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Abstract: JAK2 V617F is the predominant driver mutation in patients with Philadelphia-negative
myeloproliferative neoplasms (MPN). JAK2 mutations are also frequent in clonal hematopoiesis of
indeterminate potential (CHIP) in otherwise “healthy” individuals. However, the period between
mutation acquisition and MPN diagnosis (known as latency) varies widely between individuals, with
JAK2 mutations detectable several decades before diagnosis and even from birth in some individuals.
Here, we will review the current evidence on the biological factors, such as additional mutations
and chronic inflammation, which influence clonal expansion and may determine why some JAK2-
mutated individuals will progress to an overt neoplasm during their lifetime while others will not.
We will also introduce several germline variants that predispose individuals to CHIP (as well as
MPN) identified from genome-wide association studies. Finally, we will explore possible mutation
screening or interventions that could help to minimize MPN-associated cardiovascular complications
or even delay malignant progression.

Keywords: Philadelphia-negative myeloproliferative neoplasms; clonal hematopoiesis of indeterminate
potential (CHIP); clonal expansion; screening; fitness; thrombosis; intervention

1. Introduction

The Philadelphia-negative myeloproliferative neoplasms (MPN) are a group of clonal
diseases that affect the hematopoeitic stem and progenitor cells (HSPC) and are character-
ized by the abnormal proliferation of one or more myeloid cell lines [1]. The “classic” MPNs,
which include polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis
(MF), share a common pathogenic mechanism: the aberrant activation of the JAK/STAT
signaling pathway. This pathway is responsible for the regulation of cellular proliferation,
differentiation, and apoptosis [2].

The most frequent mechanism of JAK/STAT activation in MPNs is the point mutation
JAK2 p.V617F, which is found in 97% of PV patients, 50–60% of ET patients, and 55–60%
of MF patients [3], although the variant allele frequency (VAF) is generally lower for ET
patients than PV or MF patients [4–6]. This gain-of-function mutation has been shown to
be clonal [7–9] and is present in HSPCs [10]. Since 2016, the presence of mutations in the
driver genes JAK2, CALR, and MPL has been considered a major diagnostic criterion in
MF and ET by the World Health Organization. In PV, the major diagnostic criterion is the
detection of JAK2 p.V617F or mutations in exon 12 of JAK2 [1,11].

Common MPN-related complications include thrombosis (arterial, venous, and of the
microcirculation) and hemorrhage, which are major causes of morbidity and mortality in
MPN patients. Thrombotic events frequently occur at diagnosis or several years before
diagnosis [12], even in young patients [13]. Additionally, patients with ET and PV may
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transform to MF, and some patients with MPN will progress to acute leukemia, with an
estimated incidence at 10 years ranging from approximately 1% of patients with ET to
10–20% of those with MF [14,15].

In cancer, the primary concept of early diagnosis is to detect “symptomatic patients as
early as possible”, while screening “consists of testing healthy individuals to identify those
having cancers before any symptoms appear” [16]. Both early diagnosis and screening
can help prevent the development of later complications. The National Cancer Institute’s
“PreCancer Atlas” is an innovative initiative currently underway to elucidate the early
changes associated with premalignancy and how cancers develop, with the monumental ob-
jective of applying this knowledge to inform the development of early detection strategies,
preventative measures and potential new treatments for individuals with pre-cancer [17].

The observation that JAK2-mutated clones generally increase in VAF over time sug-
gests that monitoring the VAF of JAK2 p.V617F could be useful for detecting the progression
from an early-phase MPN to an overt MPN [18]. The concept of screening refers to the
use of simple tests across a healthy population to identify those individuals who have a
disease but do not yet have symptoms. At face value, identifying patients with early-phase
MPN may seem straightforward: screening for the JAK2 p.V617F mutation before other
disease-related signs appear, such as changes in the blood count. However, molecular diag-
nosis based solely on the detection of JAK2 p.V617F is not specific for classic MPNs. This
variant can also be found in other myeloid neoplasms, including acute myeloid leukemia
(AML), myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML),
and systemic mastocytosis [19,20]. Moreover, in 2006 the variant was identified for the first
time in 5 healthy individuals out of 52 tested (9.6%), albeit with a low VAF [21].

2. Clonal Hematopoiesis of Indeterminate Potential (CHIP)

Across the lifespan of every individual, our cells accumulate mutations (or other
genetic alterations) with each cell cycle. Thus, the frequency of somatic mutations increases
linearly with age, estimated at rates of 0.05 × 10−9 mutations per nucleotide per cell
division [22]. These mutations may be deleterious and cause cell death, be neutral, or
confer a competitive advantage to the cell, resulting in the expansion of a new clone,
increasing cell “fitness” [23,24]. As such, age and cancer development are undoubtedly
related [25].

For HSPC of the bone marrow (BM), which divide every 2 to 20 months, estimates
for the introduction of mutations vary from one to two mutations per cell division to just
14 mutations per year [26,27]. In this way, if the genetic alterations affect genes important
in hematopoiesis, they may provide a selective advantage to the cell, resulting in clonal
hematopoiesis [27,28]. JAK2 p.V617F and other gain-of-function variants that result in the
constitutive activation of JAK2’s kinase activity are known to confer HSPCs with a survival
advantage [29].

Clonal hematopoiesis of indeterminate potential (CHIP) refers to a population of cells
harboring somatic mutations that confer a fitness advantage and are detected in the blood
of individuals without evidence of a hematological anomaly or cytopenias. In addition to
somatic mutations, CHIP may also be a result of translocations and copy number alterations
(CNA), such as the loss of chromosome Y or deletions of chromosomes 20q and 13q [30,31].
Recently, Niroula et al. described the existence of lymphoid CHIP (L-CHIP), in addition to
the commonly described myeloid CHIP (M-CHIP), in healthy individuals. The presence
of L-CHIP was associated with lymphoid neoplasms, while M-CHIP was associated with
myeloid neoplasms [32].

In early studies, the incidence of CHIP was shown to increase with age, with a
prevalence of M-CHIP of 1% in those aged under 50 years, reaching 10% to 15% in those
over 70 years (with a prevalence of L-CHIP somewhat lower) [33]. The detection of CHIP,
including somatic mutations and/or chromosomal alterations, may be significant as it has
been associated with a higher risk of developing myeloid and lymphoid neoplasms [32]. In
fact, M-CHIP was included in the new World Health Organization (WHO) classification of
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myeloid neoplasms due to its recognition as a myeloid precursor lesion [1]. Furthermore,
M-CHIP is associated with a 40% higher mortality due to an increased risk of developing
cardiovascular diseases [33–35]. However, unlike M-CHIP, the presence of L-CHIP was not
associated with increased cardiovascular risk or mortality rate [32].

Approximately half of all MPN patients harbor mutations in the CHIP genes TET2,
DNMT3A, and ASXL1 [33,36,37]. Additionally, the occurrence of CHIP mutations in JAK2 in
the healthy population, including the JAK2 p.V617F variant, is quite frequent. For instance,
one 2007 study detected JAK2 p.V617F in 0.94% (37/3935) of randomly analyzed peripheral
blood (PB) samples in a routine laboratory setting [38]. Another study from 2019 utilized
digital PCR to screen a healthy Danish population cohort and found mutations in JAK2 and
CALR in 3.1% (613/19,958) and 0.16% (32/19,958) of the samples, respectively [39].

Is the Acquisition of the JAK2 p.V617F Variant Sufficient for the Development of
an MPN?

Experiments conducted on mice whose BM was transduced with a retrovirus ex-
pressing JAK2 p.V617F, demonstrated that expression of the variant alone was sufficient
to induce an MPN phenotype [40,41]. Nevertheless, the MPN observed in these mice
was polyclonal in nature, unlike the monoclonal MPN seen in patients. Lundberg et al.
observed that an MPN phenotype could be initiated in some mice with the transplantation
of a single cell with the JAK2 p.V617F variant, but not in all mice [42]. Similarly, in a Danish
cohort of healthy individuals, the development of MPN was confirmed in only 14 out of
613 individuals (2.3%) with JAK2 mutations and 2 out of 32 (6.3%) individuals with CALR
mutations [39]. Taken together, these experiments suggest that only a small proportion of
individuals with a JAK2 mutation will develop an MPN in their lifetime.

So, what determines the evolution of progression of an MPN after the acquisition of a
JAK2 mutation or other driver mutation? Might all individuals with CHIP be expected to
develop an overt MPN if they lived long enough?

3. Variant Allele Frequency

In patients with a confirmed MPN diagnosis, the JAK2 p.V617F variant can be detected
in peripheral blood at a VAF of 1% [43] or below using quantitative PCR [44–46], and with
a detection limit of 0.01% using digital PCR [39,47]. While quantification of the VAF is
not obligatory for the diagnosis or monitoring of MPN patients during follow-up, various
studies have associated a higher JAK2 p.V617F VAF with a greater symptom burden [48–51],
as well as an increased risk of thrombosis [52,53] and fibrotic progression [49,54,55]. It has
also been demonstrated that a larger clone size, as indicated by a higher VAF, is associated
with a higher risk of developing a hematological neoplasm. For example, Jaiswal et al.
estimated that the presence of CHIP conferred a 0.5% per year risk for developing a
hematological neoplasm, which increased to 1% per year if the VAF exceeded 10% [34].
Similarly, Cordua et al. reported a 14% increase in the risk of MPN for each additional
percentage of VAF [39].

In many individuals with MPN, JAK2 p.V617F is the sole somatic mutation de-
tected [42,56]. In a 2017 study involving nine MPN patients with the JAK2 p.V617F variant
who had previously donated blood, wide variability between individuals whose clones
only harbored JAK2 p.V617F was shown, with a clonal proliferation rate that ranged from
0.36% to 6.2% per year, resulting in latencies (defined as the time between variant detection
and MPN diagnosis) of 4.6 to 15.2 years [57]. Single-cell transcriptional studies using RNA-
seq have also revealed that the fraction of JAK2-mutated HSPCs is variable among patients,
as is the affectation of the progenitor cells: Megakaryocytic and erythrocytic progenitors
tend to have the highest VAF, while lymphoid progenitors have the lowest VAF [58–60].

4. Latency

Studies on latency in patients with MPN face various challenges, such as the absence
of serial sampling spanning several decades and clonal heterogeneity, i.e., the existence of
multiple clones with different fitness that are indistinguishable by the sequencing of PB
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or total BM. However, in recent years, advances in single-cell sequencing techniques have
permitted the investigation of clonal evolution via the construction of phylogenetic trees of
tumoral clones using a method known as retrograde extrapolation [58,61,62].

These phylogenetic trees are utilized to analyze neoplastic clones and trace their
evolutionary paths, in a similar way to how evolutionary relationships between different
species are demonstrated. By examining serial samples from the same patient, researchers
can determine the trajectory of clonal expansion and estimate the latency period between
the acquisition of the mutation and the clinical detection of MPN. Through the application
of these techniques, pioneering studies have inferred that the JAK2 p.V617F mutation can
be acquired various decades before MPN diagnosis [58,62]. For example, one study found
that in cases where JAK2 p.V617F was the sole driver mutation, the average latency period
was 34 years [62].

Another new technique used to estimate latency is the passenger-approximated clonal
expansion rate (PACER). PACER allows the prediction of the clonal expansion rate using
data from a single sample by considering the total number of passenger mutations and
adjusting for the VAF and the age of the individual [63]. This technique is based on the
principle that as a mutant clone expands, the VAF of both driver and passenger mutations
increases. Thus, for two individuals of the same age, the clone with more passengers would
be expected to be fitter since it would have expanded to the same size in less time.

Groundbreaking retrograde extrapolation studies have provided insight into the
acquisition of somatic mutations in a very early stage of development, even in utero [58,62].
These results, although controversial, have been supported by other observational findings,
such as the detection of the same mutation in SRSF2 or DNMT3A in two pairs of twins
with MPN [64,65]. Furthermore, a study published in Nature Medicine in 2022 reported
the presence of a somatic mutation in CALR in two twins who developed MF at the ages
of 37 and 38. The mutation was shown to have originated in a hematopoietic stem cell
(HSC) in utero as a result of transplacental transmission to the twins. The same study also
demonstrated the in utero origin of JAK2 p.V617F, which was detected with a VAF of 1% in
a blood drop collected at birth in the “heel prick” neonatal screen. The individual carrying
this mutation was later diagnosed with PV at the age of 34 [65].

5. Clonal Expansion

The early acquisition of CHIP mutations and/or MPN drivers, such as CALR, without
conferring a clonal advantage, suggests that these mutations may be present decades before
the onset of MPN. During this period, these mutations may not significantly impact the
fitness of HSCs compared to other HSCs in the BM. However, while the VAF of JAK2 can
remain stable in some patients over several years [66], the size of the clone and the number
of mutations generally increase with age.

Hence, it is evident that other biological factors must influence clonal expansion
and the progression of a clone harboring JAK2 p.V617F (or other CHIP mutations or
chromosomal alterations) to a symptomatic MPN clone.

5.1. Other Mutations

One contributing factor is the mutational burden. The presence of additional mutations
or multiple chromosomal alterations can have an impact on the rate of clonal expansion.
Thus, clones with a higher number of mutations have a higher risk of progressing to a
hematological neoplasm.

Additionally, mutations in different genes have been shown to induce different rates
of clonal growth or expansion. A study that followed 697 CHIP clones from 385 individuals
over a median period of 13 years found that although most clones expanded at a stable
exponential rate, the presence of additional mutations could accelerate the rate of clonal
expansion [57]. The authors observed that certain mutations affected the growth rate
differently, from 5% for mutations in DNMT3A and TP53 to 50% per year in the case of
SRSF2 p.P95H. Importantly, the study also found that the presence of the SRSF2 p.P95H
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mutation was associated with a higher risk of progression to neoplasm, highlighting the
clinical significance of different clonal expansion rates [67].

In a seminal study, it was observed that the specific gene mutation and the order
in which mutations in different genes are acquired could both have an impact on the
age at which MPN manifests [68]. Specifically, in MPN patients with mutations in both
JAK2 and TET2, the acquisition of TET2 mutation prior to JAK2 mutation was found to
diminish the proliferative effect of JAK2 p.V617F, resulting in an earlier manifestation
of MPN and tendency towards an ET phenotype, compared to patients where the JAK2
mutation occurred first with a tendency towards a PV phenotype. Similarly, when 10 MPN
patients all harboring the JAK2 p.V617F variant were studied by retrograde extrapolation,
the development of a JAK2 mutation first was associated with an increased propensity
toward PV or MF, whereas the development of a DNMT3A mutation first was associated
with an increased propensity toward ET [69].

5.2. Germline Predisposition

The risk of developing MPN has been demonstrated to be five to seven times higher for
individuals who have a first-degree relative affected by MPN [70], and numerous germline
variants and polymorphisms have been described that increase the predisposition to MPN.
For instance, carriers of the rs34002450 germline variant of TERT (which encodes telomere
enzyme reverse transcriptase) have a significantly increased risk of developing both CHIP
and MPN [31,71].

Other germline mutations are specifically associated with HSPC self-renewal. For
example, the JAK2 46/1 haplotype or GGCC (rs1327494) confers a two to six times increased
risk of developing MPN or CHIP [72–74].

Indeed, in a genome-wide association study (GWAS) with the aim of identifying genes
whose mutation is associated with an increased MPN risk, 11 of the 15 genes identified
included JAK2, SH2B3 (sometimes referred to as LNK), TET2, RUNX1, ATM, and TERT,
as well as other factors with a role known to be associated with HSC self-renewal and
function, such as GATA2, HMGA1, FOXO1, and MECOM [75].

Specifically, there is a positive correlation between inherited genetic risk for MPN and
CHIP ([76], Table 1). One GWAS study of germline variants associated with CHIP observed
that individuals with the A allele at SNP rs79901204 had a 2.4-fold increased risk for CHIP
due to the disruption of a TET2 enhancer, resulting in decreased TET2 expression [71].

Table 1. Single-nucleotide polymorphisms (SNP) associated with an increased risk of developing
clonal hematopoiesis of indeterminate potential (CHIP). Adapted from [77]. The Single Nucleotide
Polymorphism database (dbSNP) annotation is indicated for each variant.

Gene Function dbSNP Effect Reference

JAK2 46/1
haplotype Key driver mutation in MPN. rs1327494 Higher risk of acquiring JAK2

p.V617F-mutated CHIP or MPN. [71–74]

TET2
Role in myelopoiesis. Loss of
this gene has been associated

with MPN and CHIP.
rs144418061

Variant specific to African ancestry in an
intergenic region near TET2. Carriers of

the A allele have a 2.4-fold increased risk
of CHIP.

[71]

rs1548483 SNP upstream of TET2 associated with
JAK2-mutated CHIP and MPN. [75]

rs79901204

Disrupts a TET2 distal enhancer resulting
in decreased TET2 expression, increased
HSC self-renewal, and increased risk of

acquiring any CHIP driver mutation.

[71]
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Table 1. Cont.

Gene Function dbSNP Effect Reference

TERT
Telomere enzyme reverse
transcriptase. Key role in

telomere length maintenance.
rs7705526

Frequent variant in the 5th intron of TERT
associated with CHIP, and specifically
with JAK2-mutated CHIP and MPN.

[71,75,78]

rs34002450 The A allele confers a 1.3-fold increased
risk of developing CHIP. [71,79]

rs2853677 Identified in European populations. [78]

rs13156167
E2D;rs2086132

Associated specifically with
DNMT3A-mutated CHIP. [76]

rs2736100 Associated with TET2-mutated CHIP
and MPN. [76]

CHEK2 DNA damage repair. rs555607708
E2D;

Higher risk of being a JAK2 p.V617F
carrier and developing multiple mCAs. [31,75]

rs62237617 The T allele conferred a large increase in
the risk of DNMT3A-mutated CHIP. [78]

ATM DNA damage repair. rs1800056 Higher risk of being a JAK2
p.V617F carrier. [75]

rs11212666
Associated specifically with

DNMT3A-mutated CHIP in a
European population.

[78]

SH2B3
Mutations identified in MPN

and result in aberrant
JAK-STAT signaling.

rs7310615 Associated with JAK2-mutated CHIP
and MPN. [75]

GFI1B Transcriptional repressor with
key role in hematopoiesis. rs524137 SNP in the enhancer region resulted in

2.7-fold increase in the expansion of HSC. [80]

rs621940 Higher risk of being a JAK2
p.V617F carrier. [75]

SMC4
Encodes condensin subunit

with key role in
chromosome segregation.

rs12632224 Identified in European populations. [78]

PARP1 DNA damage repair. rs138994074
Associated specifically with

DNMT3A-mutated CHIP in a
European population.

[78]

CD164 HSC migration/homing. rs35452836 Identified in European populations. [78]

ENPP6 Enzyme with a role in
choline metabolism. rs13130545 Identified in European populations. [78]

SETBP1 Myeloid oncogenesis. rs8088824
Associated specifically with

DNMT3A-mutated CHIP in a
European population.

[78]

MBD4 Role in DNA mismatch repair. rs79901204

Individuals with the A allele have a
2.4-fold increased risk for CHIP due to the
disruption of a TET2 enhancer resulting in
decreased TET2 expression. Particularly

prone to DNMT3A-mutated CHIP.

[81]

TCL1A Factor that enhances cell
proliferation. rs2887399

Carriers of the T allele have 1.2-fold
increased risk of CHIP, particularly

DNMT3A-mutated CHIP in the European
population. The variant is also associated

with mosaic loss of chromosome Y.

[71,78,82]
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Table 1. Cont.

Gene Function dbSNP Effect Reference

rs10131341
Associated specifically with

TET2-mutated CHIP in
European population.

[78]

KPNA4-
TRIM59

locus
Role in nuclear protein import. rs1210060191

Carriers of this common variant (1-base pair
deletion) have a 1.2-fold increased risk of

CHIP, including JAK2-mutated CHIP.
[71]

PINT No known role in HSC biology. rs58270997 Higher risk of being a JAK2
p.V617F carrier. [75]

TMEM209 Integral protein of
nuclear envelope. rs79633204

Associated specifically with
TET2-mutated CHIP in a

European population.
[78]

CHIP: clonal hematopoiesis of indeterminate potential; HSC: hematopoietic stem cells; mCA: mosaic chromosomal
alteration; MPN: myeloproliferative neoplasm; SNP: single nucleotide polymorphism.

Moreover, a study of germline mutations in 5071 individuals with CHIP used PACER
to identify a novel locus within the TCL1A promoter (rs2887399), which was shown to be
associated with slower clonal expansion of CHIP [63]. This variant specifically increased
the risk of DNMT3A CHIP and mosaic loss of chromosome Y but decreased the risk of
acquiring TET2 CHIP mutations. Additionally, analysis of whole exome sequencing data
from over 200,000 UK Biobank participants identified 14 germline associations with CHIP
in European populations [75]. These associations included variants in genes such as CHEK2,
PARP1, ATM, CD164, and SETBP1. Thus, it is noteworthy that many known germline risk
factors for myeloid diseases may also contribute to the clonal expansion that leads to CHIP,
given their role as a precursor state to hematological neoplasms.

Furthermore, germline mutations in genes associated with genome stability, such
as CHEK2 (Table 1), lead to an increased susceptibility to acquiring additional muta-
tions. Germline mutations in CHEK2 have significant implications for stem cell self-
renewal [76,78] and elevate the risk of tumor development in general. Through GWAS
studies, numerous germline mutations that predispose individuals to CHIP have been
identified (reviewed in [77]). Among them are germline variants in KPNA4 and MBD4,
the latter of which plays a protective role against methylation damage. Variants in these
genes are associated with an increased risk of JAK2-mutated CHIP and early-onset AML,
respectively [71,81].

5.3. Inflammation

There is ever-increasing evidence highlighting the important role that chronic inflam-
mation plays in the pathogenesis of MPN. Chronic inflammation triggers the activation
of inflammatory pathways, leading to an increased production of cytokines, which con-
fers a competitive advantage to the disease clone [83–85]. A population study involving
11,039 MPN patients and 43,550 controls demonstrated a significantly higher risk of devel-
oping MPN among individuals with an autoimmune disease, including Crohn’s disease
and Reiter’s syndrome [86]. Furthermore, chronic inflammation can cause genomic insta-
bility through the generation of reactive oxygen species (ROS), resulting in DNA damage.
This DNA damage contributes to the progression of the disease and further enhances the
clonal expansion and survival of MPN cells [85,87].

Proinflammatory cytokines have been suggested to promote the expansion of DNMT3A-
mutated clones [88]. Similarly, it has been observed that monocytes in MPN patients exhibit
reduced sensitivity to the anti-inflammatory cytokine IL-10, resulting in the continuous
production of TNF-alpha [89]. It has been proposed that this inflammatory stimulus could
provide JAK2 p.V617F cells with a competitive advantage. In this respect, it is suggested
that an individual’s genome could be influenced by their predisposition to inflamma-
tion [90]. Supporting this idea, a study found a reduction in IL-10R signaling in the twin
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of an MPN patient, even though the twin did not have MPN. This finding suggests that
the signaling anomaly was acquired prior to the development of MPN. A second example
of how genetic factors influence inflammatory pathways and disease predisposition is the
observation that individuals with CHIP and a loss-of-function polymorphism in the IL6R
gene have a reduced risk of cardiovascular disease and development of MPN [91].

Another source of inflammation includes the microbial production of harmful molecules in
the gut, such as TLR2 agonists released by several Lactobacillus strains, which can enter into
the bloodstream and have been shown to induce IL-6 production resulting in increased
myeloproliferation in Tet2−/− mice [92,93]. Ongoing studies are continuing to explore the
impact of inflammation on the development of MPN. These studies include the analysis
of the role of the intestinal microbiome in MPN [94] and the NUTRIENT clinical trial
(NCT03907436), which aims to evaluate the effectiveness of an anti-inflammatory diet in
MPN patients [95].

To summarize, the acquisition of additional factors or mutations (such as DNMT3A
mutations), exposure to cell-extrinsic factors (such as UV light and genotoxic agents), or
intrinsic cellular factors (like inflammation or aging), can lead to an increase in clonal
fitness and the subsequent development of MPN. Specifically, age-related changes, both
biochemical and functional, have been observed to affect HSC fitness [96,97]. For exam-
ple, retrograde extrapolation experiments analyzing blood DNA samples from 385 older
individuals revealed a rapid decline in clonal diversity in those over 60 years, revealing
oligoclonal CHIP [67]. Moreover, individuals with TET2-mediated CHIP showed the great-
est “epigenetic age acceleration”, a phenomenon where an individual’s biological age, as
measured by epigenetic markers such as age-related methylation, appears to be progressing
at a faster rate than their chronological age [98,99]. Nevertheless, in many cases, the clonal
expansions in older individuals lacked recognizable drivers [67,77,100].

This reduced fitness associated with older age and selection for mutations that confer
a clonal advantage can promote MPN development, and indeed leukemic transformation,
as well as provide a more permissive environment for clonal expansion, i.e., due to chronic
inflammation [67,101].

6. Can Early-Phase MPN Be Detected in the Clinic?
6.1. Screening Feasibility

Two studies have assessed the feasibility of screening healthy individuals for the
presence of JAK2 mutations [102,103]. In the first study, a two-step algorithm was developed
to screen individuals suspected of having PV [102]. The study analyzed 15,366 peripheral
blood samples, focusing on those showing elevated levels of hemoglobin or hematocrit
according to WHO criteria [104]. Of the 996 individuals who met the screening criteria, eight
individuals (0.8%) tested positive for JAK2 p.V617F mutation (considering a VAF above
0.71%). The study also found that individuals with JAK2 p.V617F mutation had significantly
higher levels of neutrophils and platelets and established cut-off values of 6 × 109/L and
250 × 109/L, respectively. When this algorithm was applied to an independent validation
cohort, JAK2 p.V617F was detected in 1.2% of individuals [102].

In the second study, a mutation screen was conducted using multiplex digital PCR to
detect JAK2 p.V617F and CALR mutations (using a threshold of VAF ≥ 1%) in both healthy
individuals and individuals with elevated levels of hemoglobin, hematocrit, leukocytes, or
platelets in two consecutive blood tests [18]. Among the 373 individuals with high blood
counts, 32 (8.5%) tested positive for JAK2 (none tested positive for CALR mutation), with
an average VAF of 1.3%. Among the 19958 healthy individuals tested, 3.2% were mutated
(613 in JAK2, 32 in CALR), with an average VAF of 2.4%. Further analysis revealed that
12 individuals with mutations and 10 individuals without mutations had BM findings
compatible with MPN. Although three out of 25 individuals (12%) who tested positive
for mutations also had elevated blood counts in consecutive hemograms, the authors of
the study suggested that the mutational screening method was more sensitive, given that
five out of 12 individuals (42%) with early-phase MPN would not have been detected
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by the method of elevated blood counts alone [18]. Finally, using a Receiver Operating
Characteristic (ROC) curve, the authors established that a VAF threshold of 1% had a
predictive value of 79% for detecting changes in the BM biopsy.

Both of these studies conclude that the detection of JAK2 p.V617F at low VAF in
healthy individuals could be a feasible method for the early diagnosis of MPN. However,
prospective clinical studies are required to determine the value of monitoring individuals
with a low VAF, establish the threshold of “low VAF”, and decide the appropriate frequency
for repeating the determination. Furthermore, it remains to be determined whether indi-
viduals with a high VAF of mutated JAK2 and/or other mutations (such as SRSF2 p.P95H)
would benefit from a closer follow-up. However, it is worth mentioning here that other
researchers observed that abnormal blood counts were associated with a higher risk of
developing a myeloid neoplasm, even in patients without genetic alterations [32].

An alternative method for monitoring early-phase MPN patients could involve as-
sessing the fitness of MPN clones as a prognostic biomarker. One study monitored JAK2-
mutated MPN clone fitness by measuring the VAF of JAK2 p.V617F with digital PCR in 11
distinct cell populations [59]. Unsupervised hierarchical clustering of JAK2 p.V617F VAF
within the 11 populations identified four major MPN fitness levels. Patients in higher fitness
groups were more likely to experience adverse events, such as thrombosis, hemorrhage,
disease progression, or death, whereas VAF of whole blood was not predictive, indicating
its inadequacy as a monitoring biomarker.

6.2. Possible Intervention

During the initial phase, there is an opportunity to implement preventive measures
and interventions aimed at delaying or preventing the onset of symptomatic disease and
its associated thrombotic complications. One preventive strategy could involve an annual
hemogram to molecularly monitor individuals with an increased VAF greater than 1% (or
another yet-to-be-defined threshold) [104]. Although MPN evolution from JAK2 p.V617F
CHIP is not certain, a JAK2 p.V617F VAF greater than 2% was associated with a high
incidence of CHIP to MPN progression, as was a demonstrated increase in VAF during
follow-up [18,60,105]. Similarly, monitoring of M-CHIP could be of interest to national
health systems in terms of prevention since it is associated with cardiovascular disease,
higher mortality, and an increased risk of developing a myeloid neoplasm [34]. In the
screening conducted by Piris et al., one-third of the patients with JAK2 p.V617F later
experienced a cardiovascular event [102]. Considering the increasing age of the population,
this consideration gains importance as the incidence of both MPN and CHIP is expected
to rise.

A simple intervention to prevent MPN-associated thrombosis could be early pro-
phylaxis with aspirin. However, the ASPirin in Reducing Events in the Elderly with
Clonal Hematopoiesis trial (ASPREE CHIP) showed that low-dose aspirin had no effect on
reducing the risk of cardiovascular events in individuals with CHIP [106].

Ongoing research is exploring different interventions to reduce chronic inflammation.
Some promising results have been achieved with antioxidant therapy. For example, studies
conducted on mice with a BM graft of JAK2 p.V617F cells have shown that supplementation
with the antioxidant N-acetylcysteine can lead to a decrease in DNA damage, reduced
splenomegaly, and fewer thrombotic complications [87,107]. Moreover, the dietary supple-
mentation of MPN patients with N-acetylcysteine led to improvements in the symptomatic
burden [108]. Additionally, vitamin C (ascorbic acid) levels in HSCs have been found
to be 2- to 20-fold higher compared to other hematopoietic progenitors. Vitamin C acts
as a cofactor for TET protein-mediated DNA demethylation functions [109,110]. Indeed,
low levels of vitamin C in HSCs can mimic TET2 loss of function [109,110], leading to
increased HSC frequency. On the other hand, ultra-high vitamin C doses reverted leukemia
progression in patient-derived xenograft models [111]. Notably, vitamin C was found to
delay cancer growth via T cell-dependent infiltration of the tumor microenvironment, but
only when given intravenously at high doses [112]. Indeed, an ongoing clinical trial of
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patients with low-risk TET2-mutated myeloid malignancies, including clonal cytopenia
of undetermined significance (CCUS), low-risk MDS, and CMML, is evaluating whether
intravenous vitamin C can reduce the VAF and/or number of mutations (NCT 03682029).

Other strategies to reduce inflammation could include interferon-alpha (IFN-α) treatment,
which was shown to reduce the size of the JAK2 p.V617F clone in MPN patients [113–115] by
pushing the mutant HSCs into the cell cycle and exhausting them. Type I IFN may even
inhibit IL-1β production [116]. Thus, one interesting therapy to prevent cardiovascular
events for MPN patients with CHIP could be canakinumab, an anti-interleukin-1β mon-
oclonal antibody. Patients enrolled in the Canakinumab Anti-Inflammatory Thrombosis
Outcome Study (CANTOS) study with TET2 mutations responded better to canakinumab
than patients without CHIP-associated mutations [117]. Moreover, loss of interleukin-1β
(IL-1β) decreased the frequency of MPN disease initiation in mouse models of MPN [118].
Meanwhile, for JAK2-mutated CHIP, an inhibitor of IL-18 may be a more appropriate
strategy, since JAK2-mutated CHIP is associated with increased levels of IL-18 and IL-6
rather than IL-1β [71]. Thus, a potential intervention may need to be tailored according to
the driver mutation and/or CHIP presented by the individual.

Before any possible screening program could be launched, the appropriate infras-
tructure must be in place, including sufficient personnel and equipment. To this end, the
development and introduction of a large-scale JAK2 p.V617F detection system would facili-
tate potential JAK2 mutation screening in the general population [102]. A more cost-efficient
alternative could be to selectively screen individuals at high risk of developing an MPN.
Examples of such high-risk groups include the relatives of a patient with a confirmed MPN
diagnosis [70,119], smokers [120,121], or patients with an autoimmune disease [86].

Finally, the introduction of a JAK2 p.V617F screening program should only go ahead
after a thorough evaluation of the advantages and disadvantages associated with such
screening. Possible disadvantages to consider include insufficient resources to effectively
monitor individuals with a mutation detected and the anxiety that may arise in patients who
receive a “positive” result [16]. Furthermore, the preventative treatment of individuals with
initial-phase MPN should certainly not include the unnecessary treatment of individuals
who may never develop overt MPN during their lifetime. It is worth noting that, to date,
no intervention has been shown to delay the onset of MPN effectively.

7. Conclusions and Future Perspectives

With the current technologies available in hematology laboratories, such as quantita-
tive PCR or digital PCR, it is possible to detect driver mutations (and/or CHIP mutations)
with a low VAF in the early phase of a disease, even several decades before the onset of
a hematological malignancy. These mutations can be acquired in childhood, or even in
utero, in some individuals, and can be detected in stored neonatal screening samples taken
several decades ago. Findings from the numerous molecular studies presented in this
review highlight the potential for somatic mutations to arise early in development and
contribute to the subsequent development of hematological disorders such as MPN after
clonal expansion over several decades.

Although the presence of JAK2 mutations in the “healthy” population complicates
interpretation, several studies have demonstrated the feasibility of the early identification
of MPN patients via JAK2 p.V617F screening in asymptomatic individuals, even before
changes in the blood count are detectable [19,103]. Perhaps it is time to change our definition
of a “healthy” individual to a “pre-MPN” in the case of individuals with a low VAF JAK2
mutation [40] (Figure 1).

Nevertheless, this screening strategy would not be suitable for capturing all MPN
patients, since some 10–15% of patients with MF or ET are triple negative and have as
yet undiscovered drivers of their disease [122]. Moreover, no association between CALR
mutations and CHIP has been described to date, although patients with CALR-mutated ET
are diagnosed at a significantly younger age, suggesting a higher proliferative advantage of
the CALR-mutated HSC compared to a JAK2-mutated HSC [123]. Moreover, CALR-mutated
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MPNs are known to have an increased risk of myelofibrotic transformation and reduced
risk of thrombosis, particularly for the CALR type-2 mutation [124–126].
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Figure 1. The biological continuum from the development of CHIP or “pre-MPN” to the manifestation
of an overt MPN opens opportunities for early diagnosis and intervention. The asymptomatic initial
phase can last for several decades, during which the JAK2 p.V617F variant can be detected, from birth
in some cases. AML: acute myeloid leukemia; CHIP: clonal hematopoiesis of indeterminate potential;
CVE: cardiovascular events; ET: essential thrombocythemia; MF: myelofibrosis; PV: polycythemia
vera; VAF: variant allele frequency.

There are still unresolved questions regarding the development of MPN, such as why
there is so much variability in the latency period between individuals with the same driver
mutation. Moreover, while studies on the sequence of molecular events are helping to
elucidate factors associated with clonal expansion, the biological factors that contribute to
the transformation of an asymptomatic JAK2-mutated clone into an overt MPN clone remain
to be determined. The identification of other biomarkers associated with the progression
from CHIP to overt MPN could also facilitate the early detection of these neoplasms and
provide insights into potential interventions. What is apparent from studies conducted to
date is that there is a window of opportunity stretching over several decades for a potential
intervention to be implemented.

An ideal intervention would slow the clonal expansion of JAK2-mutated clones
(and/or CHIP) and thus delay or prevent the development of overt MPN and associ-
ated comorbidities. Possible interventions currently under consideration include dietary
supplementation with antioxidants or early treatment with immunomodulatory agents
like interferon [19]. However, at this time, the only feasible interventions would include
the monitoring of blood counts and strategies to reduce associated vascular risk, such as
lifestyle changes and prophylaxis with low-dose aspirin [127].

In the future, artificial intelligence (AI) could potentially play a significant role in the
early detection of MPN due to its predictive modeling capacity. Machine learning can
process vast amounts of medical data, including electronic health records, medical images
(such as bone marrow biopsies or blood smears), laboratory results, and even genomic data
to predict the likelihood of an individual developing MPN based on various risk factors
and early symptoms. For example, Sirinukunwattana et al. created an automated workflow
based on histological features, such as the characteristics of megakaryocytes, to diagnose
MPN from BM biopsies [128]. Additionally, Mosquera et al. applied machine learning
techniques to a large dataset of clinical data from patients with MF, developing a predictive
model for risk stratification [129].

In conclusion, this article has highlighted that there is still much work to be carried out
in understanding why some clones expand into a malignant MPN clone during a lifetime
and others do not. Such knowledge would help develop intervention opportunities to min-
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imize the risk of complications associated with MPN (including thrombosis, hemorrhages,
or MPN progression to more aggressive phases) and thus reduce a huge economic burden
for national health systems.
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