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H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Rhodolith beds (RBs) are globally exten-
sive coastal habitats.

• We identify key features of RBs to qualify
them as a global conservation priority.

• Research efforts on RBs lag far behind
other coastal habitats.

• The lack of information hampers conser-
vation of RBs, which is non-existent in
most regions.

• This study calls for levelling-up research
efforts to reach RB conservation needs.
A B S T R A C T
A R T I C L E I N F O
Editor: Damià Barceló
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Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression
towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale,
provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mit-
igation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp for-
ests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats
at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific
conservation efforts. We argue that the lack of information about these habitats, and the significant ecosystem services
they provide, is hindering the development of effective conservation measures and limiting wider marine conservation
success. This is becoming a pressing issue, considering themultiple severe pressures and threats these habitats are exposed
to (e.g., pollution, fishing activities, climate change), which may lead to an erosion of their ecological function and eco-
system services. By synthesizing the current knowledge, we provide arguments to highlight the importance and urgency
of levelling-up research efforts focused on rhodolith beds, combating rhodolith bed degradation and avoiding the loss of
associated biodiversity, thus ensuring the sustainability of future conservation programs.
1. Introduction

Filling essential knowledge gaps is a persistent scientific challenge for
accurate species and habitat assessments and, subsequently, to improve re-
gional and global conservation efforts (Broderick, 2015; IUCN, 2022). In
this regard, deficits and biases of information hamper our understanding
of the importance of specific habitats, their distribution, the associated spe-
cies groups, and their ecological status, which in turn limits our ability in
convincing society of the need for conservation actions and of securing
the necessary funding. This matter is especially important in view of the
continuously increasing threat of human activities to marine ecosystems,
particularly those occurring in coastal and shelf waters. Coastal habitats,
which include seagrass meadows, coral reefs, kelp forests and rhodolith
beds, provide ecosystem functions and services of paramount importance
at a global scale (Costanza et al., 1997; Macreadie et al., 2021). However,
research efforts are unbalanced across these habitats, which are generally
interconnected, resulting in major knowledge gaps that hinder conserva-
tion success.

Rhodolith beds (also known as maerl beds; Fig. 1) – reef-like habitats
composed of free-living calcareous red algae and recognized global biodi-
versity hotspots and carbonate factories – are a prime example
(Riosmena-Rodríguez et al., 2017). Based on the current state of the art re-
garding these habitats, we provide here multiple lines of evidence to sup-
port the importance and urgency for an increase in rhodolith-bed science
towards equitable research efforts across coastal habitats. This will provide
the empirical knowledge base required for a truly holistic conservation ap-
proach at local, regional and global scales.

Rhodolith beds are found from tropical to polar regions, covering an es-
timated area of 4.12 million km2 worldwide (Fragkopoulou et al., 2021),
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~20% larger than the estimated maximum global area of tropical coral
reefs and 2.5–30 times larger than other well-studied coastal habitats,
such as kelp forests, seagrass meadows and mangroves (Fig. 2A).

Attempts to raise awareness on the importance of rhodolith beds over
the last two decades (e.g., Barbera et al., 2003; Hall-Spencer et al., 2008;
Nelson, 2009; Nelson et al., 2012; Riosmena-Rodríguez et al., 2017) have
led to an increase in research efforts (4-fold over the last 15 years;
Rendina et al., 2022), though rhodolith-bed science lags still far behind
other coastal habitats of comparable importance (Fig. 2B, C). As a result,
many uncertainties regarding these habitats and their ecosystem functions
and services persist.

Currently, one of the greatest challenges we face for rhodolith-bed con-
servation is the lack of accurate information on their distribution, extent
and health status. Whereas their broad global distribution is widely
acknowledged (Foster, 2001), recent global distributional models
(Fragkopoulou et al., 2021; Rebelo et al., 2021) suggest that they may
cover an even larger area than previously anticipated. As attention towards
and recognition of these habitats has increased, so has the number of previ-
ously unknown rhodolith beds around the world. During the last five years,
new discoveries have been reported for the Mediterranean (e.g., Bracchi
et al., 2019, 2022; Rendina et al., 2020; Del Río et al., 2022), the
Macaronesia and São Tomé and Principe region (Rebelo et al., 2018,
2022; Otero-Ferrer et al., 2020a, 2020b; Ribeiro and Neves, 2020; Neves
et al., 2021; Cosme de Esteban et al., 2022), South Africa (Adams et al.,
2020), the Western Indian Ocean (Ramah et al., 2021), Australia (Harvey
et al., 2016), India (Sreeraj et al., 2018), Korea (Jeong et al., 2020, 2022),
Brazil (Pereira-Filho et al., 2019; Negrão et al., 2021), and Alaska (Ward
et al., 2021). Furthermore, the growing number of new, cryptic and en-
demic taxa being discovered in rhodolith beds indicates that much of



Fig. 1. Free-living coralline algae (rhodoliths, ~3–10 cm in diameter), covering extensive areas of the seafloor (A-C) and providing habitat for a high diversity of organisms
(D\\F). (A) Vega Island (Norway), (B) Madeira Island (Portugal), (C) Cocos Island (Costa Rica), (D) crab (Cancer pagurus) on an Arctic rhodolith bed in Norway, (E) sting ray
(Hypanus sp.) on a tropical rhodolith bed in the Fernando de Noronha Archipelago (Brazil), and (F) octopus (Octopus vulgaris) on a warm-temperate rhodolith bed at Madeira
Island (Portugal) (Photos by E. Rinde, P. Neves, C. Fernández-Gárcia, J. Hall-Spencer, Z. Matheus, and P. Neves, respectively).
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their biodiversity is still unknown (e.g., Santos et al., 2016; Coutinho et al.,
2021; Méndez Trejo et al., 2021; Senna et al., 2021; Sissini et al., 2022). Re-
cent studies suggest that rhodolith bedsmay also act as seedbanks for recov-
ering ecosystems, and as refugia for ecosystem resilience following acute
(Fredericq et al., 2019) or chronic (Voerman et al., 2022a) environmental
stress. Similarly, the significance of these habitats in sustaining fisheries is
greatly underrated (Moura et al., 2021), and rhodolith beds may also be
far more important in the global carbon budget than currently recognized
(Amado-Filho et al., 2012a; Smith and Mackenzie, 2015; van der Heijden
and Kamenos, 2015; Mao et al., 2020). The latter is a particularly pertinent
Fig. 2. Comparison of estimated total area, number of studies, and funding of key coas
(rhodolith beds - Fragkopoulou et al., 2021; tropical coral reefs - Kleypas, 1997; kelp fo
mangroves - Giri et al., 2011), (B) total number of studies (papers in the Web of Scie
decades, and (C) total amount of funding and number of funded projects (in brackets)
cordis.europa.eu), the National Science Foundation (NSF, https://nsf.gov), and the Au
2022.
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issue in the current era, as major efforts are underway to find nature-based
solutions to offset anthropogenic carbon emissions and mitigate climate
change (Hilmi et al., 2021).

Many features of rhodolith beds indicate their significant ecological and
economic roles at the regional and global scale, butmajor knowledge gaps pre-
vent efficient conservation and management efforts. In lacking the academic
and societal charismaof other habitats (e.g., coral reefs), rhodolith-bed science
has not developed at the same pace. We argue that it is essential to urgently
overcome this, if we are to close the knowledge gaps and enable effective
pan-habitat conservationmeasures tomitigate coastal ecosystem degradation.
tal habitats. (A) Global estimated total area, based on habitat distributional models
rests - Jayathilake and Costello, 2020; seagrasses - Jayathilake and Costello, 2018;
nce database that included each habitat as a ‘topic’) published over the last three
by three relevant international funding agencies, the European Union (EU, https://
stralian Research Council (ARC, https://dataportal.arc.gov.au), between 2017 and

https://cordis.europa.eu
https://cordis.europa.eu
https://nsf.gov
https://dataportal.arc.gov.au
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2. Rhodolith beds – Critical habitats for ocean conservation

Like tropical coral reefs, seagrass meadows and mangrove forests,
rhodolith beds are considered as Small Natural Features (SNFs; Lundquist
et al., 2017), defined as: ‘a site with ecological importance that is disproportion-
ate to its size; sometimes because it provides resources that limit key populations
or processes that influence a much larger area; sometimes because it supports un-
usual diversity, abundance, or productivity. The recognition and management of
SNFs as distinct entities is primarily a means to facilitate pragmatic conservation
of their associated biodiversity and ecosystem services.’ (Hunter Jr, 2017).
However, unlike other marine SNFs, the available information regarding
these habitats (e.g., their distribution, extension and ecological role) is
still scarce (Nelson, 2009; Lundquist et al., 2017). Previously, Barbera
et al. (2003) provided strong evidence that the biodiversity provision of
rhodolith bedswas under-estimated. Here, we extend that to the global con-
text, arguing that we have sufficient evidence to classify rhodolith beds as
‘Ecologically or Biologically Significant Marine Areas’ (EBSAs), based on the
seven criteria developed and adopted by the Convention on Biological Di-
versity (CBD, 2009) to identify priority areas for conservation (Fig. 3).

2.1. Uniqueness or rarity

This EBSA criterion applies to areas that contain (a) unique, rare or
endemic species, populations or communities and/or (b) unique, rare or
distinct habitats or ecosystems and/or (c) unique or unusual geomorpho-
logical or oceanographic features. In this context, rhodolith beds are recog-
nized as a unique habitat that harbors many endemic species. For example,
a recent global analysis revealed several rhodolith species that are endemic
to a single biogeographical province (Rebelo et al., 2021). Furthermore,
many endemic or rare species are associated with these habitats. Examples
from Brazilian rhodolith beds include the endemic kelp species Laminaria
abyssalis (Amado-Filho et al., 2007), the rarely recorded polychaete
Fig. 3.Key ecosystem features of rhodolith beds and their relevance according to the ‘Eco
areas for biodiversity conservation (CBD, 2009) (Photo provided by J. Hall-Spencer).

4

Nuchalosyllis cf. maiteae (Santos et al., 2016), and several endemic coral
(Cavalcanti et al., 2013; Pereira-Filho et al., 2015, 2019; Amado-Filho
et al., 2016; Negrão et al., 2021) and fish species (Moura et al., 2021). In
the Mediterranean, the endemic deep-water kelp Laminaria rodriguezii
(Barbera et al., 2003) and several species of endemic sponges (Longo
et al., 2020) can be found on rhodolith beds, while in the NE-Atlantic the
rare kelp L. ochroleuca and several rare rhodolith-associated seaweeds
have been recorded (Peña et al., 2014; Braga-Henriques et al., 2022;
Helias and Burel, 2023). At Cocos Island, Costa Rica, a new and endemic
octocoral species, Rhodolitica oculta, has been found in association with
rhodoliths (Breedy et al., 2021). In New Zealand and the Gulf of California,
an endemic bryozoan species (Celleporaria agglutinans; MacDiarmid et al.,
2012), rare sponge and echinoderm species (Nelson et al., 2012), and
rare chiton species (Clark, 2000) have been recorded in rhodolith beds.

2.2. Special importance for life-history stages of species and naturalness

This EBSA criterion applies to areas that are needed for a population to
survive and thrive. Rhodolith beds are important nursery grounds, as they
increase habitat complexity and heterogeneity (Kamenos et al., 2003;
Steller et al., 2003; Otero-Ferrer et al., 2019), resulting in higher food avail-
ability and safe refugia for recruitment and early developmental stages
against predators (Kamenos et al., 2004a). Studies in northern Europe,
the Gulf of California and Brazil showed that rhodolith beds function as
nurseries for juvenile scallops, marine invertebrates and fishes (Kamenos
et al., 2004b, 2004c; Steller and Cáceres-Martínez, 2009; Riosmena-
Rodriguez and Medina-López, 2010; Costa et al., 2020; Navarro-Mayoral
et al., 2020; Sánchez-Latorre et al., 2020). In the Gulf of California, 60%
of all examined rhodolith-associated organisms were juveniles (Riosmena-
Rodriguez and Medina-López, 2010). Rhodoliths also play a key role as
seedbanks and temporary reservoirs of life history stages of ecologically im-
portant micro- and macroalgae (Fredericq et al., 2019).
logically or Biologically Significant Marine Areas’ criteria (in bold), used to identify key
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The EBSA criterion defines an area with a comparatively higher degree
of naturalness, as a result of the lack, or low level of, human-induced distur-
bance or degradation. The low light tolerance of rhodoliths allows them to
thrive in the mesophotic zone (e.g., Villas-Boas et al., 2014; Bélanger and
Gagnon, 2021; Voerman et al., 2022b). In these deeper waters, rhodolith
beds acquire inherent protection against the chronic and acute stressors
of the shallow-water coastal zone (e.g., marine heatwaves, land pollution,
clam dredging). Moreover, rhodolith beds are found in polar regions
(Teichert et al., 2012; Peña et al., 2021a), and around isolated oceanic ar-
chipelagos (Fragkopoulou et al., 2021), far away from the most intensive
human pressures. Even in shallow waters, rhodolith beds can retain a
high degree of naturalness, where conservation protection has been rigor-
ously implemented (Barbera et al., 2003).

2.3. Importance for threatened, endangered, or declining species and/or habitats

This EBSA criterion applies to an area containing habitat for the survival
and recovery of endangered, threatened, declining species, or areas with
significant assemblages of such species. Rhodolith beds harbour a large bio-
diversity, including species categorized as threatened or endangered at the
national and international level. For example, a number of fish species, cat-
egorized as vulnerable and endangered (ICMBio, 2022; IUCN, 2022), are
found in Brazilian rhodolith beds (e.g.,Hypanusmarianae, Scarus trispinosus,
Epinephelus morio; Moura et al., 2021) and in shallow coastal beds of
Principe Island (e.g., Balistes truncates, Ginglymostoma cirratum; Otero-
Ferrer et al., 2020b). Furthermore, the Brazilian red list of threatened spe-
cies (ICMBio, 2022) includes several species reported in association with
rhodolith beds, such as the echinoderms Linckia guildingii and Lytechinus
variegatus (Gondim et al., 2014; Guabiroba et al., 2022).

2.4. Biological diversity

This EBSA criterion applies to areas that contain comparatively higher
diversity of ecosystems, habitats, communities, or species, or have higher
genetic diversity. Rhodolith beds, like coral reefs, are biodiversity hotspots
because they create living habitats with high structural heterogeneity
(Kamenos et al., 2003; Otero-Ferrer et al., 2019), which is reflected in a
higher associated biodiversity than common adjacent substrata (Steller
et al., 2003; Teichert, 2014; Neves and Costa, 2022). For instance, Nelson
et al. (2014) found 103 macroalgal species associated with northern New
Zealand rhodolith beds, equivalent to ca. 30% of the local macroalgal flora.
Similarly, Peña et al. (2014) recorded 350 macroalgal species on rhodolith
beds in theNEAtlantic, which corresponds to 30%of the total seaweed diver-
sity found in this region. For theworldwide largest rhodolith bed inAbrolhos,
Brazil, 150 macroalgal species and 127 fish species have been reported
(Brasileiro et al., 2016; Simon et al., 2016; Moura et al., 2021). Likewise,
a high variety of rhodolith-bed associated infauna and epifauna
(e.g., sponges, nematodes, polychaetes, crustaceans, molluscs, and echino-
derms) has been found wherever in the world studies have taken place
(Hall-Spencer, 1998; Steller et al., 2003; Sciberras et al., 2009; Neill et al.,
2015; Bassi et al., 2020; Navarro-Mayoral et al., 2020; Sánchez-Latorre
et al., 2020; Veras et al., 2020; Stelzer et al., 2021; Voerman et al., 2022a).
Furthermore, Méndez Trejo et al. (2021) found species- and location-
specific differences in the cryptofauna associated with two different
rhodolith-forming species. Last, but not least, in contrast to other coastal hab-
itats, such as seagrass meadows and kelp forests, rhodolith beds are usually
formed by several different species of coralline algae, belonging to different
families and even orders. For example, in Brazil, rhodolith communities can
be composed of ten or more species (Costa et al., 2014; Holz et al., 2020).

2.5. Biological productivity

This EBSA criterion defines areas containing species, populations, or
communities with comparatively higher natural biological productivity. In-
deed, compared to sand or muddy seabeds, the habitat formed by rhodolith
beds has higher primary and secondary productivity. Primary producers,
5

including rhodoliths themselves but also associatedmacro- andmicroalgae,
contribute substantially to habitat primary productivity and biogenic car-
bonate production (Martin et al., 2007; Amado-Filho et al., 2012a;
Schubert et al., 2019; Teed et al., 2020; Qui-Minet et al., 2022). Moreover,
provision of complex habitat structures increases the faunal biomass in
rhodolith beds and, consequently, their associated secondary productivity
(Bordehore et al., 2003; Steller et al., 2003; Gabara et al., 2018; Moura
et al., 2021; Neto et al., 2021; Stelzer et al., 2021).

2.6. Vulnerability, fragility, sensitivity, or slow recovery

This EBSA criterion defines areas that contain a relatively high propor-
tion of sensitive habitats, biotopes or species that are functionally fragile
(i.e., highly susceptible to degradation or depletion by human activity or
by natural events), or with slow recovery.

Rhodolith beds are highly vulnerable to global (e.g., ocean warming
and acidification) and local stressors (e.g., nutrient or organic pollution,
mining exploitation and fishing activities. In particular, ocean acidification
is likely to result in a decline of rhodolith-associated carbonate production
and the loss of dead rhodoliths, due to increased carbonate dissolution
(Basso, 2012; Martin and Hall-Spencer, 2017; Burdett et al., 2018). More-
over, rhodoliths are fragile and easily damaged by commercial fishing ac-
tivities, using bottom trawling, hydraulic gear and scallop dredges. This
leads to significant impacts due to algal breakage and removal (as by-
catch), resulting in decreased habitat complexity, rhodolith burial, and sub-
sequent death (Hall-Spencer and Moore, 2000; Kamenos et al., 2003;
Bernard et al., 2019). Rhodolith beds are also vulnerable to exploitation ac-
tivities (mining, gas- and oil-exploitation) due to elevated risk of sedimen-
tation and habitat destruction (Villas-Boas et al., 2014; Figueiredo et al.,
2015; Osterloff et al., 2016) and exhibit a high sensitivity tofish andmussel
aquaculture (Hall-Spencer et al., 2006; Sanz-Lázaro et al., 2011; Aguado-
Giménez and Ruiz-Fernández, 2012; Legrand et al., 2021).

Altogether, when considering the generally slow growth rates of
rhodoliths (0.2–1.5 mm per year; Blake and Maggs, 2003; Bosence and
Wilson, 2003), the recovery time from those impacts can span centuries
to millennia (Hall-Spencer and Moore, 2000). Rhodolith beds have thus
been classified as a non-renewable resource (Barbera et al., 2003).

3. Ecosystem services

As outlined above, rhodolith beds are essential habitats for associated
biodiversity, which includes a high diversity of commercially important
species and their early developmental stages (e.g., fish and scallop species;
Hall-Spencer et al., 2006; Steller et al., 2003, Kamenos et al., 2004a, 2004b,
Costa et al., 2020, Moura et al., 2021). Rhodolith beds tend to support
larger abundances and richness of epifaunal organisms relative to adjacent
bottoms (Riosmena-Rodríguez et al., 2017; Otero-Ferrer et al., 2019).
Rhodolith beds are, furthermore, important for ecological and genetic con-
nectivity with other habitats (e.g., seagrass beds, mangroves, coral reefs),
by ensuring the survival of juvenilefish, providing corridors for reeffishmi-
gration towards spawning grounds and increasing the abundance of reef
species (Costa et al., 2020; Moura et al., 2021; Carneiro et al., 2022).
Hence, they are vital habitats for sustainable fisheries. Their economic im-
portance, in terms of Provisioning Services, is also associated with the direct
exploitation of rhodoliths and their associated species for several industrial
sectors, such as agriculture (fertilizers, soil pH control and limestone pro-
duction), cosmeceuticals (toothpaste, bath salts), food (food supplement),
and biomedicine (bone implants, antimicrobial agents, antioxidants)
(Blunden et al., 1975; Dias, 2000; Amado-Filho and Pereira-Filho, 2012).
For example, the extract of the rhodolith-forming species Lithothamnion
calcareum has been shown to be effective in suppressing proliferation of
human colon cancer cell lines in vitro (Aslam et al., 2009) and, hence,
could be used as a dietary supplement for chemoprevention against colon
polyp formation (Aslam et al., 2010). Additionally, several studies, using
geniculate coralline algae, have shown their extensive biological activity,
including antibiofilm (Salem et al., 2020), anticancer (Harada and Kamei,
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1997; Gheda et al., 2018), antimalarial (Stout et al., 2010), antioxidant
(Matloub et al., 2015), antiviral (Matloub et al., 2015) and larvicidal activ-
ities (Jagadeesan et al., 2015).

Rhodolith beds also provide Cultural Services, as stranded rhodoliths can
make up a large proportion of beach deposits (Harvey et al., 2018; Rebelo
et al., 2022). Well-known examples are the so-called “Popcorn Beaches”
in the Canary Islands, where some beaches can be composed of up to
5000 stranded rhodoliths per square meter (Rebelo et al., 2022).

Certain key features of rhodolith beds, such as their large primary and sec-
ondary productivity (Supporting Services), suggest that they have the potential
to contribute significantly to the global carbon cycle (a Regulation Service), a
topic that is currently gaining attention, as a nature-based solution (Blue Car-
bon ecosystems) to mitigate anthropogenic CO2 emissions. Rhodolith beds
may play a globally significant role in the carbon cycle that is poorly ac-
counted for in Blue Carbon policy (see also Laffoley, 2020), despite some sig-
nificant features that are directly related to Blue Carbon dynamics:

(1) Considerable amounts of particulate organic carbon accumulate be-
tween and underneath rhodolith nodules through settlement (Neto
et al., 2021; Stelzer et al., 2021), leading to storage of organic carbon
over millennia (Mao et al., 2020);

(2) Direction and magnitude of rhodolith-bed carbon fluxes (carbon ‘sink-
source’ duality), which are associated to community productivity
(Martin et al., 2007; Qui-Minet et al., 2022);

(3) High carbonate production rates and build-up of large carbonate stocks
(Amado-Filho et al., 2012a; van der Heijden and Kamenos, 2015; Teed
et al., 2020). Individual-community longevity (centuries to millennia)
means that this inorganic carbon is locked away as both living and
dead biogenic carbonate deposits (e.g., estimated 200 Gt CaCO3 on
the Brazilian coastal shelves; Kempf, 1970);

(4) Slow dissolution of non-living carbonate deposits due to microbial res-
piration, a process that increases alkalinity and captures CO2, and
which will accelerate in the future due to ocean acidification
(Kamenos et al., 2013; Burdett et al., 2018).

4. Under threat – Impacts and vulnerability of rhodolith beds

Rhodolith beds face a series of anthropogenic pressures and threats that
fall into four categories (Halpern et al., 2015): land-based stressors (nutri-
ent pollution, organic/inorganic pollution), ocean-based stressors (ocean-
Fig. 4. Schematic illustration of the threats to rhodolith-bed habitats. (1) Global-change r
ploitation activities (e.g., mining, oil- and gas exploitation), and (4) destructive fishing a
com).
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based pollution, by offshore mariculture, mining, gas and oil exploitation,
and invasive species), fishing (destructive fishing activities), and climate
change (Fig. 4).

Land-based pollution includes: untreated sewage, agricultural run-off,
oils and heavy metals from industry, and sediment washed from coastal
developments and logging. In this regard, evidence has shown that
(i) rhodolith beds are susceptible to coastal eutrophication, as increased nu-
trient levels negatively affect rhodolith performance (Schubert et al., 2019;
Bélanger and Gagnon, 2020; Koerich et al., 2021), and (ii) they are threat-
ened by large-scale catastrophic events, such as the 2015's Doce River min-
ing dam collapse in Southeast Brazil (Francini-Filho et al., 2019; Magris
et al., 2019; Holz et al., 2020), which dramatically increased metal-
contaminated coastal pollution and suspended sediment loads (Hatje
et al., 2017).

Ocean-based stressors include the spread of invasive species, offshore
mariculture, and ocean-based pollution. The available evidence shows re-
cords of the spread and impact of non-native macroalgae and gastropods
in NE Atlantic beds (Grall and Hall-Spencer, 2003; Peña et al., 2014). For
example, the invasive gastropod Crepidula fornicata, introduced in Brittany,
France, has been shown to overgrow living rhodoliths, leading to smother-
ing and ultimately death (Grall and Hall-Spencer, 2003). Similar negative
impacts have been recorded, caused by the invasive filamentous red algae
Womersleyella setacea and Acrothamnion preisii in the Mediterranean
(Ferrer et al., 1994; Sciberras and Schembri, 2007). Furthermore, negative
impacts of fish and mussel farming on rhodolith beds have been widely re-
ported (e.g., Barbera et al., 2003; Hall-Spencer et al., 2006; Peña and
Bárbara, 2008; Sanz-Lázaro et al., 2011; Aguado-Giménez and Ruiz-
Fernández, 2012; Legrand et al., 2021). Beds below these mariculture in-
stallations are exposed to increased organic enrichment (e.g., fish faeces,
uneaten food) and fine sediment load, leading to increased biofouling and
reduced performance of the rhodoliths and their burial, respectively,
which ultimately leads to death.

Extractive industries, particularly offshore oil and gas exploitation and
the direct mining of rhodoliths, cause significant impacts to rhodolith
beds, through the discharges of drill cuttings, sediment dislodgement and
direct habitat destruction (Nilssen et al., 2015; Reynier et al., 2015). The
harvest of rhodoliths has serious consequences for the long-term health of
the beds, as rhodoliths have very slow growth rates. The extraction leads
not only to the loss of habitat complexity and associated biodiversity, but
causes also physical disturbances that promote massive sediment
elated stressors (e.g., ocean warming and acidification), (2) coastal pollution, (3) ex-
ctivities (e.g., bottom trawling) (Illustration by ©Lúcia Antunes, www.luciaantunes.
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dislodgement, resulting in burial and subsequent death of rhodoliths in ad-
jacent areas (Villas-Boas et al., 2014; Figueiredo et al., 2015; Osterloff et al.,
2016). Undoubtedly, the exploitation of this non-renewable resource repre-
sents an everlasting threat, which is exacerbated by the lack of protection of
these habitats through efficient conservation measures (Berchez et al.,
2022; Paiva et al., 2023). Another threat to rhodolith beds is the pollution
associated with accidental oil spills. Examples are the BP Deepwater Hori-
zon oil spill in the NWGulf of Mexico in April 2010 that drastically affected
rhodolith beds associated with deep bank habitats (Fredericq et al., 2014),
and the so far most extensive oil spill recorded in tropical oceans that oc-
curred on the Brazilian continental shelf (2019/2020) (Escobar, 2019),
threatening marine ecosystems, including coral reefs and rhodolith beds
(Magris and Giarrizzo, 2020; Sissini et al., 2020; Soares et al., 2022).

Well-acknowledged are the significant impacts that certain fishing ac-
tivities can have on rhodolith beds. Mobile bottom-contacting gears, such
as beam-trawls and clam-dredges induce profound and long-lasting effects
due to habitat destruction and the suspension of large sediment clouds
into the water column that smothers rhodoliths (e.g., De Grave and
Whitaker, 1999; Hall-Spencer and Moore, 2000; Barbera et al., 2003;
Hauton et al., 2003; Kamenos et al., 2003; Cabanellas-Reboredo et al.,
2018; Coquereau et al., 2017; Bernard et al., 2019; Farriols et al., 2021).
Also, artisanal fisheries, such as small-scale hookah diving fisheries in the
Gulf of California, can have severe effects on rhodolith beds (Urra et al.,
2018), as do disturbances caused by boat moorings and anchoring
(Tompkins and Steller, 2016; Gabara et al., 2018; Broad et al., 2020;
Dolinar et al., 2020). These disturbances can cause crushing, fragmentation
andmobilization of rhodoliths at a localized scale,which has been shown to
reduce habitat complexity and associated biodiversity (Tompkins and
Steller, 2016; Gabara et al., 2018), and can affect rhodolith physiological
performance (Dolinar et al., 2020).

On top of all these pressures, rhodolith beds are also threatened by on-
going and predicted climate change, including ocean warming and acidifi-
cation (Martin and Hall-Spencer, 2017). Many coralline algal taxa are
indeed especially vulnerable to these changes (Peña et al., 2021b). Model
projections for 2100 suggest up to an 84% decline in suitable area for
rhodolith beds in Scotland (Simon-Nutbrown et al., 2020) and a decline
of 26–44% of their estimated global area (Fragkopoulou et al., 2021). In
this context, experimental evidence shows that rhodoliths, regardless of re-
gion or latitude, are highly susceptible to ocean acidification (OA), which
reduces their calcification and growth rates (e.g., Jokiel et al., 2008;
Büdenbender et al., 2011; Nelson et al., 2012; Noisette et al., 2013;
Legrand et al., 2017; Sordo et al., 2018; Qui-Minet et al., 2019) and
weakens their structural integrity (Burdett et al., 2012; Ragazzola et al.,
2012; Kamenos et al., 2013). It has been shown that this relates to the com-
position of their skeletons, in form of the most soluble carbonate in seawa-
ter (high Mg-calcite), and that the susceptibility to dissolution increases
with Mg-substitution in the calcite (Andersson et al., 2008). Brazilian
rhodolith species appear to have a higher Mg content, potentially making
them even more susceptible to near-future ocean acidification (Carvalho
et al., 2022). Moreover, in situ CO2 enrichment on a rhodolith bed showed
that OAwill potentially cause a shift from rhodolith-bed net carbonate pro-
duction to net dissolution (Burdett et al., 2018). In fact, dead rhodolith
thalli that can represent a significant proportion of the rhodolith-bed sub-
strate (e.g., 50–85%, Harvey and Bird, 2008; Bracchi and Basso, 2012;
Chimienti et al., 2020) have been shown to be particularly vulnerable to
OA (>10× increase in CaCO3 dissolution; Kamenos et al., 2013). This, to-
gether with a decreased calcification and growth rate of the living
rhodolithswill result in a decrease in habitat complexity and, consequently,
in a significant disruption in the provision of associated ecosystem services.

The increase in seawater temperature, gradually (ocean warming), or
during heatwave events, appears to induce highly variable responses in
rhodoliths (reviewed in Martin and Hall-Spencer, 2017). For example, evi-
dence shows that events of anomalously high temperatures (i.e., marine
heatwaves) induce significant negative effects on primary and carbonate
production in subtropical and temperate rhodoliths (Schubert et al., 2019,
2021), while temperate species express a seasonal variation in their
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responses to increased seawater temperature (Legrand et al., 2017; Qui-
Minet et al., 2019). In contrast, subarctic (Lithothamnion glaciale) rhodoliths
are seemingly resilient to changes in sea temperature over a relatively
broad thermal range, with sustained growth even at temperatures above
those normally observed during most of the year in Newfoundland coastal
waters and northwards (Bélanger and Gagnon, 2021). This wide range of
responses conveys our need for a better understanding of the vulnerability
and resilience of rhodolith beds to ocean warming.

5. Current conservation status of rhodolith beds

Rhodolith beds are currently exposed to a wide range of threats, requir-
ing effective conservation. The urgency of this is ever-increasing, given the
continued threat of climate change on low-latitude distributional contrac-
tion and potential poleward expansion (if migration rate is fast enough),
whichmay increase their presence in regions of high bottom trawling activ-
ity (Fragkopoulou et al., 2021). These localized and intense disturbances,
alongside with other chronic threats (see above) jeopardize the long-term
survival of rhodolith beds, their associated flora and fauna and the services
provided.

Unfortunately, while the conservation value of these important and
fragile habitats has been recognized in some regions, global-scale actions
to conserve rhodolith beds are very few, compared to other coastal habitats.
Relatively recent efforts have been made to protect these habitats in
Europe, which are now recognized as a conservation priority at national
and international scales (Hall-Spencer et al., 2008; JNCC, 2016a, 2016b;
Basso et al., 2016; European Commission, 2018; Scottish Government,
2018). They are protected under the EU Habitats Directive and the
OSPAR Commission in the North-East Atlantic (added 2004 to the OSPAR
list as ‘Threatened and/or Declining habitats’; Hall-Spencer et al., 2008;
European Commission, 2018) and listed as ‘vulnerable’ or ‘endangered’ in
the European red list of habitats, issued by the IUCN (Annex A; Gubbay
et al., 2016). Furthermore, at a regional scale, they are included in the Con-
vention for the Protection of the Mediterranean Sea Against Pollution (Bar-
celona Convention), in an Action plan for the ‘Protection of the Coralligenous
and other Calcareous Bio-concretions in the Mediterranean’, within the frame-
work of the UnitedNations Environment ProgrammeMediterraneanAction
Plan (UNEP-MAP; UNEP/MAP, 2017) and are considered ‘Priority Marine
Features’ in Scotland (Scottish Government, 2018). Similarly, in a few
other regions of the world, rhodolith beds have been recognized as habitats
for conservation. In Brazil, they are included in some multiple-use marine
protected areas (e.g., Costa das Algas; Costa Gastão et al., 2020), as
protected features (‘bioclastic and lithoclastic sedimentary formations’¸
https://www.icmbio.gov.br/apacostadasalgas), in Mexico, a few protected
areas in the Gulf of California (Loreto, Espirito Santo Island, San Pedro
Martir Island, and Revillagigedo Islands) have included rhodolith beds as
habitats for conservation (Riosmena-Rodríguez et al., 2010), and in New
Zealand they have been recognized as sensitivemarine habitats by theMin-
istry for the Environment for a decade (MacDiarmid et al., 2013) and are in-
corporated in regional coastal plans.

Despite these efforts, few rhodolith beds are specifically protected. In-
stead, many are indirectly protected from certain impacts, because of re-
strictions informed by other local features. Examples in Europe include:
(i) rhodolith beds are indirectly protected by the Bern Convention (Conven-
tion on the Conservation of European Wildlife and Natural Habitats), since
they provide habitat for certain species listed as ‘strictly protected’ or
‘protected’ in the appendices of the convention (for example, the rare Medi-
terranean kelps Laminaria rodriguezii and L. ochroleuca), (ii) in NW Spain,
28% of the known rhodolith beds are located within protected areas
(Peña and Bárbara, 2009), (iii) they occur within marine protected areas
of the Madeira archipelago (Natural Marine Park of Cabo Girão, Marine
Protected Area of Porto Santo; Desertas and Selvagens Islands Natural Re-
serves, Ribeiro and Neves, 2020; Neves et al., 2021), (iv) the prohibition
of bottom trawling in waters <50 m, operative across EU Mediterranean
member states since 1994 (ECRegulation 1626/1994), provides an indirect
protection, though more recently destructive fishing activities have been
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specifically prohibited over Mediterranean rhodolith beds (EC Regulation
1967/2006). However, the latter represents an ineffective measure due to
the lack of relevant data regarding rhodolith-bed spatial distribution
(Basso et al., 2016). In addition, (v) two maerl-bed forming species,
Lithothamnion corallioides and Phymatolithon calcareum are listed in the
Annex V of European Community Habitats Directive 1992 as species,
whose exploitation requires management, and the maerl community is an
important feature of Natura 2000 sites.

Similarly, in other regions of the world, rhodolith beds are recognized
as key biogenic habitats in need of conservation, but not afforded any spe-
cific protection. As in Europe, they are protected only when they inciden-
tally occur in existing marine reserves, as for example in Australia
(Harvey et al., 2016), New Zealand (e.g., Kapiti Island, Tonga Islands Ma-
rine Reserves, Kermadec-Rangitahua Ocean Sanctuary; Anderson et al.,
2019), and Brazil (Fernando de Noronha; Amado-Filho et al., 2012b).
While in Brazil, which harbors the largest known rhodolith bedsworldwide
(Amado-Filho et al., 2017), a high proportion of rhodolith beds are indi-
rectly protected due to their presence in no take marine protected areas
in some Brazilian ecoregions, in others, their presence overlaps with areas
of oil and gas mining, where exploitation activities represent a threat to
these habitats (Araújo et al., 2021; Paiva et al., 2023; Santos et al., 2023).

6. Conclusions

Overall, we highlight here the serious mismatch between global
rhodolith bed conservation needs and the knowledge required for their ef-
fective management, calling for scientific efforts to fill knowledge gaps and
the development of specific strategies to ensure better conservation and
management outcomes.

Although rhodolith beds have gained some recognition, as important
and sensitive habitats at national/regional levels during the last decade,
there is still a notable lack of specific conservation efforts. We reason that
this situation is directly related to the lack of information about these hab-
itats and their associated significant ecosystem services, as well as the con-
flict with economic (exploratory) activities. Thus, we urge for increased
research initiatives to ‘level-up’ rhodolith-bed science to solve priority ques-
tions, regarding their (1) global distribution, (2) biodiversity, (3) demo-
graphic, ecological and genetic connectivity with other habitats,
(4) contribution to ocean carbon fluxes and stocks, (5) vulnerability and re-
silience to anthropogenic, ocean warming and acidification impacts, and
(6) existing degree of protection and conservation planning to delineate fu-
ture priorities. In addition, initiatives to study and expand the public per-
ception of these habitats should be increased to improve conservation
success (Bennett, 2016; Bennett et al., 2017). Currently, the majority of
the general population, including local stakeholders and others, such as pol-
icy makers, media, and school teachers, are widely unaware of the exis-
tence and importance of rhodolith beds.

Addressing these questions is essential for providing an empirical basis
to inform conservation programs andmanagement priorities for the protec-
tion of rhodolith bed habitats at local, regional and global scales. Impor-
tantly, addressing the imbalance in research effort, when compared to
other coastal habitats, will directly contribute to the priority actions of
global ocean sustainability programmes (including UN's Ocean Decade
2030 Agenda for Sustainable Development) and emphasized in various ini-
tiatives (COP26–27), allowing us to fully realise the ecological and socio-
economic benefits of coastal ecosystems.
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