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Abstract
When projecting and building new industrial facilities, getting integrated design alternatives and maintenance strategies are
of critical importance to achieve the physical assets optimal performance, which is needed to be competitive in the actual
global markets. Coupling Evolutionary Algorithms with Discrete Event Simulation has been explored both in relation to
systems design and their maintenance strategy. However, it was not simultaneously considered when both the corrective
and the preventive maintenance—consisting of achieving the optimum period of time to carry out a preventive maintenance
activity—are taken into account before being considered by the authors of the present paper. This work couples Multi-
objective Evolutionary Algorithms with Discrete Event Simulation in order to enhance the knowledge and efficiency of
the methodology presented, which consists of exploring and optimizing simultaneously systems design alternatives and
their preventive maintenance strategies. The aim consists of finding the best set of non-dominated solutions by using the
system availability (first maximized objective function) with taking into consideration associated operational cost (second
minimized objective function), while automatically selecting the system devices. Each solution proposed by the Multi-
Objective Evolutionary Algorithm is analyzed by using Discrete Event Simulation in a procedure that looks at the effect of
including periodic preventive maintenance activities all along the mission time. An industrial application case study is solved,
and a comparison of the performance of five state-of-the-art and three more recently developed Multi-objective Evolutionary
Algorithms is handled; moreover, the gap in the literature reviewed about the analysis regarding the effect of the discrete event
simulation sampling size is faced with useful insights about the synergies of Multi-objective Evolutionary Algorithms and
Discrete Event Simulation. Finally, the methodology is expanded to more complex systems which are successfully solved.

Keywords Multi-objective Evolutionary Algorithms · Availability · Optimum design · Preventive maintenance

1 Introduction

The main target of companies that base their production on
the effectiveness of their repairable systems consists of max-
imizing the availability of such systems. When a repairable
system is not available, the system enters an unproductive
phase (Boliang et al 2019) where not only resources are not
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generated, but also they are consumed until recovering the
system’s available state. In order to enhance systems avail-
ability, techniques such as including redundant devices or
considering the schedule of preventive maintenance tasks
have been widely analyzed. However, the simultaneous con-
sideration of both techniques has not received sufficient
attention.

In previous studies (Cacereño et al 2021a, b), the authors
of the present paper considered the simultaneous optimiza-
tion of design (this consists of including redundant devices)
and maintenance (this consists of including preventive main-
tenance tasks) of a system considered as a case study. It
allows finding particularized maintenance strategies in rela-
tion to specific alternatives of the structural design, which
avoid designing maintenance strategies after deciding such
structural designs. This has the result of achieving a com-
pact maintenance strategy, which is absolutely customized
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to the structural design. The authors coupled the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al 2002) and Discrete Event Simulation (DES) in order
to solve such a problem. Each solution proposed by the
Multi-objective EvolutionaryAlgorithm is evaluated through
Discrete Event Simulation; a technique used to describe the
behavior of the system by building the system Functionabil-
ity Profile, a concept presented by Knezevic (1996). Both
availability and operational cost were considered as objec-
tive functions from a multi-objective point of view. As an
Optimization Evolutionary Algorithm, the NSGA-II method
is considered a standard state-of-the-art solver to find feasible
solutions to real-world multi-objective optimization prob-
lems (Emmerich and Deutz 2018).

In order to enhance the knowledge and efficiency of the
methodology, such a methodology is thoroughly explored,
exploited and analyzed in the present paper. The contribu-
tions are presented as follows:

• Being the resolution and optimization of real-world
problems with evolutionary algorithms/metaheuristics a
current hot topic (Osaba et al 2021), it is still a research
focus the analysis of state-of-the-artmulti-objective algo-
rithms for solving real-world engineering problems, as
the one in this research. Therefore, as a case study, the
methodology is applied to a containment spray injec-
tion system forwhichfive state-of-the-artMulti-objective
Evolutionary Algorithms (taking into account the state-
of-the-art algorithms of reference of the three selection
type paradigms: dominance-based selection, indicator-
based selection and aggregation-based selection) are
used. The target consists of analyzing the efficacy of
such state-of-the-art Multi-objective Evolutionary Algo-
rithms where two crossover strategies are taken into
account, the Simulated Binary Crossover (SBX) (Deb
and Agrawal 1995) and the Differential Evolution (DE)
(Storn and Price 1997). Their performances are com-
pared in detail by using the Hypervolume and statistical
significance tests (including post-hoc analysis when nec-
essary), demonstrating the success of achieving a set
of non-dominated solutions and determining the fea-
tures of the methods displaying the best performance.
Next, the performance results are compared with some
recently developed algorithms. The benefit of using the
methodology with the indicator-based selection algo-
rithm SMS-EMOA is demonstrated.

• The methodology consists of carrying out an unique Dis-
crete Event Simulation in order to emulate the behavior
of the system all along its mission time. When Evo-
lutionary Algorithms have been coupled with Discrete
Event Simulation, some authors use several discrete sim-
ulations in order to emulate the behavior of the system.
On the other hand, some authors employ an unique Dis-

crete Event Simulation. Therefore, a gap exists in order
to determine the effect due to such a circumstance. In the
present paper, the power of the Multi-objective Evolu-
tionary Algorithms is used to minimize simultaneously
unavailability and operational cost while considering
automatic design of the system. The unique discrete
simulation procedure is further compared in the case
studywith aMonte Carlo Simulation (analyzed sampling
sizes of 10, 100 and 1000) where the minimal extreme
value is taken as representative of the achieved distribu-
tion (either: minimal unavailability, minimal operational
cost, or minimal weighted unavailability–operational
cost—equivalent to minimal Manhattan distance—were
considered). An hypothesis test is shown where the pro-
posed methodology was firstly ordered and statistically
significant differences were found when equivalent total
number of fitness evaluations were run. Insights about
the competitiveness and computational efficiency of the
methodology were given.

• The methodology is applied to two more complex indus-
trial systems (with up to 36 devices), supporting its
scalability and generalization. Evidences of the benefit
of automatic selection of devices were given when com-
pared versus systems with mandatory all devices chosen,
and also two types of chromosome codifications related
with those automatic selection of devices were compared
in the biggest industrial application case showing benefits
in the performance.

Summarizing the main contributions of this manuscript,
the authors have developed a thorough study in which the
multi-objective problem of simultaneous optimization of the
availability of the system and the cost of the system by
defining the maintenance strategy (through their mainte-
nance times) and alternative designs (through automatically
defining system devices) is handled, coupling discrete event
simulation with a single sample size and multi-objective
evolutionary algorithms: a) a study of the performance of sev-
eral state-of-the-art multi-objective evolutionary algorithms
is presented (8 algorithms); b) a study of the influence of
sampling size is presented, demonstrating the benefits of the
here proposed single sample size case; c) a set of three reli-
ability problem applications with increasing complexity is
solved with the abovementioned proposal showing its capa-
bility and scalability.

The paper is organized as follows: Sect. 2 explores the
related literature. Section3 summarizes themethodology and
Sect. 4 introduces the multi-objective optimization by using
Evolutionary Algorithms. Sect. 5 presents the case study.
Its results are presented and discussed in Sect. 6. In Sect. 7,
the methodology is applied to more complex systems, and
finally, Sect. 8 introduces the conclusions.
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2 Literature review

Optimization is useful in practically all areas of life. Engi-
neers must find optimal solutions to achieve the best per-
formance when they are solving engineering problems.
Optimization has been widely used in many fields of engi-
neering (aeronautical, civil engineering, electrical networks,
transport, logistics, etc.), and its limits are in the engineer’s
fancy. Hence, when solving complex problems is needed, the
employment of optimization methods is a suitable course of
action. Optimization is particularly useful when the number
of potential solutions is high and achieving the best solution
is very difficult. Instead of the best solution, some sufficiently
good solutions can be obtained (Simon 2013). Systems
reliability optimization has been widely studied, however,
because of technological advances, increases in system com-
plexity and consumer demand (among other aspects), it is an
ever-changing and developing problem (Coit and Zio 2019).

One strategy commonly used in order to improve the avail-
ability of repairable systems consists of adding redundant
devices. Including a redundant device in a system increases
the number of alternative paths so its probability of keeping
on available state is improved. Including redundant devices
in a system requires the modification of its design. Sev-
eral approaches have been used in order to achieve optimal
designs of systems such as Dynamic Programming (Fyffe
et al 1968), Integer Programming (Misra and Sharma 1991)
or Nonlinear Programming (Tillman et al 1977). However,
the use of Evolutionary Algorithms has been taking impor-
tance due to their power when multiple objectives must
be handled. In this sense, several authors considered using
Genetic Algorithms (Zoulfaghari et al 2014; Ghorabaee et al
2015), the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) (Greiner et al 2003; Kayedpour et al 2017; Sharifi
et al 2019; Chambari et al 2021), the Ant Colony Algorithm
(Zhao et al 2007), the Artificial Bee Colony Algorithm (Jian-
sheng et al 2014) or Particle Swarm Optimization (Samanta
and Basu 2018).

In order to improve the availability of repairable sys-
tems, another one strategy consists of applying preventive
maintenance tasks. Themain reasons why a continuous oper-
ation system stops are a failure (after that, a recovery time
in relation to corrective maintenance tasks is required) or
a scheduled shutdown to perform preventive maintenance
tasks. When a preventive maintenance task is performed, the
unproductive phase is better controlled than when repairs
have to be performed because of a failure. Therefore, it is
important to identify the optimum moment at which to stop
the system and perform a preventive maintenance task. This
should be done before the occurrence of the failure but as
close as possible to such a failure, in order to maximize the
total system available time. Various approaches have been
employed in order to schedule preventive maintenance tasks

such as Integer Programming (Kralj and Petrovic 1995),
Mixed Integer Linear Programming (Charest and Ferland
1993; Fathollahi-Fard et al 2021) or Evolutionary Algo-
rithms, where several authors employed Genetic Algorithms
(An et al 2020; Bressi et al 2021; Wang et al 2021), the Non-
dominated SortingGenetic Algorithm II (NSGA-II) (Piasson
et al 2016; Zang and Yang 2021), the Ant Colony Algo-
rithm (Berrichi et al 2010) or the Bee Colony Algorithm (Li
et al 2014). In all of the above scenarios it is possible to
improve the availability of repairable systems either through
the design modification or the maintenance strategy. How-
ever, there will likely be consequences of such amodification
or strategy in terms of operational costs.

Although both the design and preventive maintenance
strategy of a system have an influence in its performance and
are affected by each other, the joint management of these
strategies has not received significant attention yet. There
are relatively few works in which the design and preventive
maintenance strategy for technical systems have been jointly
optimized. Levitin and Lisnianski (1999) presented the first
formulation of the joint redundancy and maintenance opti-
mization problem for multi-state systems by using a Genetic
Algorithm as an optimization technique. Nourelfath et al
(2012) formulated a joint redundancy and imperfect pre-
ventive maintenance planning optimization model based on
Markov processes and universal moment generating func-
tion, in order to evaluate availability and cost for multi-state
systems by using Genetic Algorithms and Tabu search. Bei
et al (2017) presented an approach to designing the config-
uration of a multiple component system and determining a
maintenance plan with uncertain future stress exposure by
using a two-stages stochastic programmingmodel. However,
when a new system is designed, the Discrete Event Simula-
tion arises as a powerful modeling technique, which allows
complex systems to be analyzed much more accurately due
to amore realistic representation of their behavior in practice.

Using Evolutionary Algorithms coupled with Discrete
Simulation has produced good results in the reliability field.
Regarding the design optimization, Cantoni et al (2000)
presented an approach which couples a Single-objective
Evolutionary Algorithm and the Monte Carlo simulation
for optimal plant design. Marzaguerra et al (2005) pro-
posed a similar approach from a multi-objective perspective
where the presence of uncertainty is considered. Regard-
ing the systems optimal maintenance through the preventive
maintenance strategy, Tan and Kramer (1997) proposed a
general framework for preventive maintenance optimization,
which combines the Monte Carlo simulation with a Genetic
Algorithm and Oyarbide-Zubillaga et al (2008) determined
the optimal preventive maintenance frequencies for multi-
equipment systems by using Discrete Event Simulation and
theNon-dominatedSortingGeneticAlgorithm II (NSGA-II).
Recently, Azevedo et al (2020) proposed a multi-objective
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approach to model a replacement policy problem appli-
cable to equipment that undergoes failures with several
levels of severity. To do that, they used a Multi-objective
Genetic Algorithm coupled with Discrete Event Simulation.
However, although coupling Multi-objective Evolutionary
Algorithms and Discrete Event Simulation presented good
performance when the optimization of the design consid-
ered corrective maintenance tasks (Lins and Droguet 2009;
Lins and López 2011), a few studies that consider preven-
tive maintenance tasks have been developed. A study to
mention was developed by Galván et al (2007), where a
methodology for Integrated Safety SystemDesign andMain-
tenance Optimization from a bi-level evolutionary process
was developed. They coupled theNon-SortingGeneticAlgo-
rithm II and Monte Carlo Simulation in order to achieve
the optimum design and surveillance test intervals. There-
fore, no studies covering both corrective and preventive
maintenance—consisting of achieving the optimumperiod of
time to carry out preventive maintenance tasks—were devel-
oped before the proposed by the authors of the present paper (
Cacereño et al 2021a, b). A deeper study of the methodology
is shown in the present paper. In this case, the performance of
using different types of Multi-objective Evolutionary Algo-
rithms is thoroughly studied. Furthermore, the influence of
the sampling size is analyzed regarding the number of sim-
ulations to conduct, in order to describe the behavior of the
system. Finally, the methodology is applied to more complex
systems to demonstrate its flexibility.

3 Methodology and description of the
proposedmodel

3.1 Extracting availability and cost from the
functionability profile

Reliability is an intrinsic characteristic of systems and it is
related to theway inwhich they have been designed and built.
Maintainability can be intrinsic when it is related to design
conditions (a piece that is difficult to access will be more
complex to maintain) or extrinsic, e.g., when it is related to
available spares or human teams who must perform mainte-
nance operations.Whereas Reliability is a concept in relation
to the Time to Failure, Maintainability is a concept in rela-
tion to the Time To Repair. In availability, these two concepts
are related to define the way in which the system is able
to achieve the function for which it was designed, over a
period of time. Availability can be computed through the
unconditional failure w(t) and repair v(t) intensities, as was
explained by Andrews and Moss (2002). A device which
is continuously subjected to the failure and repair process,
presents a failure probability in the time interval [t, t + dt)
given it was working at t = 0 represented by w(t)dt . Two

situations lead to failure in [t, t + dt): The device works
continuously from 0 to t until the first failure in [t, t + dt)
(the probability of this is given by f (t)dt , where f (t) is the
failure density function) or the device fails in [t, t + dt) but
this is not the first failure. In this second situation, the device
has experienced one or more repairs prior to the failure and
the last one was carried out in the interval [u, u + du) (the
probability of this is given by v(u)du × f (t − u)dt). The
repair time u can occur at any point between 0 and t and so
adding all possibilities gives the Eq.1.

w(t)dt = f (t)dt +
∫ t

0
f (t − u)v(u)du dt (1)

Repair can only occur in [t, t + dt) in case of failure
has occurred at some interval [u, u + du) prior to t . The
probability of this is g(t −u)dt ×w(u)du, where w(u)du is
the probability of failing in [u, u+ du) given it was working
at t = 0, g(t − u)dt is the probability of repair in [t, t + dt)
given it has been in failed state since last failure in [u, u+du)

and itwasworking at t = 0 andknowing that g(t) is the repair
density function. Since u can vary between 0 and t , Eq. 2 can
be obtained.

v(t)dt =
∫ t

0
g(t − u)w(u)du dt (2)

Canceling dt from Eqs. 1 and 2, the simultaneous inte-
gral equations defining the unconditional failure and repair
intensities, which are shown in Eqs. 3, are obtained.

w(t) = f (t) +
∫ t

0
f (t − u)v(u)du

v(t) =
∫ t

0
g(t − u)w(u)du

(3)

The opposite of availability (A(t)) is unavailability (Q(t)).
The Eq.4 shows how to compute Q(t) from Eq.3.

Q(t) =
∫ t

0
[w(u) − v(u)]du (4)

When a device has exponential failure and repair inten-
sities (constant failure and repair rates), its availability can
be found through the solutions of Eqs. 3 for w(t) and v(t),
which can be carried out by using Laplace transforms. In this
case, the Eq.5 is obtained so availability can be computed by
using theMean Time To Failure (MTTF) and theMean Time
To Repair (MTTR).

A = MTTF

MTTF + MTTR
(5)

When a device has not exponential failure and/or repair
intensities, finding the device availability through the solu-

123



Simultaneous optimization of design and maintenance for systems using...

tions of Eqs. 3 forw(t) and v(t) is really hard so a simulation
approach can be suitable. In this paper, the systemavailability
is characterized in a simulation approach by using the system
Functionability Profile. Technical systems are developed to
fulfill specific functions so “functionality” is an important
feature which is related to the system’s capacity to achieve
its mission. The system must not only achieve its mission
but also satisfy a set of requirements called “satisfactory fea-
tures” (e.g., volume or flow). Moreover, it is necessary to
specify the “operation conditions” under which the system
must be able to operate (e.g., temperature or humidity). These
three aspects come together under the umbrella concept of
“Functionability Profile” introduced by Knezevic (1996),
which is defined as the inherent capacity of the system to
achieve the required function under specific features when
are used as specified. In general, all systems achieve their
function at the beginning of the their lives. However, irre-
versible changes take place over time and variations in the
system behavior occur. The deviation of the variations in
relation to the satisfactory features reveals the occurrence of
the system failure which causes a transition from the oper-
ation state to the failure state. After failing, if the system is
repairable, its capacity to fulfill the required function can be
recovered through recovery activities or corrective mainte-
nance.

Aside from corrective maintenance activities, systems
can require additional tasks to maintain them in operation.
These are generally less complex and are called preven-
tive maintenance activities or maintenance prior to failure.
From the Functionability Profile’s point of view, the states
of a repairable system fluctuate between operation and fail-
ure over the course of the mission time. The shape of cited
fluctuations is called the Functionability Profile as it tracks
the states through the overall mission time. An example of
a Functionability Profile is shown in Fig. 1. Functionabil-
ity Profiles depend on the operation times (either Time To
Failure or Time To Start following a scheduled Preventive
Maintenance activity) (t f 1, t f 2, ..., t f n) and recovery times
(either Time To Repair after the failure or Time To Perform
a Preventive Maintenance activity) (tr1, tr2, ..., trn). When
the Functionability Profile is set to logical 1, it is considered
that the device is operating. Conversely, when the Function-
ability Profile is set to logical 0, it is considered that the
device is stopped (it may be being repaired after a failure or
maintained). It is possible to deduce from Fig. 1 that, after an
operation time, a recovery time is needed.

Users need to be sure that the system Functionability Pro-
file satisfies the desired function. Hence, users are interested
in the shape of the systemFunctionability Profilewith special
emphasis on the where the system is available. As previously
mentioned, availability is tightly related to Functionabil-
ity Profiles. Availability is characterized by the relationship
between the system operation times and the total mission

Fig. 1 Functionability profile of a device (or system)

time. In the present paper, some considerations in relation
with the model to compute the availability are taken as fol-
lows:

– The state of each device at any point of time is either one
of the “operation” or “failed” state.

– The devices are independent of each other.
– A repair starts just after the failure of the device.
– A repair returns the device to the as-good-as-new state.

The system will be able to fulfill its purpose during t f
times, so it is possible to evaluate its availability at mission
time by using Eq.6.

A =

n∑
i=1

t f i

n∑
i=1

t f i +
m∑
j=1

tr j

(6)

where n is the total number of operation times, t f i is the
i-th operation time in hours (Time To Failure or Time to
Start following a scheduled Preventive Maintenance Activ-
ity),m is the total number of recovery times and tr j is the j-th
recovery time in hours (due to repair or preventive mainte-
nance activity). Therefore, availability is a variablewith value
between0 (minimumavailability) and1 (maximumavailabil-
ity), so adding availability and unavailability the value of 1
is obtained.

Operation and recovery times behave as random variables
so they are not previously known. If a historical record of
both times is compiled and a statistical analysis is performed,
operation and recovery times could be defined as probability
density functions through their respective parameters. Those
functions can arise from a specific typology (e.g., Expo-
nential, Weibull, Normal). There are several Data Bases on
the market (OREDA 2009; CCPS 1998) that supply char-
acteristic parameters for the referred functions, so operation
and recovery times can be characterized for different failure
modes of system devices.
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When systems are operating, earnings are generated in
relation to their availability. Conversely, when systems have
to be recovered, economic cost is generated to return the
operation status. In this paper, the economic cost is a vari-
able directly associated with recovery times. Such recovery
times are related to corrective and preventive maintenance
activities; quantities can be computed by Eq.7.

C =
q∑

i=1

cci +
p∑

j=1

cp j (7)

whereC is the systemoperational cost quantified in economic
units, q is the total number of corrective maintenance activ-
ities, cci is the cost due to the i-th corrective maintenance
activity, p is the total number of preventive maintenance
activities and cp j is the cost due to the j-th preventive main-
tenance activity. Maintenance activity costs depend on the
respective fixed quantities per hour (corrective and preven-
tive) so the global cost is directly related to recovery times.
Preventive maintenance activities are scheduled shutdowns,
so recovery times will be shorter and more economical than
recovery times due to corrective maintenance activities (for
reasons such as willing and trained human personnel, or
available spare parts). If it is desirable to avoid long recovery
times, it will be necessary to carry out preventive mainte-
nance activities ideally just before the failure but otherwise
as close as possible to it. Therefore, the system normal
Functionability Profile must be modified (i.e., to modify the
system Functionability Profile, which represents the contin-
uous cycle failure and recovery after corrective maintenance
over the time mission) including preventive maintenance
activities for system devices, with the aim of maximizing
the system availability and minimizing costs due to recovery
times.

3.2 Building functionability profiles to compute the
objective functions

In order to optimize the systemdesign and it preventivemain-
tenance strategy, it will be necessary to characterize both
the system availability and the cost from the system Func-
tionability Profile. The system Functionability Profile is built
from the Functionability Profiles of the system deviceswhich
are built by using Discrete Event Simulation. To this end,
information about how to characterize the operation (t f i ) and
recovery (tr j ) times is needed. Operation times are composed
by Times To Failure (TF) and Times To Start following a Pre-
ventive Maintenance activity (TP), while recovery times are
composed by Times To Repair after failure (TR) and Times
To Perform a Preventive Maintenance Activity (TRP). In the
present paper, the failure modes for each device are grouped
in a unique failuremode. TheFunctionability Profiles for sys-

tem devices are built by generating random times, which are
obtained from the respective probability density functions for
times to failure (TF) and times to repair (TR). Such Function-
ability Profiles must be modified by including Times To Start
following a Preventive Maintenance task (TP) and Times To
Perform a Preventive Maintenance task (TRP), which are
characterized based on the limits supplied by expert judg-
ment. In order to build the Functionability Profile of a device,
each Time To Failure (TF) generated for the device must be
compared with the Time To Start following a scheduled Pre-
ventive Maintenance activity (TP) related to such a device.
This information is identified via each solution provided by
the Multi-objective Evolutionary Algorithm (each individ-
ual of the population). Depending on what happens before,
the failure or the Preventive Maintenance activity, a Time To
Repair (TR) or a Time To Perform a Preventive Maintenance
activity (TRP)will be used, respectively, in order to complete
such a section of the Functionability Profile. The process
(shown both in Fig. 2 and in pseudo-code Algorithm 1) is
explained below:

1. System mission time (life cycle) must be fixed and then,
the process continues for each device.

2. The device Functionability Profile (PF) must be initial-
ized.

3. The Time To Start following a scheduled Preventive
Maintenance activity (TP) proposed by the Multi-
objective Evolutionary Algorithm (previously limited by
the minimum (T Pmin) and the maximum (T Pmax ) set
value) is extracted from the respective decision variable
of the individual of the population evaluated and a Time
To Perform a Preventive Maintenance activity (TRP) is
randomly generated, within the minimum (T RPmin) and
maximum (T RPmax ) previously fixed limits.

4. An operationTimeToFailure (TF) is randomly generated
within the minimum (T Fmin) and maximum (T Fmax )

previously fixed limits with reference to the failure prob-
ability density function related to the device.

5. If T P < T F , the preventive maintenance activity is per-
formed before the failure. In this case, as many logical
“ones” as TP units followed by as many logical “zeros”
as TRP units are added to the device Functionability Pro-
file. Each time unit represented in this way (both as a
logical “one” and as a logical “zero”) is equivalent to one
hour of real time. In this case, the cost is computed by
multiplying (TRP) and the preventive maintenance cost.
Finally, it is added to the global preventive maintenance
cost (cp j ).

6. If T P > T F , the failure occurs before carrying out the
preventive maintenance activity. In this case, attending
to the repair probability density function related to the
device, the Time To Repair (TR) is randomly generated,
within the minimum (T Rmin) and maximum (T Rmax )
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Fig. 2 Building Functionability Profiles

previously fixed limits. Then, as many logical “ones” as
TF units followed by as many logical “zeros” as TR units
are added to the device Functionablity Profile. Each time
unit represented in this way (both as a logical “one” and
as a logical “zero”) is equivalent to one hour of real time.
In this case, the cost is computed by multiplying (TR)
and the corrective maintenance cost. Finally, it is added
to the global corrective maintenance cost (cci ).

7. Steps 4 to 6 must be repeated until the end of the device
mission time.

8. Steps 2 to 7 must be repeated until the Functionability
Profile has been built for all devices.

9. After building all the Functionability Profiles, the system
Functionability Profile is made by referring to the logical
structure of the system. Several techniques might be used

to do this depending on the complexity of the system,
such as logical operators or fault tree.

Once the system Functionability Profile is built, the val-
ues of the objective functions can be computed by using both
Eq.6 (showing the system availability in relation to the time
in which the system is operating and being recovered) and
Eq.7 (showing the system operational cost depending on the
cost of the time units in relation to the development of cor-
rective or preventive maintenance).

Algorithm 1 Build the system Functionability Profile (PF)
Require: Life Cycle (LC)
1: for i := 1 → devices do
2: PF ⇐ 0
3: Extract T Pi from Population
4: Rand (T RPi )
5: while PF < LC do
6: Rand T F (failure density function)
7: if T F > T Pi then
8: PF ⇐ PF + T Pi + T RPi
9: else[T F < T Pi ]
10: Rand T R (repair density function)
11: PF ⇐ PF + T F + T R
12: end if
13: end while
14: end for
15: Compute the system PF (as logical structure)
16: Compute availabili t y (Equation 6)
17: Compute Cost (Equation 7)

4 Multi-objective evolutionary optimization
approach

The optimization methods that are used in this paper belong
to the Evolutionary Algorithms (EA) paradigm. This kind
of method uses a population of individuals with a specific
size. Each individual is a multidimensional vector called a
chromosome, which represents a possible candidate solution
to the problem. The vector components are called genes or
decision variables. Extended information on Evolutionary
Optimization Algorithms was supplied by Simon (2013). In
the present paper, a real-world engineering multi-objective
problem is afforded, where a set of non-dominated solutions
constitutes the set of equally optimum final designs. Evolu-
tionary algorithms are population-based search methods that
have been established as state-of-the-art methods to solve
those kind of design multi-objective optimization problems.
See, e.g., reference books as Coello et al (2007) and Deb
(2001), or more recent scientific works as Coello (2015) and
Emmerich and Deutz (2018). Among their advantages are
that they are stochastic global optimizers, no requirements
are requested to the fitness function, and they are able to
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attain the whole non-dominated set of solutions in a single
run; among their disadvantages the most critical is the neces-
sity to execute a high number of fitness function evaluations
(at least in the order of thousands). In this work, each indi-
vidual in the population consists of a real numbers string in
which the systemdesign alternatives and the periodic times to
start a preventive maintenance activity related to each device
included in the system design are codified as it is detailed
later, in the case study scenario. Optimization problems can
be minimized or maximized for one or more objectives. In
most cases, real-world problems requires optimizing various
objectives at the same time and these objectives are fre-
quently in conflict with each other. These problems are called
“multi-objective” problems and their solutions arise from a
solutions set that represents the best compromise among the
objectives (Pareto-optimal set) ( Coello 2015; Emmerich and
Deutz 2018). These kind of problems are described by Eq.8
(considering a minimization problem) ( Simon 2013).

min
x

f (x) = min
x

[ f1(x), f2(x), ..., fk(x)] (8)

In optimization, when problems are defined by this way,
the k functions must be simultaneously minimized. In the
present paper, the objective functions are, on the one hand,
the system availability (objective function to maximize and
mathematically expressed by Eq.6, it is similar to mini-
mize unavailability) and, on the other hand, the operational
cost (objective function to minimize and mathematically
expressed by Eq.7). The optimization problems usually are
subjected to some constraints. In this case, the problem is
subjected to constraints related to maximum and minimum
values for Times To Failure, Times To Repair, Times To
Start following a scheduled Preventive Maintenance activity
and Times To Perform a Preventive Maintenance activ-
ity. Classical optimization methods suggest converting the
multi-objective optimization problem to a single-objective
optimization problem by emphasizing one particular Pareto-
optimal solution at time. Due to their ability to find multiple
Pareto-optimal solutions in one single simulation run, a num-
ber of Multi-objective Evolutionary Algorithms (MOEAs)
were subsequently suggested. Nowadays, Multi-objective
Evolutionary Optimizers (EMO) can be classified in three
groups ( Emmerich and Deutz 2018; Greiner et al 2017):

– Indicator-based selection EMO; Methods based on some
unary indicator to guide the search.

– Decomposition/Aggregated-based selection EMO;
Methods based on decomposition of the search space,
optimizing a set of scalarizing functions in parallel.

– Dominance-based selection EMO; Methods that use the
concept of Pareto dominance as the basis of their selec-
tion.

In this paper, a thorough studyof the use ofMulti-objective
Evolutionary Algorithms applied to the field of Reliability is
conducted. Firstly, several representative EMOs of each of
the selection criteria defined above are used to optimize a
case study:

– The S-Metric Selection Evolutionary Multi-objective
Optimization Algorithm (SMS-EMOA) (Beume et al
2007), which uses the multi-objective selection based
on Dominated Hypervolume, as representative of the
indicator-based selection EMO.

– The Multi-objective Evolutionary Algorithm Based on
Decomposition (MOEA/D) (Zhang and Li 2007) and its
extension (MOEA/D-DE) (Li and Zhang 2009), which
uses the differential evolution (DE) as an operator, as
representative of the Decomposition/Aggregated-based
selection EMO,

– The Non-dominated Sorting Genetic Algorithm II
(NSGA-II) ( Deb et al 2002), and the Generalized Dif-
ferential Evolution (GDE3) ( Kukkonen and Lampinen
2005), which use the Pareto dominance criterion to per-
form multi-objective optimization, as representative of
the dominance-based selection EMO.

Methods such as SMS-EMOA, MOEA/D and NSGA-
II are state-of-the-art standard solvers when it comes to
solving real-world multi-objective optimization problems
(Emmerich and Deutz 2018). These methods use Simulated
Binary Crossover (Deb and Agrawal 1995) to create new
individuals. The study is then extended to methods that use
Differential Evolution (Storn and Price 1997) to create new
individuals such asMOEA/D-DE. In addition,Kukkonen and
Lampinen (2005) showed as GDE3 outperformed NSGA-II
in a set of different types of test problems. It is intended to
compare the performance of these two methods, which share
the use of the Pareto dominance criterion, in a real-world
problem. Therefore, these five Multi-objective Evolutionary
Algorithms are used, looking for the joint optimization of the
systemdesign and its preventivemaintenance strategy.More-
over, once the previous study is concluded, some recently
developed algorithms are used in order to compare the per-
formance results. Such methods are:

– The Adaptative Non-dominated Sorting Genetic Algo-
rithm III (ANSGA-III) (HimanshuandKalyanmoy2014),
which uses the Pareto dominance criterion to perform
multi-objective optimization.

– An approach to adapt weights during the decomposition-
based evolutionarymulti-objective optimization (AdaW)
(Li and Yao 2020).

– The Efficient Large-Scale Multi-objective Optimization
Based on a Competitive Swarm Optimizer (LMOCSO)
(Tian et al 2020).
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Fig. 3 Case study: containment spray injection system (CSIS)

5 The case study

The case study consists of optimizing the design and pre-
ventive maintenance strategy for an industrial system based
on two conflicting objectives: availability and operational
cost. Maximum availability and minimum operational cost
are desirable. The more investment in preventive mainte-
nance, the greater the system availability. Conversely, this
policy implies the growth of unwanted cost and constitutes
a conflict between objectives. The proposed methodology is
applied to a containment spray injection system (CSIS) of
a nuclear power plant, whose simplified model is shown in
Fig. 3 and it is based on a case presented by Greiner et al
(2003) and previously studied by the authors of the present
paper (Cacereño et al 2021a, b). Themodel is formedbyusing
cut valves (Vi ) and impulsion pumps (Pi ). The CSIS mis-
sion is the injection of borated water into the containment in
order to wipe radioactive contamination that may be released
after a loss of coolant accident. In this case, the number of
redundant devices is limited as it is shown in Fig. 3.

Although the basic shape of the system was presented by
Greiner et al (2003), the data used in the present paper were
updated and previously used in Cacereño et al (2021a, b).
They are shown in Table 1, where:

– Life Cycle = The system mission time (expressed in
hours).

– Corrective Maintenance Cost = The cost entailed in
developing a repair activity to recover the system fol-
lowing a failure (expressed in economic units per hour).

– Preventive Maintenance Cost = The cost entailed in
developing a preventive maintenance activity (expressed
in relation to the Corrective Maintenance Cost).

– Pump TFmin = The minimum operation Time To Failure
for a pump without preventive maintenance (expressed
in hours). It is considered that a failure of a pump cannot
occur before this time.

– Pump TFmax = The maximum operation Time To Failure
for a pumpwithout preventivemaintenance (expressed in
hours). It is mandatory that the failure of a pump occurs
before this time.

Table 1 Data set for system devices

Parameter Value Source

Corrective Maintenance Cost 0.5 units MRI

Preventive Maintenance Cost 0.125 units MRI

Pump TFmin 1h MRI

Pump TFmax 70,080h MRI

Pump TF λ 159.57 · 10−6 hours OREDA (2009)

Pump TRmin 1h MRI

Pump TRmax 24.33h μ + 4σ

Pump TR μ 11h OREDA (2009)

Pump TR σ 3.33h (μ - TRmin)/3

Pump TPmin 2,920h MRI

Pump TPmax 8,760h MRI

Pump TRPmin 4h MRI

Pump TRPmax 8h MRI

Valve TFmin 1h MRI

Valve TFmax 70,080h MRI

Valve TF λ 44.61 · 10−6 hours OREDA (2009)

Valve TRmin 1h MRI

Valve TRmax 20.83h μ + 4σ

Valve TR μ 9.5h OREDA (2009)

Valve TR σ 2.83h (μ - TRmin)/3

Valve TPmin 8,760h MRI

Valve TPmax 35,040h MRI

Valve TRPmin 1h MRI

Valve TRPmax 3h MRI

– Pump TF λ = The failure rate for a pump, which follows
an exponential failure distribution (expressed in hours
raised to the power of minus six).

– Pump TRmin = The minimum Time To Repair or dura-
tion of a corrective maintenance activity for a pump
(expressed in hours).

– Pump TRmax = The maximum Time To Repair or dura-
tion of a corrective maintenance activity for a pump
(expressed in hours).

– Pump TR μ = The mean for the normal distribution
followed for the Time To Repair assumed for a pump
(expressed in hours).

– Pump TR σ = The standard deviation for the normal
distribution followed for the Time To Repair assumed
for a pump (expressed in hours).

– PumpTPmin =TheminimumoperationTimeToStart fol-
lowing a scheduled Preventive Maintenance activity for
a pump (expressed in hours). It is considered that a Pre-
ventive Maintenance activity for a pump is not necessary
before this time.

– Pump TPmax = The maximum operation Time To Start
following a scheduled Preventive Maintenance activity
for a pump (expressed in hours). It is considered that a
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PreventiveMaintenance activity for a pump is a reckless-
ness after this time. It should be done before this time.

– Pump TRPmin = The minimum Time To Perform a pre-
ventive maintenance activity for a pump (expressed in
hours). It is the minimum time needed to develop the
Preventive Maintenance activity for a pump.

– Pump TRPmax = The maximum Time To Perform a pre-
ventive maintenance activity for a pump (expressed in
hours). It is the maximum time needed to develop the
Preventive Maintenance activity for a pump.

– Valve TFmin = The minimum operation Time To Failure
for a valve without preventive maintenance (expressed in
hours). It is considered that a failure of a valve cannot
occur before this time.

– Valve TFmax = The maximum operation Time To Failure
for a valve without preventive maintenance (expressed in
hours). It is mandatory that the failure of a valve occurs
before this time.

– Valve TF λ = The failure rate for a valve, which follows
an exponential failure distribution (expressed in hours
raised to the power of minus six).

– Valve TRmin = TheminimumTime To Repair or duration
of a correctivemaintenance activity for a valve (expressed
in hours).

– ValveTRmax =ThemaximumTimeToRepair or duration
of a correctivemaintenance activity for a valve (expressed
in hours).

– Valve TR μ = The mean for the normal distribution
followed for the Time To Repair assumed for a valve
(expressed in hours).

– Valve TR σ = The standard deviation for the normal dis-
tribution followed for the Time To Repair assumed for a
valve (expressed in hours).

– Valve TPmin = Theminimumoperation TimeTo Start fol-
lowing a scheduled Preventive Maintenance activity for
a valve (expressed in hours). It is considered that a Pre-
ventive Maintenance activity for a valve is not necessary
before this time.

– Valve TPmax = The maximum operation Time To Start
following a scheduled Preventive Maintenance activity
for a valve (expressed in hours). It is considered that a
Preventive Maintenance activity for a valve is a reckless-
ness after this time. It should be done before this time.

– Valve TRPmin = The minimum Time To Perform a pre-
ventive maintenance activity for a valve (expressed in
hours). It is the minimum time needed to develop the
Preventive Maintenance activity for a valve.

– Valve TRPmax = The maximum Time To Perform a pre-
ventive maintenance activity for a valve (expressed in
hours). It is the maximum time needed to develop the
Preventive Maintenance activity for a valve.

The data were obtained from specific literature (OREDA
2009), expert judgment (based on the professional experience
from the Machinery & Reliability Institute (MRI), Alabama,
USA) or mathematics relations. In this sense, the TR σ for
valves and pumpswere set in relation to theμ of their respec-
tive normal distribution functions and their TRmin previously
established. In relation to the TRmax, it is known that the
99.7% of the values of a normally distributed variable are
included into the interval μ± 3σ . The interval was extended
to μ ± 4σ , taking into account anecdotal further values. As
exposed above, optimization objectives consist of maximiz-
ing the system availability and minimizing the operational
cost due to unproductive system phases (both because the
system is being repaired and because the system is being
maintained). To do that:

– It is necessary to establish the optimum period to perform
a preventive maintenance activity for the system devices
and

– It is necessary to decide whether to include redundant
devices such as P2 and/or V4 by evaluating design alter-
natives. Including redundant devices will improve the
system availability but it will also increase the system
operational cost.

From the optimization point of view, it was explained
before that the Evolutionary Algorithms (EAs) use a pop-
ulation of individuals called chromosomes, which represent
possible solutions to the problem. In this case, the chromo-
somes will be formed by real number strings with 0 as the
minimum value and 1 as the maximum value. Each string
will be codified as [B1 B2 T1 T2 T3 T4 T5 T6 T7 ], where the
presence of redundant devices, P2 and V4, is defined by the
decision variables B1 and B2, respectively, and the optimum
time to start a preventive maintenance activity in relation to
each device is represented by the decision variables T1 to
T7. However, they have to be transformed to evaluate the
objective functions:

– Variables B1 and B2 are rounded at the nearest integer,
so a value of 0 implies that the device is not included in
the design and a value of 1 implies the opposite.

– Variables T1 to T7 are scaled by using the Eq.9, where
T Pi is the true value of the parameter Time To Start fol-
lowing a scheduled Preventive Maintenance activity for
the i-th systemdevice,Ti is the valueof the corresponding
decision variable for the i-th system device and finally,
T Pmaxi and T Pmini are the limit values of the parameter
T P for the i-th system device, when 1 ≤ i ≤ 7.

T Pi = round(T Pmini + Ti · (T Pmaxi − T Pmini )) (9)
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The chromosomes are iteratively modified generation
after generation during the evolutionary process (inspired by
the natural Darwinian principle of survival of the species).
The parameters used to configure the evolutionary process
are shown in Table 2. Due to computational budget limi-
tations (each execution time of one independent run of the
case study took an average of almost 4 days of High Per-
formance Computer, as shown in Sect. 6), the number of
combinations of parameters were chosen to the considered
most relevant factors (shown in Table 2 of the manuscript)
related with a proper balance of exploration-exploitation in
our problem.Theparameter testedvalueswere chosen among
general recommendation and common practice in the evolu-
tionary algorithms field; detailed explanation is given below.
Five optimization methods were used as described above.
Depending on the method, specific parameters must be set.
The parameters are:

– Mutation Probability (PrM): The expectation of the num-
ber of genes mutating. The central value is equivalent to
1/decision variables. Two more probabilities, one above
and the other one below the central value (1.5/deci-
sion variables and 0.5/decision variables, respectively)
have been set to the methods that use Simulated Binary
Crossover (SMS-EMOA,MOEA/D,NSGA-II,ANSGA-
III and AdaW).

– Mutation Distribution (disM): The distribution index of
polynomial mutation. This is set to the typical value of
20 for the present case study.

– Crossover Probability (PrC): The probability of doing
crossover when the Simulated Binary Crossover is used.
The crossover operator has an impact on the creation of
new individuals. It is set to 0.9 for the present case study.

– Crossover Distribution (disC): This is the crossover dis-
tribution index when the Simulated Binary Crossover is
used. It is 20 for the standard solvers and 30 for the
recently developed algorithms (as in the original refer-
ences).

– Crossover Rate (CR): The crossover operator has the
function of mixing the genetic information among chro-
mosomes to create new individuals. In Differential Evo-
lution, each gene is crossed (or not) depending on a
probability variable referred to as the Crossover Rate.
The typical value for the Crossover Rate is between 0.1
and 1.0 (Simon 2013). For the case study, the Crossover
Rate parameter is set to 0.9 given that a large CR often
speeds convergence (Storn and Price 1997).

– Scale Factor (F): In Differential Evolution, the mutation
operator alters the genes of the chromosome by adding a
scaled difference vector from two chosen chromosomes
to a third chromosome. The difference vector is scaled
by using the Scale Factor. The typical value for the Scale
Factor is between 0.4 and 0.9 ( Simon 2013). For the case

study, values of 0.4, 0.5 and 0.6 are tested as it is shown
in Table 2.

– Scalarizing function (Approach): The MOEA/D method
decomposes a multi-objective optimization problem into
different single-objective sub-problems by using a set of
weight vectors and a scalarizing function. Typical scalar-
izing functions for MOEA/D include the weighted sum,
Tchebycheff and Penalty-based Boundary Intersection
(PBI). Following the results from Tanabe and Ishibuchi
(2018) in which the Tchebycheff approach performed
well in some two-objectives problems, this approach is
used for the present case study.

– Probability of choosing parents locally (δ): A typical
value that is commonly used (Li and Zhang 2009; Liu
et al 2010; Zhang et al 2009) is 0.9.

– Replacement mechanism (nr ): The replacement mecha-
nism improves the quality of the population in terms of
dominance and it alsomaintains diversity. A high-quality
offspring solution could replacemost current solutions in
favor of its neighboring solution (Liu et al 2010), which
implies a decrease in diversity. The parameter nr is used
to establish the maximum number of solutions to replace
by a high-quality offspring. A proposed empirical rule (
Zhang et al 2009) consists of considering nr = 0.01·N,
as being N the population size (note that nr must be an
entire value).

Table 2 includes the parameters for the optimization
process. Each method was executed by using population
sizes (N) of 50, 100 and 150 individuals, respectively. The
population size plays a crucial role in maintaining the equi-
librium between exploration and exploitation. Populations
with excessive size could lead to slow convergences, whereas
populations with few individuals could lead to premature
stagnation, converging to local optimums ( Michalewicz
1996; Goldberg 1989; González et al 2019). Nine different
configurations of the five standard state-of-the-art methods
were simulated and each configurationwas executed 21 times
(for statistical purposes) with a total of 10,000,000 evalua-
tions used as the stopping criterion. Regarding the recently
methods, nine different configurations were executed for
ANSGA-III and AdaW, while three different configurations
were executed for LMOCSO due to the fact that the popula-
tion size is considered as its main parameter.

Scale factors in relation to the value of the objective
functions were used in order to achieve a dispersed non-
dominated front with the unit as maximum value. The values
were obtained through a practical approach in which the
values of the scale factors are extracted from the values of
the objective functions when the optimization process starts.
This approach is based on the assumption that the values of
the objective functions will improve over the course of the
evolutionary process. The scale factors were used as follows:
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Table 2 Parameters for the
optimization process
(population sizes of 50, 100 and
150 were tested in every case)

Method PrM disM PrC disC CR F Approach δ nr

0.5

SMS-EMOA 1.0 20 0.90 20 – – – – –

1.5

0.5

MOEA/D 1.0 20 0.90 20 – – Tchebycheff – –

1.5

0.4

MOEA/D-DE 1.0 20 – – 0.90 0.5 – 0.9 1

0.6

0.5

NSGA-II 1.0 20 0.90 20 – – – – –

1.5

0.4

GDE3 1.0 20 – – 0.90 0.5 – – –

0.6

0.5

ANSGA-III 1.0 20 0.90 30 – – – – –

1.5

0.5

AdaW 1.0 20 0.90 30 – – – – –

1.5

LMOCSO – – – – – – – – –

– The scale factor used to compute the Cost was 1,700
economic units.

– The scale factor used to compute the system unavailabil-
ity was 0.003.

Finally, a two dimensional reference point is needed to
compute the Hypervolume. The cited point must cover the
values limited by the scale factors, which restrict the val-
ues of the objective functions to a maximum of one. The
reference point was set to (2,2). The Software Platform
PlatEMO (Tian et al 2017) was used to optimize the case
study. The open source platform PlatEMO includes more
than 160 Multi-objective Evolutionary Algorithms, more
than 300 multi-objective test problems and several widely
used performance indicators. In this case, the Design and
Maintenance Strategy analysis software was developed and
implemented into the platform to solve the problemdescribed
above.

6 Results and discussion

Due to the hardness of the problem, a general purpose cal-
culation cluster was used in the optimization process. The
cluster is composed of 28 calculation nodes and one access
or front-end node. Each calculation node consists of 2 pro-

cessors Intel Xeon E5645 Westmere-EP with 6 cores each
and 48 GB of RAM memory, allowing 336 executions to be
run simultaneously.

Once the results were obtained, valuable information
emerged:

1. Information related to the computational process is given
in order to show the problem hardness and computational
cost. It consists of the time taken for 21 executions of the
9 configurations related to each state-of-the-art method.

2. Box plots are given for the Hypervolume (HV) (Zitzler
et al 2003) values distribution achieved (in twenty-one
executions) after the stopping criterion is met.

3. The values of the main measures obtained for the final
evaluation are shown. These measures are the Average,
Median, Minimum, Maximum and Standard Deviation
values of the Hypervolume.

4. In order to establish the existence of significant differ-
ences among the performance of the configurations and
the optimization methods, a rigorous statistical analysis
is carried out. The Friedman’s test allows significant dif-
ferences among results obtained to be detected, and the
null hypothesis (H0) to be rejected in that case.Generally,
once the differences have been detected, a post-hoc test
is carried out in order to find the concrete pairwise com-
parisons, which produce such differences. The p-value is
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Table 3 Configurations, identifiers relationship, Hypervolume statistics and hypothesis test (Global)

Identifier Method Configuration Average Median Max. Min. St. D. Av. Rank

ID1 SMS-EMOA N = 150 - PrM = 0.5 2.2982 2.2978 2.3223 2.2687 0.0142 3.666

ID2 SMS-EMOA N = 150 - PrM = 1.5 2.2950 2.2952 2.3126 2.2710 0.0101 3.809

ID3 MOEA/D N = 150 - PrM = 1.0 2.2592 2.2664 2.3116 2.2071 0.0278 7.999

ID4 MOEA/D N = 150 - PrM = 1.5 2.2575 2.2524 2.3150 2.2029 0.0258 8.666

ID5 MOEA/D-DE N = 100 - F = 0.5 2.2828 2.2851 2.3064 2.2554 0.0153 5.952

ID6 MOEA/D-DE N = 150 - F = 0.6 2.2757 2.2752 2.3062 2.2395 0.0155 7.047

ID7 NSGA-II N = 150 - PrM = 1.5 2.2957 2.2941 2.3281 2.2592 0.0158 4.190

ID8 NSGA-II N = 150 - PrM = 0.5 2.2955 2.3011 2.3227 2.2635 0.0186 4.523

ID9 GDE3 N = 50 - F = 0.5 2.2957 2.2884 2.3376 2.2679 0.0209 4.476

ID10 GDE3 N = 150 - F = 0.5 2.2927 2.2932 2.3210 2.2684 0.0137 4.666

p- value 8.2·10−11

a useful datum, which represents the smallest significant
value that can result in the rejection of H0. The p-value
provides information about whether a statistical hypoth-
esis test is significant (or not), and it also indicates how
significant the result is: The smaller the p-value (< 0.05),
the stronger the evidence against the null hypothesis. The
procedure to conduct multiple comparisons that is fol-
lowed in this paper was described by García and Herrera
(2008), however, some exceptions will be applied, as it
will be seen below.

5. The Hypervolume is computed for the accumulated best
non-dominated solutions obtained (the non-dominated
front) from the state-of-the-art methods. These represent
the best equilibrium solutions among the objectives, and
the computational procedure is described in Fonseca et al
(2006).

Furthermore, for the global comparisonof the state-of-the-
art methods, the Hypervolume (HV) average value evolution
(in twenty-one executions) and the non-dominated solutions
are shown.

In order to make the reading of the paper clearer, results of
the individual comparison of the tested configurations of each
algorithm are supplied as a supplementary material file. The
comparative analysis of the best performing cases among
the state-of-the-art algorithms is directly included next in
subsection 6.1, and their overall optimum design results in
subsection 6.2. Subsection 6.3 shows the comparative anal-
ysis of the best performing cases among the state-of-the-art
and the more recently developed algorithms. Subsection 6.4
exposes a discussion section, where subsection 6.4.1 analy-
ses the effect of sampling size when coupling discrete event
simulation and multi-objective evolutionary algorithms, and
finally subsection 6.4.2 quantifies the operational cost saved
when using the optimum designs.

6.1 Comparing the standard state-of-the-art
methods

As a supplementary material, a detailed study regarding
the convergence of the state-of-the-art Multi-objective Evo-
lutionary Algorithms is supplied. From such a study, the
configurations with the best Average Ranks according to the
Friedman’s test for each method were selected to be glob-
ally compared. These configurations are shown in Table 3
(columns 2 and 3).

The Hypervolume average values evolution in relation to
the evaluations number is shown in Fig. 4. It can be seen that
the configuration with identifier ID1 (with SMS-EMOA as
an optimization method, population of 150 individuals and
mutation probability of 0.5 gene per chromosome) presents
the highest Hypervolume Average value at the end of the
process. Moreover, box plots of the Hypervolume values dis-
tribution at the end of the process are shown in Fig. 5. They
represent the statistical information supplied inTable 3where
it can be seen that the configuration with identifier ID1 (with
SMS-EMOA as an optimization method, population of 150
individuals andmutation probability of 0.5 gene per chromo-
some) presents the highest Hypervolume Average value, the
configuration with identifier ID8 (with NSGA-II as an opti-
mizationmethod, population of 150 individuals andmutation
probability of 0.5 gene per chromosome) presents the highest
HypervolumeMedian value, the configurationwith identifier
ID9 (with GDE3 as an optimization method, population of
50 individuals and F parameter of 0.5) presents the highest
Hypervolume Maximum value, while the configuration with
identifier ID2 (with SMS-EMOA as an optimization method,
population of 150 individuals andmutation probability of 1.5
gene per chromosome) presents both the highest Hypervol-
ume Minimum value and the lowest Hypervolume Standard
Deviation value.
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Fig. 4 Hypervolume Average (21 independent executions) vs. evaluations evolution

Fig. 5 Box plots of the final Hypervolume, identifiers (ID’s) as in
Table 3

In order to establish whether any one of the ten configura-
tions performs better than any other, a statistical significance
hypothesis testwas conducted. TheAverageRanks computed
through the Friedman’s test are shown in Table 3 (column
9). It can be seen that the configuration with identifier ID1
(with SMS-EMOA as an optimization method, population
of 150 individuals and mutation probability of 0.5 gene per
chromosome) produces the lowest Average Rank. Moreover,
the p-value computed (8.2594·10−11) implies that the null
hypothesis (H0) can be rejected (p-value<0.05), so it can
be seen that, in the studied conditions, there are configu-
rations that perform better than others. In order to find the
concrete pairwise comparisons that produce differences, a
post-hoc test was run. The Shaffer’s test was used to compare
the configuration with identifier ID1 (with SMS-EMOA as
an optimization method, population of 150 individuals and
mutation probability of 0.5 gene per chromosome), which
produced the lowest Average Rank regarding the Friedman’s

Table 4 Hypervolume Accumulated Value

Method Hypervolume Accumulated Value

SMS-EMOA 2.4087

MOEA/D 2.3844

MOEA/D-DE 2.3991

NSGA-II 2.4068

GDE3 2.4057

All methods 2.4179

test, with the rest of configurations. The results in relation
to the comparisons are shown in Table 5. It can be seen
that, in the conditions of the experiment, the configuration
with identifier ID1 performs better than the configurations
with identifiers ID3–ID4 (with MOEA/D as an optimization
method) and ID6 (with MOEA/D-DE as an optimization
method, population of 150 individuals and F parameter of
0.6), but is not possible to establish that the configuration
with identifier ID1 performs better than any other.

The best accumulated non-dominated solutions obtained
through the last generation of the evolutionary process for all
executions and all configurations of eachmethodwere used to
compute their respective accumulated Hypervolume values
(as described in Fonseca et al (2006)). Such values are shown
inTable 4. Furthermore, the best accumulatednon-dominated
solutions obtained from these frontswere used to compute the
whole accumulated Hypervolume, whose value was 2.4179
and is shown in Table 4. As expected, the value is higher than
2.4087, the maximum accumulated value achieved after the
evolutionary process for the SMS-EMOA method.
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Table 5 p-values from Shaffer’s
test (Global)

Comparison p-value Conclusion

ID1–ID4 3.929·10−6 < 0.05 The null hypothesis is rejected

ID1–ID3 1.267·10−4 < 0.05 The null hypothesis is rejected

ID1–ID6 0.0085 < 0.05 The null hypothesis is rejected

ID1–ID5 0.3463 > 0.05 The null hypothesis is not rejected

ID1–ID10 4.8365 > 0.05 The null hypothesis is not rejected

ID1–ID8 5.3842 > 0.05 The null hypothesis is not rejected

ID1–ID9 5.3842 > 0.05 The null hypothesis is not rejected

ID1–ID7 5.3842 > 0.05 The null hypothesis is not rejected

ID1–ID2 5.3842 > 0.05 The null hypothesis is not rejected

Fig. 6 Accumulated non-dominated front (Global)

Thefinal results of the analysis bring to light the better per-
formance of the methods based on Indicators (SMS-EMOA)
and Non-dominance (NSGA-II or GDE3) in comparison
to the methods based on Decomposition (MOEA/D or
MOEA/D-DE). However, the operator which creates new
individuals does not appear to have a significant effect, since
methods that use Simulated Binary Crossover (SMS-EMOA
or NSGA-II) presented similar performance to a method that
uses Differential Evolution (GDE3).

6.2 Overall optimum design results

The non-dominated solutions to the problem provided at the
end of the evolutionary process for all executions, all config-
urations and all methods are shown in Fig. 6. All optimum
solutions belonging to the obtained non-dominated front are

shown in Table 6. unavailability (Q) is shown as a fraction,
Cost is shown in economic units and the rest of the vari-
ables represent, for the respective devices, the optimum times
to allow scheduling of preventive maintenance activities in
hours.

The solutionwith the lowest Cost (ID1) (861.38 economic
units) represents the biggest unavailability (0.002898). These
values are followed by periodic optimum times (hours) mea-
sured from the moment in which the system mission time
starts (time to perform the preventive maintenance activ-
ity (TR) is not included). For the solution ID1, it can be
seen that periodic optimum times to preventive maintenance
for devices P2 and V4 are not supplied. This is because the
design alternative does not include such devices. The oppo-
site case shows the biggest Cost (ID19) (1,698.62 economic
units) and the lowest unavailability (0.000749). For solu-
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Table 6 Optimum solutions
obtained from the evolutionary
process

Id Q Cost[eu] V1[h] P2[h] P3[h] V4[h] V5[h] V6[h] V7[h]

1 0.002898 861.38 27381 0 8760 0 34918 35040 35040

2 0.002812 877.12 17745 0 8760 0 34540 23997 34502

3 0.002500 993.50 31882 0 8735 32414 31364 27007 31499

4 0.002439 999.13 29494 0 8139 18708 24634 30543 26541

5 0.002396 1041.38 24766 0 8579 29319 24758 24663 32581

6 0.002370 1101.38 34380 0 8760 19098 11756 32930 35040

7 0.001640 1371.38 27808 8677 8760 0 26387 17704 28967

8 0.001504 1407.12 16434 8727 7582 0 18220 30929 35040

9 0.001495 1419.50 33877 8593 8671 0 34445 26119 33225

10 0.001410 1421.50 20519 8524 8754 0 25417 24732 34207

11 0.001316 1422.38 35040 8735 7927 0 23549 28082 21479

12 0.001281 1450.62 35040 7249 8257 0 25526 30376 35040

13 0.001246 1461.50 32755 8636 8220 0 22498 33016 30125

14 0.001214 1465.12 32667 8358 7756 0 30657 34271 29494

15 0.000973 1507.50 34928 7929 7908 11683 24182 34593 26275

16 0.000940 1523.38 30443 8130 8462 29999 34282 34286 34317

17 0.000876 1577.88 34470 8760 7246 27465 29267 35040 34730

18 0.000789 1595.88 33247 7286 8050 32526 10911 29935 34312

19 0.000749 1698.62 28281 8338 7367 19399 17608 32848 31220

tion ID19, periodic optimum times to perform preventive
maintenance activities are supplied for all devices. This is
caused because the design alternative includes devices P2
and V4. Other optimum solutions were found in these two
solutions and can be seen in Table 6. The decision makers
will need to decide which is the preferable design taking
into account their individual requirements. Depending on
the application case, the company may have a cost threshold
(e.g., due to financial budget constraints) and observing the
attained non-dominated solutions, the solution/design with
best non-availability corresponding to that cost could be cho-
sen. Alternatively, the company may have a non-availability
threshold (e.g., due to a legal norm) and observing the
attained non-dominated solutions, the solution/design with
best cost corresponding to that non-availability could be cho-
sen.

Moreover, solutions have been clustered in Fig. 7 accord-
ing to their final design. Solutions are shown in ascending
order in relation to the Cost from ID1 to ID19 and from the
left to the right respectively. Solutions contained in Cluster 1
(solutions 1 to 2, see also Table 6) are the solutions in which
non-redundant devices have been included in the design. In
this case, the system exclusively contains devices placed in
series. These solutions present the lowestCost and the biggest
unavailability. Solutions contained in Cluster 2 (solutions 3
to 6, see also Table 6) are the solutions in which a redundant
valve has been included in the design as a parallel device.
These solutions present bigger Cost and lower unavailability
than the solutions contained in Cluster 1. Solutions contained

in Cluster 3 (solutions 7 to 14, see also Table 6) are the solu-
tions in which a redundant pump has been included in the
design as a parallel device. These solutions present higher
Cost and lower unavailability than the solutions contained
in Clusters 1 and 2. Finally, solutions contained in Cluster
4 (solutions 15 to 19, see also Table 6) are the solutions in
which both a redundant valve and a redundant pump have
been included in the design as parallel devices. These solu-
tions present the biggest Cost and the lowest unavailability.

6.3 Comparing the best ordered standard
state-of-the-art method and recently developed
methods

As a supplementary material, a detailed study about the
convergence of some recently developed Multi-objective
Evolutionary Algorithms is supplied. From such a study, the
configurations with the best Average Ranks according to the
Friedman’s test for each method were selected to be glob-
ally compared. Next, the best ordered configuration obtained
from the study of the state-of-the-art methods is compared
to the best ordered configurations achieved from recently
developed algorithms. The relationship between the config-
urations of the methods (where N represents the population
size, PrM the mutation probability) and the identifiers of the
configurations is shown in Table 7 (columns 2 and 3). Fur-
thermore, statistical information is supplied by such a Table
(the best values in bold). Such information is represented by
the Fig. 8.
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Fig. 7 Clustered accumulated non-dominated front and design options

Table 7 Configurations, identifiers relationship, Hypervolume statistics and hypothesis test

Method Identifier Configuration Average Median Max. Min. St. D. Av. Rank

SMS-EMOA ID1 N = 150 - PrM = 0.5 2.2982 2.2978 2.3223 2.2687 0.0142 2.380

ANSGA-III ID2 N = 50 - PrM = 0.5 2.2919 2.2940 2.3212 2.2732 0.0117 3.047

ANSGA-III ID3 N = 150 - PrM = 1.5 2.2943 2.2930 2.3181 2.2713 0.0143 3.000

AdaW ID4 N = 100 - PrM = 1.5 2.2924 2.2898 2.3307 2.2682 0.0154 3.286

AdaW ID5 N = 150 - PrM = 1.5 2.2948 2.2966 2.3874 2.2642 0.0247 3.285

LMOCSO ID6 N = 50 1.9381 1.9497 2.0537 1.7451 0.0843 6.499

LMOCSO ID7 N = 100 1.9630 1.9714 2.1369 1.8217 0.0752 6.499

p-value 8.240·10−11

Fig. 8 Box plots of the final Hypervolume, the best ordered state-of-
the-art method and recently developed methods, identifiers (ID’s) as in
Table 7

In order to establish whether any one of several configura-
tions performs better than any other, a statistical significance
hypothesis test was carried out. The Average Ranks com-
puted through the Friedman’s test are shown in Table 7
(column 9). It can be seen that the configuration with iden-
tifier ID1 (with SMS-EMOA as an optimization method,
population of 150 individuals andmutation probability of 0.5
gene per chromosome) produces the lowest Average Rank.
Moreover, the p-value computed (8.240·10−11) implies that
the null hypothesis (H0) can be rejected (p-value<0.05).
Therefore, it can be seen that, in the studied conditions,
there are configurations that perform better than others. In
order to find the concrete pairwise comparisons that pro-
duce such differences, a post-hoc test was conducted. The
Shaffer’s test was used to compare the configuration with
identifier ID1 (with SMS-EMOA as an optimization method,

123



A. Cacereño et al.

Table 8 p-values from Shaffer’s test (Global)

Comparison p-value Conclusion

ID1–ID6 1.358·10−8 < 0.05 The null hypothesis is rejected

ID1–ID7 1.358·10−4 < 0.05 The null hypothesis is rejected

ID1–ID5 1.9221 < 0.05 The null hypothesis is not rejected

ID1–ID4 1.9221 > 0.05 The null hypothesis is not rejected

ID1–ID2 2.8557 > 0.05 The null hypothesis is not rejected

ID1–ID3 2.8557 > 0.05 The null hypothesis is not rejected

population of 150 individuals andmutation probability of 0.5
gene per chromosome), which produced the lowest Average
Rank regarding the Friedman’s test, with the rest of con-
figurations. The results in relation to such comparisons are
shown in Table 8. It can be seen that, in the conditions of the
experiment, the configuration with identifier ID1 performs
better than the configurations with identifiers ID6–ID7 (with
LMOCSO as an optimization method), but is not possible to
establish that the configuration with identifier ID1 performs
better than any other.

The final results of the analysis bring to light that the
state-of-the-art SMS-EMOAmethod is highly competitive. It
shows a better performance than amethod such as LMOCSO.
Furthermore, it is better ordered than the rest from the Fried-
man’s test point of view.

6.4 Discussion

From Sect. 6.3, the configuration with the best order from the
Friedman’s test point of view was found (SMS-EMOA, pop-
ulation size of 150 individuals, and mutation rate of 0.5 gene
per chromosome). It is taken as a reference for the proposed
methodology. Therefore, such a configuration is selected to
extend the analysis in case of more difficult applications in
Sect. 7.Next, a discussion is opened regarding two interesting
aspects: firstly, the effect of the sampling size when discrete
simulation and evolutionary multi-objective algorithms are
combined, and secondly, the quantification of the economic
cost savings when the methodology is used.

6.4.1 Discrete event simulation combined with
multi-objective evolutionary algorithms: the effect of
sampling size

The proposed methodology executes a unique discrete sim-
ulation per individual of the population to characterize the
system behavior and then, the objective functions are evalu-
ated. Here, the effect of varying the sampling size is analyzed
with equivalent number of fitness evaluations. Summarizing
the procedure: the Functionability Profile of the system was
built sample size times for each individual of the popula-

tion and the objective functions (availability and operational
cost) were computed after as many times. The configuration
of the case study with best average rank from the Friedman’s
test (SMS-EMOA, population size of 150 individuals, and
mutation rate of 0.5 gene per chromosome, see Tables 3
and 7, column 9) was taken as reference (and mentioned
as ‘direct SMS-EMOA’). In addition to this case (sample
size equal to 1), sample sizes of 10, 100 and 1000 for each
solution evaluated by the multi-objective evolutionary algo-
rithm were tested. To foster equivalent purpose (attain the
best non-dominated solutions), this procedure is equivalent to
execute multiple simulations (as many as the chosen sample
size) taking the minimal extreme value as a representative of
the distribution achieved. However, in multi-objective opti-
mization the non-dominated direction (non-dominated lower
extreme value) of each solution is not known a priori and it
depends on its relative position versus other non-dominated
solutions. Therefore, cases of taking as minimal extreme
value either: 1) minimal unavailability, 2) minimal cost, or
3) a minimal equal weighted unavailability–cost (which is
equivalent also to the Manhattan distance of both objectives)
have been tested. The proposed methodology (single sample
size, direct SMS-EMOA) is compared to those nine com-
binations (three minimal extreme values with three sample
sizes each) andwith a standard randomsearch as an optimiza-
tion baseline; all cases sharing an equivalent total stopping
criterion of 10.000.000 evaluations of the fitness functions
and being executed in 21 independent runs each. The set of
configurations is shown in Table 9.

Box plots of the Hypervolume values distribution at the
end of the process are shown in Fig. 9. It can be seen that, as
expected, the method based on random search (the config-
uration ID10) presents the worst performance. Moreover, it
can be seen that the configurationwith identifier ID11 (which
uses the direct SMS-EMOA) shows the biggestHypervolume
median and average values. The configuration with iden-
tifier ID7 (which looks for minimum unavailability using
1000 evaluations of the objective functions per individual)
presents the highest Hypervolume maximum value and the
configuration with identifier ID1 (which looks for minimum
unavailability using 10 evaluations of the objective functions
per individual) supplies the highest Hypervolume minimum
value. These, and other measures obtained, are shown in
Table 9.

In order to quantify whether any one of the configurations
performed better than any other, a statistical significance
hypothesis test was conducted. The average ranks computed
through the Friedman’s test are shown in Table 9. It can be
seen that the configuration with identifier ID11, which uses
the direct SMS-EMOA, produced the lowest average rank.
After a similar number of evaluations, the direct SMS-EMOA
achieved the first order regarding the hypothesis test. More-
over, the p-value computed (6.6712·10−11) implies that the
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Table 9 Configurations, Hypervolume statistics and Friedman’s test average ranks (multiple simulations)

Identifier Criterion Sampling size Average Median Max. Min. St. D. Rank

ID1 Min. Unavailab. 10 2.2905 2.2827 2.3242 2.2692 0.0173 4.523

ID2 Min. Cost. 10 2.2869 2.2889 2.3095 2.2649 0.0116 4.619

ID3 Min. Unav.+ Min. Cost. 10 2.2823 2.2799 2.3119 2.2602 0.0131 5.857

ID4 Min. Unavailab. 100 2.2898 2.2878 2.3208 2.2662 0.0156 4.095

ID5 Min. Cost. 100 2.2841 2.2855 2.3122 2.2565 0.0141 5.285

ID6 Min. Unav.+ Min. Cost. 100 2.2804 2.2798 2.3069 2.2595 0.0105 6.095

ID7 Min. Unavailab. 1000 2.2769 2.2737 2.3601 2.2473 0.0232 7.190

ID8 Min. Cost. 1000 2.2658 2.2614 2.3240 2.2479 0.0182 8.714

ID9 Min. Unav.+ Min. Cost. 1000 2.2833 2.2848 2.3295 2.2467 0.0203 5.857

ID10 Random Search 1 2.2408 2.2386 2.2865 2.2149 0.0175 10.571

ID11 Direct SMS-EMOA 1 2.2982 2.2978 2.3223 2.2687 0.0142 3.190

p-value 6.67·10−11

Fig. 9 Box plots of the final Hypervolume (multiple simulations, iden-
tifiers as in Table 9)

null hypothesis (H0) can be rejected (p-value<0.05), so it
can be seen that, in the studied conditions, there are con-
figurations that perform better than others. In order to find
the concrete pairwise comparisons that produce such differ-
ences, a post-hoc test was run. The Shaffer’s test was used to
compare the configuration with identifier ID11 with the rest
of configurations. The results in relation to the comparisons
are shown in Table 10.

The hypothesis test shows that the direct SMS-EMOA
achieved the best average rank from the Friedman’s test point
of view. Moreover, it shows significant differences regard-
ing some of the configurations (ID7, ID8 and ID10) so a
better behavior is expected when the direct SMS-EMOA is
used. Next, the configurations with the best average rank
from each extreme studied (minimum unavailability, mini-
mum cost and minimum weighted unavailability–cost) were
selected to compare the results in front of using the direct
SMS-EMOA. Their non-dominated solutions are shown in
Fig. 10. It can be seen that the maximum Hypervolume is
covered when the direct SMS-EMOA is used (with a value
of 2.3832). Finally, the accumulated non-dominated front

from Fig. 10 is shown in Fig. 11. It can be seen that there
are not solutions that follow minimizing the unavailability
(marked as a �) on the left side of Fig. 11 as is expected. It
is because the solutions on the left side present a best cost,
which is contrary to obtaining more unavailable solutions.
Conversely, there are not solutions that follow minimizing
the cost (marked as a �) on the right side of Fig. 11 as is
expected. It is due to the fact that the solutions on the right
side present best unavailability,which is contrary to obtaining
more economical solutions. It can be seen how the solutions
supplied by the direct SMS-EMOA (marked as an ×) are
spread along the non-dominated front.

In summary, the results of sampling size analysis enhance
the benefits of the proposed methodology showing the
positive synergy among discrete event simulation and multi-
objective evolutionary algorithms, where only a single
unique simulation per individual is enough in the fitness func-
tion evaluation to attain very competitive results.

A further analysis of the non-dominated solutions of the
previous results based in their representative averages instead
of their best values attained was conducted: For each non-
dominated solution at the final generation (after 10.000.000
evaluations) of each of the 21 independent executions of the
previous experiments, 10.000 discrete simulations were exe-
cuted and their objective functions were computed. Then, the
unavailability and cost averages were used as representative
values of the distribution of each solution. In this way, for
each extreme non-dominated solution achieved previously,
the center of its distribution was located. These central solu-
tions are the solutions that would be achieved by executing
a Monte Carlo simulation when considering the average as
the representative value of the distribution. Box plots of the
Hypervolume values distribution regarding each configura-
tion are shown in Fig. 12. Statistical information regarding
this experiment is shown in Table 11. It can be seen that
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Table 10 p-values from
Shaffer’s test (multiple
simulations)

Comparison p-value Conclusion

ID10–ID11 3.049·10−11 < 0.05 The null hypothesis is rejected

ID8–ID11 3.052·10−6 < 0.05 The null hypothesis is rejected

ID7–ID11 0.003 < 0.05 The null hypothesis is rejected

ID6–ID11 0.1679 < 0.05 The null hypothesis is not rejected

ID3–ID11 0.3304 > 0.05 The null hypothesis is not rejected

ID9–ID11 0.3304 > 0.05 The null hypothesis is not rejected

ID5–ID11 1.2602 > 0.05 The null hypothesis is not rejected

ID2–ID11 3.5815 > 0.05 The null hypothesis is not rejected

ID1–ID11 4.0463 > 0.05 The null hypothesis is not rejected

ID4–ID11 4.5206 > 0.05 The null hypothesis is not rejected

Fig. 10 Accumulated non-dominated solutions from the best configurations (multiple simulations)

the configuration with identifier ID3 (which looks for mini-
mum weighted unavailability–cost using 100 evaluations of
the objective functions per individual) presents both the best
median and maximum Hypervolume values.

In order to establish whether any one of the configurations
performed better than any other, a statistical significance
hypothesis test was conducted. The average ranks computed
through the Friedman’s test are shown in Table 11. It can be
seen that the configuration with identifier ID3 (which looks
for minimum weighted unavailability–cost using 100 evalu-
ations of the objective functions per individual) produced the
lowest average rank, while our methodology, the configura-
tion with identifier ID11 -direct SMS-EMOA- was ranked
third out of eleven configurations. Moreover, the p-value
computed (9.2629·10−11) implies that the null hypothesis
(H0) can be rejected (p-value<0.05), so it can be seen that, in
the studied conditions, there are configurations that perform

better than others. In order to find the concrete pairwise com-
parisons that produce such differences, a post-hoc test was
run. The Shaffer’s test was used to compare ourmethodology
ID11 -direct SMS-EMOA- with the rest of configurations.
The results in relation to the comparisons are shown in
Table 12. It can be seen that the configuration with identifier
ID11 performs better than ID7, ID8, ID9 and ID10, while no
other configurationoutperformsourmethodology.Moreover,
the Hypothesis test shows that non-significant differences
were found among the direct SMS-EMOA and configuration
ID3 with the best results from the Friedman’s test point of
view. However, the way to know a priori which would be
the best values and their influence in the optimization out-
come, either of the sampling size parameter or either of the
minimum extreme value parameter is not determined. For
example, if we focus on each value of sampling size, we
could observe that in the case of sampling size 10 (ID1 to
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Fig. 11 Accumulated non-dominated front from the best configurations (multiple simulations)

Fig. 12 Box plots of the Hypervolume from simulated centers (identi-
fiers as in Table 11)

ID3), the best ordered casewas theminimum equal-weighted
unavailability–cost extreme (ID3), while in the case of sam-
pling size 100 (ID4 to ID6), the best ordered case was the
cost extreme (ID4), and finally in the case of sampling size
1000 (ID7 to ID9), the best ordered case was the unavail-
ability extreme (ID8). Therefore, depending on the sampling
sizes all the minimum extreme directions could have been
the best options according to the attained results of our
experiment. Hence, there are many parameters to explore
in very expensive computational processes. On the contrary,
our methodology is parameter-less due to a unique sam-
pling size and therefore due to its implicit management of
the non-dominated solutions by the selection operator of the
evolutionary multi-objective algorithm.

In summary, the proposed methodology as shown in the
insight results and discussion of the case study, is a com-
putationally efficient and robust approach (non-parameter

dependent regarding the number of samples or the minimal
search direction) versus the use of Monte Carlo simulation-
based approaches when facing the multi-objective optimiza-
tion reliability problem handled.

6.4.2 Quantification of the operational cost saved

In order to evaluate the cost savings attained by the proposed
methodology in the case study using the direct SMS-EMOA,
a comparison with a standard random search has been tested.
Therefore, each individual of the population (the design -
devices involved in- andmaintenance strategy)was randomly
generated and the objective functions were evaluated after.
The total number of solutions generatedwas equivalent to the
stopping criterion of the direct SMS-EMOA (10,000,000) at
each of the 21 independent executions. The configuration of
the case study with best average rank from the Friedman’s
test (SMS-EMOA, population size of 150 individuals, and
mutation rate of 0.5 gene per chromosome, as seen in Table 3,
column 9) was taken as reference. In both compared cases
(direct SMS-EMOA and random search), the 21 independent
executions were ordered by their Hypervolume values and
the median case (11th ordered) was taken as reference, as is
shown in Fig. 13.

TheHypervolumecoveredby themethodology (2.2977) is
better than the Hypervolume covered by the random search
(2.2385); hence, the non-dominated front obtained by our
methodology is better than the non-dominated front obtained
by the random search. From those sets, their joint non-
dominated front was shown in Fig. 14, where all solutions
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Table 11 Configurations, Hypervolume statistics and Friedman’s test average ranks from simulated centers

Identifier Criterion Sampling size Average Median Max. Min. St. D. Rank

ID1 Min. Unavailab. 10 1.5783 1.5785 1.5797 1.5750 0.0012 2.809

ID2 Min. Cost. 10 1.5754 1.5773 1.5780 1.5732 0.0015 6.619

ID3 Min. Unav.+ Min. Cost. 10 1.5790 1.5796 1.5812 1.5752 0.0015 1.904

ID4 Min. Unavailab. 100 1.5770 1.5777 1.5792 1.5707 0.0021 4.476

ID5 Min. Cost. 100 1.5771 1.5773 1.5793 1.5746 0.0009 4.809

ID6 Min. Unav.+ Min. Cost. 100 1.5774 1.5772 1.5809 1.5751 0.0016 4.523

ID7 Min. Unavailab. 1000 1.5741 1.5741 1.5766 1.5714 0.0015 8.285

ID8 Min. Cost. 1000 1.5743 1.4741 1.5796 1.5703 0.0027 7.666

ID9 Min. Unav.+ Min. Cost. 1000 1.5684 1.5681 1.5759 1.5655 0.0023 9.809

ID10 Random Search 1 1.5626 1.5660 1.5686 1.5532 0.0060 10.857

ID11 Direct SMS-EMOA 1 1.5777 1.5776 1.5788 1.5765 0.0007 4.238

p-value 9.26·10−11

Table 12 p-values from
Shaffer’s test from simulated
centers

Comparison p-value Conclusion

ID10–ID11 4.502·10−9 < 0.05 The null hypothesis is rejected

ID9–ID11 2.353·10−6 < 0.05 The null hypothesis is rejected

ID7–ID11 0.0028 < 0.05 The null hypothesis is rejected

ID8–ID11 0.0250 < 0.05 The null hypothesis is rejected

ID2–ID11 0.4401 < 0.05 The null hypothesis is not rejected

ID3–ID11 0.4751 < 0.05 The null hypothesis is not rejected

ID1–ID11 1.7907 > 0.05 The null hypothesis is not rejected

ID5–ID11 3.8171 > 0.05 The null hypothesis is not rejected

ID6–ID11 3.8171 > 0.05 The null hypothesis is not rejected

ID4–ID11 3.8171 > 0.05 The null hypothesis is not rejected

Fig. 13 Non-dominated fronts from the direct SMS-EMOA and random search cases (median case out of 21 independent executions)
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Fig. 14 Global non-dominated front from the median direct SMS-EMOA and median random search cases (taken from Fig. 13)

Table 13 Extreme solutions taken from Fig. 13

Id. Method Q Cost[eu] V1[h] P2[h] P3[h] V4[h] V5[h] V6[h] V7[h]

ID1 SMS-EMOA 0.002974 923.75 25434 0 8691 0 21781 33457 31259

ID2 Random search 0.003055 962.12 15810 0 8621 0 16584 23113 24667

ID3 SMS-EMOA 0.000819 1838.37 33858 7700 8678 16795 24190 33248 28461

ID4 Random search 0.000903 2057.75 34514 4711 4946 29724 28028 25410 32408

except a single one (by chance) were attained by our method-
ology.

In order to quantify what is the benefit of using the direct
SMS-EMOA, characteristic solutions identified as ID1 and
ID3 (taken from direct SMS-EMOA) and ID2 and ID4 (taken
from random search) have been chosen to compare. These
solutions are shown both in Table 13 and in Fig. 13. Com-
paring the solutions with the best cost from Table 13 (ID1
and ID2), it can be seen that the solution ID1 (achieved from
the direct SMS-EMOA) is not only more economic but also
more reliable than the solution ID2 (achieved from the ran-
dom search). Comparing the economic cost of the solutions
ID1 and ID2, the solution ID1 presents an improvement of
a 4%. The better the unavailability, the bigger the impact of
the methodology in terms of cost benefits. Comparing the
solutions with the best unavailability from Table 13 (ID3
and ID4), it can be seen that the solution ID3 (achieved from
the direct SMS-EMOA) is not only more economic but also
more reliable than the solution ID4 (achieved from the ran-
dom search). The difference between the solutions ID3 and
ID4 reaches an economic cost of a 10% lower. Then, it can be
seen that, in the conditions of the experiment, using the direct
SMS-EMOA produces a positive impact not only from the

economic point of view but also from the availability point
of view.

7 Applications

Two applications are faced in order to demonstrate the via-
bility of applying the methodology. The Application Case A
consists of an extension of the main case study by adding a
second branch. The Application Case B consists of a system
whose structure is more complex and the number and kind
of devices is bigger.

7.1 Application case A: the case study with double
branch

Thefirst application consists of an extension of the case study,
which is a basic model of a containment spray injection sys-
tem. In this case, a second branch is included as is shown
in Fig. 15. A similar structure was analyzed in Greiner et al
(2003). As in the case study, it is necessary to establish the
optimumperiod to perform a preventivemaintenance activity
for the system devices and it is necessary to decide whether
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Fig. 15 Application Case A: Double branch containment spray injec-
tion system (CSIS)

Table 14 Parameters configuration for the Application Cases A and B

Description Setting

Method SMS-EMOA

Population 150

Mutation probability 0.055

Mutation distribution index 20

Crossover probability 0.9

Crossover distribution index 20

Number of evaluations 10.000.000

Number of executions 21

to include redundant devices such as the pump P2, the pump
P9, the Valve V4 and the Valve V11 by evaluating design
alternatives. Hence, the number of components of Appli-
cation Case A can vary from 10 to 14 automatically as an
outcome from the evolutionary algorithm search. The chro-
mosomes are codified as [B1 B2 B3 B4 T1 T2 T3 T4 T5 T6 T7
T8 T9 T10 T11 T12 T13 T14], where the presence of redundant
devices P2, V4, P9 and V11 is defined by the decision vari-
ables B1, B2, B3 and B4 respectively, and the optimum Time
To Start a Preventive Maintenance activity in relation to each
device is represented by the decision variables T1 to T14. They
have to be transformed to evaluate the objective functions as
claimed in Sect. 3. This application was executed attending
to the configuration that presented the best behavior from the
case study, as is shown in Table 14.

The scale factors in relation to the value of the objective
functions used with the purpose of achieving an equally dis-
persed non-dominated front with the unit as maximum value
of each objective were as follows:

– The scale factor used to compute the Cost was 4,500
economic units.

– The scale factor used to compute the system unavailabil-
ity was 0.00004.

Fig. 16 Box plots of Hypervolume achieved from the configurations
for the Application Case A (identifiers as in Table 15)

Firstly, the experiment was conducted based on the pro-
posed methodology. Additionally, to tune the effect of
automatic devices selection, a second problemwas runwhere
the structural designwas based on themandatory selection of
all devices. Box plots of the Hypervolume values distribution
at the end of the process are shown in Fig. 16. It can be seen
that the configuration with identifier ID1, which uses the pro-
posed methodology, presents the best median Hypervolume
value. Statistical information regarding the Hypervolume
reached when 21 independent executions were carried out
is shown in Table 15. It can be seen that the configuration
with identifier ID1 presents the best statistics. Moreover, the
configuration with identifier ID1 presented the best average
rank from the Friedman’s test point of view, and the p-value
achieved of 4.592·10−6 establishes that the configuration
ID1 performs better than the configuration ID2. The non-
dominated solutions achieved by our methodology (marked
as a ×) are shown in Fig. 17. The accumulated Hypervol-
ume computed in this case out of 21 independent executions
reached a value of 3.1146. Moreover, the non-dominated
solutions are detailed in Table 16. It can be seen that the
devices P2, V4, P9 and V11 are not included in the design.
The non-dominated solutions achieved based on the manda-
tory selection (marked as an ◦) are shown in Fig. 17. The
accumulated Hypervolume computed in this case out of 21
independent executions reached a value of 3.1004. It can be
seen that the Hypervolume covered by the non-dominated
solutions achieved by the proposed methodology is bigger
than the Hypervolume covered by the non-dominated solu-
tions achieved by the mandatory selection of all devices;
also the former non-dominated solutions, which are identi-
fied as ID1, ID2 and ID3, dominate the latter non-dominated
solutions. The methodology was able to find optimum non-
dominated solutions for the system.

Finally, Fig. 18 shows thenon-dominated solutions achieved
both for the case study (marked as a ×) and for the Appli-
cation Case A (marked as a �). It can be seen that both
fronts are complementary. The set of solutions of the non-
dominated front achieved by the case study present a lower
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Table 15 Configurations, Hypervolume statistics and Friedman’s test average ranks for the Application Case A

Identifier Criterion Average Median Max. Min. St. D. Rank

ID1 Proposed methodology 3.0963 3.0958 3.1130 3.0834 0.0082 1.000

ID2 Mandatory selection 2.4600 2.4628 2.4904 2.4286 0.0146 2.000

p-value 4.59·10−6

Fig. 17 Accumulated non-dominated solutions and designs for the Application Case A

cost and a bigger unavailability than the set of solutions of
the non-dominated front achieved by the Application Case
A. The Application Case A is more reliable (lower unavail-
ability) and more expensive (higher cost) due to the fact that
its solutions are composed by two parallel branches and with
more components than the case study. Nevertheless, this is
the reason why a bigger economic investment is needed to
maintain the system. The decision maker should determine
whether the benefit of applying better unavailability designs
supports the increase in economic investment.

7.2 Application case B: an extendedmodel for the
containment spray system of a nuclear power
plant

Application Case B is based on an industrial case presented
in Galván et al (2007). It consists of a PressuredWater Reac-
tor (PWR) Containment Spray System, which is designed to
provide particular and different functions inside the contain-
ment of a PWR, such as the borated water injection function.
In the case study, a simplified model of this system was stud-
ied. In this case, an extended model is studied as is shown in
Fig. 19.

The system consists of two separated trains, each one
formed by centrifugal pumps and valves to control the flow
of borated water from the Refueling Water Storage Tank.
The main devices are the Single Valves (V1, V2 and V9),
the Motor-Driven Pumps (P4 and P5), the Motor Operated
Valves (M3, M6, M7, M8 and M10) and One Way Valves
(NR11 and NR12). The aim is the simultaneous optimization
of the system structural design (with automatic selection of
devices) and its maintenance strategy with some considera-
tions:

– Each position may locate a maximum of three redundant
devices in parallel, so the maximum number of devices
is thirty-six as is shown in Fig. 20,

– The devices V1, P4, V9, M10, NR11 and NR12 are
mandatory as is shown in Fig. 21,

– When the device M8 is not included in the design, the
line is considered a tube,

– When the device P5 is not included in the design, the
device M7 cannot be included,

– The device M3 might be included in the design when the
device V2 or/and the device P5 is/are included,

– As in the Application Case A, to tune the effect of auto-
matic devices selection, a second problemwas run where
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tion of a minimum of a device per position.

As in the case study, the chromosomecodification includes
the period of time to perform a preventive maintenance activ-
ity for the system devices. Moreover, it is necessary to decide
whether to include redundant devices by evaluating design
alternatives; the number of devices of Application Case B
may vary from 6 to 36 automatically as an outcome from
the evolutionary algorithm search. In this application, two
types of chromosome codifications are taken into account
and compared:

– Long Chromosome codification: formed by 66 decision
variables, which are 30 for the design and 36 for themain-
tenance strategy. Six components are mandatory so 30
design decision variables are necessary to decidewhether
the rest of the devices are or not included in the design.
The systemmay contain amaximum of 36 devices so this
is the number of the decision variables for the preventive
maintenance strategy,

– Short Chromosome codification: formed by 48 decision
variables, which are 12 for the design and 36 for the
maintenance strategy. In this case, the 12 design decision
variables are scaled to entire values so they may take a
maximum value of three. As in the previous case, the
system may contain a maximum of 36 devices so this is
the number of the decision variables for the preventive
maintenance strategy.

In summary, in this section we execute four problems
solving Application Case B: long chromosome and the pro-
posed methodology, short chromosome and the proposed
methodology, long chromosome and mandatory selection of
a minimum of a device per position, and short chromosome
and mandatory selection of a minimum of a device per posi-
tion.

The data used are shown in Table 17. As in Application
Case A, this Application Case B was executed attending to
the evolutionary multi-objective optimization configuration
which presented the best performance in the case study, as is
shown in Table 14. The scale factors in relation to the value
of the objective functions used with the purpose of achieving
an equally dispersed non-dominated front with the unit as
maximum value of each objective were as follows:

– The scale factor used to compute the Cost was 6,000
economic units,

– The scale factor used to compute the system unavailabil-
ity was 0.00083.

Box plots of the Hypervolume values distribution at the
end of the process are shown in Fig. 22. It can be seen
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Fig. 18 Accumulated non-dominated solutions achieved for both the case study and the Application Case A

Fig. 19 Application Case B: Base line

Fig. 20 Application Case B: The most complex possible design

Fig. 21 Application Case B: The most simple possible design

that the configuration with identifier ID3, which uses the
short chromosome and the proposed methodology, presents
the best median Hypervolume value. Statistical information
regarding the Hypervolume reached when 21 independent
executions were carried out is shown in Table 18. It can
be seen that the configuration with identifier ID3 presents
the best average, median, minimum and standard devia-

tion Hypervolume value, whereas the configuration with
identifier ID1, which uses the long chromosome and the
proposed methodology, presents the best maximum Hyper-
volume value. Moreover, the configuration with identifier
ID3 presents the best average rank from the Friedman’s test
point of view, and the p-value achieved of 7.666·10−11 estab-
lishes that the configuration ID3 performs better than some
other. Finally, the Shaffer’s test was used to compare the
configuration with identifier ID3 with the rest of configura-
tions. Statistical significant difference was found regarding
the configurations with identifiers ID2 and ID4 (both with
mandatory selection of devices) as is shown in Table 19.
Therefore, in the studied conditions, it can be seen that the
best performance is achieved when the proposed methodol-
ogy is used. Furthermore, the best order from the Friedman’s
test is achieved when only one decision variable per position
for the system design is used (the short chromosome).

The non-dominated solutions achieved when the long
chromosome and our methodology are used (marked as ×)
are shown in Fig. 23. It can be seen that the accumulated
Hypervolume computed out of 21 independent executions
is 3.7809. The non-dominated solutions achieved when the
long chromosome and themandatory selection of aminimum
of a device per position, are used (marked as ◦) cover an
accumulated Hypervolume computed out of 21 independent
executions of 3.5196. The non-dominated solutions achieved
when the short chromosome and the proposed methodology
are used (marked as �) cover an accumulated Hypervol-
ume computed out of 21 independent executions of 3.7702.
Finally, the non-dominated solutions achievedwhen the short
chromosome and the mandatory selection of a minimum
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Table 17 Data set for the Application Case B

Parameter Value Source

Life Cycle 438,000h –

(V) Correct. Maint. Cost 15 units/hour Galván et al (2007)

(P) Correct. Maint. Cost 15 units/hour Galván et al (2007)

(M) Correct. Maint. Cost 20 units/hour Galván et al (2007)

(NR) Correct. Maint. Cost 15 units/hour Galván et al (2007)

(V) Prevent. Maint. Cost 15 units/hour Galván et al (2007)

(P) Prevent. Maint. Cost 15 units/hour Galván et al (2007)

(M) Prevent. Maint. Cost 20 units/hour Galván et al (2007)

(NR) Prevent. Maint. Cost 15 units/hour Galván et al (2007)

(V) TFmin 1h MRI

(V) TFmax 70,080h MRI

(V) TF λ 5.83·10−6 hours Galván et al (2007)

(V) TRmin 1h MRI

(V) TRmax 5h μ + 3σ

(V) TR μ 3h Galván et al (2007)

(V) TR σ 0.67h (μ - TRmin)/3

(V) TPmin 8,760h MRI

(V) TPmax 35,040h MRI

(V) TRPmin 1h MRI

(V) TRPmax 1h μ + 3σ

(V) TRP μ 1h Galván et al (2007)

(V) TRP σ 0h (μ - TRmin)/3

(P) TFmin 1h MRI

(P) TFmax 70,080h MRI

(P) TF λ 3.89·10−6 hours Galván et al (2007)

(P) TRmin 1h MRI

(P) TRmax 47h μ + 3σ

(P) TR μ 24h Galván et al (2007)

(P) TR σ 7.67h (μ - TRmin)/3

(P) TPmin 2,920h MRI

(P) TPmax 8,760h MRI

(P) TRPmin 1h MRI

(P) TRPmax 1h μ + 3σ

(P) TRP μ 4h Galván et al (2007)

(P) TRP σ 1h (μ - TRmin)/3

(M) TFmin 1h MRI

(M) TFmax 70,080h MRI

(M) TF λ 5.9·10−6 hours Galván et al (2007)

(M) TRmin 1h MRI

(M) TRmax 5h μ + 3σ

(M) TR μ 3h Galván et al (2007)

(M) TR σ 0.67h (μ - TRmin)/3

(M) TPmin 8,760h MRI

(M) TPmax 35,040h MRI

(M) TRPmin 1h MRI

(M) TRPmax 1h μ + 3σ

(M) TRP μ 1h Galván et al (2007)

Table 17 continued

Parameter Value Source

(M) TRP σ 0h (μ - TRmin)/3

(NR) TFmin 1h MRI

(NR) TFmax 70,080h MRI

(NR) TF λ 5.79·10−6 hours Galván et al (2007)

(NR) TRmin 1h MRI

(NR) TRmax 5h μ + 3σ

(NR) TR μ 3h Galván et al (2007)

(NR) TR σ 0.67h (μ - TRmin)/3

(NR) TPmin 8,760h MRI

(NR) TPmax 35,040h MRI

(NR) TRPmin 1h MRI

(NR) TRPmax 1h μ + 3σ

(NR) TRP μ 1h Galván et al (2007)

(NR) TRP σ 0h (μ - TRmin)/3

of a device per position are used (marked as �) cover an
accumulated Hypervolume computed out of 21 independent
executions of 3.5230. In Fig. 24, the non-dominated solu-
tions, which belong to the non-dominated front from all
configurations, were extracted. The detail of the solutions
is shown in Table 20. Solutions L1, L2 and L3 are solu-
tions supplied when the long chromosome and the proposed
methodology are used. Solutions S1, S2 and S3 are solu-
tions supplied when the short chromosome and the proposed
methodology are used. Finally, the SM1 solution is a solu-
tion achieved when using the short chromosome and the
mandatory selection of devices. Each solution presents its
cost, unavailability and periodic times to start a preventive
maintenance activity regarding each device included in the
design, as is shown in Table 20. The design alternatives are
shown in Figs. 25, 26, 27, 28, 29, 30. It can be seen that
solution L1 (the less expensive design) belongs to the most
simple design, as shown in Fig. 21. On the contrary, it can be
seen that solution SM1, whose design is shown in Fig. 30, is
the more reliable solution with an unavailability equal to 0.0.
This is due to the fact that the system was kept in the operat-
ing state all along themission time for the discrete simulation
that describes its behavior. All the four tested methods were
able to achieve best solutions with same unavailability value,
as shown in the bottom right part of Fig. 23, although with
slight differences in the cost attained.

7.3 Discussion

Theapplicationof the proposedmethodology toboth applica-
tion cases demonstrates that its generalization and scalability
is viable. It has been possible to extend the methodology
to more complex systems and balanced unavailability–cost
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Fig. 22 Box plots of Hypervolume achieved from the configurations
for the Application Case B (identifiers as in Table 18)

solutions could be found with automatic selection of system
devices. It was interesting to compare the proposed method-
ology with the cases with mandatory selection of devices.

In Application Case A, the proposed methodology avoids
to choose single devices located in parallel. Once the
non-dominated solutions from the mandatory selection of
devices are achieved, it could be seen that the achieved
non-dominated solutions from the proposed methodology
dominated the previously cited solutions. Hence, solutions
with single devices located in parallel are not optimal
solutions. They were rejected by the Multi-objective Evo-
lutionary Algorithm along the evolutionary process.

Regarding Application Case B, two chromosome codi-
fications (short and long) were explored. Statistically non-
significant differences were found regarding the length of
the chromosome, however, the short chromosome resulted
firstly ordered by the Friedman’s test. It can be seen that
solutions from both codifications belong to the accumu-
lated non-dominated front. Nevertheless, generally speaking,

Table 18 Configurations, Hypervolume statistics and Friedman’s test average rank for the Application Case B

Identifier Criterion Average Median Max. Min. St. D. Rank

ID1 Long chromosome—proposed methodology 3.7434 3.7380 3.7779 3.7224 0.0135 1.5714

ID2 Long chromosome—mandatory selection 3.4778 3.4757 3.5197 3.4457 0.0181 3.6190

ID3 Short chromosome—proposed methodology 3.7438 3.7434 3.7676 3.7233 0.0108 1.4285

ID4 Short chromosome—mandatory selection 3.4859 3.4867 3.5230 3.4573 0.0145 3.3809

Table 19 p-values from
Shaffer’s test from Application
Case B

Comparison p-value Conclusion

ID2–ID3 2.304·10−7 < 0.05 The null hypothesis is rejected

ID3–ID4 2.868·10−6 < 0.05 The null hypothesis is rejected

ID1–ID3 1.1001 > 0.05 The null hypothesis is not rejected

Fig. 23 Accumulated non-dominated solutions achieved for the Application Case B
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Fig. 24 Global non-dominated front achieved for the Application Case B (taken from Fig. 23)

solutions with better cost and worse unavailability were
achieved from the long chromosome; conversely, solutions
with worse cost and better unavailability were achieved from
the short chromosome. Therefore, depending on the features
of the solutions to achieve it could be better to use one or
another codification to solve complex problems in the pro-
posed methodology. In any case, the proposed methodology
with either of the two tested types of chromosome codifica-
tions were able to attain a distributed set of non-dominated
solutions along the whole front as shown in Figs. 22 (Hyper-
volume distributions) and 23.

The proposed methodology is a powerful tool for decision
makers (e.g., chief of engineering, manager of company) in
order to plan the systems with simultaneous optimum main-
tenance cost and non-availability and automatic selection of
systems components. It is possible to attain an optimum set of
non-dominated solutions with minimum cost and minimum
non-availability: it can be observed as the set of solutions
where for each value of cost, the best non-availability is
shown, or alternatively, the set of solutions where for each
value of non-availability the best value of cost is shown.

8 Conclusions

In this paper, coupling Multi-objective Evolutionary Algo-
rithms and Discrete Event Simulation is used in order
to tackle simultaneously both the optimization of systems
design (based on a process of including automatic structure
of components and redundant devices) and also their mainte-
nance strategy (based on the implementation of periodic pre-

ventivemaintenance activities), while addressing the conflict
between availability and operational cost. Coupling these
techniques had previously been used to explore the problems
separately but not simultaneously, when both the corrective
and the preventive maintenance—consisting in achieving the
optimum period of time to carry out a preventive mainte-
nance activity—are taken into account. The Multi-objective
Evolutionary Algorithm gave rise to a population of individ-
uals, each encoding one design alternative and one preventive
maintenance strategy. Each individual represented a possible
solution to the problem, which was then used to modify and
evaluate the system Functionability Profile through Discrete
Event Simulation. The individuals evolved generation after
generation until reaching the stopped criterion. This process
was applied to a technical system in a case study in which the
performance of five state-of-the-art Multi-objective Evolu-
tionaryAlgorithms (SMS-EMOA,MOEA/D,MOEA/D-DE,
NSGA-II and GDE3) was compared and a set of optimum
non-dominated solutions were obtained. In conclusion, the
use ofMulti-objective EvolutionaryAlgorithms andDiscrete
Event Simulation to address the joint optimization of systems
design and their maintenance strategy provides availability–
Cost balanced solutions to real-world problems where data
based on field experience were used. Moreover, for the
solved test problem, in relation to the state-of-the-art Multi-
objective EvolutionaryAlgorithms, the best performance lies
in the use of methods based on both the Hypervolume indica-
tor (SMS-EMOA) and Pareto dominance relation (NSGA-II
and GDE3) rather than methods based on Decomposition
(MOEA/D and MOEA/D-DE). However, the operator used
to create new individuals does not appear to have a relevant
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Fig. 25 L1 optimum design (Cost = 628.00 - unavailability =
1.5068·10−4)

Fig. 26 L2 optimum design (Cost = 676.00 - unavailability =
1.4844·10−4)

Fig. 27 S1 optimum design (Cost = 755.00 - unavailability =
1.4611·10−4)

Fig. 28 L3 and S3 optimum designs (Cost = 798.00 - unavailability =
4.5662·10−5, Cost = 1111.00 - unavailability = 2.7397·10−5, respec-
tively)

effect since methods that use Simulated Binary Crossover
(SMS-EMOA and NSGA-II) presented similar performance
than methods that use Differential Evolution (GDE3); also in
the case ofMOEA/D versusMOEA/D-DE. Furthermore, the
SMS-EMOAmethod resulted better ordered from the Fried-
man’s test point of view. Next, the case study was solved by
using some recently developed Multi-objective Evolution-
ary Algorithms such as ANSGA-III, AdaW and LMOCSO.
Their performances were compared with the performance of
the SMS-EMOAmethod. Again, such a method resulted bet-
ter ordered than the rest, and achieved a better performance
than the LMOCSO method.

Once the case study was solved, the better ordered config-
uration from the Friedman’s test point of view was identified
and a discussion was opened. On the one hand, the effect
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Fig. 29 S2 optimum design (Cost = 978.00 - unavailability =
3.1963·10−5)

Fig. 30 SM1 optimum design (Cost = 1431.00 - unavailability =
0.0000)

of sampling size and its minimal extreme direction was
analyzed, whose results enhance the benefits of the pro-
posed methodology showing the positive synergy among
discrete event simulation and multi-objective evolutionary
algorithms, where only a single unique simulation per indi-
vidual is enough in the fitness function evaluation to attain
very competitive results. This results are confirmed with an
analysis based on the average values of both objective func-
tions for each non-dominated solution of each compared
configuration. The proposed methodology is a computation-
ally efficient and robust approach (non-parameter dependent
regarding the number of samples or the minimal search
direction) versus the use of Monte Carlo simulation-based
approaches when facing the multi-objective optimization
reliability problem handled. On the other hand, the economic
benefits of using the methodology to determine the optimum
structural design of the system and its maintenance strategy
were quantified in the case study being in the estimated inter-
val of 4-10%.

Finally, the proposed methodology scalability and gen-
eralization was demonstrated when applied to two more
complex applications where the problems were satisfactorily
solved, and insights about a proper chromosome codifica-
tion regarding the design components were obtained from
executed experiments.

In the future, it is proposed to extend the analysis to
more complex problems in the reliability field. Other casu-
istry could be studied, such as the deterioration state space,
imperfect repairs or dependency between devices.Moreover,
a deeper research related with the type of decision variables

in the chromosome (binary, integer, real) to study their influ-
ence in the convergence of the search is proposed.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00500-023-08922-
2.
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