with four bars.

5. Results and Discussion

Ten independent executions were performed for each multi-
objective evolutionary algorithm. Specifically, multiobjective
genetic algorithms (bothNSGAII and SPEA2)were usedwith
a population size of 200 individuals, uniform crossover, and
uniform mutation rate of 0.06 [42]. A stop criterion of 100
generations was considered in all cases.

5.1. Standard Procedure. The standard Monte-Carlo simula-
tion was performed considering 30𝑁 simulations per struc-
tural design in order to construct the constraint violation
distribution, 𝑁 being the number of different variables
considered. Here, the simulated variables correspond to the
three linear uniform loads of the frame structure, one for each
loaded bar.

The distribution of each linear uniform load is simulated
through a Gaussian distribution, which is calculated consid-
ering the test case load value to be the characteristic value.
Therefore, three independent Gaussian random variables are
considered: the loads applied on bars 1 and 2 have been
assigned a lower standard deviation than the load applied
on bar 3, which could be assimilated as wind load and
has been assigned a higher variation. Their distributions are
represented graphically in Figure 2.

Optimization results are shown by Greiner et al. [43]
and graphically combined in Figure 3 (NSGAII and SPEA2),
which shows the final nondominated front evaluated from
the accumulated total number of executions performed using
both algorithms.The𝑥-axis belongs to the constrainedweight
value (in kg), obtained by adding the weight of the particular
structural design and the average of the constraints violation
distribution in terms of weight, where the constraint violation
is evaluated as in (6). The 𝑦-axis belongs to the typical
deviation of the constraints violation distribution in terms of
weight.

A total of twelve different frame structural designs make
up the Pareto optimal front obtained. They are detailed
graphically in Figure 3. Due to the stochastic character of
Monte-Carlo simulations, it is possible to achieve different
values of the objective functions for a single design. However,
the differences between them are minor, indicating that the
system simulation has been suitably performed.

The two algorithms (NSGAII and SPEA2) perform simi-
larly and are capable of locating the extreme frame structural
design solutions. The number of final Pareto front designs
located is similar when the nondominated front obtained by
accumulating the whole solution set is taken into account:
14 in NSGAII and 12 in SPEA2. Both algorithms also found
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Figure 2: Test case load distributions, with shaded zones corresponding to the values greater than the characteristic load (in 10−1 ⋅ T/m),
equivalent to 1.96, 9.8, and 14.7 kN/m, respectively.
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Figure 3: Final nondominated front obtained by accumulated
SPEA2 and NSGAII executions (constrained weight versus con-
straint violation typical deviation, kg) [43].

all the twelve design solutions, although the constraint
variations caused by theMonte-Carlo simulation produce the
effect that some of these points are dominated and not shown
in the final front results (Figure 3).

The deterministic optimum design, whose loads have the
characteristic value of the imposed Gaussian distributions,
has no constraint violations and a weight of 3324.3 kg. Its
corresponding design for uncertain loads is highlighted in
bold type in Table 1 and also arrowed in Figure 7. When the
robust design including the load variations is considered this
design is seen to violate the constraints on certain occasions,
with a standard deviation and mean distribution of 24.1 kg
and 3.8 kg, respectively. Therefore, the engineer or decision
maker should select an individual among this deterministic
optimum design and the solution located furthest to the
right of the front, which has no constraint violations at
all, even when uncertainties are taken into consideration
(corresponding to a design weight of 3492.9 kg and 5.1%
higher in terms of weight; see Table 1).

5.2. Reduced Procedure. The standard Monte-Carlo simula-
tion evaluates 303 = 27000 structures for each evolutionary
computation solution candidate in our test case. Here, the
variance reduction procedure inspired by the well-known
importance samplingMonte-Carlo technique [44] and based
on engineering design knowledge is used to reduce the
computational cost without losing solution quality. It was
first introduced by Greiner et al. [32], where the NSGAII
algorithm was used as an optimizer.

Structural evaluations are required to calculate the pos-
sible constraints produced by each load case and hence
their contribution to the constraint violation distribution. Its
standard deviation is chosen as the measure of structural
robustness of each design; the structure with the lowest
weight and zero standard deviation corresponds to the
solution located further to the right of the Pareto frontier; by
contrast, the structure with the highest typical deviation and
lowest weight corresponds to the solution located on the far
left of the Pareto frontier.

Considering the constant load of the deterministic opti-
mization problem as the characteristic value (i.e., the value
belonging to the 95% percentile) of the Gaussianmodel in the
problem that handles uncertainties, the reduced procedure
(as explained in Section 2.2.2) proposes evaluation only of
those load cases that surpass at least one of its characteristic
values (1.96, 9.8, and 14.7 kN/m, as shown in Figure 2) for
each structural design. Therefore, it is estimated that only
1 − 0.95

3
= 0.142625, (14.2625% in percentage) of the load

cases will be evaluated using this reduced simulation proce-
dure, with the proportional benefit in terms of computational
cost (here, only 3,850 structural design evaluations out of
27,000). The rest of the cases are assigned a null contribution
to the constraint distribution. Here, results corresponding
with the SPEA2 multiobjective optimizer are obtained and
shown in Figure 4. They are very similar to the results
obtained with the NSGAII in [32].

A total of thirty-three different frame structural designs
make up the Pareto optimal front obtained, as had previously
been achieved using NSGAII by Greiner et al. [32]. They
are detailed graphically in Figure 5, where NSGAII and
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Figure 4: Accumulated nondominated fronts of each of the ten independent executions by SPEA2 (a) and their nondominated solutions (b).
Reduced distribution.

Table 1: Detailed nondominated structural frame designs of Figure 7.

Constrained
weight (kg)

Constraint
violation typical
deviation (kg)

Constraint
violation average

(kg)

Cross section
type bar 1

Cross section
type bar 2

Cross section
type bar 3

Cross section
type bar 4

Obtained with the
EMO algorithm

3328.15 24.146 3.834 IPE330 IPE500 IPE450 IPE500 SPEA2
3328.26 24.002 3.946 ,, ,, ,, ,, NSGAII
3328.27 23.806 3.955 ,, ,, ,, ,, NSGAII
3392.12 18.823 2.335 IPE400 IPE550 IPE220 IPE450 NSGAII
3392.13 18.182 2.347 ,, ,, ,, ,, NSGAII
3392.21 18.018 2.427 ,, ,, ,, ,, NSGAII
3394.47 13.24 1.234 IPE360 IPE550 IPE300 IPE450 SPEA2
3394.52 12.9 1.277 ,, ,, ,, ,, SPEA2
3394.53 12.822 1.293 ,, ,, ,, ,, SPEA2
3405.85 7.673 0.517 IPE330 IPE500 IPE500 IPE500 SPEA2
3405.86 7.63 0.533 ,, ,, ,, ,, SPEA2
3408.36 4.407 0.207 IPE400 IPE550 IPE160 IPE500 SPEA2
3426.16 3.203 0.11 IPE400 IPE550 IPE180 IPE500 SPEA2
3426.17 3.047 0.114 ,, ,, ,, ,, NSGAII
3426.18 2.972 0.129 ,, ,, ,, ,, SPEA2
3447.76 1.861 0.041 IPE400 IPE550 IPE200 IPE500 NSGAII
3447.77 1.816 0.046 ,, ,, ,, ,, SPEA2
3470.81 0.638 0.011 IPE400 IPE550 IPE220 IPE500 SPEA2
3482.26 0.202 0.003 IPE360 IPE550 IPE360 IPE450 NSGAII
3492.94 0 0 IPE400 IPE550 IPE160 IPE550 NSGAII
3492.94 0 0 ,, ,, ,, ,, SPEA2
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Figure 5: Final nondominated front obtained by accumulated
SPEA2 and NSGAII executions (constrained weight versus con-
straint violation typical deviation, kg). Reduced Distribution.
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Figure 6: Final nondominated fronts obtained by the standard
(circles) and reduced (crosses) distributions, starting with the deter-
ministic optimum solution at top left.The two coincide (constrained
weight versus constraint violation typical deviation, kg).

SPEA2 results are compared. Behaviour in the two cases is
similar and they are both capable of locating the extreme
frame structural design solutions.The number of final Pareto
front designs located is similar to that of the nondominated
front obtained by accumulating the whole solution set: 33
in NSGAII and 23 in SPEA2. Both algorithms also found
all thirty-three design solutions, although the constraint
variations caused by theMonte-Carlo simulation produce the
effect that some of these points are dominated and not shown
in the final front (Figures 5 and 6).

A comparison of these results with the standard pro-
cedure ones (as in [32, 43]) shows that the reduced sim-
ulation procedure obtains a wider front, both in terms of
the number of structural designs obtained (33 versus 12)

and in terms of numerical values (the left nondominated
solutions reach 782.2 kg and 2998.4 kg in terms of typical
deviation and constrained weight average, resp., versus the
standard distribution values located furthest to the left of
79.3 kg and 3276.9 kg, resp.). This is due to the fact that the
contribution to the constraint distribution in the reduced
procedure is limited to the cases where the characteristic
load value is exceeded, and therefore, there are structures
with reduced lesser constraint average, which is added to
the structural weight and considered in the 𝑥-axis fitness
function value, than in the standard simulation where these
structures were dominated designs (Figure 3) and so appear
as new nondominated designs in the nondominated set
(Figure 5).

It is worth pointing out that if the engineer or decision
maker’s preferences are properly considered, both procedures
(the standard Monte-Carlo and the reduced procedure)
achieve equivalent nondominated frame designs. The engi-
neer or decision maker has to choose a structural design
between two extremes of the nondominated frontier:

(1) the extreme right, where the solution of the non-
dominated set (highest constrained weight and null
typical deviation) that represents the structural design
has no constraint violation, even when considering
uncertainties;

(2) the extreme left, where the solution of the nondom-
inated set in the case in which the uncertainties of
the load were not considered has the lowest weight
and no constraint violation, which corresponds to the
structural design that coincides with the determinis-
tic optimum.

Therefore, when the useful functional space is restricted
to the above-mentioned extreme points, both procedures
(standard and reduced) lead to the same nondominated
design set. This can be seen in Figure 6, where the accu-
mulated nondominated fronts of both the SPEA2 and
NSGAII algorithms and of each procedure (the standard
and the reduced) are depicted. This, in turn, is explained
because the two simulation procedures produce identical
constraint distributions in those nondominated structural
designs, where the characteristic load values are surpassed.
Indeed, the first design where the two procedures coincide
becomes the deterministic optimum design solution; so, a
comparison of the two distributions could lead to a method
that achieves the deterministic optimum design, where no
load uncertainties are involved. The slight variations in the
depicted solutions are due to the stochastic nature of the
Monte-Carlo simulation, but the proximate points represent
the same structural design.

In Figure 7, the whole set of accumulated nondominated
solutions are shown graphically, differentiating the evolution-
arymultiobjective algorithmswithwhich theywere obtained.
These designs are detailed numerically in Table 1, where
the bold type corresponds to the deterministic optimum
design. This table shows the constrained weight (𝑥-axis
fitness function, obtained by adding the structural weight
and the constraint violation distribution average), constraint
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Figure 7: Final accumulated nondominated front obtained by accu-
mulated standard and reduced distributions (constrained weight
versus constraint violation typical deviation, kg).

violation typical deviation (𝑦-axis fitness function), con-
straint violation average, and detailed cross-section, as well
as the algorithm type, for each nondominated structural
design corresponding to those preferences that are useful for
the decision maker. A total of ten structural designs were
identified.

5.3. 𝑆-Metric Statistics. The reference point in the g-
dominance is (3324.3, 0), the first value being that which
corresponds to the minimum constrained weight of the
deterministic optimum design (as published in [41]) and the
second value corresponding to the aspiration level of the
standard deviation of the violation of constraints distribution,
which is a null variation.

In addition, in order to compare the convergence of the
algorithm, the 𝑆-metric (or hypervolume metric), originally
proposed by Zitzler andThiele [45, 46], has been calculated as
“runningmetrics” [47].This is an unary metric that evaluates
both approximation and coverage of the nondominated front.
Specifically, the 𝑆-metric evaluation proposal of Fonseca et al.
[48] is considered. The reference point for its calculation is
(30000, 2000), a value which guarantees that it is dominated
by the design solutions. Results are shown in Figures 8 to 19,
where the horizontal axis represents the number of structural
finite element evaluations and the𝑦-axis represents the values
of 𝑆-metric average (Figures 8, 11, 14, and 17), best (Figures 9,
12, 15, and 18) and standard deviation (Figures 10, 13, 16, and
19), out of thirty independent executions of NSGAII (Figures
8 to 13) and SPEA2 (Figures 14 to 19). Two population sizes are
shown (100 and 200 individuals) for bothNSGAII and SPEA2
algorithms, as are the two simulation procedures (standard
and reduced).

All the Figures 8 to 19 show clearly the significant advan-
tage of the combination of g-dominance with engineering
knowledge-based variance-reduction simulation (black dots)
versus the standard Monte-Carlo simulation (red crosses), in
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G-dominance NSGAII
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Figure 8: Average of 𝑆-metric (30 independent executions),
NSGAII with g-dominance, comparing standard and variance
reduction Monte-Carlo. Population size is 100.
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Figure 9: Best of 𝑆-metric (30 independent executions), NSGAII
with g-dominance, comparing standard and variance reduction
Monte-Carlo. Population size is 100.

terms of better averages, best and standard deviation values in
all the algorithms (NSGAII and SPEA2), and both population
sizes (100 and 200).

5.4. An Additional Test Case: Increasing Loads. In this second
test case, as explained at the end of Section 4, we have
considered an increment of 5% in the loads; therefore, in
the deterministic case, each load is increased by 5% in value;
in the case of uncertainty handling, each of the three inde-
pendent Gaussian distributions is increased by 5% in mean
value and their standard deviations remain constant. The
optimization results are obtained, performing 10 independent
executions, a population size of 200, a stop criterion of 100
generations, a mutation rate of 6%, and uniform crossover.
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Figure 10: Standard deviation of 𝑆-metric (30 independent exe-
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variance reduction Monte-Carlo. Population size is 100.
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Figure 11: Average of 𝑆-metric (30 independent executions),
NSGAII with g-dominance, comparing standard and variance
reduction Monte-Carlo. Population size is 200.

After optimization, the deterministic optimum design
gives a weight of 3408.16 kg and its constraint violation is null
(the design cross section types are Bar 1 = IPE-400, Bar 2 =
IPE-550, Bar 3 = IPE-160, and Bar 4 = IPE-500).

Robust design results are shown in Table 2 and repre-
sented graphically in Figure 20. The design furthest to the
left belonging to the nondominated front is represented in
Table 2 in bold type, and it corresponds again to the deter-
ministic optimum design (whose fitness function values have
been considered in the reference point of the g-dominance).
A total of eleven different designsmake up the nondominated
solutions. Both algorithms (NSGAII and SPEA2) are once
again able to obtain the whole front; the best solutions of
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Figure 12: Best of 𝑆-metric (30 independent executions), NSGAII
with g-dominance, comparing standard and variance reduction
Monte-Carlo. Population size is 200.
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Figure 13: Standard deviation of 𝑆-metric (30 independent exe-
cutions), NSGAII with g-dominance, comparing standard and
variance reduction Monte-Carlo. Population size is 200.

accumulated fronts are shown with an indication of which
algorithm achieved each.

Figure 21 shows a comparison between the best designs
of the original test case (represented by crosses) and the
incremented loading test case (represented by circles). In
the increased load case, the whole front is displaced to the
right, which constitutes an increment in the optimum design
weight when the load values are increased. A comparison
with the solution furthest to the right (which has null
constraint violations) in Tables 1 and 2 shows an increment of
5% in the value of the loads corresponding to an increment of
2.01% in the weight (3563.27 kg in Table 2 versus 3492.94 kg



10 Advances in Mechanical Engineering

Table 2: Detailed nondominated structural frame designs of Figure 20 (5% increased loads).

Constrained
weight (kg)

Constraint
violation

typical deviation
(kg)

Constraint
violation average

(kg)

Cross section
type bar 1

Cross section
type bar 2

Cross section
type bar 3

Cross section
type bar 4

Obtained with the
EMO algorithm

3411.26 22.05 3.101 IPE400 IPE550 IPE160 IPE500 NSGAII
3428.14 18.274 2.083 IPE400 IPE550 IPE180 IPE500 SPEA2
3448.96 13.314 1.238 IPE400 IPE550 IPE200 IPE500 NSGAII
3471.49 8.943 0.696 IPE400 IPE550 IPE220 IPE500 SPEA2
3482.62 6.745 0.356 IPE360 IPE550 IPE360 IPE450 SPEA2
3493.04 3.204 0.103 IPE400 IPE550 IPE160 IPE550 SPEA2
3493.04 3.096 0.103 ,, ,, ,, ,, NSGAII
3510.88 1.696 0.042 IPE400 IPE550 IPE180 IPE550 SPEA2
3532.51 0.938 0.013 IPE400 IPE550 IPE200 IPE550 SPEA2
3532.51 0.717 0.013 ,, ,, ,, ,, NSGAII
3537.84 0.526 0.007 IPE360 IPE550 IPE400 IPE450 NSGAII
3537.84 0.505 0.007 ,, ,, ,, ,, SPEA2
3555.58 0.157 0.001 IPE400 IPE550 IPE220 IPE550 NSGAII
3563.27 0.0 0.0 IPE360 IPE550 IPE360 IPE500 NSGAII
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Figure 14: Average of 𝑆-metric (30 independent executions), SPEA2
with g-dominance, comparing standard and variance reduction
Monte-Carlo. Population size is 100.

in Table 1). Moreover, some designs belong to both nondom-
inated fronts; specifically, the six lowest designs of Table 1
overlap with the six highest designs of Table 2, as depicted
with letters A, B, C, D, E, and F in Figure 21 (each letter
corresponds to the same structural design).

6. Conclusions

This paper has proposed, implemented, and verified a proce-
dure for the robust optimum design of frame structures with
real discrete cross-section types consisting of the simultane-
ous incorporation of engineering knowledge through:
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Figure 15: Best of 𝑆-metric (30 independent executions), SPEA2
with g-dominance, comparing standard and variance reduction
Monte-Carlo. Population size is 100.

(a) an engineering knowledge-based variance-reduction
Monte-Carlo simulation based on important sam-
pling methods, and

(b) the incorporation of the engineer/decision maker’s
preferences, as desirable aspiration levels, in terms
of the consideration of the deterministic optimum
design values (knowledge of variable values is not
required) as a reference point in the g-dominance
implemented in evolutionary multiobjective algo-
rithms. This second aspect could be applied with
no loss of generality with any other reference point
preference-based evolutionary algorithm.



Advances in Mechanical Engineering 11

0

2000

4000

6000

8000

10000

H
yp

er
vo

lu
m

e s
ta

nd
ar

d 
de

vi
at

io
n

Fitness evaluations
0 1e + 08 2e + 08 3e + 08 4e + 08 5e + 08

Variance-reduction g-dominance SPEA2
G-dominance SPEA2

Figure 16: Standard deviation of 𝑆-metric (30 independent execu-
tions), SPEA2 with g-dominance, comparing standard and variance
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Figure 17: Average of 𝑆-metric (30 independent executions), SPEA2
with g-dominance, comparing standard and variance reduction
Monte-Carlo. Population size is 200.

Uncertainty has been dealt with by including all the pos-
sible factors of constraints violation (stresses, displacements,
and buckling effect) in the final designs. Two objectives
were simultaneously minimized: first, the constrained weight
(representative of system performance), by adding the weight
of the structure and the average constraint violation penalty
distribution; second, the typical deviation of the constraints
violation penalty distribution (representative of system sen-
sitivity).

Although each of these two engineering knowledge
aspects alone is useful per se, the combination of the two adds
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Figure 18: Best of 𝑆-metric (30 independent executions), SPEA2
with g-dominance, comparing standard and variance reduction
Monte-Carlo. Population size is 200.
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Figure 19: Standard deviation of 𝑆-metric (30 independent execu-
tions), SPEA2 with g-dominance, comparing standard and variance
reduction Monte-Carlo. Population size is 200.

considerable value as shown in the statistical analysis of the
𝑆-metric in terms of average, best, and standard deviation in
the frame structural test case addressed. This methodology
enhances efficiency in the global stochastic search in robust
optimum structural engineering design.
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