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Abstract

We analyze the discontinuity preserving problem in TV-L1 optical flow methods. This
type of methods typically creates rounded effects at flow boundaries, which usually do
not coincide with object contours. A simple strategy to overcome this problem consists
in inhibiting the diffusion at high image gradients. In this work, we first introduce a
general framework for TV regularizers in optical flow and relate it with some standard
approaches. Our survey takes into account several methods that use decreasing functions
for mitigating the diffusion at image contours. Consequently, this kind of strategies may
produce instabilities in the estimation of the optical flows. Hence, we study the prob-
lem of instabilities and show that it actually arises from an ill-posed formulation. From
this study, it is possible to come across with different schemes to solve this problem.
One of these consists in separating the pure TV process from the mitigating strategy.
This has been used in another work and we demonstrate here that it has a good perfor-
mance. Furthermore, we propose two alternatives to avoid the instability problems: (i)
we study a fully automatic approach that solves the problem based on the information
of the whole image; (ii) we derive a semi-automatic approach that takes into account the
image gradients in a close neighborhood adapting the parameter in each position. In the
experimental results, we present a detailed study and comparison between the different
alternatives. These methods provide very good results, especially for sequences with a
few dominant gradients. Additionally, a surprising effect of these approaches is that they
can cope with occlusions. This can be easily achieved by using strong regularizations
and high penalizations at image contours.

Keywords: Optical Flow, Total Variation, TV-L1, Variational Method, Diffusion Process.

1 Introduction

The estimation of accurate motion fields is one of the fundamental challenges in computer
vision. Commonly known as optical flow, it consists in estimating the apparent displacement
of the pixels through an image sequence. Although there are many strategies to calculate
the flow, variational methods are among the most accurate techniques.

One of the main problems in variational optical flow methods is the preservation of flow
discontinuities. Typically, the solution in these methods is obtained as the minimization of
a continuous functional. Flow boundaries are normally associated with the contours of the
objects in the scene. However, the converse is not true, since adjacent objects, moving in the
same direction, may belong to the same optical flow region, with no motion discontinuities
between them. Introducing a simple mechanism for inducing the boundaries of the flow field
from the objects is not easy. Moreover, the problem becomes more challenging since it is
difficult to differentiate between object contours and textures, if we rely on the information
of the image gradients.

Many ideas for preserving the optical flow contours come from the field of image denoising
and regularization. For instance, Perona and Malik [21] proposed an anisotropic model for
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regularizing an image by preserving its discontinuities. This method is based on decreasing
functions that inhibit the diffusion at high image gradients. Rudin, Osher and Sethian [23],
on the other hand, proposed to minimize the Total Variation (TV) of an image with an
attachment to the original image. This leads to a diffusion equation that reduces the image
noise, yielding sharp edges. Some improvements on the Perona and Malik model are given
in Black et al. [10]. This establishes the relation between this kind of anisotropic diffusion
processes, robust statistics and the minimization of energy functionals. It generalizes the
use of robust functionals in order to deal with outliers. A review on different strategies
for diffusion filtering in image regularization and restoration can be seen in [36, 37]. The
author introduces the theory underlying the use of diffusion tensors in image filtering, e.g.,
the structure tensor [7]. Another source of inspiration for discontinuity preserving in optical
flow is related with the bilateral filtering, introduced by Tomasi and Manduchi [32]. In this
case, the idea is to regularize an image using the information of the pixels that are near the
actual position and have similar intensities or colors.

Since the seminal work of Horn and Schunck [16], many works have appeared dealing
with the problem of discontinuities. One of the former approaches is due to Nagel and
Enkelman [20]. In this case, the regularization process is steered by a diffusion tensor that
depends on the image gradient: in homogeneous regions, it smoothes isotropically, like in
[16]; at object boundaries, where the gradient of the image is high, the regularization is
mainly carried out along the image contours. Proesmans et al. [22] introduced the Perona
and Malik [21] anisotropic scheme in the estimation of optical flow. They also introduced a
symmetric coherence model that helps to detect the discontinuities of the flow. In a similar
way, Black and Anandan [8, 9] used this type of anisotropic regularization. They established
the relation between robust statistics and anisotropic diffusion. They also extended the use
of robust functionals to the whole energy terms, turning the method more robust against
outliers. They showed that this strategy deals with image noise at the same time that it
preserves flow edges. On another hand, a TV scheme, like in [23], was introduced in optical
flow by Cohen [15].

The method by Álvarez et al. [2] introduces a decreasing function to inhibit the smoothing
at image contours. Nevertheless, they did not use any robustification function in the data
term, so it is more sensitive to image noise. Aubert et al. [4] explicitly propose to use an L1

functional in the data term and any robustification function for smoothing. Alvarez et al. [3]
uses the Nagel-Enkelmann diffusion tensor, together with a nonlinear brightness formulation
and a linear scale-space for the estimation of large displacements.

The generalization in the use of continuous L1 functionals was proposed in [11, 14] and
subsequent works. In fact, this has already been proposed before, e.g., in [4], but the former
introduced a term based on the attachment of the image gradients, which is invariant to
constant brightness changes. On the other hand, non-continuous L1 functionals have also
been used in Zach et al. [45] that relies on a dual formulation, which yields a very efficient
numerical scheme. The work in [35] increases the robustness to illumination changes using
the textural part of the images, somehow similar to the gradient term of Brox et al. [11].
Although the former two approaches are similar, they provide much different results, as can
be seen in the online works [31] and [30], respectively.

Some examples in the use of diffusion tensors with robustification functions are given
in [47, 46]. In this case, the authors introduce a motion tensor in the data term and a
regularization tensor in the smoothness term, which are designed in a similar way, taking
into account not only the variation of image intensities but also the variation of the image
gradients. The latter tensor uses a quadratic penaliser for the diffusion along the contours,
while a Perona-Malik diffusivity is used for mitigating the diffusion across flow edges.

TV-L1 methods have several drawbacks: (i) they create rounded shapes near the borders
or corners of the objects; (ii) typically, the edges are dislocated and usually do not coincide
with the image contours; (iii) they produce staircase effects, yielding piecewise but planar
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motion regions. The first two inconveniences are due to the fact that the regularization
process does not depend on the image information but on the flow field. In order to avoid
these, some methods have introduced decreasing functions in order to stop the diffusion at
image boundaries. This idea originally comes from [2] and has recently been used in several
methods, such as in [34, 43]. It has also been used in Werlberger et al. [40], where a diffusion
tensor steers the regularization in the direction of the image gradient and its orthogonal
direction. It incorporates a decreasing function in the direction of the gradient, so it inhibits
the smoothing across edges.

The most important problem of these inhomogeneous diffusion schemes is that they
easily produce instabilities in the computed flow fields. Depending on the value of the
parameters, the method may become ill-posed if the smoothing term is canceled. Most of the
aforementioned strategies assign an empirical value to these parameters. Unfortunately, the
parameters that better preserve discontinuities are those that risk to produce instabilities.
One way to avoid the ill-posed problem is to introduce a small constant that assures a
minimum isotropic behavior, like in Monzón et al. [19] or Ayvaci et al. [5]. However, the
value of this constant depends on the regularization factor, so that if this is large, then
discontinuities will not be respected. In this work we show that this strategy outperforms
the basic approach, but it is possible to find better solutions.

The idea of bilateral filtering has been introduced in optical flow by and Yoon and
Kweon [44] and Xiao et al. [42]. In this case, the authors propose to regularize the flow field
depending on the proximity and similarity of the intensities and flow values. In fact, this has
to be seen as an extended trilinear filtering. They also used the information of occlusions
to manipulate the range of the filters. Bilateral filtering has been used more recently, in
combination with a TV-L1 approach, in [39].

There exist other strategies for improving the definition of discontinuities. For instance,
some authors propose to compute the optical flow at the same time that the objects in the
scene are segmented. In this way, the segmentation provides more information about the
edges. Some examples in this line are [17, 28, 29, 33]. In [27], the authors combine median
filtering and bilateral filtering, in a post-processing step, to improve the flow field at edges.
Other approaches mix TV-L1 strategies with descriptor matching, such as [12, 43], which
estimate the motion of some sparse features that are later introduced in the optimization
process. This allows to deal with small moving objects. Moreover, since some features are
typically associated with edges, this may help to define discontinuities. The methods based
on segmentation, post-filtering or feature based matching, are difficult to analyze, especially
concerning the problem of discontinuity preserving. These usually mix different aspects that
affect the definition of flow boundaries, from standard robust regularization approaches to
other ad-hoc processes.

The aim of this work is to analyze the behavior of TV-L1 optical flow methods. In
particular, we study the effect of these methods at discontinuities. We compare three schemes
based on Brox et al. [11]. These schemes rely on regularization strategies that use decreasing
functions to inhibit the smoothing at high image gradients. This is a simple solution that
solves the main drawbacks of TV-L1 methods, i.e., the problems of rounded and dislocated
contours. At the same time, it preserves the advantages, such as creating piecewise and
continuous motion regions, dealing with outliers and textured areas. Furthermore, this
strategy allows to increase the smoothing strength, so we can obtain more continuous flows
inside the regions. This work is a continuation of our previous conference articles Monzón
et al. [18, 19] and Sánchez et al [25], where we achieved very promising results.

The preservation of discontinuities, using the above scheme, depends on three main
factors: (i) the regularization parameter, that balances the weight of smoothing with respect
to the attachment to the image data; (ii) the gradient of the flow; and, (iii) the gradient of
the image. The bigger the regularization parameter, the smoother the solution we obtain.
On the contrary, with strong gradients of the image or the flow, the diffusion is mitigated.

3



Instabilities usually appear when the regularization is too small or when the gradient of the
image is high.

The decreasing function depends on the gradient of the image and an additional param-
eter that determines its decay rate. This parameter should be chosen carefully in order to
avoid instabilities. Many state-of-the-art methods make use of a default value, which is typ-
ically very conservative in practice. In this work we analyze the influence of this parameter
and show that, only in simple situations, a default value is worthwhile. We propose two
mechanisms for automatically determining its value, which in general provide better results.
These approaches eliminate the effect of instabilities, efficiently solving the ill-posed problem.

On the one hand, we study a global approach, which computes an optimal value that
avoids stopping the diffusion as seen in [25]. It yields a unique value for the whole image. In
the experiments we will see that this approach attains the best solutions for simple sequences,
but its results are poorer when there is a broad variety of gradients. On the other hand, we
propose a semi-automatic approach that is better adapted to local variations of the gradient.
In this case, the method adapts the input value in order to avoid instabilities: whenever it
finds a possible problematic situation, it adapts the parameter to allow a minimum diffusion.
In this way, we can choose a more restrictive value for the parameter.

In this work, we also show that this type of methods can easily deal with occlusions.
This can be achieved by increasing the value of the regularization parameter, so that the
smoothing outweighs the attachment to the intensity values. However, such situations tend
to create planar motions.

In Sect. 2, we introduce a general framework for this kind of strategies. Then, we an-
alyze the problem of instabilities in Sect. 3. After this analysis, we deduce the global and
local alternatives in Sect. 4. The experimental results, in Sect. 5, deepens in the study of
the different methods and the new proposals. Finally, a summary of the main ideas and
conclusions in Sect. 6.

2 Theoretical Framework

Given two images in a sequence, I1, I2 : Ω ⊂ R2 → R, of gray level values, the optical flow,
w = (u(x), v(x))T , puts in correspondence the pixels of the first image with the pixels of
the second, with x = (x, y)T ∈ Ω. Functions u(x) and v(x) are the horizontal and vertical
displacements, respectively.

Variational optical flow techniques rely on a global energy functional. The minimiza-
tion of this functional provides a solution to the optical flow problem between two frames.
Standard approaches typically include an attachment and a regularization term, as follows:

E(w) =
∫
Ω

D (I1, I2,∇I1,∇I2,w)dx + α

∫
Ω

R (∇I1,∇u,∇v)dx. (1)

Many different alternatives have been proposed in the literature for each of these terms.
In our case, we use L1 norms in a similar way as in the Brox et al. model [11, 13]. Then,
our attachment term reads as

D (I1, I2,∇I1,∇I2,w) :=Ψ
(
(I2(x + w)− I1(x))2

)
+ γΨ

(
|∇I2(x + w)−∇I1(x)|2

)
, (2)

with Ψ(s2) =
√

s2 + ε2 and ε := 0.001 a small constant. Henceforth, we will use this scheme
for the attachment term. This will remain unaltered in the experimental results and we will
enable or disable the second term in (2) for convenience.
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Table 1: Examples of rotational invariant regularization schemes, R (∇I1,∇u,∇v) :=
Φ

(
∇uTD (∇I1)∇u +∇vTD (∇I1)∇v

)
Method Φ(s) D (∇I1)

Horn-Schunck [16] s I

Brox et al. [11]
√

s + ε2 I

Alvarez et al. [2] s g(∇I1)I

Xu et al. [43]
√

s g(∇I1)I

Monzón et al. [19]
√

s + ε2 (g(∇I1) + β) I

Nagel-Enkelmann [20] s
∇I⊥1 ∇I⊥T

1 +β2I

|∇I1|2+2β2

Sánchez et al. [24]
√

s + ε2
∇I⊥1 ∇I⊥T

1 +β2I

|∇I1|2+2β2

Álvarez et al. [1] s
(C1g(∇I1)+C2)∇I⊥1 ∇I⊥T

1 +β2g(∇I1)I

|∇I1|2+2β2

The regularization term is responsible for the continuity of the computed optical flow. It
can be generalized using a tensor matrix as

R (∇I1,∇u,∇v) := Φ
(
∇uTD (∇I1)∇u +∇vTD (∇I1)∇v

)
(3)

or
R (∇I1,∇u,∇v) := Φ

(
∇uTD (∇I1)∇u

)
+ Φ

(
∇vTD (∇I1)∇v

)
, (4)

with Φ(·) a convex function and D a 2× 2 matrix that allows to steer the diffusion process
depending on the structure of the image. The first alternative yields a rotational invariant
regularizer, while the second produces a system of decoupled diffusion equations, as shown
in Weickert and Schnörr [38]. In that work, the authors established a taxonomy of isotropic
and anisotropic regularization schemes, steered by the image or flow information. For the
sake of simplicity, we concentrate on the rotational invariant formulation, given in (3).

2.1 Regularization Strategies

The behavior of the smoothing strategy depends on the choices for Φ and D. The previ-
ous generalization may be adapted to many state-of-the-art variational methods. Table 1
summarizes several rotational invariant methods that fit in the model given in (3).

In this table, I stands for the identity matrix. The second choice corresponds to the
Brox et al. spatial model [11, 13], which has been thoroughly analyzed in [31] – we use the
implementation of this work, available online.

In Table 2, there is a survey of non-rotational methods that can be framed in (4). Other
methods, such as the stochastic models proposed in [8, 17, 26], or bilateral filter approaches,
such as [39], cannot be related with these formulations. Neither the rotational invariant
methods, explained in [47, 46], can be framed in this generic framework, because they need
to compute the eigenvectors from a more sophisticated regularization tensor.

g(·) in these tables represents a decreasing function that inhibits regularization at object
contours. Some typical alternatives [21] are

g (∇I1) = e−λ|∇I1|κ , g (∇I1) =
1

1 + λ |∇I1|2
. (5)

5



Table 2: Examples of non-rotational invariant regularization schemes, R (∇I1,∇u,∇v) :=
Φ

(
∇uTD (∇I1)∇u

)
+ Φ

(
∇vTD (∇I1)∇v

)
Method Φ(s) D (∇I1)

Cohen [15]
√

s I

Wedel et al. [34]
√

s g(∇I1)I

Ayvaci et al. [5]
√

s (g(I1,x) + β, g(I1,y) + β) I

Werlberger et al. [41]
√

s g(∇I1)
∇I1∇IT

1

|∇I1|2
+ ∇I⊥1 ∇I⊥T

1

|∇I1|2

We will be using the exponential in our experiments. In [18], the authors analyze its
behavior with respect to λ and κ. After their experimental results, we may conclude that
κ := 1 is a good compromise between stability and accuracy, so we fix this parameter in the
tests.

We observe that many of the methods in Tables 1 and 2 depend on decreasing functions
to enhance discontinuities. One of the drawbacks of these functions is that, depending on
the λ and the gradient of the image, it may cancel the smoothing term, turning the method
ill-posed. Some methods avoid this problem by introducing a constant, β, that assures a
minimum isotropic diffusion. This strategy has been used, for instance, in Monzón et al. [19]
or [5]. One of the benefits of decreasing functions is that we can increase the smoothing
strength, in order to obtain more continuous flows, at the same time that it respects the
contours of the objects. In fact, there exists a relation between the smoothing parameter
and the decreasing function, that will be analyzed below.

The Nagel-Enkelmann operator has been traditionally used in quadratic energy models,
such as in [3, 20]. This operator allows anisotropic diffusion at the borders of the objects
and isotropic regularization in homogeneous regions. In [24], the authors implement the
operator inside a TV-L1 functional. Unfortunately, this scheme seems to be unstable and
the parameters have to be carefully selected. We can see in the tables that this operator
has been used both in rotational and non-rotational methods. It has also been adapted in
several works with decreasing functions to mitigate the diffusion across the boundaries of
the objects.

2.2 Minimizing the Energy Functional

The minimum of the energy functional (1) can be found by solving the associated Euler-
Lagrange equations. The data term is given in (2) and the smoothing term in (3). Then,
the Euler-Lagrange equations are given by

0 =Ψ′
D · (I2(x + w)− I1(x)) · I2,x(x + w)

+ γ Ψ′
G · ((I2,x(x + w)− I1,x(x)) · I2,xx(x + w)

+ (I2,y(x + w)− I1,y(x)) · I2,xy(x + w))
− α div

(
Φ′ ·D (∇I1)∇u

)
,

0 =Ψ′
D · (I2(x + w)− I1(x)) · I2,y(x + w)

+ γ Ψ′
G · ((I2,x(x + w)− I1,x(x)) · I2,xy(x + w)

+ (I2,y(x + w)− I1,y(x)) · I2,yy(x + w))
− α div(Φ′ ·D (∇I1)∇v), (6)
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with Ψ′(s2) = Φ′(s2) = 1
2
√

s2+ε2
. In order to simplify these equations, we have used the

following notation:

Ψ′
D :=Ψ′

(
(I2(x + w)− I1(x))2

)
,

Ψ′
G :=Ψ′

(
|∇I2(x + w)−∇I1(x)|2

)
,

Φ′ :=Φ′
(
∇uTD (∇I1)∇u +∇vTD (∇I1)∇v

)
. (7)

In order to solve this system, we discretize the equations using centered finite differences.
Then, the system of equations is solved by means of an iterative approximation, such as
the SOR method. Due to the nonlinear nature of these formulas, the resolution of these
equations requires two fixed point iterations, in order to converge to a steady state. The
warpings of I2 are approximated using Taylor expansions.

These equations are embedded in a multiscale strategy that allows to recover large dis-
placements. Starting from the coarsest scales, we obtain a solution to the above system, and
then upgrade the value of the optical flow for the next finer scale. We use motion increments,
hk+1 = hk + dhk, so that, in each scale, we compute each increment, dhk, and the final
optical flow is obtained as an accumulative value for all increments.

Details on the discretization of this scheme are given in [11, 13] or, more extensively,
in [31]. The main difference, with respect to the basic model, is the implementation of the
matrix-value diffusion process.

3 Ill-posedness of the Anisotropic Model

Hereafter, we assume that D (∇I1) := g(∇I1)Id = e−λ|∇I1|Id. Expanding the smoothing
term in (6), we obtain the following relations

Su(w) =α div(Φ′ ·D (∇I1)∇u) = α div(Φ′ · e−λ|∇I1|∇u),

Sv(w) =α div(Φ′ ·D (∇I1)∇v) = α div(Φ′ · e−λ|∇I1|∇v). (8)

The diffusivity, including α, is given by

D(α, λ,∇I1,∇w) = α · Φ′ · e−λ|∇I1| =
αe−λ|∇I1|√

e−λ|∇I1|(|∇u|2 + |∇v|2) + ε2
. (9)

The ill-posed problem appears when this diffusivity becomes zero. This is equivalent to
cancel the regularization term in the energy functional (1). Therefore, this problem depends
on the values of α, λ and ∇I1. For example, this term nullifies if λ or ∇I1 are very large, or
when α is too small.

In order to avoid these problems, we may impose a lower bound on the diffusivity, so
that, in the worse case, D(x) := ξ, with ξ a small constant, e.g., ξ := 1× 10−4,

αe−λ|∇I1|√
e−λ|∇I1|(|∇u|2 + |∇v|2) + ε2

= ξ. (10)

Solving the previous equation, we obtain

λ1,2 = − ln

ξ

(
|∇u|2 + |∇v|2

)
ξ ±

√(
|∇u|2 + |∇v|2

)2
ξ2 + 4α2ε2

2α2 |∇I1|

 . (11)
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This equation yields two solutions, one real and another imaginary, which can be dis-
carded. If we analyze further, we find that the denominator of (10) is bounded in the limits

0 <

√
e−λ|∇I1|(|∇u|2 + |∇v|2) + ε2 ≤

√
|∇u|2 + |∇v|2 + ε2 ≈ |∇w| , (12)

with the upper bound approximately equal to the flow magnitude. In this sense, the denom-
inator does not pose any problem because it will never be very large: in practical situations,
the magnitude of the flow will be much smaller than the image size.

The main problem arrives when αe−λ|∇I1| ∼= 0. One solution, to avoid this situation, is
to impose the following constraint

αe−λ|∇I1| = ξ. (13)

This equation only depends on the input data ∇I1 and α. Thus, we may adapt λ at the
beginning of the process, to assure this condition. If we solve the above equation, then we
obtain

λ =
− ln(ξ) + ln(α)

|∇I1|
. (14)

ξ must be chosen so that the diffusivity is big enough to avoid the ill-posedness. This
represents the smallest value that starts the regularization. In the experimental results, we
analyze the behavior of this constant and heuristically find the most appropriate value.

Notice that both conditions, (11) and (14), successfully remove the ill-posed problem,
but the second is much easier to implement.

4 Determining the value of λ

Above we deduced the value of λ that avoids stopping the diffusion process. For this, we
introduced the ξ constant, which must be big enough so that there always exists a smoothing
process. If ξ is large, λ may turn negative, and the regularization becomes isotropic, similar
to Brox et al. [11].

In this section, we derive two schemes to automatically avoid the ill-posed problem. The
idea is to adapt the value of λ when we detect a possible instability. Taking into account
(11) and (14), this problem can be easily detected by checking αe−λ|∇I1|√

e−λ|∇I|(|∇u|2 + |∇v|2) + ε2
< ξ

 or
(
αe−λ|∇I1| < ξ

)
, (15)

if we choose (11) or (14), respectively.
We may think of two possible alternatives: on the one hand, we may impose this condition

in the whole image, so that we determine the value of λ that better fits to the more restrictive
situation, i.e., that corresponding to the maximum gradient; on the other hand, we may
assure this condition in every pixel, looking at the gradient in each position.

Based on this reasoning, and selecting the second condition in (15) for simplicity, we
propose two schemes for determining the value of λ:

Global approach. The first is based on a global approach seen in [25]. We calculate λ as
a constant using the maximum gradient of the image as

λg :=
− ln(ξ) + ln(α)
max
x∈Ω

{|∇I1(x)|}
. (16)

This will provide a unique value, which is obtained from the more restrictive situation.
The advantage of this approach is that it is fully automatic. However, one limitation of this
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strategy is that it will not respect the contours when the gradient is far from the maximum
gradient. In this sense, this approach may be very conservative.

Local approach. The second alternative is based on a local strategy. In this case, λ is
calculated as

λl(x) :=


− ln(ξ)+ln(α)
|∇I1(x)| if max

xi∈N (x)

{
αe−λ0|∇I1(xi)|

}
< ξ

λ0 Otherwise
, (17)

where λ0 is a constant that is used as a reference value and N (x) is a close neighborhood
around x. If the second condition in (15) is satisfied, then we correct the value of λ as in
(14). λ0 can be calculated from the input images or introduced as a parameter. If this is
conveniently selected, this approach allows to respect a broad variety of image contours, at
the same time that it eliminates the possible instabilities.

5 Experimental Results

In this section, we analyze the methods depicted in Table 3, which includes the Brox et
al. [11] method, a continuous version of the Xu et al. [43] smoothing strategy (Exponential)
and the Monzón et al. [19] approach (Exponential β). We also take into account the two
alternatives proposed in Sect. 4, that we will refer as Exponential λ-Global and Exponential
λ-Local, respectively.

The first part of these experiments will study each method separately. Then, we will
carry out a thorough comparison between the different approaches. Finally, we will present
some numerical results for studying the accuracy of the methods, using the best parameter
setting and default parameters.

We use synthetic sequences from two main datasets: a set of images with geometric
figures, like circles, squares, stars or rectangles, presenting pronounced discontinuities and
large displacements; and four sequences from the Middlebury benchmark database [6]. These
sequences are RubberWhale, Grove2, Hydrangea and Yosemite.

The aim of the experiments is to analyze the influence of the regularization in the preser-
vation of discontinuities. Therefore, our study will basically concentrate on the α and λ
parameters. In the majority of the experiments, γ has been set to zero. The remaining
parameters have been fixed as follows: η := 0.75, ε := 0.001 and inner iterations := 1;
outer iterations := 38 for the Yosemite and Middlebury sequences, and outer iterations :=
15 for the geometric ones. Nscales is automatically calculated so that the image size, at the
coarsest scale, is around 16× 16 pixels. These parameters are set according to [31].

The optical flows are represented using the color scheme shown in Fig. 1. The color
represents the orientation and the intensity the magnitude, similar to the vector field on the
left.

Table 3: Survey methods

Method R (∇I1,∇u,∇v)

Brox et al. [11]
√
|∇u|2 + |∇v|2 + ε2

Exponential [43]
√

e−λ|∇I1|(|∇u|2 + |∇v|2) + ε2

Exponential β [19]
√

(e−λ|∇I1| + β)(|∇u|2 + |∇v|2) + ε2

Exponential λ-Global [25] (16)
√

e−λg |∇I1|(|∇u|2 + |∇v|2) + ε2

Exponential λ-Local (17)
√

e−λl|∇I1|(|∇u|2 + |∇v|2) + ε2
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Figure 1: Color scheme for motion representation

5.1 Analysis of the Exponential Method

Figures 2 and 3 show the optical flows obtained for the geometric and Middlebury sequences,
with α constant and different λ values. We observe that a small value underestimates the
magnitude of the optical flows. This is typical because the regularization parameter is high.

When the value of λ is properly chosen, then the resulting optical flow is very accurate.
Discontinuities are correctly preserved, except at the corner of the geometric figures. This is
probably due to the gradient and the numerical scheme used. On the other hand, we observe
that occlusions are also correctly handled. The use of a large α, and the strict stopping effect
of λ, allows to fill the occluded regions with the value from the background. This is achieved
because, on the one hand, it overweights the regularization with respect to the attachment
term and, on the other hand, it does not mix the information with the flow inside the figures.

Finally, we appreciate how outliers appear when λ is large. These are typically located
at flow discontinuities and, in the case of the star, also inside the figure, probably as the
result of smoothing with the outliers at contours. A similar behavior can be observed in the
Middlebury sequences.

The graphics depicted in Fig. 4 show the evolution of the AAE with respect to λ. The
values shown in the horizontal axis correspond to the λ values used in Figs. 2 and 3.

We observe that AAE errors decrease in all the graphics. For λ := 0 the result is
equivalent to the Brox et al. method. Thus, the exponential function clearly improves the
basic model. This is more important in the geometric figures, where there is an important
jump in accuracy after a suitable value. Then, the errors increase for bigger λ values and
the solutions become unstable. The best results are normally obtained for large values of α,
which also delay the instability problems. In the case of Grove2, the best result is obtained
for a small α.

Looking at these graphics, the λ optimum is located approximately in the range [0.15, 0.25]
for the square sequence. Values below 0.15 has a large AAE and outliers appear when λ
is above 0.25. In the star sequence, the same happens in the range [0.08, 0.2]. The best
results are located in the range [0.12, 0.4] and [0.02, 0.4] for the Grove2 and Yosemite se-
quences, respectively. Outliers appear when λ is above 0.4, although the results continue to
be coherent.

After these experiments, we may conclude that a default value for λ may be chosen
around 0.17. We note that the input images have been normalized between 0 and 255, so
this default value correctly fits to this range of values.

5.2 Analysis of the Exponential β Method

Figures 5 and 6 show several examples of the Exponencial β method. We have used large
values for α and λ, and set γ to zero. In Fig 5, we use the geometric sequences of the star,
the double rectangle and the square. In the first one, we observe that, increasing the value
of β, the rounded effects of Brox et al. appears at the star edges. In the double rectangle,
the improvement achieved with a small value of β is very flattering, eliminating the outliers
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α = 500, λ = 0.075 α = 500, λ = 0.085

α = 500, λ = 0.16 α = 500, λ = 0.20

α = 500, λ = 1 α = 500, λ = 0.54

Figure 2: Exponential method. From top to bottom, the first frame of each sequence, the
ground truth and the optical flows obtained.
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α = 50, λ = 0.12 α = 500, λ = 0.02

α = 50, λ = 0.34 α = 500, λ = 0.18

α = 50, λ = 0.66 α = 500, λ = 0.8

Figure 3: Exponential method. From top to bottom, the first frame of each sequence, the
ground truth and the optical flows obtained.
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Figure 4: λ evolution using the Exponential method

of the exponential method. However, when β := 0.001, the resulting flow is very smoothed,
disappearing the clear separation between both rectangles. This situation is more aggressive
in the square sequence due to the use of a larger α.

In Fig. 6 we show the results for Hydrangea, Grove2 and RubberWhale. These sequences
have an important number of strong gradient variations between the leafs of Hydrangea and
Grove2 and some objects in RubberWhale.

In this figure, we can observe that the result of the Exponential method is promising,
since the preservation of discontinuities is accurate. Nevertheless, the number of outliers
is important. These are removed with the Exponential β method using a small β. By
contrast, if this parameter is bigger, the motion field is very smoothed. In RubberWhale,
discontinuities are correctly detected, but some regions are flattened, like the motion at the
wheel.

The graphics depicted in Fig. 7 show the evolution of the AAE with respect to β. The
blue line represents a configuration that uses little regularization and where the exponential
function intercede slightly in the result. The green line shows the behavior of the method
using medium values for α and λ. Finally, the red line highlight the result using extreme
values for these two parameters, incrementing the regularization and the importance of the
decreasing function. The first column depicts the graphics of the geometric sequences while,
the second, shows the evolution of the AAE in Middlebury.

We observe that, in general, when we use the Exponential solution (β := 0), a large pa-
rameter configuration offers high errors. In the Middlebury sequences, the large configuration
shows that the error decreases considerably with low values of β and, according its influence
grows, the error increases. The double rectangle has a similar effect, but the estimation
worsens faster and more aggressively. The solutions of the star, on the other hand, remain
stable until β reaches 0.004, decreasing the error. Afterwards, it begins to grow strongly.

The intermediate configuration shows a behavior similar to the above. The square se-
quence is initially very stable, but for β > 0.0001 the error increases considerably. Finally,
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Figure 5: Exponential β method. Example with the star, double rectangle and square
sequences. The first row shows the original image, the ground truth and the optical flow
obtained with the basic Exponential method. The second row shows the results for β :=
{0.00001, 0.0001, 0.001}, respectively.
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Figure 6: Exponential β method. Example with the Hydrangea, Grove2 and RubberWhale
sequences. The first row shows the original image, the ground truth and the optical flow
obtained with the basic Exponential method. The second row shows the results for β :=
{0.00001, 0.0001, 0.001}, respectively.
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we see that the blue line is very stable in general. This means that, for regular values of α an
λ, this method does not provide an improvement with respect to the Exponential method.
On the other hand, it does not worsen the results, except for the double rectangle sequence.
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Figure 7: Exponential β method. AAE evolution with respect to β. First column shows
the graphics for the geometric sequences and, the second, the graphics for the Middlebury
sequences.

5.3 Analysis of the Exponential λ-Global and λ-Local Methods

In this section, we analyze the behavior of the variants of the Exponential method, as seen
in Sect. 4: the Exponential λ-Global method, given in (16); and the Exponential λ-Local
method, given in (17).

It is desirable that λ could be computed automatically. This is the idea behind the local
and global approaches. The main difference between them is that, in the global variant, λ is
calculated using the maximum gradient of the whole image, whereas, in the local one, the
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parameter is adapted according to the neighborhood around each pixel.
λ-Global correctly preserves the flow discontinuities when the corresponding image gra-

dients are similar in the whole image. However, when the gradients in the discontinuities
are much smaller than the maximum gradient, this method works poorly. In this case, the
discontinuities tend to be smoothed due to the difference with respect to the maximum gra-
dient. The λ-Local approach tries to avoid this problem, adopting the same idea but locally.
The diffusion process is controlled in a different way depending on the local gradient.

5.3.1 λ-Global strategy

In this section, we analyze the influence of the ξ parameter in the global strategy. This
parameter helps avoid the instability problems that may appear in the Exponential method.
In the following tests, we use large values for α and λ, in order to study the influence of
ξ when outliers appear in the solutions. Figures 8 and 9 show the results obtained for the
geometric and Hydrangea sequences, respectively.

In Fig. 8, we see that the λ-Global strategy provides more accurate solutions than the
Exponential method. Small values of ξ still yields instabilities in the optical flow, however,
when ξ is increased, the outliers progressively disappear. For larger values, the solutions
become smoother and, finally, the flow discontinuities are not preserved.

First frame Ground truth Exponential

ξ = 1e− 25 ξ = 1e− 12 ξ = 1e− 6

ξ = 1e− 4 ξ = 1e− 2 ξ = 1e− 1

Figure 8: λ-Global strategy. ξ evolution with λ = 1. From left to right, top to bottom: the
first frame of the sequence, the ground truth, the solution given by the Exponential method;
the estimations obtained using the global strategy for different values of ξ.

Figure 9 depicts the same evolution with respect to the Hydrangea sequence. The behav-
ior is similar to the previous sequence and the instabilities disappear when we increase the
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value of ξ. However, we observe a stronger regularization of the motion field. This is due to
the big difference between the maximum gradient and the gradients of other discontinuities,
that yields the quantization of the optical flow in a few planar regions.

First frame Ground truth Exponential

ξ = 1e− 25 ξ = 1e− 20 ξ = 1e− 16

ξ = 1e− 12 ξ = 1e− 8 ξ = 1e− 6

Figure 9: λ-Global strategy. ξ evolution with λ = 1. From left to right, top to bottom: the
first frame of the sequence, the ground truth, the solution given by the Exponential method;
the estimations obtained using the global strategy for different values of ξ.

5.3.2 λ-Local strategy

In the λ-Local strategy, a different λ is applied to each image pixel using the local maximum
gradient. In Figs. 10 and 11, we show the results obtained with the Exponential method
and the local approach, for several values of ξ, using the double rectangle and Hydrangea
sequences, respectively.

In the geometric sequences, the maximum gradient is located in the main object contours.
For this reason, the behavior of the λ-Local and λ-Global strategies seems to be similar
(compare Figs. 8 and 10). Nevertheless, there are two important differences: on the one
hand, we observe that the outliers are not completely removed until a bigger ξ; on the other
hand, discontinuities of the optical flows are better preserved for larger values.

In the Hydrangea sequence, the differences between the two strategies are more evident.
The λ-Local strategy better preserves the flow discontinuities, as shown in Fig. 11. This
approach seems to be more robust with respect to a big variety of image gradients. The use
of local gradients, instead of the maximum, allows to control more precisely the amount of
diffusivity in each region of the image.
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First frame Ground truth Exponential

ξ = 1e− 25 ξ = 1e− 12 ξ = 1e− 6

ξ = 1e− 4 ξ = 1e− 2 ξ = 1e− 1

Figure 10: λ-Local strategy. ξ evolution with λ = 1. From left to right, top to bottom: the
first frame of the sequence, the ground truth, the solution given by the Exponential method;
the estimations obtained using the local strategy for different values of ξ.

5.4 Comparison of the Methods

Once analyzed the different approaches, we now compare them and highlight their main
features. Figures 12, 13, 14, 15, 16 and 17 show the solutions obtained with the different
methods, using several geometric and Middlebury sequences.

We show three results for each method in these figures: first, a typical solution obtained
with a regular configuration of the α and λ parameters; then, a good solution looking for
better parameters; and, finally, a limiting situation where we observe the appearance of
outliers or very regularized solutions (large values of α and λ). In these experiments, the
gradient term has been cancelled (γ = 0).

In general, the Brox et al. method can not completely stop the diffusion at discontinuities.
In fact, it has many difficulties to deal with simple geometric shapes (see Figs. 12, 13 and
14). Some typical problems are that contours of the motion regions are normally dislocated,
the magnitude of the optical flow inside the figures is underestimated or occlusions have a
strong impact on the final solution. These problems are much more significant with concave
shapes (see the star sequence). These also happen in the Middlebury sequences. However,
the differences with respect to the exponential methods are not so noticeable. In the Rubber-
Whale sequence (Fig. 17), we observe smooth transitions at the contours of regions moving
in opposite directions.

In the results of the Exponential method, discontinuities are, in general, correctly pre-
served. The shapes of the geometric sequences are clearly segmented from the background
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First frame Ground truth Exponential

ξ = 1e− 25 ξ = 1e− 12 ξ = 1e− 6

ξ = 1e− 4 ξ = 1e− 2 ξ = 1e− 1

Figure 11: λ-Local strategy. ξ evolution with λ = 1. From left to right, top to bottom: the
first frame of the sequence, the ground truth, the solution given by the Exponential method;
the estimations obtained using the local strategy for different values of ξ.

motion. We observe that the effect of occlusions has a limited impact in the final solutions.
Moreover, a large regularization parameter allows to fill the information inside these regions
with the correct values. It also provides very good results for both convex and concave
shapes. The transitions between regions almost disappear for large values of λ. However, we
appreciate instabilities at the contour of the geometric images and in many small places of
the Middlebury dataset. In this method, it is difficult to find an optimal value for λ.

The Exponential β approach effectively eliminates the instabilities of the Exponential
method. In the images, we see that typical solutions are very similar to the Exponential
method, but when we increase the value of α, the method behaves like the Brox et al.
approach. Although it is very stable, it cannot cope with occlusions due to the small isotropic
regularization.

The λ-Global and λ-Local strategies obtain similar results to the Exponential method.
The main benefit is that they do not introduce any instability: in the experiments we see how
the outliers that appear in the Exponential solution have been removed. We do not appreciate
significant differences between these two strategies in the geometric sequences. This makes
sense because the maximum image gradient is associated with the object discontinuities.
However, in the Middlebury sequences the λ-Local strategy offers better results. In fact, the
solutions seem to be the same as the Exponential method but without outliers.

5.4.1 λ Evolution

Next, we analyze the accuracy of the exponential methods with respect to λ, for small,
medium and large α values. Figures 18 and 19 show the results for the geometric and
Middlebury sequences, respectively.
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In Fig. 18, we observe that the different variants significantly improve the outcome of the
Brox et al. method. The first column shows that, in the case of the circle and square, the
methods are very stable. This stability differs greatly in the star and the double rectangle
sequences, where the AAE evolution is more unstable after reaching the minimum error,
specially in the Exponential method. In the second and third columns, we observe that
the accuracy is surprisingly very high in all the sequences. Nevertheless, as the value of λ
increases, the AAE augments noticeably, although more slowly for larger values of α. The
behavior of the Exponential variant is very unstable in the star and the double rectangle.
This effect is less pronounced using Exponential β and Exponential λ-Local.

In Fig. 19, we notice that a small α does not always improve the Brox et al. results, as
it happens in Yosemite, RubberWhale and Hydrangea. In fact, we observe that, for the last
two sequences, larger values of α hardly improves the result of Brox et al. At the beginning
of the graphics, the exponential variants have a similar behavior. However, when λ increases,
the Exponential method becomes unstable, while the other exponential approaches have a
smoother evolution. As α augments, the stability of the methods gets better.

Curiously, the error evolution of Exponential β and Exponential λ-Local are very similar,
reflecting, in many cases, a continuous improvement as λ increases. This similarity can guide
us to decide which approach is more interesting, because, although both of them present very
close results, Exponential β is easier to implement.

Finally, it is interesting to note that, λ-Global usually finds a value of λ that is close
to the best solution in the majority of occasions. Theoretically, the result represented by
the green dot should match with the best error of the pure Exponential function. This does
not always happen because the exponential method uses the same λ in each scale while the
λ-Global strategy recalculates this parameter.
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First Frame Ground Truth

Figure 12: From top to bottom: Solutions of the Brox et al., Exponential, Exponential β,
Exponential λ-Global and Exponential λ-Local methods, respectively. The columns show
increasing values for α and λ.
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First Frame Ground Truth

Figure 13: From top to bottom: Solutions of the Brox et al., Exponential, Exponential β,
Exponential λ-Global and Exponential λ-Local methods, respectively. The columns show
increasing values for α and λ.
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First Frame Ground Truth

Figure 14: From top to bottom: Solutions of the Brox et al., Exponential, Exponential β,
Exponential λ-Global and Exponential λ-Local methods, respectively. The columns show the
results for increasing values of α and λ.
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First Frame Ground Truth

Figure 15: From top to bottom: Solutions of the Brox et al., Exponential, Exponential β,
Exponential λ-Global and Exponential λ-Local methods, respectively. The columns show the
results for increasing values of α and λ.
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First Frame Ground Truth

Figure 16: From top to bottom: Solutions of the Brox et al., Exponential, Exponential β,
Exponential λ-Global and Exponential λ-Local methods, respectively. The columns show the
results for increasing values of α and λ.
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First Frame Ground Truth

Figure 17: From top to bottom: Solutions of the Brox et al., Exponential, Exponential β,
Exponential λ-Global and Exponential λ-Local methods, respectively. The columns show the
results for increasing values of α and λ.
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Figure 18: λ evolution for the geometric sequences: the first column shows the results using
a small regularization parameter (α := 50); the second, a medium value (α := 250); and, the
third, a large value (α := 500).

28



 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Yosemite with Clouds)

Exponencial
Exponencial β

Exponencial λ-Global
Exponencial λ-Local

λ Optimum

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Yosemite with Clouds)

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Yosemite with Clouds)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Urban2)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Urban2)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Urban2)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Grove2)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Grove2)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Grove2)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (RubberWhale)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (RubberWhale)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (RubberWhale)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Hydrangea)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Hydrangea)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

λ

AAE - λ Evolution Comparative (Hydrangea)

Figure 19: λ evolution for the Middlebury sequences: the first column shows the results
using a small regularization parameter (α := 50); the second, a medium value (α := 250);
and, the third, a large value (α := 500).
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5.5 Numerical Results

In this section we analyze the accuracy of the methods for the best and default parameter
configurations. First, we depict in Tables 4 and 5 the AAE results for the best settings, using
the geometric and Middlebury sequences, respectively. Correspondingly, Table 6 shows the
AAE results of the geometric and Middlebury sequences using a default configuration. These
parameters can be seen in Table 7.

In every case, we have looked for the best α, γ and λ that provide the best numerical
results. The values for the remaining parameters have been fixed as in Sect. 5.

Table 4: Best AAE results for the geometric sequences and Yosemite with clouds.
α γ λ AAE

Circle
Brox et al. 8 1 - 2.679o

Exponential 58700 40 0.22 0.090o

Exponential β 5960 16 0.12 0.046o

Exponential λ-Global 56771 97 - 0.086o

Exponential λ-Local 5919 45 0.05 0.074o

Double Rectangle
Brox et al. 14 1 - 4.295o

Exponential 60111 27 0.22 0.015o

Exponential β 5316 17 0.1 0.049o

Exponential λ-Global 67693 51 - 0.016o

Exponential λ-Local 59290 30 0.25 0.012o

Square
Brox et al. 9 0 - 2.801o

Exponential 57100 24 0.25 0.016o

Exponential β 5655 20 0.2 0.021o

Exponential λ-Global 42590 70 - 0.018o

Exponential λ-Local 59980 90 0.2 0.017o

Star
Brox et al. 5 0 - 2.919o

Exponential 60990 75 0.22 0.271o

Exponential β 5193 35 0.2 0.222o

Exponential λ-Global 58900 495 - 0.276o

Exponential λ-Local 6929 37 0.25 0.242o

Yosemite
Brox et al. 147 15 - 2.367o

Exponential 221 10 0.1 1.977o

Exponential β 250 10 0.15 1.976o

Exponential λ-Global 251 9 - 2.003o

Exponential λ-Local 218 9 0.12 1.965o

In the geometric sequences (Table 4), we observe an important improvement with respect
to the Brox et al. method. However, these results were obtained using a large value of
α, which allows to create planar motion regions and correctly deal with occlusions. This
type of configuration fits very well with these simple sequences, since the shapes are clearly
segmented from the background and the motions are constant inside the regions. In any
case, this demonstrates the capabilities of these strategies. The results for Yosemite also
improve the Brox et al. solution. The AAE decreases in about 17% for the Exponential
λ-Local approach.

The results for the Middlebury sequences are moderate (see Table 5). The improvement
is about 25% for Urban2, using the Exponential λ-Local method, and 10% for Venus, using
Exponential β. In the rest of sequences, the amelioration is not so evident. Looking at Table
6, we see that the results, using default parameters, are similar to the previous results.
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Table 5: Best AAE results for the Middlebury benchmark database.
α γ λ AAE

Urban2
Brox et al. 9 2 - 2.438o

Exponential 10 1 0.104 2.362o

Exponential β 21 4 0.1 2.422o

Exponential λ-Global 10 1 - 2.376o

Exponential λ-Local 15 2 0.12 2.400o

Urban3
Brox et al. 2 1 - 3.544o

Exponential 4 1 0.22 2.697o

Exponential β 6 1 0.28 2.767o

Exponential λ-Global 3 1 - 3.058o

Exponential λ-Local 6 0 0.5 2.622o

RubberWhale
Brox et al. 415 135 - 3.453o

Exponential 353 55 0.08 3.293o

Exponential β 255 35 0.1 3.307o

Exponential λ-Global 210 21 - 3.445o

Exponential λ-Local 354 55 0.08 3.291o

Hydrangea
Brox et al. 125 10 - 2.142o

Exponential 156 6 0.12 2.035o

Exponential β 292 12 0.12 2.027o

Exponential λ-Global 167 5 - 2.058o

Exponential λ-Local 201 8 0.12 2.031o

Grove2
Brox et al. 8 1 - 2.198o

Exponential 20 1 0.12 2.109o

Exponential β 20 1 0.12 2.111o

Exponential λ-Global 18 1 - 2.110o

Exponential λ-Local 20 1 0.12 2.109o

Grove3
Brox et al. 39 5 - 5.972o

Exponential 13 1 0.05 5.709o

Exponential β 17 1 0.1 5.715o

Exponential λ-Global 19 1 - 5.732o

Exponential λ-Local 19 1 0.08 5.704o

Dimetrodon
Brox et al. 690 339 - 1.588o

Exponential 280 120 0.08 1.653o

Exponential β 210 85 0.08 1.655o

Exponential λ-Global 205 57 - 1.804o

Exponential λ-Local 280 120 0.08 1.653o

Venus
Brox et al. 14 4 - 4.434o

Exponential 5 0 0.2 4.178o

Exponential β 4 0 0.08 3.998o

Exponential λ-Global 20 4 - 4.097o

Exponential λ-Local 7 1 0.09 4.085o

31



Table 6: AAE results using default parameters in the geometric and Middlebury test se-
quences
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β

E
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en
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λ
-G
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E
xp

on
en
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al

λ
-L

oc
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Double Rectangle 4.400o 2.188o 2.289o 1.907o 1.917o

Star 3.070o 2.493o 2.468o 2.330o 2.359o

Square 2.939o 2.500o 2.436o 2.218o 2.228o

Circle 2.657o 2.849o 2.762o 2.201o 2.174o

Dimetrodon 1.804o 1.792o 1.792o 2.009o 1.989o

Grove2 2.298o 2.444o 2.458o 2.264o 2.257o

Grove3 6.059o 6.492o 6.500o 6.165o 6.134o

Hydrangea 2.282o 2.491o 2.486o 2.686o 2.546o

RubberWhale 3.727o 3.625o 3.635o 3.911o 3.815o

Urban2 2.491o 2.460o 2.456o 2.388o 2.367o

Urban3 5.633o 4.353o 4.355o 3.860o 4.000o

Venus 4.490o 4.384o 4.376o 4.212o 4.196o

Table 7: Default parameter configuration used in the geometric and Middlebury test se-
quences.

α γ λ

Brox et al. 17 4 -
Exponential 35 8 0.1
Exponential β 35 8 0.1
Exponential λ-Global 12 2 -
Exponential λ-Local 12 2 0.09
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6 Conclusions

In this work we have reviewed several techniques for preserving discontinuities in TV-L1

optical flow methods. For this purpose, we have introduced a general framework that may
harbor many regularization strategies. Our study focuses on the use of decreasing functions
for mitigating the diffusion at contours. We have analyzed the ill-posed problem that arises
when decreasing functions are used in the regularization term. This has led us to propose
two efficient strategies to overcome this situation.

In the experimental results, we have thoroughly studied each of the methods and alter-
natives. This has helped us to empirically determine the set of default parameters for which
the methods work efficiently. We have also compared their behavior and shown that the
instability problems are effectively removed with our proposals.

One advantage of these discontinuity preserving strategies is that they are very easy to
implement from the basic Brox et al. method. Furthermore, they provide much better results
for simple sequences, such as the geometric test images, where the dominant gradient clearly
separates the different motions. We may conclude that using the image and flow information
for inhibiting the smoothing is a desired property. Nevertheless, the methods in this survey
do not treat this information in an optimum manner.

Eliminating the instability problems, with any of our proposals, turns this method very
interesting for real applications. The global approach computes the parameter that better
adapts to the maximum gradient in the image. As seen in the experiments, if this gradient
is representative of the moving objects, then it will provide the best solution. However, this
strategy will provide an average performance if the maximum gradient is much bigger than
those associated with the object motions. In any case, it is interesting for automatically
determining the exponential parameter and avoiding instabilities.

Some of these inconveniences are solved with the local strategy. It does not compute
the parameter automatically but it adapts its value in order to avoid instabilities. This is
carried out by examining the local gradient information. In this way, it allows to respect
more contours and better adapt to more varying motions. However, when the parameter
stands for a very small gradient, then it yields an over-segmented motion field.

As we have seen in the experiments, the use of decreasing functions also allows dealing
with occlusions. This can be achieved by increasing the strength of the regularization term,
at the same time that we use a high penalization factor at discontinuities. This can be seen
in the experiments with the geometric sequences. This effect can also be obtained in more
complex sequences, however, this special configuration has a negative impact on other parts
of the motion field.

The experimental results have shown the limitations of these strategies. Even though
the improvement is important in many sequences, we have seen examples where it does
not improve with respect to the basic TV scheme. This is the case, for instance, in the
RubberWhale or Hydrangea sequence. These sequences present an important variety of
gradients in both the image and the flow.

In future works, we will incorporate more methods to this survey. The methods that steer
the diffusion based on the image gradient will probably exhibit a similar behavior. Perhaps,
this is the reason why several recent methods have combined the estimation of optical flow
with a process for motion segmentation.

Probably, a good method for obtaining precise discontinuities should rely on the combi-
nation of the information of the image and flow gradients; but, most importantly, it should
be invariant to their magnitudes, i.e., flow discontinuities should be present whenever there
exists any motion, independently if they correspond to low contrast or slow moving objects.
We will also explore this idea further in the future.
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