MEMORIA FINAL

DE LA CAMPAÑA "AGADIR 2011-05" SOBRE PROSPECCIÓN EXPERIMENTAL DE CAMARONES PANDÁLIDOS CON NASAS SEMI-FLOTANTES

Telde, Las Palmas, julio de 2011

ÍNDICE DE CONTENIDOS

- 1.- INTRODUCCIÓN
- 1.1.- Marco de actuación
- 1.2.- Personal participante
- 1.3.- Objetivos
- 2.- MATERIAL Y MÉTODOS
- 2.1.- Buque de investigación
- 2.2.- Sistema de pesca
- 2.3.- Área de trabajo
- 2.4.- Estrategia de prospección
- 2.5.- Toma de datos oceanográficos
- 2.6.- Análisis biológico y colecciones de referencia
- 2.7.- Análisis de los datos

3.- RESULTADOS

- 3.1.- Esfuerzo de prospección
- 3.2.- Datos oceanográficos
- 3.3.- Composición específica y colecciones biológicas de referencia
- 3.4.- Especie-objetivo, bycatch y captura incidental
- 3.5.- Distribución de capturas y rendimientos
- 3.5.1.- Análisis de la captura
- 3.5.2.- Análisis de la CPUE
- 3.5.3.- Análisis de clusters
- 3.5.3.- Análisis de correspondencia
- 3.6.- Estructura de tallas y composición intra-específica de la especie-objetivo
- 3.6.1.- Estadísticos descriptivos y distribución de frecuencias la talla
- 3.6.2.- Relación talla-peso
- 3.6.3.- Sex-ratio
- 3.6.4.- Porcentaje de hembras ovígeras
- 3.6.5.- Desarrollo de los huevos fecundados
- 4.- DISCUSIÓN Y CONCLUSIONES
- 5.- RECOMENDACIONES
- 6.- BIBLIOGRAFÍA

ANEXO FOTOGRÁFICO

1.- INTRODUCCIÓN

1.1.- Marco de actuación

El proyecto 0072/CM-OMARAT/1/A, titulado "Observatorio marino atlántico Canarias-Marruecos" (CM-OMARAT), se enmarca en el Programa de Cooperación Transfronteriza España-Fronteras Exteriores 2008-2013 (POCTEFEX), cofinanciado con fondos FEDER y del Gobierno de Canarias, y su periodo de ejecución abarca desde enero de 2010 hasta septiembre de 2011. El proyecto es coordinado por Instituto Canario de Ciencias Marinas (ICCM) y cuenta entre su partenariado con diversas instituciones con sede en Canarias y en Marruecos.

El principal indicador de realización y resultados de este proyecto fue atribuido a su Acción Piloto 2.2. El Partenariado, en reunión de coordinación celebrada en Agadir en febrero de 2011, acordó que dicha acción piloto consistiría en una "Campaña de pesca exploratoria en las aguas (100 – 400 m) de Marruecos atlántico con nasas semi-flotantes". La acción piloto está siendo coordinada por el ICCM y en ella participan los socios Institut National de la Recherche Halieutique (INRH) y la Université Ibn Zohr (UIZ) de Agadir, por parte de Marruecos, y el Instituto Español de Oceanografía (IEO) - Centro Oceanográfico de Canarias, AFRIMAR y la Universidad de La Laguna (ULL) por parte de Canarias.

El Departamento de Pescas Marítimas del Ministerio de Agricultura y de la Pesca Marítima de Marruecos, como ministerio de tutela del INRH, apoyó los trabajos conjuntos del partenariado.

En marzo de 2011 se celebró en la sede del ICCM, en Telde (Las Palmas), una reunión de coordinación pre-campaña donde los socios ICCM-INRH-IEO establecieron el plan de campaña, incluyendo la designación de responsabilidades, los objetivos, la metodología de estudio y la duración de los trabajos. También se decidió la incorporación de la ULL a la acción piloto.

La campaña de prospección pesquera, que ha sido denominada "Agadir 2011-05", tuvo lugar entre finales de abril y mediados de mayo de 2011 en aguas de Marruecos.

Una serie de trabajos post-campaña conducentes a la elaboración de la presente Memoria científico-técnica final fueron acordados por los socios involucrados: estructura y contenidos del informe, muestreos biológicos y creación de colecciones biológicas de referencia en laboratorio, diseño y alimentación de bases de datos biológicos y pesqueros, tratamiento y procesamiento estadístico de datos y redacción conjunta de esta Memoria. La Universidad de Las Palmas de Gran Canaria, actuando como consultor externo, ha sido incorporada para el desarrollo de estas tareas.

1.2.- Personal participante

Instituto Canario de Ciencias Marinas (ICCM)

Dra. Nieves González, coordinadora general del proyecto Dr. José A. González, coordinador científico de la acción piloto Lcdo. José I. Santana

- D. Prudencio M. Calderín
- D. Sergio N. Ramos

Institut National de Recherche Halieutique (INRH)

Mr. Salah Ben Cherifi, Jefe del Departamento de Recursos Pesqueros

Mr. Abdelhak Lahnin, Jefe del Centro Regional del INRH en Agadir

Mr. Said Taleb

Mr. Hamid Chfiri

Mr. Hammou El Habouz

Mr. Mouad Houcine Benyacine

Mr. Mohamed El Hilali

Université Ibn Zohr (UIZ)

Mr. Abdellatif Moukrim, Vicepresidente de la Universidad de Agadir

Mr. Tamsouri Mohamed-Naoufal

Instituto Español de Oceanografía (IEO) - Centro Oceanográfico de Canarias

Dr. Sebastián Jiménez

Dra. M. Teresa García Santamaría

AFRIMAR

Lcdo. Javier del Campo

Universidad de La Laguna (ULL)

Lcdo. José Gustavo González Lorenzo

Universidad de Las Palmas de Gran Canaria (ULPGC), Consultor Externo

Dr. José M. González Pajuelo Lcdo. Raül Triay Portella Lcda. Esther Capote Kerr

Equipo científico-técnico canario-marroquí a bordo del Buque Oceanográfico "Profesor Ignacio Lozano" durante la campaña Agadir 2011-05.

1.3.- Objetivos

Los objetivos específicos de la Acción Piloto y de la campaña científica "Agadir 2011-05" son los siguientes:

- A) Consolidar y cohesionar el partenariado canario-marroquí OMARAT, como grupo de investigación de excelencia en el campo de los recursos pesqueros y la biología de las especies-objetivo.
- B) Probar la eficacia de un sistema de pesca, el tren de nasas camaroneras semi-flotantes cebado con carnada local (sable blanco troceado); este arte de pesca con carácter innovador en aguas de Marruecos.
- C) Conocer la biodiversidad epibentónica capturada con este sistema de pesca, básicamente en términos de crustáceos y peces, en la zona de prospección (región de Souss-Massa-Drâa), su distribución espacial y batimétrica.
- D) Recolectar datos sobre los índices de abundancia de los camarones pandálidos (Crustacea, Decapoda, Caridea, Pandalidae) presentes en la zona, en particular de la especie-objetivo el camarón soldado (*Plesionika edwardsii*).
- E) Obtener información biológica básica de la especie-objetivo.
- F) Recopilar datos e informaciones de utilidad para servir de base en la elaboración de futuros proyectos conjuntos de investigación pesquera y desarrollo tecnológico y, en particular, sobre la especie-objetivo, el camarón soldado.

2.- MATERIAL Y MÉTODOS

2.1.- Buque de investigación

La campaña "Agadir 2011-05" se realizó a bordo del Buque Oceanográfico "Profesor Ignacio Lozano", dependiente del Instituto Canario de Ciencias Marinas (ICCM), adscrito a la Agencia Canaria de Investigación, Innovación y Sociedad de la Información del Gobierno de Canarias.

Las características principales del Navío (Figura 1) son:

Nombre: B/O Profesor Ignacio Lozano

Matrícula: Ondarroa-8^a-1/2003

Año de matriculación:

Eslora total:

Eslora entre perpendiculares:

Manga:

Puntal:

Arqueo bruto:

Potencia motriz:

25 m

21 m

6,40 m

3,40 m

95,63 TRB

Autonomía: 40.000 l de gasoil Consumo medio en navegación: 1.000 l/24 h

Número de tripulantes: 8 Equipo científico a bordo: 7

Fig. 1.- Buque Oceanográfico "Profesor Ignacio Lozano" en el puerto de Agadir.

2.2.- Sistema de pesca

La nasa camaronera semi-flotante usada en las pescas presenta las siguientes características. Dimensiones: 56 x 57 x 57 cm. Armazón: de hierro de 3 mm de grosor. Revestimiento: malla plástica. Luz de malla: rómbica, 20 x 15 mm. Entradas: una, lateral, recta, terminando hacia el centro de la nasa en una boca circular de 19 cm de abertura (Figura 2).

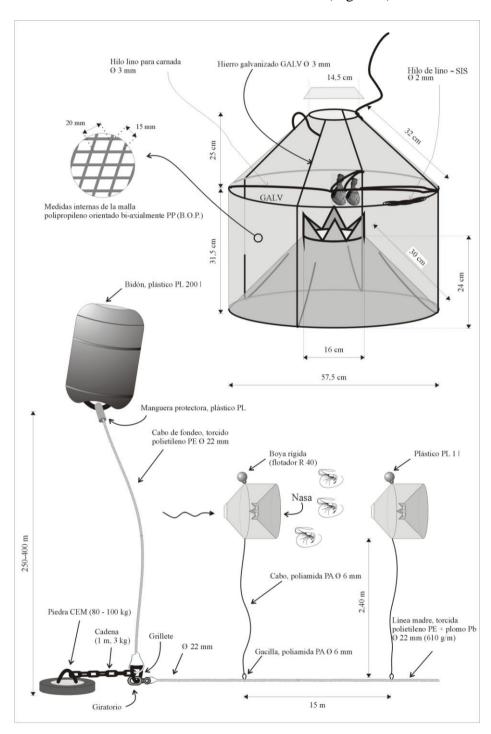
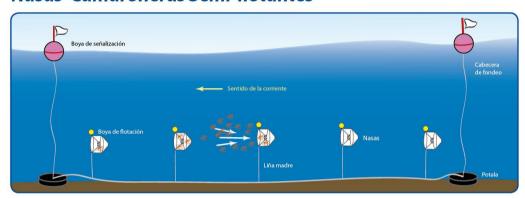



Fig. 2.- Esquema FAO de la nasa camaronera semi-flotante y del tren de nasas empleado.

Con carácter general, las pescas exploratorias se llevaron a cabo por medio de trenes de nasas camaroneras semi-flotantes de 40 unidades (40NCSF), en los que las nasas epibentónicas actúan a unos 2,5 m por encima del fondo. Ver los esquemas ilustrativos de la nasa camaronera semi-flotante y del tren de nasas (Figuras 2 y 3).

Nasas Camaroneras Semi-flotantes

Ristra de 50 a 75 nasas camaroneras semi-flotantes, separadas 15 m entre sí, caladas con dos cabeceras de fondeo y boyas individuales de flotación

Fig. 3.- Esquema del tren de nasas camaroneras semi-flotantes, calado.

Por término medio, el tiempo efectivo de pesca (TEP) de los trenes de nasas fue de 20 horas. El TEP se define que el periodo de tiempo transcurrido desde que el aparejo queda calado sobre el fondo marino (por lo general en las horas de la media mañana) y el momento en que se inicia la maniobra de virado (en las primeras horas de la mañana).

Las nasas fueron cebadas con dos trozos de sable blanco (*Lepidopus caudatus*), obtenido de la flota local que opera en el puerto de Agadir. La elección de este tipo de carnada se justifica por dos razones: a) es la única carnada empleada por la flota industrial camaronera española que faena en el Mediterráneo y, por tanto, se conoce su relativamente alta selectividad por el camarón soldado; b) es un producto habitualmente disponible, abundante y económicamente asequible en el puerto de Agadir, incluso congelado y envasado en cajas (Figura 4).

Fig. 4.- Detalle de la carnada empleada en las nasas: sable blanco troceado.

2.3.- Área de trabajo

En la ZEE de Marruecos, en su vertiente atlántica, el área de experimentación fue acotada entre los paralelos 29° 30' N (frente a Sifi Ifni) y 30° 30' N (frente a Cabo Ghir), correspondiendo a la región de Souss-Massa-Drâa, y en los fondos comprendidos entre las isobatas de 100 y 400 m de profundidad (Figura 5).



Fig. 5.- Zona de prospección.

2.4.- Estrategia de prospección

De acuerdo con el plan de campaña, la estrategia de prospección fue basada inicialmente en la realización de tres pescas exploratorias por día, situadas sobre cuatro radiales imaginarias principales, trazadas desde la costa, con tres intervalos batimétricos: estrato 1, 100-200 m; estrato 2, 200-300 m; y estrato 3, 300-400 m (Figura 6).

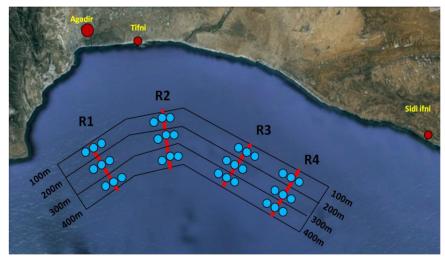


Fig. 6.- Disposición figurada de las radiales y las estaciones de prospección.

Según dicha estrategia radial, las coordenadas aproximadas de las estaciones de prospección previstas por intervalo de profundidad fueron las siguientes:

	Intervalo de profundidad (m)	Longitud Oeste	Latitud Norte
	100-200	09° 52,50′	30° 21,55′
Radial 1	200-300	09° 58,52'	30° 21,60′
	300-400	10° 01,60'	30° 21,72′
	100-200	09° 56,75'	29° 54,80′
Radial 2	200-300	10° 03,25'	29° 58,50′
	300-400	10° 04,35'	29° 59,10′
	100-200	10° 19,50'	29° 41,25′
Radial 3	200-300	10° 22,75'	29° 43,50'
	300-400	10° 24,60′	29° 44,25'
	100-200	10° 37,25'	29° 26,70'
Radial 4	200-300	10° 41,50′	29° 29,25'
	300-400	10° 42,50′	29° 31,00′

La campaña de prospección se inició el 30 de abril de 2011, embarcando un equipo científicotécnico formado por tres investigadores canarios (ICCM, 2; IEO, 1) y tres investigadores marroquís (INRH, 2; UIZ, 1). Transcurrida aproximadamente la mitad de la campaña, el 6 de mayo de 2011, el Buque efectuó una entrada al puerto de Agadir para incorporar un nuevo investigador canario (ULL, 1) y proceder al relevo de un marroquí (INRH 1 por UIZ 1), así como para proveerse de un nuevo suministro de carnada. Las operaciones de pesca finalizaron el 12 de mayo y el Buque arribó al puerto de Agadir. El 13 de mayo, tras diversas tareas administrativas y logísticas, los investigadores celebraron un "breefing" conjunto en las instalaciones del INRH en Agadir, con presentación en Power-point de los resultados preliminares por parte del Jefe de la Misión, al tiempo que el Buque zarpó rumbo a Canarias.

Las pescas experimentales comenzaron sobre la línea radial nº 1, situada frente a la desembocadura del río Souss (Oued Souss), ligeramente al Sur del puerto de Agadir, efectuándose un total de 9 operaciones de prospección (3 por cada estrato batimétrico). De ellas, 8 resultaron válidas y en la restante se perdió el aparejo completo debido a las enormes dificultades para operar rodeados por hasta 30 arrastreros. A esta altura de la campaña, por otra parte, los patrones del Buque y el equipo científico constataron que:

- a) Los fondos arrastrables prospectados son muy llanos o aplacerados y están mayoritariamente caracterizados por sustratos blandos (arena, fango, arena-fango o fangoarena) (Figura 7).
- b) Las escasas capturas efectuadas estaban dominadas por la presencia de gamba de altura o blanca (*Parapenaeus longirostris*).

- c) El camarón verde (*Chlorotocus crassicornis*) y el camarón flecha (*Plesionika heterocarpus*), ambos Pandalidae, aparecieron de forma testimonial en las escasísimas capturas.
- d) El camarón soldado (*Plesionika edwardsii*), la especie-objetivo a priori, no fue encontrado en esta zona.

Fig. 7.- Ejemplo de ecograma tomado en los fondos llanos de la radial 1 (cerca de Agadir).

Tras tres días de pescas prácticamente nulas y ante la situación y consideraciones anteriores, el equipo científico canario-marroquí tomó la decisión, de común acuerdo, de cambiar a una estrategia dinámica o adaptativa. De acuerdo con esto, se decidió abandonar la "estrategia radial" de prospección y pasar a una "estrategia sectorial" que diariamente incluiría la localización activa, mediante una concienzuda labor de ecosondeo, de fondos duros (rocosos) con cierta inclinación o pendiente (Figura 8), más apropiados como hábitat potencial de las especies de camarón de la familia Pandalidae. También se tomó la decisión, igualmente consensuada, de recomenzar las pescas de prospección en sentido sur-norte a partir de la latitud más meridional del área de trabajo autorizada, frente a Sidi Ifni.

En cualquier caso, conviene resaltar que todas las pescas (las nueve primeras realizadas con estrategia radial y las 26 sucesivas con estrategia sectorial) fueron efectuadas en el marco del área de trabajo autorizada y las cotas de profundidad programadas (con puntos medios en 150, 250 y 350 m).

Estos fondos de naturaleza rocosa y pendiente relativa fueron, día a día, laboriosamente detectados por medio del ecosonda del Navío y convenientemente seleccionados, en función de su disposición en los sectores y profundidades de trabajo.

La situación de las 35 pescas experimentales efectuadas se señala en la Figura 9, donde se indican los límites de los cuatro sectores prospectados: sector 1 (Oued Souss – Agadir), sector 2 (Oued Massa – Oued Souss), sector 3 (Tiznit – Oued Massa) y sector 4 (Sidi Ifni – Tiznit). Como se ha explicado, los sectores fueron prospectados en el orden cronológico siguiente: 1 (con estrategia radial), 4, 3 y 2 (estos tres con estrategia sectorial) (Figura 9).

Fig. 8.- Ejemplo de ecograma tomado en los fondos inclinados del sector 2 (Massa – Souss).

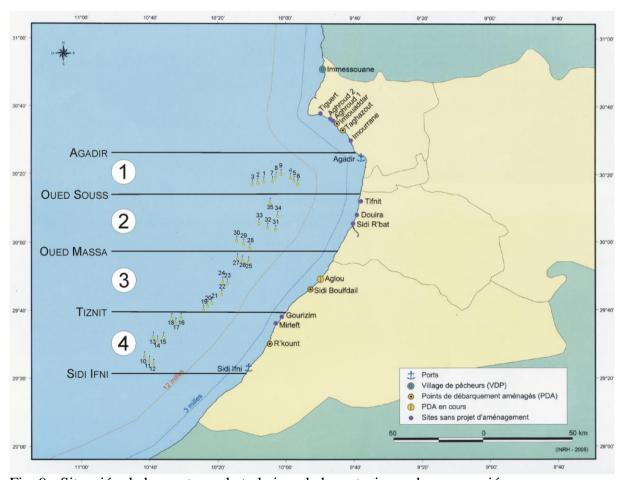


Fig. 9.- Situación de los sectores de trabajo y de las estaciones de prospección.

En la Tabla 1 se indican las características de las 35 operaciones de pesca experimental realizadas, señalándose el sector, la fecha, el sustrato (duro o blando), las coordenadas de las cabeceras del aparejo, la profundidad en cada cabecera, el estrato batimétrico y el número de nasas caladas.

Tabla 1.- Características de las operaciones de pesca experimental.

SEC	OPERACIÓN	LOCALIDAD	FECHA	SUSTRATO		CABECERA	SEGUNDA	CABECERA	PROF.	ESTRATO	NASAS
SEU.	OPERACION	LOCALIDAD	FECHA	SUSTRATU	LATITUD	LONGITUD	LATITUD	LONGITUD	CABECERAS (m)	BATIMÉTRICO	CALADAS
1	1	O.Souss-Agadir	01/05/2011	Blando	30° 21,522' N	10º 02,447' O	30° 21,314' N	10º 02,412' O	330-330	3	36
1	2	O.Souss-Agadir	01/05/2011	Blando	30° 21,140′ N	10º 02,829' O	30° 20,857' N	10º 02,810' O	340-340	3	40
1	3	O.Souss-Agadir	01/05/2011	Blando	30° 20,397' N	10º 03,429' O	30º 20,181' N	10º 03,454' O	358-358	3	38
1	4	O.Souss-Agadir	02/05/2011	Blando	30° 21,999' N	09º 57,510' O	30º 21,783' N	09º 57,445' O	168-167	1	36
1	5	O.Souss-Agadir	02/05/2011	Blando	30º 21,381' N	09º 56,696' O	30° 21,093' N	09º 56,622' O	152-152	1	40
1	6	O.Souss-Agadir	02/05/2011	Blando	30° 20,889' N	09º 55,670' O	30° 20,558' N	09º 55,532' O	137-137	1	39
1	7	O.Souss-Agadir	03/05/2011	Blando	30° 21,259' N	10º 00,525' O	30º 21,518' N	10º 00,484' O	267-267	2	39
1	8	O.Souss-Agadir	03/05/2011	Blando	30° 21,953′ N	10º 00,149' O	30° 22,245′ N	10º 00,172' O	253-253	2	41
1	9	O.Souss-Agadir	03/05/2011	Blando	30° 22,687' N	09º 59,271' O	30° 22,908' N	09º 59,697' O	232-232	2	40
4	10	Sidi Ifni-Tiznit	04/05/2011	Duro	29º 31,740' N	10º 37,652' O	29º 31,559' N	10º 37,693' O	368-329	3	40
4	11	Sidi Ifni-Tiznit	04/05/2011	Duro	29º 31,448' N	10º 37,525' O	29º 31,660' N	10º 37,324' O	280-267	2	40
4	12	Sidi Ifni-Tiznit	04/05/2011	Duro	29º 31,903' N	10º 36,241' O	29º 31,903' N	10º 36,241' O	152-170	1	40
4	13	Sidi Ifni-Tiznit	05/05/2011	Duro	29º 36,451' N	10º 33,437' O	29º 36,212' N	10º 33,515' O	332-366	3	40
4	14	Sidi Ifni-Tiznit	05/05/2011	Duro	29º 35,851' N	10º 33,299' O	29º 36,106' N	10º 33,245' O	280-234	2	41
4	15	Sidi Ifni-Tiznit	05/05/2011	Duro	29º 36,151' N	10º 32,613' O	29º 35,958' N	10º 32,565' O	164-158	1	40
4	16	Sidi Ifni-Tiznit	06/05/2011	Duro	29º 41,625' N	10º 23,908' O	29º 41,881' N	10º 23,767' O	171-169	1	40
4	17	Sidi Ifni-Tiznit	06/05/2011	Duro	29º 41,805' N	10º 24,583' O	29º 41,563' N	10º 24,684' O	261-268	2	40
4	18	Sidi Ifni-Tiznit	06/05/2011	Duro	29º 41,534' N	10º 25,505' O	29º 41,804' N	10º 25,500' O	338-355	3	40
3	19	Tiznit-O.Massa	07/05/2011	Duro	29° 45,639' N	10º 17,569' O	29º 45,837' N	10º 17,555' O	186-170	1	40
3	20	Tiznit-O.Massa	07/05/2011	Duro	29º 45,496' N	10º 18,247' O	29º 45,346' N	10º 18,053' O	264-289	2	40
3	21	Tiznit-O.Massa	07/05/2011	Duro	29º 45,096' N	10º 18,048' O	29º 45,271' N	10º 18,279' O	367-352	3	40
3	22	Tiznit-O.Massa	08/05/2011	Duro	29º 49,452' N	10º 12,936' O	29º 49,283' N	10º 12,755' O	177-167	1	40
3	23	Tiznit-O.Massa	08/05/2011	Duro	29º 50,346' N	10º 12,970' O	29º 50,540' N	10º 12,799' O	255-320	2	40
3	24	Tiznit-O.Massa	08/05/2011	Duro	29º 50,722' N	10º 12,865' O	29° 50,908' N	10º 13,060' O	304-304	3	40
3	25	Tiznit-O.Massa	09/05/2011	Duro	29º 53,147' N	10º 07,228' O	29º 53,041' N	10º 07,429' O	179-185	1	40
3	26	Tiznit-O.Massa	09/05/2011	Duro	29º 53,277' N	10º 08,082' O	29º 53,444' N	10º 08,351' O	250-254	2	40
3	27	Tiznit-O.Massa	09/05/2011	Duro	29° 53,190′ N	10º 08,607' O	29º 53,448' N	10º 08,713' O	325-350	3	40
2	28	O.Massa-O.Souss	10/05/2011	Duro	29º 57,370' N	10º 05,117' O	29º 57,577' N	10º 05,055' O	182-182	1	40
2	29	O.Massa-O.Souss	10/05/2011	Duro	29° 58,565' N	10° 06,079' O	29° 58,699' N	10º 06,370' O	240-261	2	40
2	30	O.Massa-O.Souss	10/05/2011	Duro	29° 59,047' N	10º 06,268' O	29º 59,323' N	10º 04,961' O	348-386	3	40
2	31	O.Massa-O.Souss	11/05/2011	Duro	30° 02,173′ N	10º 02,371' O	30° 01,971' N	10º 02,265' O	188-184	1	40
2	32	O.Massa-O.Souss	11/05/2011	Duro	30° 02,549' N	10° 04,007' O	30° 02,680' N	10º 04,285' O	280-315	2	40
2	33	O.Massa-O.Souss	11/05/2011	Duro	30° 02,775' N	10º 04,648' O	30° 02,667' N	10º 04,922' O	351-378	3	40
2	34	O.Massa-O.Souss	12/05/2011	Blando	30° 07,851' N	10º 01,792' O	30° 08,187' N	10º 02,250' O	286-392	3	80
2	35	O.Massa-O.Souss	12/05/2011	Duro	30º 10,668' N	10º 04,372' O	30° 10,933′ N	10º 04,323' O	400-400	3	40

2.5.- Toma de datos oceanográficos

Los datos oceanográficos se obtuvieron mediante un sensor de temperatura, presión y conductividad XR-420-CTD de Richard Branker Research LTD, Canadá. Para evitar golpes con el casco del barco durante la maniobra de izado o con el propio fondo, el dispositivo se protegió con una caja de acero diseñada al efecto (Figuras 10 y 11).

Para cada una de las estaciones analizadas, se dispuso, además, de imágenes de satélite de temperatura para analizar posibles variaciones en superficie en la toma de datos oceanográficos.

En la Tabla 2 se indican las características de las 5 estaciones oceanográficas efectuadas en la campaña, señalándose la fecha, la profundidad, las coordenadas y el sector.

Tabla 2.- Características de las estaciones oceanográficas.

ESTACIÓN	()		LATITUD	LONGITUD	SECTOR
1	30/04/2011	425	30° 22,070' N	10º 05,527' O	Oued Souss - Agadir
2	03/05/2011	455	29º 41,798' N	10º 25,338' O	Tiznit - Oued Massa
3	03/05/2011	458	29º 32,817' N	10° 36,946' O	Sidi Ifni - Tiznit
4	09/05/2011	481	29º 54,806' N	10º 10,142' O	Tiznit - Oued Massa
5	11/05/2011	590	30º 11,236' N	10º 04,703' O	Oued Massa - Oued Souss

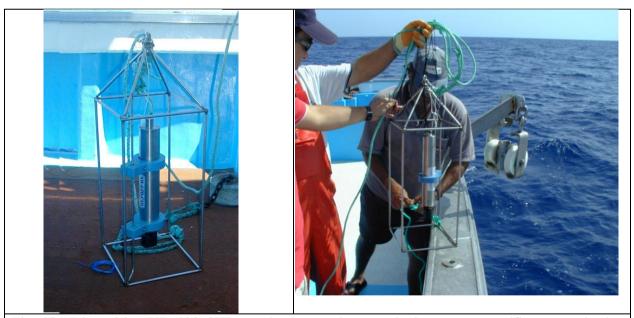


Fig. 10.- Dispositivo XR-420-CTD empleado para la toma de datos oceanográficos en todas las estaciones analizadas, instalado en la caja de acero de protección.

Fig. 11.- Descarga de los datos registrados mediante el dispositivo XR-420-CTD empleado para la toma de datos oceanográficos en todas las estaciones analizadas.

La situación de las 5 estaciones oceanográficas se señala en la Figura 12, donde se observa que se realizó una operación con CTD en cada sector, excepto en el sector 3 en donde se efectuaron dos tomas de datos (Figura 12).

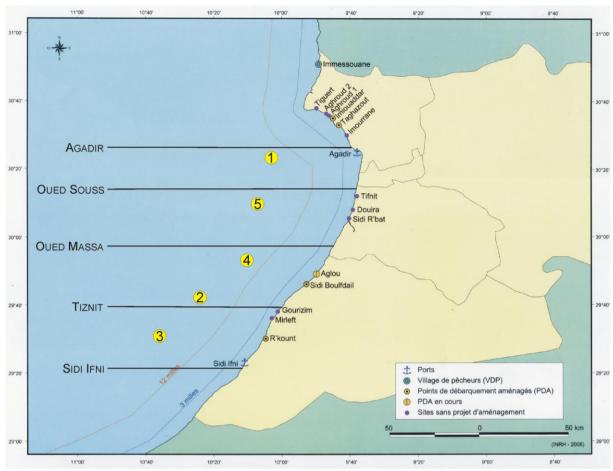


Fig. 12.- Situación de las estaciones oceanográficas.

2.6.- Análisis biológico y colecciones de referencia

En la Tabla 3 se indican las características de las muestras de camarón soldado consideradas para la estimación de los parámetros biológicos básicos de la especie-objetivo. Se muestrearon 1033 ejemplares procedentes de 5 muestras representativas de los tres estratos batimétricos prospectados.

Tabla 3.- Características de las muestras biológicas de la especie-objetivo.

Fecha de captura	Operación de pesca	Sector de prospección	Localidad	Estrato batimétrico	Número de ejemplares
08/05/2011	23	3	Tifnit - Oued Souss	250 m	325
09/05/2011	27	3	Tifnit - Oued Souss	350 m	51
10/05/2011	28	2	Oued Massa - Oued Souss	150 m	532
10/05/2011	29	3	Tifnit - Oued Souss	250 m	44
12/05/2011	34	2	Oued Massa - Oued Souss	350 m	81
				Total	1033

De cada camarón soldado (*Plesionika edwardsii*), especie-objetivo de esta acción piloto, en laboratorio, se tomaron la longitud de caparazón (LC, en mm) (Fig. 13) y el peso (P, en

gramos) y se determinó el sexo por examen del segundo pleópodo (King & Moffit, 1984) (Fig. 14), la condición ovígera y el estado de desarrollo de los huevos (en una escala de 4 puntos de Thessalou-Legaki (1992)) (Fig. 15).

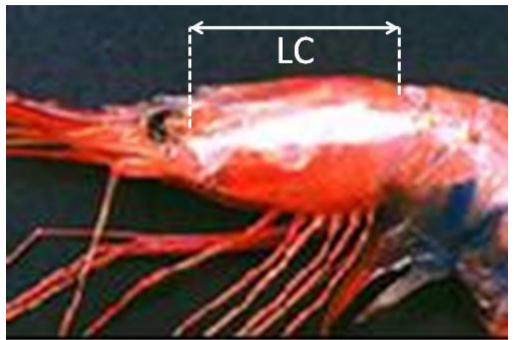


Fig. 13.- Toma de longitud de caparazón con calibrador.

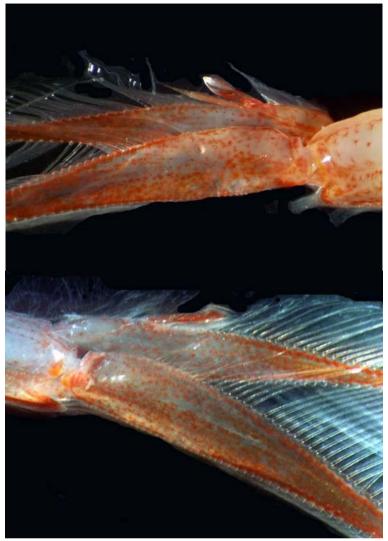


Fig. 14.- Micrografía: presencia (macho) o ausencia (hembras) de *appendix masculina* en ejemplares de camarón soldado.

Estos parámetros, junto con la información de la captura de los ejemplares, alimentaron una base de datos biológico-pesquera a partir de la cual se calcularon la estructura de talla y composición intraespecífica de la especie-objetivo, la distribución de frecuencias de talla (LC), la relación talla-peso, la sex-ratio, la frecuencia de hembras ovígeras y la frecuencia de estado de desarrollo de los huevos.

Ejemplares de las especies capturadas han sido tratados en laboratorio, fotografiados y depositados en colecciones biológicas de referencia, una el INRH y otro para el ICCM, por un especialista en conservación. Una base de datos con las características (datos de captura y datos morfológicos) de tales ejemplares ha sido elaborada. Los crustáceos han sido conservados en alcohol al 70° y los peces inicialmente en formol para ser pasados progresivamente a alcohol al 70°.

El manejo y tratamiento de los ejemplares destinados a las colecciones ha sido efectuado en mayo-junio de 2011, durante la celebración del grupo de trabajo para la elaboración de esta Memoria final.

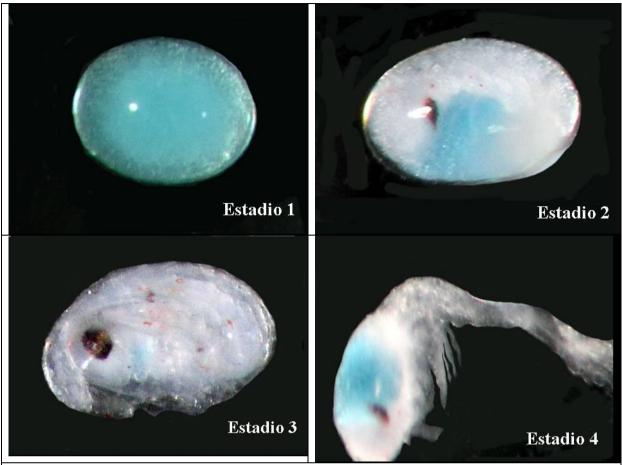


Fig. 15.- Micrografía: estadios de desarrollo de los huevos fecundados en hembras ovígeras de camarón soldado. 1, embrión sin ojos pigmentados; 2, embrión poco desarrollado aunque con ojos pigmentados; 3, embrión bien desarrollado; 4, embrión eclosionado.

2.7.- Análisis de los datos

De acuerdo con el grado de interés comercial, las especies capturadas fueron clasificadas en tres grupos ampliamente aceptados en estudios pesqueros: especies-objetivo (*Plesionika edwardsii*), bycatch (especies acompañantes con interés comercial) y especies incidentales (especies sin interés comercial).

Los datos de captura (en g) y de captura por unidad de esfuerzo (CPUE, en g/nasa/noche), registrados en base de datos, fueron objeto de diferentes análisis. Se estimaron los estadísticos descriptivos y de contraste por sector de prospección, profundidad y tipo de sustrato. Se realizaron diferentes análisis de cluster o jerárquico para determinar la existencia o no de similitud entre las especies capturadas y entre las operaciones de pesca efectuadas. Por último, se llevaron a cabo análisis de correspondencia para establecer afinidades entre la especie-objetivo y el tipo de sustrato, el sector de prospección y el estrato batimétrico.

3.- RESULTADOS

3.1.- Esfuerzo de prospección

En la Tabla 4 se indica el esfuerzo de prospección desarrollado durante la campaña, señalándose el sector, la fecha, el sustrato, las coordenadas de pesca, la profundidad, el estrato batimétrico, el número de nasas válidas, el porcentaje de validez de las mismas y la validez de la operación de pesca.

De las 35 operaciones de pesca realizadas, 33 (94,3%) resultaron válidas y sus datos han sido utilizados para propósitos de esta Memoria. En las operaciones válidas, el porcentaje de recuperación de las nasas (validez) varió entre 87,5 y 100%; en general fueron recuperadas todas las nasas en cada operación de pesca. Las nasas excluidas del porcentaje de validez corresponden a nasas perdidas, rotas y/o abiertas (Tabla 4).

Tabla 4.- Validez de las operaciones de pesca.

	114	T. Validez	1 40 145	I		•	OFOLINDA	04050504	PROF.	I			
SEC.	OP.	LOCALIDAD	FECHA	SUSTRATO		CABECERA		CABECERA	MEDIA	ESTRATO BATIMETRICO	NASAS VÁLIDAS	% VALIDEZ	VALIDEZ OPERACIÓN
					LATITUD	LONGITUD	LATITUD	LONGITUD	(m)	D/(TIMETICO	VALIDAG	VALIDEZ	OI EIGIOIOIV
1	1	O.Souss-Agadir	01/05/2011	Blando	30° 21,522' N	10º 02,447' O	30º 21,314' N	10º 02,412' O	330	3	36	100,0	Sí
1	2	O.Souss-Agadir	01/05/2011	Blando	30° 21,140' N	10º 02,829' O	30° 20,857' N	10º 02,810' O	340	3	40	100,0	Sí
1	3	O.Souss-Agadir	01/05/2011	Blando	30° 20,397' N	10º 03,429' O	30° 20,181' N	10º 03,454' O	358	3	0	0,0	No
1	4	O.Souss-Agadir	02/05/2011	Blando	30° 21,999' N	09º 57,510' O	30° 21,783′ N	09º 57,445' O	168	1	36	100,0	Sí
1	5	O.Souss-Agadir	02/05/2011	Blando	30º 21,381' N	09º 56,696' O	30° 21,093′ N	09º 56,622' O	152	1	40	100,0	Sí
1	6	O.Souss-Agadir	02/05/2011	Blando	30° 20,889' N	09º 55,670' O	30° 20,558' N	09º 55,532' O	137	1	39	100,0	Sí
1	7	O.Souss-Agadir	03/05/2011	Blando	30° 21,259′ N	10º 00,525' O	30° 21,518' N	10º 00,484' O	267	2	39	100,0	Sí
1	8	O.Souss-Agadir	03/05/2011	Blando	30° 21,953' N	10º 00,149' O	30° 22,245′ N	10º 00,172' O	253	2	41	100,0	Sí
1	9	O.Souss-Agadir	03/05/2011	Blando	30° 22,687' N	09º 59,271' O	30° 22,908' N	09° 59,697' O	232	2	38	95,0	Sí
4	10	Sidi Ifni-Tiznit	04/05/2011	Duro	29º 31,740' N	10º 37,652' O	29º 31,559' N	10º 37,693' O	349	3	40	100,0	Sí
4	11	Sidi Ifni-Tiznit	04/05/2011	Duro	29º 31,448' N	10º 37,525' O	29º 31,660' N	10º 37,324' O	274	2	40	100,0	Sí
4	12	Sidi Ifni-Tiznit	04/05/2011	Duro	29° 31,903′ N	10º 36,241' O	29º 31,903' N	10º 36,241' O	161	1	40	100,0	Sí
4	13	Sidi Ifni-Tiznit	05/05/2011	Duro	29º 36,451' N	10º 33,437' O	29º 36,212' N	10º 33,515' O	349	3	35	87,5	Sí
4	14	Sidi Ifni-Tiznit	05/05/2011	Duro	29° 35,851' N	10º 33,299' O	29º 36,106' N	10º 33,245' O	257	2	38	92,7	Sí
4	15	Sidi Ifni-Tiznit	05/05/2011	Duro	29º 36,151' N	10º 32,613' O	29º 35,958' N	10º 32,565' O	161	1	40	100,0	Sí
4	16	Sidi Ifni-Tiznit	06/05/2011	Duro	29º 41,625' N	10º 23,908' O	29º 41,881' N	10º 23,767' O	170	1	39	97,5	Sí
4	17	Sidi Ifni-Tiznit	06/05/2011	Duro	29º 41,805' N	10º 24,583' O	29º 41,563' N	10º 24,684' O	265	2	39	97,5	Sí
4	18	Sidi Ifni-Tiznit	06/05/2011	Duro	29º 41,534' N	10º 25,505' O	29º 41,804' N	10º 25,500' O	347	3	40	100,0	Sí
3	19	Tiznit-O.Massa	07/05/2011	Duro	29° 45,639′ N	10º 17,569' O	29º 45,837' N	10º 17,555' O	178	1	40	100,0	Sí
3	20	Tiznit-O.Massa	07/05/2011	Duro	29º 45,496' N	10º 18,247' O	29º 45,346' N	10º 18,053' O	277	2	40	100,0	Sí
3	21	Tiznit-O.Massa	07/05/2011	Duro	29º 45,096' N	10º 18,048' O	29º 45,271' N	10º 18,279' O	360	3	40	100,0	Sí
3	22	Tiznit-O.Massa	08/05/2011	Duro	29º 49,452' N	10º 12,936' O	29º 49,283' N	10º 12,755' O	172	1	40	100,0	Sí
3	23	Tiznit-O.Massa	08/05/2011	Duro	29º 50,346' N	10º 12,970' O	29º 50,540' N	10º 12,799' O	288	2	40	100,0	Sí
3	24	Tiznit-O.Massa	08/05/2011	Duro	29° 50,722' N	10º 12,865' O	29° 50,908' N	10º 13,060' O	304	3	40	100,0	Sí
3	25	Tiznit-O.Massa	09/05/2011	Duro	29º 53,147' N	10º 07,228' O	29º 53,041' N	10º 07,429' O	182	1	40	100,0	Sí
3	26	Tiznit-O.Massa	09/05/2011	Duro	29º 53,277' N	10º 08,082' O	29º 53,444' N	10º 08,351' O	252	2	40	100,0	Sí
3	27	Tiznit-O.Massa	09/05/2011	Duro	29º 53,190' N	10º 08,607' O	29º 53,448' N	10º 08,713' O	338	3	40	100,0	Sí
2	28	O.Massa-O.Souss	10/05/2011	Duro	29º 57,370' N	10º 05,117' O	29º 57,577' N	10º 05,055' O	182	1	40	100,0	Sí
2	29	O.Massa-O.Souss	10/05/2011	Duro	29º 58,565' N	10º 06,079' O	29º 58,699' N	10º 06,370' O	251	2	40	100,0	Sí
2	30	O.Massa-O.Souss	10/05/2011	Duro	29° 59,047' N	10º 06,268' O	29° 59,323' N	10º 04,961' O	367	3	40	100,0	Sí
2	31	O.Massa-O.Souss	11/05/2011	Duro	30° 02,173′ N	10º 02,371' O	30° 01,971' N	10º 02,265' O	186	1	40	100,0	Sí
2	32	O.Massa-O.Souss	11/05/2011	Duro	30° 02,549' N	10º 04,007' O	30° 02,680' N	10º 04,285' O	298	2	40	100,0	Sí
2	33	O.Massa-O.Souss	11/05/2011	Duro	30° 02,775' N	10º 04,648' O	30° 02,667' N	10º 04,922' O	365	3	39	97,5	Sí
2	34	O.Massa-O.Souss	12/05/2011	Blando	30° 07,851' N	10º 01,792' O	30° 08,187' N	10º 02,250' O	339	3	79	98,8	Sí
2	35	O.Massa-O.Souss	12/05/2011	Duro	30° 10,668' N	10º 04,372' O	30° 10,933' N	10° 04,323' O	400	3	40	100,0	No

El cambio de la estrategia de prospección de "radial" (primeras 9 pescas en el sector 1, Oued Souss – Agadir) a "sectorial" (las restantes operaciones), con selección dinámica día a día, ha dado resultados positivos y ha permitido localizar la especie-objetivo (sobre fondos rocosos e inclinados) y establecer su límite norte de distribución en el área de trabajo.

3.2.- Datos oceanográficos

Los perfiles de salinidad y temperatura obtenidos en cada estación oceanográfica se presentan en las Figuras 16 a 20. Las gráficas han sido ordenadas en sentido norte-sur, es decir, desde el sector 1 (con inicio en Agadir) hasta el sector 4 (con finalización en Sidi Ifni).

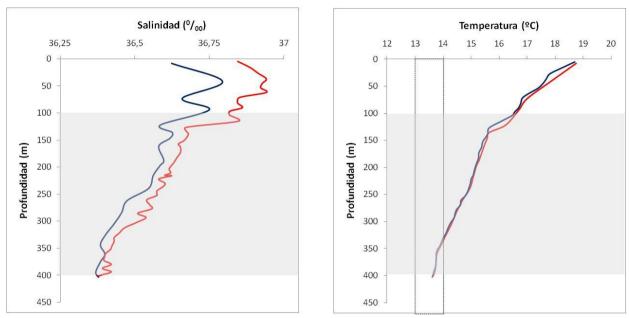


Fig. 16.- Perfiles de temperatura y salinidad con la profundidad (estación oceanográfica 1, sector 1, Oued Souss – Agadir).

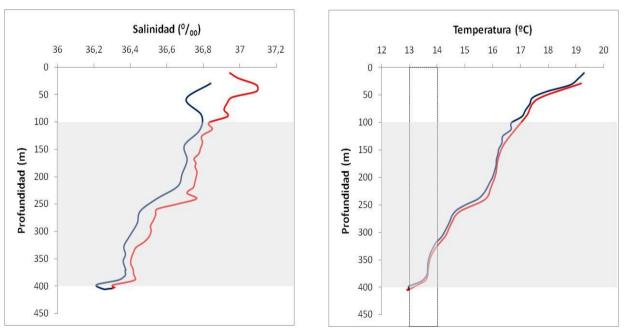


Fig. 17.- Perfiles de temperatura y salinidad con la profundidad (estación oceanográfica 5, sector 2, Oued Massa – Oued Souss).

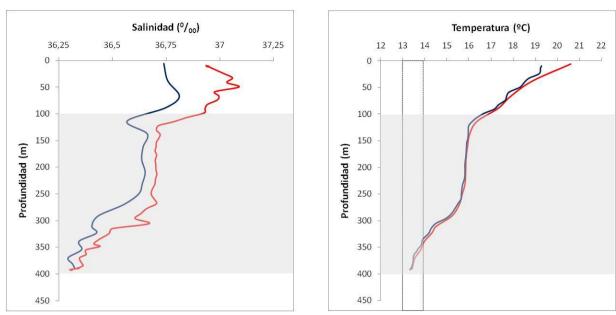


Fig. 18.- Perfiles de temperatura y salinidad con la profundidad (estación oceanográfica 4, sector 3, Tiznit – Oued Massa, zona norte).

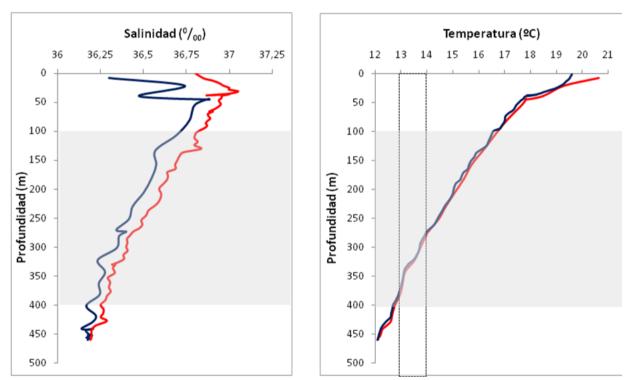


Fig. 19.- Perfiles de temperatura y salinidad con la profundidad (estación oceanográfica 2, sector 3, Tiznit – Oued Massa, zona sur).



Fig. 20.- Perfiles de temperatura y salinidad con la profundidad (estación oceanográfica 3, sector 4, Sidi Ifni – Tiznit).

En la Figura 21 se presentan los perfiles de temperatura de todas las estaciones oceanográficas de forma conjunta.

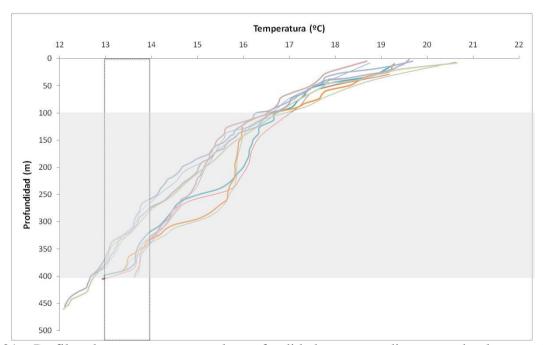


Fig. 21.- Perfiles de temperatura con la profundidad correspondiente a todas las estaciones oceanográficas muestreadas.

En la Figura 22 se presentan todos los perfiles de salinidad correspondientes al conjunto de estaciones oceanográficas.

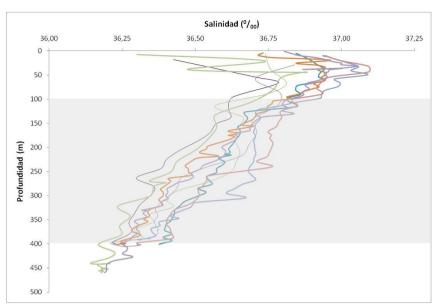


Fig. 22.- Perfiles de salinidad con la profundidad correspondiente a todas las estaciones oceanográficas muestreadas.

En la Figura 23 se presenta la relación entre los valores de salinidad y temperatura en todas las estaciones oceanográficas muestreadas.

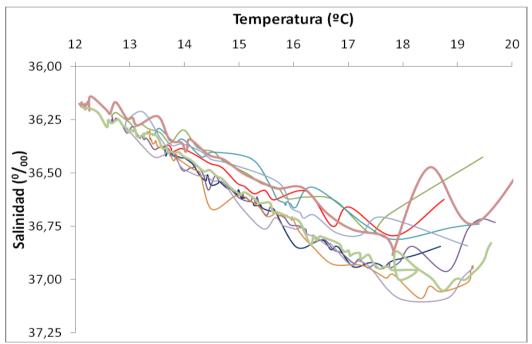


Fig. 23.- Perfiles de salinidad con la temperatura correspondiente a todas las estaciones oceanográficas muestreadas.

Los valores de temperatura en superficie oscilaron entre 20,7 y 18,7 °C, correspondiendo el valor más bajo observado al sector 2 (Oued Massa – Oued Souss), estación 5 (Figura 17).

En el sector 1 (Oued Souss – Agadir), estación 1 (Figura 16), se observa una reducción de los valores de temperatura de 18,7 a 16,7 °C entre la superficie y 130 m de profundidad,

presentándose a continuación una termoclina localizada entre 130 y 140 m de profundidad, en la que temperatura se reduce hasta 15,5 °C. A continuación, se aprecia una reducción lenta de los valores de temperatura, localizándose los 14 °C por debajo de 350 m de profundidad. La salinidad muestra una reducción lineal entre 150 y 350 m de profundidad.

En el sector 2 (Oued Massa – Oued Souss), estación 5 (Figura 17), se observa una termoclina muy superficial localizada por encima de la cota de 50 m, en la que la temperatura se reduce de 20,5 a 18,0 °C. Después de la termoclina se aprecia una reducción casi lineal de la temperatura con la profundidad, localizándose los 13-14 °C entre 230 y 350 m de profundidad. La salinidad muestra una reducción lineal entre 150 y 350 m de profundidad.

En el área norte del sector 3 (Tiznit – Oued Massa), estación 4 (Figura 18), se observa una reducción de los valores de temperatura de 20,5 a 16,3 °C entre la superficie y la cota de 100 m de profundidad, presentándose a continuación una reducción lineal de la temperatura. Se localiza un marcada termoclina entre 250 y 340 m de profundidad, en la que temperatura se reduce de 15,8 a 13,4 °C. Por encima de esta termoclina, a lo largo de unos 160 metros de la columna de agua (entre las cotas de 120 y 280 m), la temperatura no varía con la profundidad.

En el sector 3 (Tiznit – Oued Massa), estación 2 (Figura 19), localizada hacia el sur del sector, se observa una termoclina muy superficial localizada por encima de los 50 m, en la que la temperatura se reduce de 19,5 a 17,8 °C. A continuación de la termoclina se aprecia una reducción casi lineal de la temperatura con la profundidad, localizándose los 13-14,5 °C entre 200 y 350 m de profundidad. La salinidad muestra una reducción lineal entre 150 y 350 m de profundidad en esta zona sur del sector, observándose una haloclina entre 250 y 300 m de profundidad.

En el sector 4 (Sidi Ifni – Tiznit), estación 3 (Figura 20), se observa una termoclina muy superficial localizada por encima de los 50 m, en la que la temperatura se reduce de 19,5 a 17,0 °C. A continuación de la termoclina se aprecia una reducción casi lineal de la temperatura con la profundidad, localizándose una termoclina profunda entre 220 y 250 m en la que la temperatura varía de 16 a 14,5 °C. Los 13-14,5 °C se localizan entre 270 y 400 m de profundidad. La salinidad muestra una marcada haloclina entre 200 y 250 m de profundidad.

En las Figuras 24 a 31 se muestran los mapas de clorofila a, temperatura superficial, temperatura a 200 y a 300 m de profundidad del agua en la costa atlántica de Marruecos.

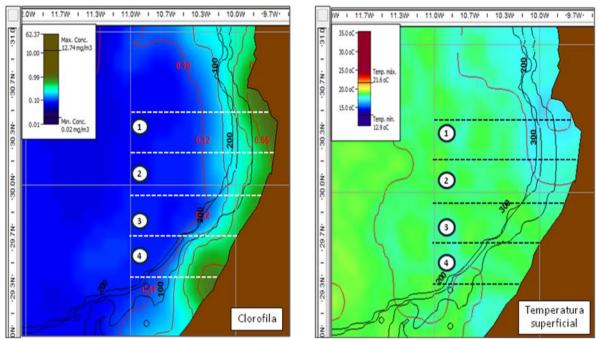


Fig. 24.- Imágenes de satélite de la concentración de clorofila a y de la temperatura superficial del agua de mar en el área prospectada, correspondiente al 30 de abril de 2011.

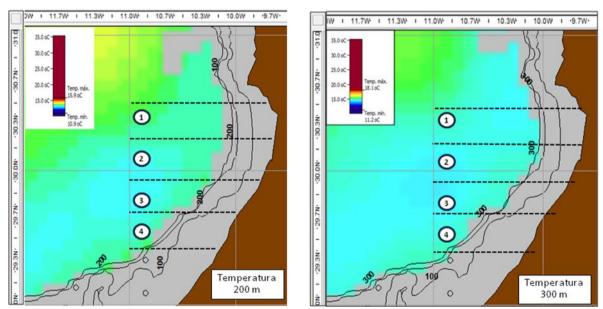


Fig. 25.- Imágenes de satélite de la temperatura del agua de mar a 200 y 300 m de profundidad en el área prospectada, correspondiente al 30 de abril de 2011.

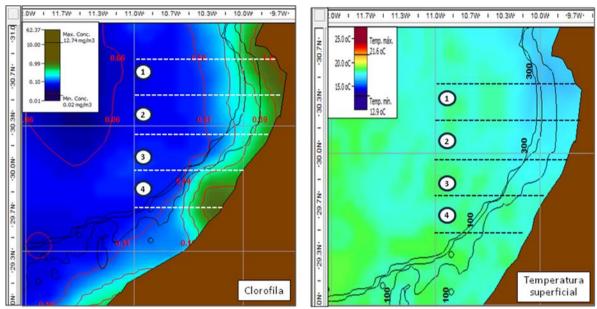


Fig. 26.- Imágenes de satélite de la concentración de clorofila a y de la temperatura superficial del agua de mar en el área prospectada, correspondiente al 3 de mayo de 2011.

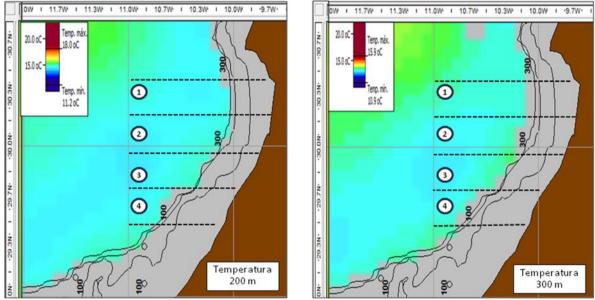


Fig. 27.- Imágenes de satélite de la temperatura del agua de mar a 200 y 300 m de profundidad en el área prospectada, correspondiente al 3 de mayo de 2011.

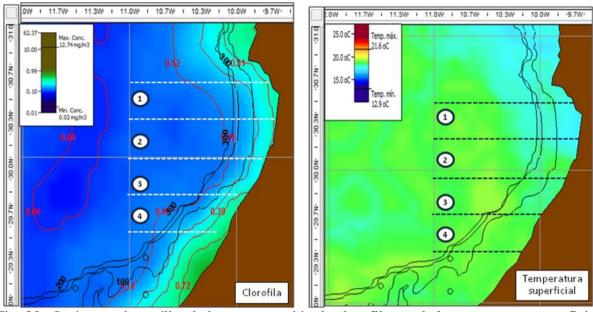


Fig. 28.- Imágenes de satélite de la concentración de clorofila a y de la temperatura superficial del agua de mar en el área prospectada, correspondiente al 9 de mayo de 2011.

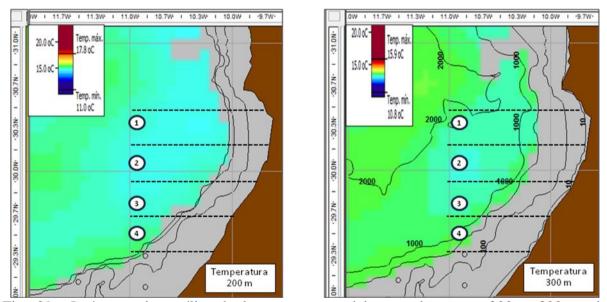


Fig. 29.- Imágenes de satélite de la temperatura del agua de mar a 200 y 300 m de profundidad en el área prospectada, correspondiente al 9 de mayo de 2011.

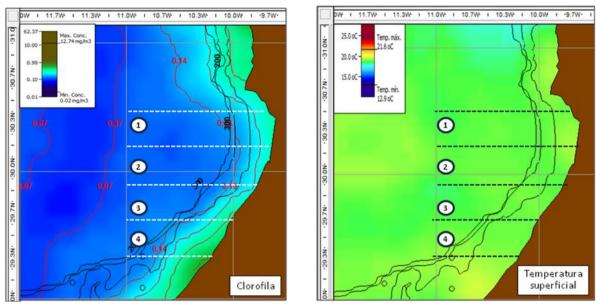


Fig. 30.- Imágenes de satélite de la concentración de clorofila a y de la temperatura superficial del agua de mar en el área prospectada, correspondiente al 11 de mayo de 2011.

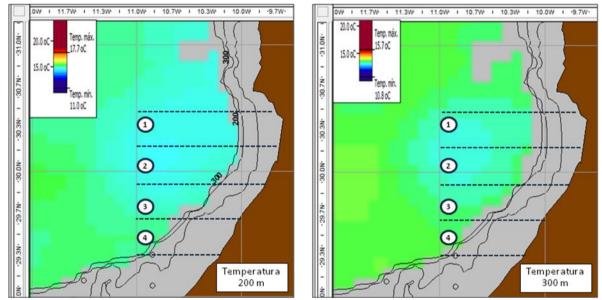


Fig. 31.- Imágenes de satélite de la temperatura del agua de mar a 200 y 300 m de profundidad en el área prospectada, correspondiente al 11 de mayo de 2011.

Las imágenes de satélite de temperatura superficial y clorofila a permiten observar la existencia de fuertes variaciones espacio-temporales en un corto lapso de tiempo (12 días). Las zonas más cálidas y más productivas corresponden a los sectores localizados más hacia el sur, áreas donde se han obtenido los mayores rendimientos de la especie-objetivo. Los mapas de temperatura obtenidos para 200 y 300 m de profundidad muestran campos térmicos más estables que a nivel superficial, aunque se siguen observando valores más elevados en la zona sur.

3.3.- Composición específica y colecciones biológicas de referencia

En la Tabla 5 se recoge la lista de las especies epibentónicas capturadas en la campaña con nasas camaroneras semi-flotantes, señalándose la posición taxonómica de las mismas y sus denominaciones comunes en español y francés.

Tabla 5.- Lista de especies epibentónicas capturadas en la campaña.

Tabla 3. Lista de e	species epit	ocinomeas capturada	s cii ia campana.		
Grupo	Familia	Especie	Nombre español	Nombre francés	
Groupe Famille		Espèce	Nom espagnol	Nom français	
CONDRICHTHYES	Etmopteridae	Etmopterus spinax	Negrito	Sagre commun	
OSTEICHTHYES	Congridae	Conger conger	Congrio	Congre	
	Merlucciidae	Merluccius merluccius	Merluza europea	Merlu commun	
	Moridae	Gadella maraldi	Gadella	Moro du large	
CRUSTACEA DECAPODA					
Dendrobranchiata	Penaeidae	Parapenaeus longirostris	Gamba de altura	Crevette rose du large	
Caridea	Pandalidae	Chlorotocus crassicornis	Camarón verde	Crevette verte	
		Heterocarpus ensifer	Camarón cabezudo	Crevette nylon armée	
		Plesionika edwardsii	Camarón soldado	Crevette Edward	
		Plesionika ensis	Camarón gladiador rayado	Crevette gladiateur rayée	
		Plesionika heterocarpus	Camarón flecha	Crevette-flèche	
		Plesionika martia	Camarón marcial	Crevette dorée	
		Plesionika narval	Camarón narval	Crevette narval	
Anomura	Diogenidae	Dardanus arrosor	Ermitaño de estrías	Bernard-l'ermite strié	
	Galatheidae	Munida sp1	Munida	Galathée	
		Munida sp2	Munida	Galathée	
Brachyura	Homolidae	Homola barbata	Homola	Homole	

Fueron capturadas un total de 16 especies, pertenecientes a los grupos de peces cartilaginosos (1), peces óseos (3) y crustáceos decápodos (12). La familia mejor representada en las capturas ha sido la de los camarones pandálidos (Pandalidae) con 7 especies entre las cuales se incluye la especie-objetivo, el camarón soldado (*Plesionika edwardsii*) (Tabla 4).

Las especies de *Munida* recolectadas (*Munida* sp1 con 2 ejemplares y *Munida* sp2 con 1 ejemplar) serán identificadas, a la mayor brevedad posible, por el Dr. Enrique Macpherson (CSIC- CEAB), reputado especialista en este grupo de decápodos.

En la Tabla 6 se recoge la distribución de ejemplares de las especies recolectadas por sector geográfico.

Tabla 6.- Distribución de ejemplares de las especies epibentónicas capturadas por sector.

		Sector geográfico					
			Secteur géographique				
Especie	Especie Nombre español		O.Souss-	O.Massa-	Tiznit-	Sidi Ifni-	
Espèce	Nom espagnol	Nom français	Agadir	O.Souss	O.Massa	Tiznit	
Etmopterus spinax (Linnaeus, 1758)	Negrito	Sagre commun			1	1	
Conger conger (Linnaeus, 1758)	Congrio	Congre				2	
Merluccius merluccius (Linnaeus, 1758)	Merluza europea	Merlu commun	1				
Gadella maraldi (Risso, 1810)	Gadella	Moro du large			1	4	
Parapenaeus longirostris (Lucas, 1849)	Gamba de altura	Crevette rose du large	43	7	4	3	
Chlorotocus crassicornis (Costa, 1871)	Camarón verde	Crevette verte	21	10		5	
Heterocarpus ensifer A. Milne Edwards, 1881	Camarón cabezudo	Crevette nylon armée		1	60	31	
Plesionika edwardsii (Brandt,1851)	Camarón soldado	Crevette Edward		728	1144	7102	
Plesionika ensis (A. Milne Edwards, 1881)	Camarón gladiador rayado	Crevette gladiateur rayée				1	
Plesionika heterocarpus (Costa,1871)	Camarón flecha	Crevette-flèche	14	5	1	3	
Plesionika martia (A. Milne Edwards, 1881)	Camarón marcial	Crevette dorée		1		1	
Plesionika narval (J.C Fabricius, 1787)	Camarón narval	Crevette narval			64	45	
Dardanus arrosor (Herbst, 1796)	Ermitaño de estrías	Bernard-l'ermite strié	3				
Munida sp1	Munida	Galathée			2		
Munida sp2	Munida	Galathée		1			
Homola barbata (J.C Fabricius, 1793)	Homola	Homole	2	1			

Se observa que la especie-objetivo, el camarón soldado (*Plesionika edwardsii*), fue capturada con un determinado nivel de abundancia en los sectores 2 a 4 (entre Oued Souss y Sidi Ifni), sobre todo en el sector 4 (Sidi Ifni – Tiznit) y con captura cero en el sector 1 (Oued Souss – Agadir). Las razones de esta distribución se explicarán más adelante. Las restantes especies recolectadas, incluyendo las especies acompañantes de interés comercial (bycatch) –sobre todo integradas por camarones Pandalidae– y las especies incidentales estuvieron representadas en las capturas por un número bajo o muy bajo de ejemplares (Tabla 6).

Este resultado da una primera idea del alto grado de selectividad específica del sistema de pesca empleado (nasa camaronera semi-flotante cebada con sable blanco), que se ha mostrado adecuado para la captura de camarones pandálidos (*Plesionika*, *Heterocarpus* y *Chlorotocus*).

En la Tabla 7 se recoge la distribución de ejemplares de las especies recolectadas por tipo de sustrato (blando o duro).

Tabla 7.- Distribución de ejemplares de las especies epibentónicas capturadas por tipo de sustrato.

			Sustrato /	Substrate
Especie	Nombre español	Nombre francés	Duro	Blando
Espèce	Nom espagnol	Nom français	Dur	Mou
Etmopterus spinax (Linnaeus, 1758)	Negrito	Sagre commun	2	
Conger conger (Linnaeus, 1758)	Congrio	Congre	2	
Merluccius merluccius (Linnaeus, 1758)	Merluza europea	Merlu commun		1
Gadella maraldi (Risso, 1810)	Gadella	Moro du large	5	
Parapenaeus longirostris (Lucas, 1849)	Gamba de altura	Crevette rose du large	14	43
Chlorotocus crassicornis (Costa, 1871)	Camarón verde	Crevette verte	15	21
Heterocarpus ensifer A. Milne Edwards, 1881	Camarón cabezudo	Crevette nylon armée	91	1
Plesionika edwardsii (Brandt,1851)	Camarón soldado	Crevette Edward	8882	81
Plesionika ensis (A. Milne Edwards, 1881)	Camarón gladiador rayado	Crevette gladiateur rayée	1	
Plesionika heterocarpus (Costa,1871)	Camarón flecha	Crevette-flèche	8	15
Plesionika martia (A. Milne Edwards, 1881)	Camarón marcial	Crevette dorée	2	
Plesionika narval (J.C Fabricius, 1787)	Camarón narval	Crevette narval	109	
Dardanus arrosor (Herbst, 1796)	Ermitaño de estrías	Bernard-l'ermite strié		3
Munida sp1	Munida	Galathée	2	
Munida sp2	Munida	Galathée	1	
Homola barbata (J.C Fabricius, 1793)	Homola	Homole	1	2

La especie-objetivo, el camarón soldado (*Plesionika edwardsii*), fue capturada casi exclusivamente por encima de fondos duros (rocosos). La única operación de pesca

clasificada como fondo blando, la pesca 34, donde aparecieron algunos ejemplares, puede incluir fondos mixtos con presencia de sustrato duro y blando. Igualmente, los camarones pandálidos *Plesionika narval* y *Heterocarpus ensifer* muestran una clara afinidad por los fondos duros, con capturas nulas en sustrato blando (Tabla 7).

En la Tabla 8 se recoge la distribución de ejemplares de las especies recolectadas por estrato batimétrico.

Tabla 8.- Distribución de ejemplares de las especies epibentónicas capturadas por intervalo de profundidad

prorundidad.					
Especie	Nombre español	Nombre francés	Es	stratos / Stra	tes
Espèce	Nom espagnol	Nom français	100-200 m	200-300 m	300-400 m
Etmopterus spinax (Linnaeus, 1758)	Negrito	Sagre commun	1	1	
Conger conger (Linnaeus, 1758)	Congrio	Congre		2	
Merluccius merluccius (Linnaeus, 1758)	Merluza europea	Merlu commun	1		
Gadella maraldi (Risso, 1810)	Gadella	Moro du large		5	
Parapenaeus longirostris (Lucas, 1849)	Gamba de altura	Crevette rose du large	2	38	17
Chlorotocus crassicornis (Costa, 1871)	Camarón verde	Crevette verte	5	10	21
Heterocarpus ensifer A. Milne Edwards, 1881	Camarón cabezudo	Crevette nylon armée		7	85
Plesionika edwardsii (Brandt,1851)	Camarón soldado	Crevette Edward	2657	3269	3048
Plesionika ensis (A. Milne Edwards, 1881)	Camarón gladiador rayado	Crevette gladiateur rayée			1
Plesionika heterocarpus (Costa,1871)	Camarón flecha	Crevette-flèche		6	17
Plesionika martia (A. Milne Edwards, 1881)	Camarón marcial	Crevette dorée			2
Plesionika narval (J.C Fabricius, 1787)	Camarón narval	Crevette narval	8	80	21
Dardanus arrosor (Herbst, 1796)	Ermitaño de estrías	Bernard-l'ermite strié	3		
Munida sp1	Munida	Galathée			2
Munida sp2	Munida	Galathée		1	
Homola barbata (J.C Fabricius, 1793)	Homola	Homole		2	1

Se observa que la especie-objetivo, el camarón soldado (*Plesionika edwardsii*), fue capturada en cantidades similares, sin diferencias estadísticas significativas (ver resultados del test en el apartado del análisis de las capturas), en los tres estratos batimétricos, aunque fue recolectada en mayor número en el intervalo de 200 a 300 m de profundidad, al igual que ocurre en Canarias (Tabla 8).

En relación con los camarones pandálidos acompañantes de interés comercial, el camarón narval (*Plesionika narval*) fue recolectado preferentemente en el estrato intermedio (200-300 m), en contra de lo observado en aguas de Canarias en donde se sitúa en el estrato somero (100-200 m). En la zona prospectada incluso fue capturado con mayor abundancia en el estrato más profundo (300-400 m) que en el más somero (100-200 m). Con la información disponible no podemos dar una explicación de por qué el camarón narval no se ha capturado mayoritariamente en el primer estrato. Sin embargo, el camarón cabezudo (*Heterocarpus ensifer*) fue capturado preferentemente en el estrato más profundo (300-400 m) y su patrón de distribución vertical es similar al encontrado en los archipiélagos del Atlántico nororiental, con un cierto grado de solapamiento con la especie-objetivo (Tabla 8).

En la Tabla 9 se recogen las características (datos de captura y datos morfológicos) de los ejemplares de las especies depositadas en las colecciones biológicas de referencia. A medida que el muestreo biológico del material conservado vaya avanzando, se completarán dichas colecciones, preparándose un lote para el INRH y otro para el ICCM. En las figuras 29-33 se presentan imágenes de los ejemplares depositados en las colecciones biológicas de referencia.

En el momento de cerrar la presente Memoria, una especie de crustáceos, una de peces cartilaginosos y tres de peces óseos fueron tratados, fotografiados y depositados. Como se ha comentado en el apartado de material y métodos, las colecciones serán completadas en septiembre de 2011 en el momento en que la mayor parte de las capturas serán descongeladas

para su muestreo biológico en laboratorio previo a su empleo en un evento gastronómico promocional y de divulgación.

Tabla 9.- Lista de especies y ejemplares depositados en colecciones biológicas de referencia.

Especie	Familia	Nombre español	Nombre francés	Datos de captura	N	Talla (LC, LT en mm)	Sexo	Colección
Plesionika edwardsii	Pandalidae	Camarón soldado	Crevette Edward	Op. 28, 150m, Oued Massa-Oued Souss, 10/05/2011, NCSF	4	15,5-21,4	macho	ICCM
Plesionika edwardsii	Pandalidae	Camarón soldado	Crevette Edward	Op. 28, 150m, Oued Massa-Oued Souss, 10/05/2011, NCSF	4	16,4-23,0	macho	INRH
Plesionika edwardsii	Pandalidae	Camarón soldado	Crevette Edward	Op. 28, 150m, Oued Massa-Oued Souss, 10/05/2011, NCSF	4	16,5-17,2	hembra no ovígera	ICCM
Plesionika edwardsii	Pandalidae	Camarón soldado	Crevette Edward	Op. 28, 150m, Oued Massa-Oued Souss, 10/05/2011, NCSF	4	14,9-17,2	hembra no ovígera	INRH
Plesionika edwardsii	Pandalidae	Camarón soldado	Crevette Edward	Op. 28, 150m, Oued Massa-Oued Souss, 10/05/2011, NCSF	4	23,6-26,7	hembra ovígera	ICCM
Plesionika edwardsii	Pandalidae	Camarón soldado	Crevette Edward	Op. 28, 150m, Oued Massa-Oued Souss, 10/05/2011, NCSF	4	19,8-25,8	hembra ovígera	INRH
Etmopterus spinax	Etmopteridae	Negrito	Sagre commun	Op. 20, 250m, Tiznit-Oued Massa, 07/05/2011, NCSF	1	255	-	ICCM
Etmopterus spinax	Etmopteridae	Negrito	Sagre commun	Op. 16, 150m, Sidi Ifni- Tiznit, 06/05/2011, NCSF	1	250	-	INRH
Gadella maraldi	Gadella	Gadella	Moro du large	Op. 23, 250m, Tiznit-Oued Massa, 08/05/2011, NCSF	1	192	-	INRH
Conger conger	Congridae	Congrio	Congre	Op. 11, 250m, Sidi Ifni-Tiznit, 04/05/2011, NCSF	1	367	-	INRH
Merluccius merluccius	Merluccidae	Merluza europea	Merlu commun	Op. 4, 150m, Oued Souss-Agadir, 02/05/2011, NCSF	1	246	-	INRH

Fig. 32.- Plesionika edwardsii: individuo no ovígero (izq.) y hembra no ovígera (dcha).

Fig. 33.- Etmopterus spinax.

Fig. 34.- Gadella maraldi.

Fig. 35.- Conger conger.

Fig. 36.- Merluccius merluccius.

3.4.- Especie-objetivo, bycatch y captura incidental

De acuerdo con el grado de interés comercial, las 16 especies capturadas han sido clasificadas en tres grupos ampliamente aceptados en estudios pesqueros: especies-objetivo, bycatch y especies incidentales (Tabla 10).

A la vista de los resultados, como era esperado, la única especie que ha recibido la consideración de especie-objetivo es el camarón soldado (*Plesionika edwardsii*). Asimismo, igualmente esperado, las restantes especies de Pandalidae (*Plesionika, Heterocarpus* y *Chlorotocus*) han sido consideradas como especies acompañantes de interés comercial (bycatch). Las tres especies de peces óseos integrantes en el bycatch tan solo estuvieron representadas por ocho ejemplares en su conjunto. Cabe ser destacado el escaso número de especies (3) que han formado parte del grupo de captura incidental, con apenas ocho ejemplares en su conjunto (Tabla 10).

Tabla 10.- Clasificación comercial de las especies capturadas.

Tabla 10 Clasiii	cacion co	mererar ac ras es	pecies captaradas	·•	
Grupo	Familia	Especie	Nombre español	Nombre francés	Clasificación comercial
Groupe	Famille	Espèce	Nom espagnol	Nom français	Classification commercial
CONDRICHTHYES	Etmopteridae	Etmopterus spinax	Negrito	Sagre commun	INCIDENTAL
OSTEICHTHYES	Congridae	Conger conger	Congrio	Congre	BYCATCH
	Merlucciidae	Merluccius merluccius	Merluza europea	Merlu commun	BYCATCH
	Moridae	Gadella maraldi	Gadella	Moro du large	BYCATCH
CRUSTACEA DECAPODA					
Dendrobranchiata	Penaeidae	Parapenaeus longirostris	Gamba de altura	Crevette rose du large	BYCATCH
Caridea	Pandalidae	Chlorotocus crassicornis	Camarón verde	Crevette verte	BYCATCH
	Pandalidae	Heterocarpus ensifer	Camarón cabezudo	Crevette nylon armée	BYCATCH
	Pandalidae	Plesionika edwardsii	Camarón soldado	Crevette Edward	ESPECIE-OBJETIVO
	Pandalidae	Plesionika ensis	Camarón gladiador rayado	Crevette gladiateur rayée	BYCATCH
	Pandalidae	Plesionika heterocarpus	Camarón flecha	Crevette-flèche	BYCATCH
	Pandalidae	Plesionika martia	Camarón marcial	Crevette dorée	BYCATCH
	Pandalidae	Plesionika narval	Camarón narval	Crevette narval	BYCATCH
Anomura	Diogenidae	Dardanus arrosor	Ermitaño de estrías	Bernard-l'ermite strié	INCIDENTAL
	Galatheidae	Munida sp1	Munida	Galathée	BYCATCH
	Galatheidae	Munida sp2	Munida	Galathée	BYCATCH
Brachyura	Homolidae	Homola barbata	Homola	Homole	INCIDENTAL

Esta asignación de las especies recolectadas por las nasas camaroneras semi-flotantes es previa y necesaria para llevar a cabo el análisis de las capturas y de los rendimientos (CPUE) para el conjunto de las pescas de prospección, por sector geográfico, por tipo de sustrato y por estrato batimétrico. Ver próximo capítulo.

3.5.- Distribución de capturas y rendimientos

3.5.1.- Análisis de la captura

En la Tabla 11 se señala la captura, en gramos, obtenida en cada una de las 33 operaciones de pesca válidas para los cuatro grupos de especies considerados en el análisis (especie-objetivo, bycatch, captura incidental y captura total).

Tabla 11.- Distribución de la captura (g) de cada pesca por grupo de especies.

OPERACIÓN	P.edwardsii	Bycatch	Incidental	Captura Total
1	0	65	4	69
2	0	20	0	20
4	0	116	0	116
5	0	0	100	100
6	0	2	0	2
7	0	45	0	45
8	0	45	0	45
9	0	40	2	42
10	10000	50	0	10050
11	14800	1506	0	16306
12	9600	0	0	9600
13	6400	25	0	6425
14	4420	10	0	4430
15	4200	0	0	4200
16	3320	2	60	3382
17	2370	254	0	2624
18	4620	289	0	4909
19	80	0	0	80
20	700	12	60	772
21	300	25	0	325
22	300	5	0	305
23	3300	70	0	3370
24	2900	17	0	2917
25	0	13	0	13
26	1400	123	0	1523
27	640	310	0	950
28	4850	0	0	4850
29	500	4	0	504
30	0	18	0	18
31	0	0	0	0
32	0	21	1	22
33	0	18	0	18
34	775	3	0	778

Como se analizará a continuación, cabe destacar que la captura de la especie-objetivo alcanzó valores máximos en las operaciones de pesca 10 a 18 (sector Sidi Ifni-Tiznit, el situado más al sur del área prospectada, con un pico de 14.800 g en la estación 11, sin captura de especies incidentales ni de descartes). Por el contrario, se obtuvieron valores nulos la captura de la especie-objetivo en las operaciones de pesca 1 a 9 (sector Oued Souss-Agadir, el situado más al norte del área prospectada) y en las 30 a 33 (parte norte del sector Oued Massa-Oued Souss, colindante con el anterior) (Tabla 12).

Ver análisis de la captura por sectores geográficos.

En la Tabla 12 se presentan los resultados de los estadísticos descriptivos (media, desviación estándar y suma) de la captura (g) para sus cuatro componentes (especie-objetivo, bycatch, captura incidental y total) en los cuatro sectores geográficos considerados en la prospección.

Tabla 12.- Estadísticos descriptivos de la captura (g) por componentes y sectores.

1		-		\C/ 1	1 7							
	P. edwardsii		Bycatch			Incidental			Ca	Captura total		
SECTOR	Media	Desv. típica	Suma	Media	Desv. típica	Suma	Media	Desv. típica	Suma	Media	Desv. típica	Suma
Sidi Ifni – Tiznit	6637	4045	59730	237	489	2136	7	20	60	6881	4386	61926
Tiznit - O.Massa	1069	1228	9620	64	100	575	7	20	60	1139	1235	10255
O.Massa - O.Souss	875	1780	6125	9	9	64	0	0	1	884	1775	6190
O.Souss – Agadir	0	0	0	42	38	333	13	35	106	55	38	439

Los valores de la captura de la especie-objetivo resultaron ser máximos en el sector más meridional (Sidi Ifni-Tiznit) del área prospectada (9 pescas experimentales que proporcionaron 59.730 g de camarón soldado). También el bycatch, aunque inferior al 5% en peso, tomó los mayores valores en este sector (Tabla 12).

Debido a las razones que se han expuesto (la hidrología local y probablemente también la naturaleza blanda del sustrato con escasa inclinación), las capturas de la especie-objetivo fueron nulas y el bycatch muy pobre en el sector más septentrional (Oued Souss-Agadir) del área prospectada (9 pescas experimentales) (Tabla 12).

Considerando estos resultados y observando los valores de los sectores latitudinalmente intermedios, la captura tanto de la especie-objetivo como del bycatch muestra una clara tendencia a la disminución en el sentido sur-norte, con un descenso drástico en el sector Tiznit-Oued Massa (9 pescas que rindieron 9.620 g) y en el sector Oued Massa-Oued Souss (7 pescas con 6.125 g) (Tabla 12).

La comparación estadística de la captura de la especie-objetivo, *P. edwarssii*, entre sectores muestra que la captura obtenida en el sector más meridional (Sidi Ifni-Tiznit) es significativamente superior a la del sector contiguo en dirección norte (Tiznit-Oued Massa) (P<0,05) (Tabla 13).

Tabla 13.- Comparación estadística entre la captura en los sectores Sidi Ifni-Tiznit y Tiznit-Oued Massa (P<0,05).

	SECTOR	N	Media	Desv. típica	Error	típ. de la media
P. edwardsii	Sidi Ifni - Tiznit	9	6636,67	4045,244		1348,415
	Tiznit - O. Massa	9	1068,89	1227,970		409,323
			de Levene gualdad de	Prueba T para l		
		F	Sig.	T	gl	Sig. (bilateral)
P. edwardsii	Se han asumido varianzas iguales	8,823	0,009	3,951	16	0,001
	No se han asumido varianzas iguales			3,951	9,462	0,003

Por el contrario, la comparación estadística de la captura de la especie-objetivo muestra que la captura obtenida en el sector Tiznit-Oued Massa no es significativamente diferente de la extraída en el sector Oued Massa-Oued Souss (P>0,05) (Tabla 14).

Tabla 14.- Comparación estadística entre la captura en los sectores Tiznit-Oued Massa y Oued Massa-Oued Souss (P<0,05).

	SECTOR		Media	Desv. típica	Error	típ. de la media	
P. edwardsii	Tiznit - O. Massa	9	1068,89	1227,97	70	409,323	
	O. Massa - O. Souss	7	875,00	1780,15	57	672,836	
-			para la igualdad de		ı la igualdad		
		F	Sig.	t	gl	Sig. (bilateral)	
P.edwardsii	P.edwardsii Se han asumido varianzas iguales		0,752	0,258	14	0,800	
	No se han asumido varianzas iguales			0,246	10,214	0,810	

En la Tabla 15 se presentan los resultados de los estadísticos descriptivos (media, desviación típica y suma) de la captura (g) para sus cuatro componentes (especie-objetivo, bycatch, captura incidental y total) en los dos tipos de sustrato (duro o blanco) considerados en la prospección.

Tabla 15.- Estadísticos descriptivos de la captura (g) por componentes y tipo de sustrato.

		SUSTRATO									
		BLANDO		DURO							
	Media	Desv. típica	Desv. típica	Suma							
P. edwardsii	86	258	775	3113	3850	74700					
Bycatch	37	37	336	116	311	2772					
Incidental	12	33	106	5	17	121					
Captura total	135	244	1217	3233	4048	77593					

Los valores de la captura de la especie-objetivo resultaron ser máximos por encima de sustrato duro (rocoso) (24 pescas experimentales que proporcionaron 74.700 g de camarón soldado). También el bycatch, aunque inferior al 3% en peso, tomó los mayores valores en este sector. En cambio, la captura de la especie-objetivo por encima de sustrato blando (9 pescas con apenas 775 g) fue muy pobre (Tabla 15).

La comparación estadística de la captura de *P. edwardsii* por tipo de sustrato muestra, como era de esperar, que existen diferencias significativas (P<0,05) entre los fondos rocosos y los blandos a favor de los primeros. Resultados análogos se obtuvieron con la captura de bycatch y la captura total (Tabla 16).

Tabla 16.- Comparación estadística entre la captura en ambos tipos de sustrato (duro y blando) (P<0,05).

			Levene para la l de varianzas	Prueba T para la igualdad de medias			
		F Sig. T			gl	Sig. (bilateral)	
P. edwardsii	Se han asumido varianzas iguales	10,352	0,003	-2,333	31	0,026	
	No se han asumido varianzas iguales			-3,828	23,546	0,001	

En la Tabla 17 se presentan los resultados de los estadísticos descriptivos (media, desviación típica y suma) de la captura (g) para sus cuatro componentes (especie-objetivo, bycatch, captura incidental y total) en los tres estratos batimétricos (con profundidades medias en 150, 250 y 350 m) considerados en la prospección.

Los valores de la captura de la especie-objetivo resultaron ser máximos alrededor de 250 m de profundidad (intervalo batimétrico de 200-300 m, con 11 pescas experimentales que proporcionaron 27.490 g de camarón soldado). También el bycatch, aunque inferior al 10% en peso, tomó los mayores valores en este sector. En cambio, la captura tanto de la especie-objetivo como del bycatch registró valores mínimos alrededor de 150 m, es decir, en el estrato más somero (intervalo de 100-200 m, con 11 pescas aportando 22.350 g). El intervalo batimétrico más profundo (300-400 m) rindió valores intermedios (con 11 pescas y 25.635 g) (Tabla 17).

Tabla 17.- Estadísticos descriptivos de la captura (g) por componentes y profundidad.

Tuota 17. Es		ESTRATO											
		150 m			250 m			350 m					
	Media	Desv. típica	Suma	Media	Desv. típica	Suma	Media	Desv. típica	Suma				
P. edwardsii	2032	3147	22350	2499	4348	27490	2330	3348	25635				
Bycatch	13	35	138	194	441	2130	76	112	840				
Incidental	15	34	160	6	18	63	0	1	4				
Captura total	2059	3135	22648	2698	4763	29683	2407	3358	26479				

La comparación estadística de la captura de *P. edwardsii* muestra que no existen diferencias significativas (P<0,05) entre la obtenida en el intervalo somero (100-200 m) y el intervalo intermedio (200-300 m) (Tabla 18).

Tabla 18.- Comparación estadística entre la captura en los intervalos de profundidad 100-200 m y 200-300 m (P<0,05).

III y 200-300 II	(1 (0,00).		-	_				
	ESTRATO	N	Media	Desv. típica	Err	or típico	de la media	
P. edwardsii	150 m	11	2031,82	3146,906			948,828	
	250 m	11	2499,09	4348,371			1311,083	
	•			Levene para la de varianzas	Prueba T para la igualdad de medias			
			F	Sig.	t	gl	Sig. (bilateral)	
P. edwardsii	Se han asumi varianzas igu		0,037	0,849	-0,289	20	0,776	
	No se han asu varianzas igus				-0,289	18,220	0,776	

La comparación estadística de la captura de *P. edwardsii* muestra que no existen diferencias significativas (P<0,05) entre la obtenida en el intervalo intermedio (200-300 m) y el intervalo profundo (300-400 m) (Tabla 19).

Tabla 19.- Comparación estadística entre la captura en los intervalos de profundidad 200-300 m y 300-400 m (P<0,05).

	ESTRATO	N	Media	Desv. típica	Err	or típico	de la media
P. edwardsii	250 m	11	2499,09	4348,371	13		1311,083
	350 m	11	2330,45	3347,737		1009,381	
				Levene para la l de varianzas Sig.	i t	Γ para la de medias Sig. (bilateral)	
P. edwardsii	Se han asumido varianzas iguales		0,005	0,946	0,102	20	0,920
	No se han as varianzas igu				0,102	18,772	0,920

En la Tabla 20 se presentan los resultados de los estadísticos descriptivos (media, desviación típica y suma) de la captura (g) para sus cuatro sectores geográficos y sus cuatro componentes (especie-objetivo, bycatch, captura incidental y total) y, en cada uno de ellos, en los tres estratos batimétricos (150, 250 y 350 m) considerados en la prospección.

Tabla 20.- Estadísticos descriptivos de la captura (g) por sector, componentes y profundidad.

	Litadisticos e	•	ESTRATO									
			150 m			250 m		350 m				
		Media	Desv. típica	Suma	Media	Desv. típica	Suma	Media	Desv. típica	Suma		
O. Souss-	P. edwardsii	0	0	0	0	0	0	0	0	0		
Agadir	Bycatch	39	66	118	43	3	130	43	32	85		
	Incidental	33	58	100	1	1	2	2	3	4		
	Captura total	73	62	218	44	2	132	45	35	89		
Sidi Ifni-	P. edwardsii	5707	3400	17120	7197	6664	21590	7007	2741	21020		
Tiznit	Bycatch	1	1	2	590	803	1770	121	146	364		
	Incidental	20	35	60	0	0	0	0	0	0		
	Captura total	5727	3379	17182	7787	7433	23360	7128	2642	21384		
Tiznit-	P. edwardsii	127	155	380	1800	1345	5400	1280	1413	3840		
O. Massa	Bycatch	6	7	18	68	56	205	117	167	352		
	Incidental	0	0	0	20	35	60	0	0	0		
	Captura total	133	153	398	1888	1337	5665	1397	1353	4192		
O. Massa-	P. edwardsii	2425	3429	4850	250	354	500	258	447	775		
O. Souss	Bycatch	0	0	0	13	12	25	13	9	39		
	Incidental	0	0	0	1	1	1	0	0	0		
	Captura total	2425	3429	4850	263	341	526	271	439	814		

La comparación estadística de la captura de los diferentes componentes específicos muestra que no existen diferencias significativas (P<0,05) entre los estratos batimétricos correlativos prospectados en el sector Sidi Ifni-Tiznit (Tablas 21 y 22).

Tabla 21.- Comparación estadística entre la captura en los intervalos de profundidad 100-200

m y 200-300 m del sector Sidi Ifni-Tiznit (P<0,05).

	ESTRATO	N	Media	Desv. típica	Err	or típico d	e la media
P. edwardsii	150 m	3	5706,67	3400,314			1963,172
	250 m	3	7196,67	6663,980			3847,451
Bycatch	150 m	3	0,67	1,155			0,667
	250 m	3	590,00	802,606			463,385
Captura total	150 m	3	5727,33	3378,674			1950,679
	250 m	3	7786,67	7433,013			4291,452
				Levene para la e varianzas		Prueba T gualdad de	
			F	Sig.	t	gl	Sig. (bilateral)
P. edwardsii	Se han asumid varianzas igual		2,505	0,189	-0,345	4	0,748
	No se han asur varianzas igual				-0,345	2,975	0,753
Bycatch	Se han asumid varianzas igual		13,153	0,022	-1,272	4	0,272
	No se han asumido varianzas iguales				-1,272	2,000	0,331
Captura total	Se han asumido varianzas iguales		3,477	0,136	-0,437	4	0,685
	No se han asur varianzas igual				-0,437	2,793	0,694

Tabla 22.- Comparación estadística entre la captura en los intervalos de profundidad 200-300

m y 300-400 m del sector Sidi Ifni-Tiznit (P<0,05).

	ESTRATO	N	Media	Desv. típica	En	ror típico	de la media		
P. edwardsii	250 m	3	7196,67	6663,980			3847,451		
	350 m	3	7006,67	2740,827			1582,417		
Bycatch	250 m	3	590,00	802,606	463,385				
	350 m	3	121,33	145,741	84,143				
Captura total	250 m	3	7786,67	7433,013			4291,452		
	350 m	3	7128,00	2641,614	1525,137				
				e Levene para d de varianzas	Prueba T para la igualdad de medias				
			F	Sig.	t	gl	Sig. (bilateral)		
P. edwardsii	Se han asumi varianzas igu		3,826	0,122	0,046	4	0,966		
	No se han asu varianzas igua				0,046	2,658	0,967		
Bycatch	Se han asumi varianzas igua		8,553	0,043	0,995	4	0,376		
	No se han asumido varianzas iguales				0,995	2,132	0,419		
Captura total	Se han asumido varianzas iguales		5,126	0,086	0,145	4	0,892		
	No se han asu varianzas igua				0,145	2,497	0,896		

La comparación estadística de la captura de los diferentes componentes específicos muestra que no existen diferencias significativas (P<0,05) entre los estratos batimétricos correlativos prospectados en el sector Tiznit-Oued Massa (Tablas 23 y 24).

Tabla 23.- Comparación estadística entre la captura en los intervalos de profundidad 100-200

m y 200-300 m del sector Tiznit-Oued Massa (P<0,05).

III y 200-300 I	ESTRATO	N	Media	Desv. típica	Err	or típico o	de la media		
P. edwardsii	150 m	3	126,67	155,349	_		89,691		
	250 m	3	1800,00	1345,362			776,745		
Bycatch	150 m	3	6,00	6,557			3,786		
	250 m	3	68,33	55,519	32,05				
Captura total	150 m	3	132,67	152,959			88,311		
	250 m	3	1888,33	1336,975	771,90				
	-			Levene para d de varianzas	Prueba T para la igualdad de medias				
				Sig.	t	gl	Sig. (bilateral)		
P. edwardsii	Se han asumi varianzas igu		7,471	0,052	-2,140	4	0,099		
	No se han asu varianzas igua	ımido			-2,140	2,053	0,162		
Bycatch	Se han asumi varianzas igua		3,321	0,142	-1,931	4	0,126		
	No se han asumido varianzas iguales				-1,931	2,056	0,190		
Captura total	Se han asumi varianzas igua		6,979	0,057	-2,260	4	0,087		
	No se han asu varianzas igus				-2,260	2,052	0,149		

Tabla 24.- Comparación estadística entre la captura en los intervalos de profundidad 200-300

m y 300-400 m del sector Tiznit-Oued Massa (P<0,05).

	ESTRATO	N	Media	Desv. típica	Err	or típico o	de la media	
P. edwardsii	250 m	3	1800,00	1345,362			776,745	
	350 m	3	1280,00	1413,223			815,925	
Bycatch	250 m	3	68,33	55,519	32,054			
	350 m	3	117,33	166,902	96,361			
Captura total	250 m	3	1888,33	1336,975	771,90			
	350 m	3	1397,33	1352,663	780,96			
				Levene para d de varianzas	Prueba T para la igualdad de medias			
				Sig.	t	gl	Sig. (bilateral)	
P. edwardsii	Se han asumio varianzas igua		0,034	0,862	0,462	4	0,668	
	No se han asu varianzas igua				0,462	3,990	0,668	
Bycatch	Se han asumio varianzas igua		6,080	0,069	-0,483	4	0,655	
	No se han asumido varianzas iguales				-0,483	2,437	0,669	
Captura total	Se han asumic varianzas igua		0,003	0,958	0,447	4	0,678	
	No se han asu varianzas igua				0,447	3,999	0,678	

La comparación estadística de la captura de los diferentes componentes específicos muestra que no existen diferencias significativas (P<0,05) entre los estratos batimétricos correlativos prospectados en el sector Oued Massa-Oued Souss (Tablas 25 y 26).

Tabla 25.- Comparación estadística entre la captura en los intervalos de profundidad 100-200 m y 200-300 m del sector Oued Massa-Oued Souss (P<0,05).

	ESTRATO	N	Media	Desv. típica	Err	or típico o	de la media	
P. edwardsii	150 m	2	2425,00	3429,468			2425,000	
	250 m	2	250,00	353,553			250,000	
Bycatch	150 m	2	0,00	0,000	0,00			
	250 m	2	12,50	12,021	8,500			
Captura total	150 m	2	2425,00	3429,468			2425,000	
	250 m	2	263,00	340,825			241,000	
				Levene para d de varianzas	Prueba T para la igualdad de medias			
			F	Sig.	t	gl	Sig. (bilateral)	
P. edwardsii	Se han asumi varianzas igus				0,892	2	0,466	
	No se han asu varianzas igua				0,892	1,021	0,534	
Bycatch	Se han asumi varianzas igu				-1,471	2	0,279	
	No se han asumido varianzas iguales				-1,471	1,000	0,380	
Captura total	Se han asumi varianzas igua			•	0,887	2	0,469	
	No se han asu varianzas igua				0,887	1,020	0,536	

Tabla 26.- Comparación estadística entre la captura en los intervalos de profundidad 200-300

m y 300-400 m del sector Oued Massa-Oued Souss (P<0,05).

	ESTRATO	N	Media	Desv. típica	Err	or típico o	de la media		
P. edwardsii	250 m	2	250,00	353,553			250,000		
	350 m	3	258,33	447,446			258,333		
Bycatch	250 m	2	12,50	12,021	8,500				
	350 m	3	13,00	8,660	5,000				
Captura total	250 m	2	263,00	340,825			241,000		
	350 m	3	271,33	438,786			253,333		
				Levene para d de varianzas	Prueba T para la igualdad de medias				
			F	Sig.	t	gl	Sig. (bilateral)		
P. edwardsii	Se han asumi varianzas igu		0,722	0,458	-0,022	3	0,984		
	No se han asu varianzas igua				-0,023	2,723	0,983		
Bycatch	Se han asumi varianzas igua		0,726	0,457	-0,055	3	0,959		
	No se han asumido varianzas iguales				-0,051	1,709	0,965		
Captura total	Se han asumi varianzas igua			•	1,342	3	0,272		
	No se han asu varianzas igua				1,000	1,000	0,500		

En la Tabla 27 se presentan los resultados de los estadísticos descriptivos (media, desviación típica y suma) de la captura (g) para los cuatro sectores geográficos y sus cuatro componentes (especie-objetivo, bycatch, captura incidental y total) y, en cada uno de ellos, en los dos tipos de sustratos (blando y duro) considerados en la prospección.

Se observa que la comparación estadística no es posible en los sectores Oued Souss-Agadir (solo se hicieron pescas en sustrato blando), Sidi Ifni-Tiznit (solo con pescas en sustrato duro) y Tiznit-Oued Massa (solo con pescas en sustrato duro). En el sector Oued Massa-Oued Souss la comparación no es posible porque apenas se llevó a cabo una pesca sobre sustrato blando (Tabla 27).

Tabla 27.- Estadísticos descriptivos de la captura (g) por sector, componentes y tipo de sustrato.

				SUST	RATO		
		В	LANDO)		DURO	
			Desv.			Desv.	
		Media	típica	Suma	Media	típica	Suma
Oued Souss-Agadir	P. edwardsii	0	0	0			
	Bycatch	42	38	333			
	Incidental	13	35	106			
	Captura total	55	38	439			
Sidi Ifni-Tiznit	P. edwardsii				6637	4045	59730
	Bycatch				237	489	2136
	Incidental				7	20	60
	Captura total				6881	4386	61926
Tiznit-Oued Massa	P. edwardsii				1069	1228	9620
	Bycatch				64	100	575
	Incidental				7	20	60
	Captura total				1139	1235	10255
Oued Massa-Oued Souss	P. edwardsii	775		775	892	1949	5350
	Bycatch	3		3	10	10	61
	Incidental	0		0	0	0	1
	Captura total	778		778	902	1944	5412

En la Tabla 28 se presentan los resultados de los estadísticos descriptivos (media, desviación estándar y suma) de la captura (g) para los cuatro sectores geográficos, sus tres estratos batimétricos y sus cuatro componentes (especie-objetivo, bycatch, captura incidental y total) y, en cada uno de ellos, en los dos tipos de sustratos (blando y duro) considerados en la prospección.

Tabla 28.- Estadísticos descriptivos de la captura (g) por sector, estrato, profundidad,

componentes y tipo de sustrato.

*	энсэ у про с								TRATO
					BLANDO			DURO	
				Media	D. típica	Suma	Media	D. típica	Suma
			P. edwardsii	0	0	0			
		150 m	Bycatch	39	66	118			
		130 111	Incidental	33	58	100			
			Captura total	73	62	218			
			P. edwardsii	0	0	0			
O. Souss-	ESTRATO	250 m	Bycatch	43	3	130			
Agadir	LSTRATO	230 111	Incidental	1	1	2			
			Captura total	44	2	132			
			P. edwardsii	0	0	0			
		350 m	Bycatch	43	32	85			
		330 III	Incidental	2	3	4			
			Captura total	45	35	89			
			P. edwardsii				5707	3400	17120
		150 m	Bycatch		•		1	1	2
	150	130 111	Incidental				20	35	60
			Captura total				5727	3379	17182
			P. edwardsii		•		7197	6664	21590
Sidi Ifni-	ESTRATO	250 m	Bycatch				590	803	1770
Tiznit	LSTRATO	230 III	Incidental				0	0	0
			Captura total				7787	7433	23360
			P. edwardsii				7007	2741	21020
		350 m	Bycatch				121	146	364
			Incidental				0	0	0
			Captura total				7128	2642	21384
		150 m	P. edwardsii				127	155	380
			Bycatch		•		6	7	18
			Incidental				0	0	0
			Captura total		•		133	153	398
Tiznit-			P. edwardsii		•		1800	1345	5400
O. Massa	ESTRATO	250 m	Bycatch				68	56	205
O. Iviassa	LSTRATO	230 III	Incidental				20	35	60
			Captura total				1888	1337	5665
			P. edwardsii				1280	1413	3840
		350 m	Bycatch				117	167	352
		330 III	Incidental		•		0	0	0
			Captura total				1397	1353	4192
			P. edwardsii				2425	3429	4850
		150 m	Bycatch		•		0	0	0
		130 III	Incidental				0	0	0
			Captura total				2425	3429	4850
			P. edwardsii				250	354	500
O. Massa-		2.70	Bycatch				13	12	25
O. Souss	ESTRATO	250 m	Incidental			-	1	1	1
2.23455		F	Captura total	•	•	•	263	341	526
	ŀ		P. edwardsii	775	•	775	0	0	0
		F	Bycatch	3	•	3	18	0	36
		350 m			•				
1			Incidental	0	•	0	0	0	0
			Captura total	778	•	778	18	0	36

3.5.2.- Análisis de la CPUE

En la Tabla 29 se señala el rendimiento o captura por unidad de esfuerzo (CPUE), en gramos/nasa/noche, obtenida en cada una de las 33 operaciones de pesca válidas para los tres grupos de especies considerados en este análisis (especie-objetivo, especie-objetivo + bycatch y captura total).

Tabla 29.- Distribución de la CPUE (g/nasa/noche) de cada pesca por grupo de especies.

	- CI CI (g nasar	CPUE	grapo de esp
OPERACIÓN	P. edwardsii	P. edwarsii + Bycatch	Total
1	0,00	1,81	1,92
2	0,00	0,50	0,50
4	0,00	3,22	3,22
5	0,00	0,00	2,50
6	0,00	0,05	0,05
7	0,00	1,15	1,15
8	0,00	1,10	1,10
9	0,00	1,05	1,11
10	250,00	251,25	251,25
11	370,00	407,65	407,65
12	240,00	240,00	240,00
13	182,86	183,57	183,57
14	116,32	116,58	116,58
15	105,00	105,00	105,00
16	85,13	85,18	86,72
17	60,77	67,28	67,28
18	115,50	122,73	122,73
19	2,00	2,00	2,00
20	17,50	17,80	19,30
21	7,50	8,13	8,13
22	7,50	7,63	7,63
23	82,50	84,25	84,25
24	72,50	72,93	72,93
25	0,00	0,33	0,33
26	35,00	38,08	38,08
27	16,00	23,75	23,75
28	121,25	121,25	121,25
29	12,50	12,60	12,60
30	0,00	0,45	0,45
31	0,00	0,00	0,00
32	0,00	0,53	0,55
33	0,00	0,46	0,46
34	9,81	9,85	9,85

Como se analizará a continuación, cabe destacar que CPUE de la especie-objetivo y de la especie-objetivo+bycatch alcanzó valores máximos en las operaciones de pesca 10 a 18 (sector Sidi Ifni-Tiznit, el situado más al sur del área prospectada, con un pico de 14.800 g en la estación 11). Por el contrario, se obtuvieron valores nulos la captura de la especie-objetivo

en las operaciones de pesca 1 a 9 (sector Oued Souss-Agadir, el situado más al norte del área prospectada) y en las 30 a 33 (parte norte del sector Oued Massa-Oued Souss, colindante con el anterior) (Tabla 30).

Ver análisis de la captura por sectores geográficos.

En la Tabla 30 se presentan los resultados de los estadísticos descriptivos (media, desviación estándar y suma) del rendimiento o captura por unidad de esfuerzo (CPUE) para la especie-objetivo, especie objetivo+bycatch y total en los cuatro sectores geográficos considerados en la prospección.

Tabla 30.- Estadísticos descriptivos de la captura (g) por componentes y sectores.

			(0) 1		7		
			C	PUE			
	CPUE		P. edwardsii		CPUE		
	P. edwardsii		+B	ycatch	total		
	Desviación		Desviación			Desviación	
	Media	típica	Media	típica	Media	típica	
Sidi Ifni-Tiznit	169,51	100,42	175,47	108,95	175,64	108,79	
Tiznit - O.Massa	26,72	30,70	28,32	30,94	28,49	30,88	
O.Massa - O.Souss	20,51	44,74	20,73	44,63	20,74	44,62	
O.Souss – Agadir	,00	,00	1,11	1,05	1,44	1,05	

Los valores de rendimiento de la especie-objetivo resultaron ser máximos en el sector más meridional (Sidi Ifni-Tiznit) del área prospectada (9 pescas experimentales que proporcionaron un rendimiento medio de 169,51 g de camarón soldado por nasa y noche). También el rendimiento de la especie objetivo más el bycatch tomó los mayores valores en este sector (Tabla 30).

Debido a las razones que se han expuesto (la hidrología local y probablemente también la naturaleza blanda del sustrato con escasa inclinación), los rendimientos de la especie-objetivo fueron nulas y de la especie objetivo más el bycatch muy pobre en el sector más septentrional (Oued Souss-Agadir) del área prospectada (9 pescas experimentales) (Tabla 30).

Considerando estos resultados y observando los valores de los sectores latitudinalmente intermedios, los rendimientos tanto de la especie-objetivo como de ésta mas el bycatch muestra una clara tendencia a la disminución en el sentido sur-norte, con un descenso drástico en el sector Tiznit-Oued Massa (9 pescas que rindieron 26,72 g de camarón soldado por nasa y noche) y en el sector Oued Massa-Oued Souss (7 pescas con 20,51 g de camarón soldado por nasa y noche) (Tabla 30).

La comparación estadística de la captura por unidad de esfuerzo de la especie-objetivo, *P. edwardsii*, entre sectores muestra que la captura obtenida en el sector más meridional (Sidi Ifni-Tiznit) es significativamente superior a la del sector contiguo en dirección norte (Tiznit-Oued Massa) (P<0,05) (Tabla 31).

Tabla 31.- Comparación estadística entre la CPUE en los sectores Sidi Ifni-Tiznit y Tiznit-Oued Massa (P<0,05).

	SECTOR	N	Media	Desv. típica	Error	típ. de la media	
P. edwardsii	Sidi Ifni - Tiznit	9	169,5078	100,42096		33,47365	
	Tiznit - O. Massa	9	26,7222	30,69926		10,23309	
				Prueba T para la igualdad de medias			
	<u></u>	Г	Sig.	T	gl	Sig. (bilateral)	
P. edwardsii	Se han asumido varianzas iguales	9,755	,007	4,079	16	,001	
	No se han asumido varianzas iguales			4,079	9,482	,002	

Por el contrario, la comparación estadística del rendimiento de la especie-objetivo muestra que el rendimiento obtenido en el sector Tiznit-Oued Massa no es significativamente diferente de la extraída en el sector Oued Massa-Oued Souss (P>0,05) (Tabla 32).

Tabla 32.- Comparación estadística entre la CPUE en los sectores Tiznit-Oued Massa y Oued Massa-Oued Souss (P<0,05).

	SECTOR	N Media		Desv. típica	Error	Error típ. de la media	
P. edwardsii	Tiznit - O. Massa	9	26,7222	30,6992	26	10,23309	
	O. Massa - O. Souss	7	20,5086	44,7396	58	16,91001	
-		Prueba de Levene para la igualdad de varianzas		Prueba T para la igualdad de medias			
		F	Sig.	t	gl	Sig. (bilateral)	
P.edwardsii	Se han asumido varianzas iguales	0,126	0,728	0,330	14	0,746	
	No se han asumido varianzas iguales			0,314	10,176	0,760	

En la Tabla 33 se presentan los resultados de los estadísticos descriptivos (media y desviación típica) de la CPUE para la especie-objetivo, la especie objetivo+bycatch y total) en los dos tipos de sustrato (duro o blanco) considerados en la prospección.

Tabla 33.- Estadísticos descriptivos de la CPUE por componentes y tipo de sustrato.

				• •			
				(CPUE		
		CPUE		P. edwardssii +		CPUE	
		P. edwardsii		Bycatch		total	
		Desviación			Desviación		Desviación
		Media	típica	Media	típica	Media	típica
SUSTRATO	BLANDO	1,09	3,27	2,08	3,07	2,38	2,97
	DURO	79,16	97,29	82,06	102,19	82,19	102,15

Los valores de la CPUE de la especie-objetivo resultaron ser máximos encima de sustrato duro (rocoso) (24 pescas experimentales que proporcionaron un rendimiento medio de 79.16 g de camarón soldado por nasa y noche). En cambio, el rendimiento de la especie-objetivo encima de sustrato blando (9 pescas con apenas 1,1 g por nasa y noche) fue muy pobre (Tabla 33).

La comparación estadística de la CPUE de *P. edwardsii* por tipo de sustrato muestra, como era de esperar, que existen diferencias significativas (P<0,05) entre los fondos rocosos y los blandos a favor de los primeros. Resultados análogos se obtuvieron con la CPUE de la especie objetivo+bycatch y la CPUE total (Tabla 34).

Tabla 34.- Comparación estadística entre la CPUE en ambos tipos de sustrato (duro y blando) (P<0,05).

			Prueba de Levene para la igualdad de varianzas		Prueba T para la igualdad de medias		
		F	Sig.	Т	Gl	Sig. (bilateral)	
P. edwardsii	Se han asumido varianzas iguales	11,464	0,002	-2,383	31	0,023	
	No se han asumido varianzas iguales			-3,925	23,138	0,001	

En la Tabla 35 se presentan los resultados de los estadísticos descriptivos (media y desviación típica) de la CPUE para la especie-objetivo, la especie-objetivo+bycatch y total en los tres estratos batimétricos (con profundidades medias en 150, 250 y 350 m) considerados en la prospección.

Los valores de CPUE de la especie-objetivo resultaron ser máximos alrededor de 250 m de profundidad (intervalo batimétrico de 200-300 m, con 11 pescas experimentales que proporcionaron 63,14 g de camarón soldado por nasa y noche). También la especie objetivo+el bycatch tomó los mayores valores en este sector (68,01 g de camarón soldado por nasa y noche). En cambio, la CPUE en todos los casos registró los valores más bajos alrededor de 150 m, es decir, en el estrato más somero (intervalo de 100-200 m, con 11 pescas aportando 50,99 g de camarón soldado por nasa y noche). El intervalo batimétrico más profundo (300-400 m) rindió valores intermedios (con 11 pescas y 59,47 g de camarón soldado por nasa y noche) (Tabla 35).

Tabla 35.- Estadísticos descriptivos de la captura (g) por componentes y profundidad.

		CPUE		C	PUE	CPUE		
		P. edwardsii		P. edwardsii +Bycatch		Total		
		Desviación			Desviación		Desviación	
		Media típica		Media	típica	Media	típica	
ESTRATO	150 m	50,99	78,76	51,33	78,53	51,70	78,44	
	250 m	63,14	108,98	68,01	119,35	68,15	119,29	
	350 m	59,47	87,20	61,40	87,44	61,41	87,44	

La comparación estadística de la CPUE de *P. edwardsii* muestra que no existen diferencias significativas (P<0,05) entre la obtenida en el intervalo somero (100-200 m) y el intervalo intermedio (200-300 m) (Tabla 36).

Tabla 36.- Comparación estadística entre la CPUE en los intervalos de profundidad 100-200 m y 200-300 m (P<0.05).

	ESTRATO	N	Media	Desv. típica	Error típico de la media			
P. edwardsii	150 m	11	50,9889	78,76233			23,74774	
	250 m	11	63,1441	108,97572			32,85742	
				Levene para la de varianzas	Prueba T para la igualdad de medias			
			F	Sig.	t	gl	Sig. (bilateral)	
P. edwardsii	Se han asumido varianzas iguales		0,044	0,836	-0,300	20	0,767	
	No se han asu varianzas igu				-0,300	18,208	0,768	

La comparación estadística de la CPUE de *P. edwardsii* muestra que no existen diferencias significativas (P<0,05) entre la obtenida en el intervalo intermedio (200-300 m) y el intervalo profundo (300-400 m) (Tabla 37).

Tabla 37.- Comparación estadística entre la CPUE en los intervalos de profundidad 200-300 m y 300-400 m (P<0,05).

	ESTRATO	N	Media	Desv. típica	En	Error típico de la media		
P. edwardsii	250 m	11	63,1441	108,97572		32,85742		
	350 m	11	59,4698	87,20009		26,29182		
			Prueba de Levene para la igualdad de varianzas		Prueba T para la igualdad de medias			
			F	Sig.	t	Gl	Sig. (bilateral)	
P. edwardsii	Se han asumido varianzas iguales		0,001	0,982	0,087	20	0,931	
	No se han as varianzas igu				0,087	19,082	0,931	

En la Tabla 38 se presentan los resultados de los estadísticos descriptivos (media y desviación típica) de la CPUE (g) para sus cuatro sectores geográficos y sus tres componentes (especie-objetivo, especie-objetivo+bycatch y total) y, en cada uno de ellos, en los tres estratos batimétricos (150, 250 y 350 m) considerados en la prospección.

Tabla 38.- Estadísticos descriptivos de la CPUE por sector, componentes y profundidad.

				C	PUE		
		C	PUE	Р. ес	dwardsii	C	PUE
		P. edwardsii		+Bycatch		Total	
			Desviación		Desviación		Desviación
ESTRATO		Media	típica	Media	típica	Media	típica
O. Souss-Agadir	150	0,00	0,00	1,09	1,85	1,92	1,66
	250	0,00	0,00	1,10	0,05	1,12	0,03
	350	0,00	0,00	1,15	0,92	1,21	1,00
	150	143,38	84,27	143,39	84,25	143,91	83,72
Sidi Ifni-Tiznit	250	182,36	164,86	197,17	183,94	197,17	183,94
	350	182,79	67,25	185,85	64,29	185,85	64,29
	150	3,17	3,88	3,32	3,82	3,32	3,82
Tiznit-O. Massa	250	45,00	33,63	46,71	34,06	47,21	33,42
	350	32,00	35,33	34,93	33,82	34,93	33,82
	150	60,63	85,74	60,63	85,74	60,63	85,74
O. Massa-O. Souss	250	6,25	8,84	6,56	8,54	6,58	8,52
	350	3,27	5,66	3,59	5,42	3,59	5,42

La comparación estadística de la captura de los diferentes componentes específicos muestra que no existen diferencias significativas (P<0,05) entre los estratos batimétricos correlativos prospectados en el sector Sidi Ifni-Tiznit (Tablas 39 y 40).

Tabla 39.- Comparación estadística entre la CPUE en los intervalos de profundidad 100-200

m y 200-300 m del sector Sidi Ifni-Tiznit (P<0,05).

CPUE	ESTRATO	N	Media	Desv. típica	Erro	or típico d	e la media
P. edwardsii	150 m	3	143,376	84,26660			48,65135
	250 m	3	182,361	164,85588			95,17959
Bycatch	150 m	3	143,393	84,24888			48,64111
	250 m	3	197,170	183,93970			106,19764
Total	150 m	3	143,906	83,72039			48,33599
	250 m	3	197,170	183,93970			106,19764
			Prueba de Levene para la igualdad de varianzas			Prueba T j gualdad de	
			F	Sig.	t	Gl	Sig. (bilateral)
P. edwardsii	Se han asumid varianzas igual		2,410	0,195	-0,365	4	0,734
	No se han asur varianzas igual	nido			-0,365	2,978	0,740
Bycatch	Se han asumid varianzas igual		3,341	0,142	-0,460	4	0,669
	No se han asumido varianzas iguales				-0,460	2,804	0,679
Total	Se han asumido varianzas iguales		3,386	0,140	-0,456	4	0,672
	No se han asur varianzas igual				-0,456	2,795	0,681

Tabla 40.- Comparación estadística entre la CPUE en los intervalos de profundidad 200-300 m v 300-400 m del sector Sidi Ifni-Tiznit (P<0.05).

III y 300-400 I	n del sector S	iui IIIII-	- 1 1ZIIIt (1 <	0,03).			
CPUE	ESTRATO	N	Media	Desv. típica	En	ror típico	de la media
P. edwardsii	250 m	3	182,361	164,85588			95,17959
	350 m	3	182,785	67,25003			38,82682
P. edwardssi	250 m	3	197,170	183,93970			106,19764
+Bycatch	350 m	3	185,848	64,29276			37,11944
Total	250 m	3	197,170	183,93970			106,19764
	350 m	3	185,848	64,29276			37,11944
			Prueba de Levene para la igualdad de varianzas		i	r para la le medias	
			F	Sig.	t	gl	Sig. (bilateral)
P. edwardsii	Se han asumi varianzas igu		3,707	0,126	-0,004	4	0,997
	No se han asu varianzas igu				-0,004	2,648	0,997
P. edwardsii +Bycatch	Se han asumi varianzas igu		5,028	0,088	0,101	4	0,925
	No se han asumido varianzas iguales				0,101	2,482	0,927
Total	Se han asumido varianzas iguales		5,028	0,088	0,101	4	0,925
	No se han asu varianzas igu				0,101	2,482	0,927

La comparación estadística de la CPUE de los diferentes componentes específicos muestra que no existen diferencias significativas (P<0,05) entre los estratos batimétricos correlativos prospectados en el sector Tiznit-Oued Massa (Tablas 41 y 42).

Tabla 41.- Comparación estadística entre la CPUE en los intervalos de profundidad 100-200

m y 200-300 m del sector Tiznit-Oued Massa (P<0,05).

CPUE CPUE	ESTRATO	N	Media	Desv. típica	Err	or típico o	de la media
P. edwardsii	150 m	3	3,1667	3,88373			2,24227
	250 m	3	45,0000	33,63406	19,4186		
P. edwardsii	150 m	3	3,3167	3,82397	2,20777		
+Bycatch	250 m	3	46,7083	34,05586			19,66216
Total	150 m	3	3,3167	3,82397			2,20777
	250 m	3	47,2083	33,42438			19,29757
				e Levene para d de varianzas	Prueba T para la igualdad de medias		
			F	Sig.	t	gl	Sig. (bilateral)
P. edwardsii	Se han asumi varianzas igus		7,471	0,052	-2,140	4	0,099
	No se han asu varianzas igus				-2,140	2,053	0,162
P. edwardsii +Bycatch	Se han asumi varianzas igu		6,619	0,062	-2,193	4	0,093
	No se han asumido varianzas iguales				-2,193	2,050	0,156
Total	Se han asumido varianzas iguales		6,979	0,057	-2,260	4	0,087
	No se han asu varianzas igua				-2,260	2,052	0,149

Tabla 42.- Comparación estadística entre la CPUE en los intervalos de profundidad 200-300

m y 300-400 m del sector Tiznit-Oued Massa (P<0,05).

CPUE	ESTRATO	N	Media	Desv. típica	Err	or típico o	de la media
P. edwardsii	250 m	3	45,0000	33,63406			19,41863
	350 m	3	32,0000	35,33058	20,39		
P. edwardsii	250 m	3	46,7083	34,05586			19,66216
+Bycatch	350 m	3	34,9333	33,81657			19,52400
Total	250 m	3	47,2083	33,42438			19,29757
	350 m	3	34,9333	33,81657			19,52400
				Levene para d de varianzas	Prueba T para la igualdad de medias		
			F	Sig.	t	gl	Sig. (bilateral)
P. edwardsii	Se han asumi varianzas igu		0,034	0,862	0,462	4	0,668
	No se han ası varianzas igu				0,462	3,990	0,668
P. edwardsii +Bycatch	Se han asumi varianzas igu		0,001	0,981	0,425	4	0,693
	No se han asumido varianzas iguales				0,425	4,000	0,693
Total	Se han asumido varianzas iguales		0,003	0,958	0,447	4	0,678
	No se han asu varianzas igus				0,447	3,999	0,678

La comparación estadística de la CPUE de los diferentes componentes específicos muestra que no existen diferencias significativas (P<0,05) entre los estratos batimétricos correlativos prospectados en el sector Oued Massa-Oued Souss (Tablas 43 y 44).

Tabla 43.- Comparación estadística entre la CPUE en los intervalos de profundidad 100-200 m y 200-300 m del sector Oued Massa-Oued Souss (P<0,05).

CPUE	ESTRATO	N	Media	Desv. típica	Err	or típico o	de la media
P. edwardsii	150 m	2	60,6250	85,73670			60,62500
	250 m	2	6,2500	8,83883			6,25000
P. edwardsii	150 m	2	60,6250	85,73670			60,62500
+Bycatch	250 m	2	6,5625	8,53831			6,03750
Total	150 m	2	60,6250	85,73670			60,62500
	250 m	2	6,5750	8,52064			6,02500
	-			e Levene para d de varianzas	Prueba T para la igualdad de medias		
			F	Sig.	t	gl	Sig. (bilateral)
P. edwardsii	Se han asumi varianzas igu				0,892	2	0,466
	No se han asu varianzas igua	ımido			0,892	1,021	0,534
P. edwardsii +Bycatch	Se han asumi varianzas igu		1E18	0,000	0,887	2	0,469
	No se han asumido varianzas iguales				0,887	1,020	0,536
Total	Se han asumido varianzas iguales		1E18	0,000	0,887	2	0,469
	No se han asu varianzas igua	ımido			0,887	1,020	0,536

Tabla 44.- Comparación estadística entre la CPUE en los intervalos de profundidad 200-300 m y 300-400 m del sector Oued Massa-Oued Souss (P<0,05).

CPUE	ESTRATO	N	Media	Desv. típica	Err	or típico o	de la media	
P. edwardsii	250 m	2	6,2500	8,83883			6,25000	
	350 m	3	3,2700	5,66388	3,2700			
P. edwardsii	250 m	2	6,5625	8,53831			6,03750	
+Bycatch	350 m	3	3,5865	5,42267			3,13078	
Total	250 m	2	6,5750	8,52064			6,02500	
	350 m	3	3,5865	5,42267			3,13078	
				e Levene para d de varianzas	i	para la e medias		
			F	Sig.	t	gl	Sig. (bilateral)	
P. edwardsii	Se han asumi varianzas igu		1,804	0,272	0,474	3	0,668	
	No se han asu varianzas igu	ımido			0,422	1,564	0,724	
P. edwardsii +Bycatch	Se han asumi varianzas igu		1,912	0,261	0,492	3	0,656	
	No se han asumido varianzas iguales				0,438	1,554	0,715	
Total	Se han asumido varianzas iguales		1,887	0,263	0,495	3	0,655	
	No se han asu varianzas igus				0,440	1,556	0,713	

En la Tabla 45 se presentan los resultados de los estadísticos descriptivos (media, y desviación típica) de la CPUE para los cuatro sectores geográficos y sus tres componentes (especie-objetivo, especie-objetivo+bycatch y total) y, en cada uno de ellos, en los dos tipos de sustratos (blando y duro) considerados en la prospección.

Tabla 45.- Estadísticos descriptivos de la captura (g) por sector, componentes y tipo de sustrato.

					CPUE		
		CPUE		P. edwardsii		CPUE	
		<i>P. e</i>	dwardsii	+ E	Bycatch	Total	
			Desviación		Desviación		Desviación
SUSTRATO		Media	típica	Media	típica	Media	típica
Oued Souss-	BLANDO	0,00	0,00	1,44	1,05	1,11	1,05
Agadir	DURO						
Sidi Ifni-	BLANDO						
Tiznit	DURO	169,51	100,42	175,64	108,79	175,47	108,95
Tiznit-	BLANDO						
Oued Massa	DURO	26,72	30,70	28,49	30,88	28,32	30,94
Oued Massa-	BLANDO	9,81		9,85		9,85	
Oued Souss	DURO	22,29	48,74	22,55	48,60	22,55	48,60

Se observa que la comparación estadística no es posible en los sectores Oued Souss-Agadir (solo se hicieron pescas en sustrato blando), Sidi Ifni-Tiznit (solo con pescas en sustrato duro) y Tiznit-Oued Massa (solo con pescas en sustrato duro). En el sector Oued Massa-Oued Souss la comparación no es posible porque apenas se llevó a cabo una pesca sobre sustrato blando (Tabla 45).

En la Tabla 46 se presentan los resultados de los estadísticos descriptivos (media y desviación típica) de la CPUE para los cuatro sectores geográficos, sus tres estratos batimétricos y sus tres componentes (especie-objetivo, especie-objetivo+bycatch y total) y, en cada uno de ellos, en los dos tipos de sustratos (blando y duro) considerados en la prospección.

Tabla 46.- Estadísticos descriptivos de la CPUE por sector, estrato, profundidad, componentes

y tipo de sustrato.

			CPUE		CPUE		CPUE	
		P. edwardsii		P. edwardsii+Bycatch		Total		
				Desviación		Desviación		Desviación
ESTRATO			Media	típica	Media	típica	Media	típica
O. Souss-Agadir	BLANDO	150	0,00	0,00	1,09	1,85	1,92	1,66
		250	0,00	0,00	1,10	0,05	1,12	0,03
		350	0,00	0,00	1,15	0,92	1,21	1,00
	DURO	150						
		250						
		350						
Sidi Ifni- Tiznit	BLANDO	150						
		250						
		350						
	DURO	150	143,38	84,27	143,39	84,25	143,91	83,72
		250	182,36	164,86	197,17	183,94	197,17	183,94
		350	182,79	67,25	185,85	64,29	185,85	64,29
Tiznit-O. Massa	BLANDO	150						
		250						
		350						
	DURO	150	3,17	3,88	3,32	3,82	3,32	3,82
		250	45,00	33,63	46,71	34,06	47,21	33,42
		350	32,00	35,33	34,93	33,82	34,93	33,82
O. Massa-O. Souss	BLANDO	150						
		250						
		350	9,81		9,85		9,85	
	DURO	150	60,63	85,74	60,63	85,74	60,63	85,74
		250	6,25	8,84	6,56	8,54	6,58	8,52
		350	0,00	0,00	0,46	0,01	0,46	0,01

3.5.3.- Análisis de clusters

El análisis de cluster de las operaciones de pesca efectuadas, tanto para la captura en peso como en número de individuos (Figuras 37 y 38), muestra dos grandes grupos, uno correspondiente a la mayoría de las pescas realizadas sobre los fondos duros (a la derecha del cluster), y otro (a la izquierda) correspondiente a las pescas efectuadas en fondos blandos y a los correspondientes a los realizados en el área de Oued Massa-Oued Souss sobre fondos duros más al norte.

Fig. 37.- Dendrograma resultante del análisis de cluster aplicado a las operaciones de pesca en función de capturadas en peso.

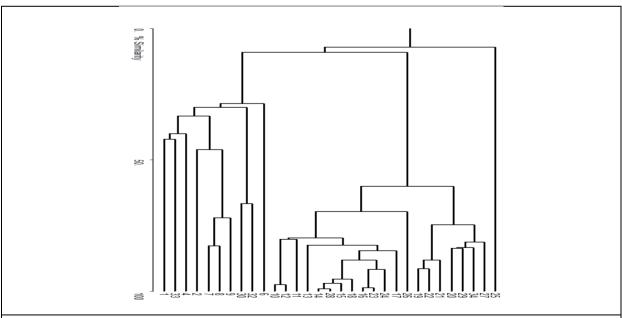


Fig. 38.- Dendrograma resultante del análisis de cluster aplicado a las operaciones de pesca en función de las especies capturadas en número de individuos.

El análisis cluster de las especies capturadas, tanto en peso como en número de individuos, no muestra similaridad entre las especies. Con respecto a la especie *objetivo P. edwardsii* la especie que muestra una mayor asociación, tan sólo un 3%, con ella (en peso) es *C. conger* (Figura 39). El mismo análisis con los datos referidos al número de individuos permite observar que *P. edwardsii* no muestra asociación con ninguna otra especie (Figura 40). Los dendrogramas muestran una asociación, aunque con valores bajos (45-50%), entre *C. crassicornis*, *P. longirostris*, *P. heterocarpus* (Figuras 39 y 40).

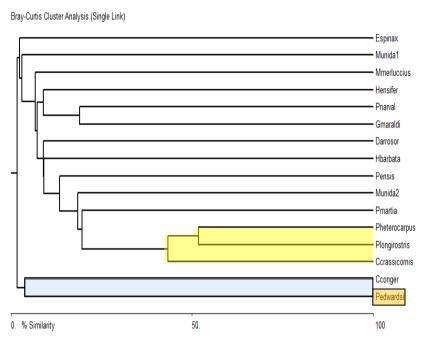


Fig. 39.- Dendrograma resultante del análisis de cluster aplicado a las especies capturadas en función de la captura en peso por operación de pesca.

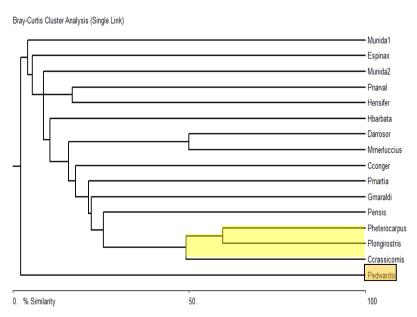


Fig. 40.- Dendrograma resultante del análisis de cluster aplicado a las especies capturadas en función de la captura en número de individuos por operación de pesca.

3.5.4.- Análisis de correspondencia

Como consecuencia de los resultados obtenidos con el análisis de cluster se aplicó un análisis de correspondencia, en primer lugar para todas las especies capturadas y, a continuación, para las cuatro especies más abundantes en la captura. Después, se realizó el análisis para las tres especies más abundantes, para las dos especies más abundantes y, finalmente, sólo para *P. edwardsii*, dado que la presencia de todas las especies asociadas es accidental.

El análisis de correspondencia realizado con los datos de las variables sustrato, sector, estrato batimétrico y los datos de captura de *P. edwardsii*, *H. ensifer*, *P. longirostris*, *C. crassicornis*, *P. heterocarpus* y *P. narval*, explican el 71% de la varianza de los datos. Quedaron excluidas de los análisis las restantes especies por presentar menos de tres casos. El diagrama de dispersión biespacial (Figura 41) muestra que la dimensión 1 separa el tipo de fondo duro del blando y la región de Oued Souss-Agadir (asociada a fondo blando) de las restantes regiones. Por su parte, la dimensión 2 asocia estrechamente las capturas de *P. edwardsii* en la región Sidi Ifni-Tiznit y en la de Oued Massa-Oued Souss a fondos duros.

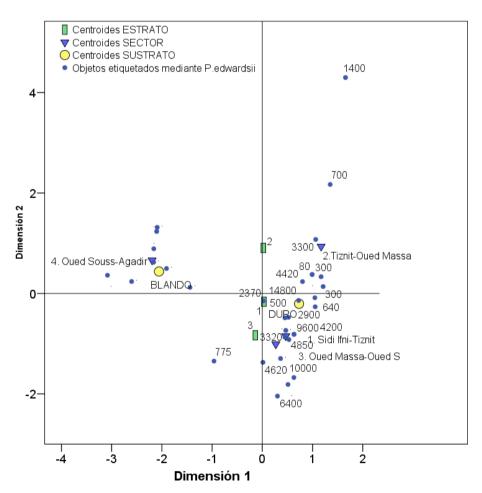


Fig. 41.- Diagrama de dispersión biespacial con datos etiquetados mediante la variable *P. edwardsii* en función de los centroides estrato, sector y estrato batimétrico.

Las medidas de discriminación asociadas a los dos ejes muestran claramente que la dimensión 1 discrimina el sustrato, y que la dimensión 2, por sí sola, no tiene capacidad de discriminar el estrato (Figura 42). La combinación de ambas dimensiones permite discriminar los sectores.



Fig. 42.- Diagrama de medidas de discriminación asociadas a las dimensiones del análisis de correspondencia.

El análisis de correspondencia realizado con los datos de las variables sustrato, sector, estrato batimétrico, y los datos de captura de *P. edwardsii*, *H. ensifer*, *P. longirostris*, *P. heterocarpus* y *P. narval* explican el 59% de la varianza de los datos. El diagrama de dispersión biespacial (Figura 43) muestra que la dimensión 1 separa el tipo de fondo duro del blando y, asocia la región de Oeud Souss-Agadir a fondo blando. La dimensión 2 asocia estrechamente las regiones de Oued Massa-Oued Souss y Sidi Ifni-Tiznit con el tipo de fondo duro.

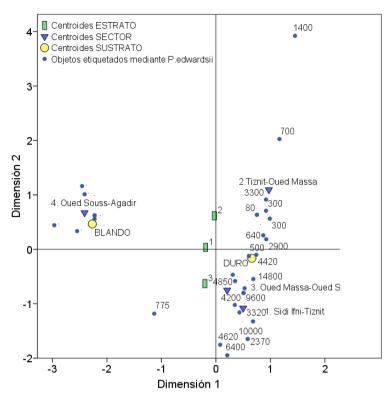


Fig. 43.- Diagrama de dispersión biespacial con datos etiquetados mediante la variable *P. edwardsii* en función de los centroides estrato, sector y estrato batimétrico.

Las medidas de discriminación asociadas a los dos ejes muestran claramente que la dimensión 1 discrimina el sustrato, y que la dimensión 2, por sí sola, no tiene capacidad de discriminar el estrato (Figura 44). La combinación de ambas dimensiones permite discriminar los sectores.

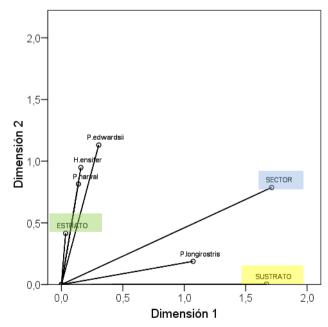


Fig. 44.- Diagrama de medidas de discriminación asociadas a las dimensiones del análisis de correspondencia.

El análisis de correspondencia realizado con los datos de las variables sustrato, sector, estrato batimétrico, y los datos de captura de *P. edwardsii*, *H. ensifer*, *P. longirostris* y *P. narval* explica el 46% de la varianza de los datos. El diagrama de dispersión biespacial (Figura 45) muestra que la dimensión 1 separa el tipo de fondo duro del blando y, separa la región Oued Souss-Agadir (asociada a fondo blando) y la región Oued Massa-Oued Souss de las restantes áreas. La dimensión 2 asocia fuertemente la región de Sidi Ifni-Tiznit al sustrato duro.

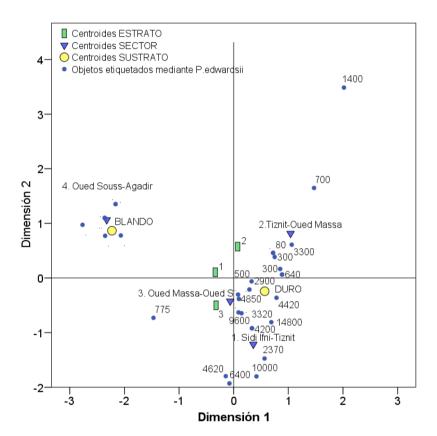


Fig. 45.- Diagrama de dispersión biespacial con datos etiquetados mediante la variable *P. edwardsii* en función de los centroides estrato, sector y estrato batimétrico.

Las medidas de discriminación asociadas a los dos ejes muestran claramente que la dimensión 1 discrimina el sustrato, y que la dimensión 2 por sí sola no tiene capacidad de discriminar el estrato (Figura 46). La combinación de ambas dimensiones permite discriminar los sectores.

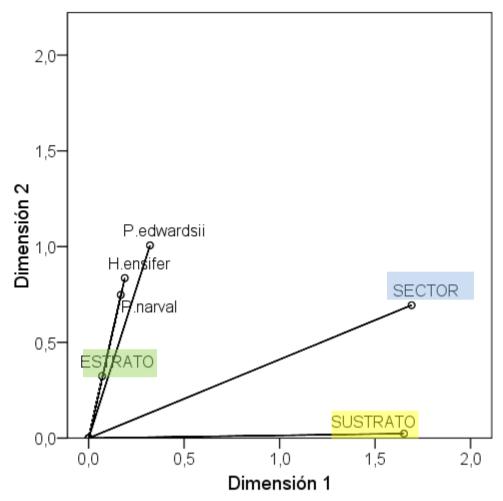


Fig. 46.- Diagrama de medidas de discriminación asociadas a las dimensiones del análisis de correspondencia.

El análisis de correspondencia realizado con los datos de las variables sustrato, sector, estrato batimétrico, y los datos de captura de *P. edwardsii*, *H. ensifer* y *P. narval* explica el 39% de la varianza de los datos. El diagrama de dispersión biespacial muestra que la dimensión 1 separa el tipo de fondo duro del blando y, separa la región Oued Souss-Agadir (asociada a fondo blando) y la región Oued Massa-Oued Souss de las restantes áreas. La dimensión 2 asocia fuertemente la región de Sidi Ifni-Tiznit al sustrato duro (Figura 47).

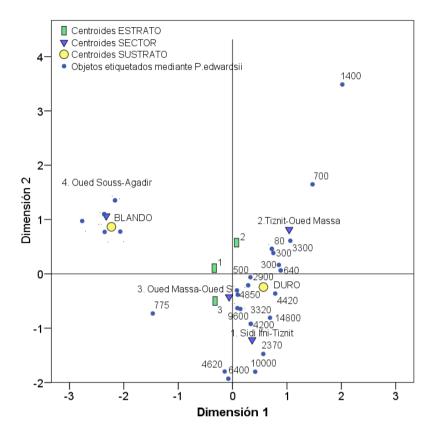


Fig. 47.- Diagrama de dispersión biespacial con datos etiquetados mediante la variable *P. edwardsii* en función de los centroides estrato, sector y estrato batimétrico.

El análisis de correspondencia realizado con los datos de las variables sustrato, sector, estrato batimétrico, y los datos de captura de *P. edwardsii* y *H. ensifer* explica el 31% de la varianza de los datos. El diagrama de dispersión biespacial muestra que la dimensión 1 separa el tipo de fondo duro de blando, separando además la región Oued Souss-Agadir de las restantes (Figura 48). La dimensión 2 separa la región Tiznit-Oued Massa de las otras regiones asociadas a fondos duros.

El análisis de correspondencia realizado con los datos de las variables sustrato, sector, estrato batimétrico, y los datos de captura de *P. edwardsii* explica el 25% de la varianza de los datos. El diagrama de dispersión biespacial muestra que la dimensión 1 separa el tipo de fondo duro del blando y la región Oued Souss-Agadir de las restantes regiones prospectadas (Figura 49). La dimensión 2 separa de forma muy clara la región de Sidi Ifni-Tiznit de las otras dos regiones prospectadas.

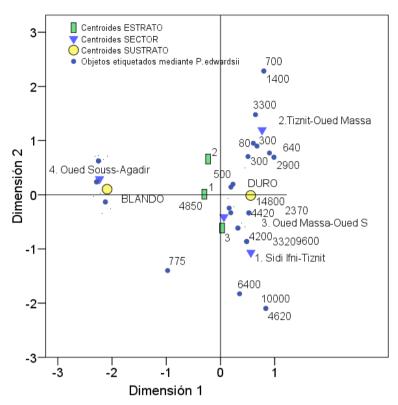


Fig. 48.- Diagrama de dispersión biespacial con datos etiquetados mediante la variable *P. edwardsii* en función de los centroides estrato, sector y estrato batimétrico.

Fig. 49.- Diagrama de dispersión biespacial con datos etiquetados mediante la variable *P. edwardsii* en función de los centroides estrato, sector y estrato batimétrico.

Las medidas de discriminación asociadas a los dos ejes muestran claramente que la dimensión 1 discrimina el sustrato, y que la dimensión 2, por sí sola, no tiene capacidad de discriminar (Figura 50). La combinación de ambas dimensiones permite discriminar los sectores. Las dos dimensiones no permiten discriminar entre estratos.

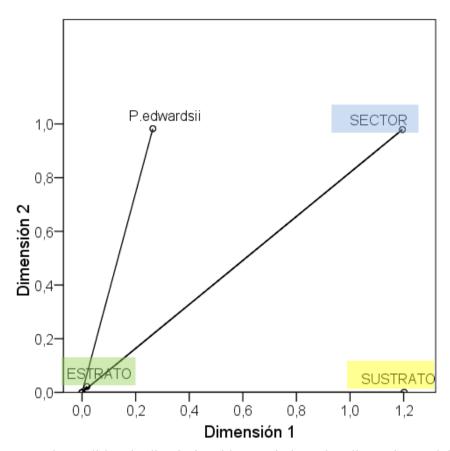


Fig. 50.- Diagrama de medidas de discriminación asociadas a las dimensiones del análisis de correspondencia.

3.6.- Estructura de tallas y composición intra-específica de la especie-objetivo

3.6.1.- Estadísticos descriptivos y distribución de frecuencias la talla

En la Tabla 47 se muestran los estadísticos descriptivos (mínimo, máximo, media y desviación típica) de la talla (longitud de caparazón, LC en mm) de la muestra (n= 701 individuos) de camarones soldado medidos en laboratorio. Los parámetros de la variable talla han sido expresados en función de los grupos sexuales considerados en el análisis (machos, hembras, individuos no ovígeros y hembras ovígeras).

Tabla 47.- Estadísticos descriptivos de la talla para cada estrato batimétrico de los diferentes

grupos sexuales de P. edwardsii.

Cmma gazusal	Estrato (res)	NT	Longitud de caparazón (mm)						
Grupo sexual	Estrato (m)	N	Mínimo	Máximo	Media	Desv.típ.			
Machos	150	73	14,6	23,7	16,8	1,9			
	250	44	12,0	26,3	20,6	4,1			
	350	98	13,7	28,8	23,1	2,9			
Hembras	150	329	13,2	28,5	22,2	4,2			
	250	124	13,8	29,2	21,7	5,1			
	350	33	13,9	28,0	21,9	4,3			
Individuos no ovígeros	150	164	13,2	23,7	16,4	1,5			
-	250	99	12,0	26,3	18,1	3,7			
	350	114	13,7	28,8	22,6	3,4			
Hembras ovígeras	150	238	16,5	28,5	24,5	2,0			
J	250	69	23,6	29,2	26,1	1,4			
	350	18	19,5	28,0	24,1	2,2			
	Total:	701							

En las tablas 48 y 49 se muestran los resultados de las pruebas estadísticas de comparación entre tallas medias (P<0,05). Existen diferencias significativas entre machos y hembras (Tabla 48) y también cuando comparamos individuos no ovígeros frente a hembras ovígeras (Tabla 49).

Tabla 48.- Estadísticos de comparación de la talla media de machos frente hembras.

						Error típico de la
Sexo	N	N	Media	Desviaci	ón típica	media
machos	215		20,4707		4,02124	0,27425
hembras	486		22,0449		4,43356	0,20111
		Prueba de	Levene para la			
		igualdad de varianzas		Prueba T para la igualdad de medias		
		F	Sig.	t	gl	Sig. (bilateral)
Varianza	Varianzas iguales		0,037	-4,458	699	0,000
No varianzas iguales				-4,629	448,781	0,000

Tabla 49.- Estadísticos de comparación de la talla media de individuos no ovígeros frente a hembras ovígeras.

				Desvia	ción	Error típico de la
Condición ovígera	N	Media		típica		media
hembras ovígeras	325		24,8241	2	,00892	0,11143
individuos no ovígeros	377		18,7618	3	,88011	0,19984
		Prueba de Levene para la				
		igualdad de varianzas		Prueba T para la igualdad de media		ualdad de medias
		F Sig.		t	gl	Sig. (bilateral)
Varianzas iguales		73 16,8192		1,91425	0,22405	0,000
No varianzas iguales		44	20,6068	4,14293	0,62457	0,000

En machos, las Tablas 50, 51 y 52 indican que existen diferencias significativas entre la talla de los ejemplares de los intervalos 100-200 y 200-300 m, entre 200-300 y 300-400 m segundo y entre los estratos extremos (P<0,05), siempre a favor del intervalo más profundo. Es decir, que la talla de los machos aumenta con la profundidad.

Tabla 50.- Estadísticos de comparación de la talla media de los machos entre 150 y 250 m.

				Desvia	ción	Error típico de la
Profundidad	N	Media		típica		media
150 m	73		16,8192	1	,91425	0,22405
250 m	44		20,6068	4	,14293	0,62457
		Prueba de Levene para la				
		igualdad d	le varianzas	Prueba T	para la ig	ualdad de medias
		F Sig.		t	gl	Sig. (bilateral)
Varianzas iguales	•	325	24,8241	2,00892	0,11143	0,000
No varianzas iguales		377	18,7618	3,88011	0,19984	0,000

Tabla 51.- Estadísticos de comparación de la talla media de los machos entre 250 y 350 m.

				Desvia	ción	Error típico de la
Profundidad	N	M	edia	típic	a	media
250 m	44		20,6068	4	,14293	0,62457
350 m	98		23,1296	2	,85669	0,28857
		Prueba de Levene para la				
		igualdad o	de varianzas	Prueba T	para la ig	ualdad de medias
		F	Sig.	t	gl	Sig. (bilateral)
Varianzas iguales		44	20,6068	4,14293	0,62457	0,000
No varianzas iguales		98	23,1296	2,85669	0,28857	0,000

Tabla 52.- Estadísticos de comparación de la talla media de los machos entre 150 y 350 m.

				Desvia	ción	Error típico de la
Profundidad	N	Media		típica		media
150 m	73	16,8192		1,91425		0,22405
350 m	98		23,1296		,85669	0,28857
		Prueba de Levene para la				
		igualdad d	le varianzas	Prueba T	para la igi	ualdad de medias
		F	Sig.	t	gl	Sig. (bilateral)
Varianzas iguales	•	73	16,8192	1,91425	0,22405	0,000
No varianzas iguales		98	23,1296	2,85669	0,28857	0,000

En hembras, las Tablas 53, 54 y 55 indican que no existen diferencias significativas entre la talla de los ejemplares de los intervalos 100-200 m y 200-300 m, entre 200-300 m y 300-400 m, ni tampoco entre los estratos extremos (P<0,05).

Tabla 53.- Estadísticos de comparación de la talla media de las hembras entre 150 y 250 m.

				Desvia	ción	Error típico de la
Profundidad	N	Media		típica		media
150 m	329		22,1904	4	,15414	0,22903
250 m	124		21,7048	5	,14882	0,46238
		Prueba de Levene para la				
		igualdad de varianzas		Prueba T para la igualdad de media		
		F	Sig.	t	gl	Sig. (bilateral)
Varianzas iguales	•	42,018	0,000	1,036	451	0,301
No varianzas iguales	•			0,941	186,547	0,348

Tabla 54.- Estadísticos de comparación de la talla media de las hembras entre 250 y 350 m.

				Desvia	ción	Error típico de la
Profundidad	N	Media		típica		media
250 m	124		21,7048	5	,14882	0,46238
350 m	33		21,8727	4	,29406	0,74750
		Prueba de L	Prueba de Levene para la			
		igualdad de varianzas		Prueba T para la igualdad de media		
		F	Sig.	t	gl	Sig. (bilateral)
Varianzas iguales	•	14,310	0,000	-0,172	155	0,864
No varianzas iguales				-0,191	58,928	0,849

Tabla 55.- Estadísticos de comparación de la talla media de las hembras entre 150 y 350 m.

				Desvia	ción	Error típico de la
Profundidad	N	Media		típica		media
150 m	329		22,1904	4	,15414	0,22903
350 m	33		21,8727	4	,29406	0,74750
		Prueba de Levene para la				
		igualdad d	le varianzas	Prueba T	' para la ig	ualdad de medias
		F	Sig.	t	gl	Sig. (bilateral)
Varianzas iguales		0,030	0,862	0,418	360	0,677
No varianzas iguales				0,406	38,257	0,687

En individuos no ovígeros, las Tablas 56, 57 y 58 indican que existen diferencias significativas entre la talla de los ejemplares de los intervalos 100-200 m y 200-300 m, entre 200-300 m y 300-400 m, y también entre los estratos extremos (P<0,05), siempre a favor del intervalo más profundo. Es decir, que la talla de los individuos no ovígeros aumenta con la profundidad.

Tabla 56.- Estadísticos de comparación de la talla media de los individuos no ovígeros entre 150 y 250 m.

				Desvia	ción	Error típico de la
Profundidad	N	Media		típica		media
150 m	164		16,4372	1	,52867	0,11937
250 m	99		18,1455	3	,67199	0,36905
		Prueba de Levene para la				
		igualdad de varianzas		Prueba T para la igualdad de media		
		F	F Sig.		gl	Sig. (bilateral)
Varianzas iguales	•	121,570 0,000		-5,256	261	0,000
No varianzas iguales				-4,404	118,796	0,000

Tabla 57.- Estadísticos de comparación de la talla media de los individuos no ovígeros entre 250 y 350 m.

				Desvia	ción	Error típico de la
Profundidad	N	M	edia	típic	a	media
250 m	99		18,1455	3	,67199	0,36905
350 m	114		22,6412	3	,41646	0,31998
		Prueba de Levene para la				
		igualdad o	de varianzas	Prueba T	para la igi	ualdad de medias
		F	Sig.	T	gl	Sig. (bilateral)
Varianzas iguales		2,935 0,088		-9,251	211	0,000
No varianzas iguales				-9,204	201,815	0,000

Tabla 58.- Estadísticos de comparación de la talla media de los individuos no ovígeros entre 150 y 350 m.

red j eed in.						
				Desvia	ción	Error típico de la
Profundidad	N	M	edia	típic	a	media
150 m	164		16,4372	1	,52867	0,11937
350 m	114		22,6412	3	,41646	0,31998
		Prueba de Levene para la				
		igualdad de varianzas		Prueba T para la igualdad de medias		
	F Sig.		t	gl	Sig. (bilateral)	
Varianzas iguales	Varianzas iguales 63,586 0,000			-20,501	276	0,000
No varianzas iguales				-18,166	144,697	0,000

Por último, en hembras ovígeras, las Tablas 59, 60 y 61 indican que existen diferencias significativas entre la talla de los ejemplares de los intervalos 100-200 m y 200-300 m, entre 200-300 m y 300-400 m, aunque no se han encontrado entre los estratos extremos (P<0,05). Esto indica que las hembras ovígeras se sitúan en profundidades intermedias (200 a 300 m).

Tabla 59.- Estadísticos de comparación de la talla media de las hembras ovígeras entre 150 y 250 m.

				Desvia	ción	Error típico de la
Profundidad	N	M	edia	típic	a	media
150 m	238		24,5073	1	,99508	0,12932
250 m	69		26,1116	1	,41572	0,17043
		Prueba de L	evene para la			
		igualdad de varianzas		Prueba T	' para la ig	ualdad de medias
		F	Sig.	t gl Sig. (bi		Sig. (bilateral)
Varianzas iguales		3,751	0,054	54 -6,236 305		0,000
No varianzas iguales				-7,499	154,179	0,000

Tabla 60.- Estadísticos de comparación de la talla media de las hembras ovígeras entre 250 y 350 m.

				Desviación		Error típico de la						
Profundidad	N	M	edia	típica		media						
250 m	69	26,1116		26,1116		1,41572		1,41572		26,1116 1,41572		0,17043
350 m	18		24,0778	2,16484		0,51026						
		Prueba de Levene para la										
		igualdad de varianzas		Prueba T	'para la ig	ualdad de medias						
		F	Sig.	T gl Sig. (bil		Sig. (bilateral)						
Varianzas iguales	•	4,671	0,033	33 4,821 85		0,000						
No varianzas iguales	•			3,781	20,940	0,001						

Tabla 61.- Estadísticos de comparación de la talla media de las hembras ovígeras entre 150 y 350 m.

				Desviación		Error típico de la
Profundidad	N	Me	Media típica		media	
150 m	238		24,5073		,99508	0,12932
350 m	18		24,0778	2,16484		0,51026
		Prueba de Levene para la				
			igualdad de varianzas		' para la igi	ualdad de medias
		F	Sig.	t gl Sig.		Sig. (bilateral)
Varianzas iguales		0,408	0,523	0,876 254		0,382
No varianzas iguales				0,816	19,248	0,424

En la Tabla 62 se presentan los estadísticos descriptivos de la longitud de caparazón de todos los ejemplares (n= 701) muestreados en el laboratorio. La Figura 51 representa la distribución de frecuencia de tallas del conjunto de ejemplares de *P. edwardsii*. Se observa la escasez de ejemplares entre las clases de talla de 19 y 21 mm LC, lo que podría indicar la presencia de al dos cohortes.

Tabla 62.- Estadísticos descriptivos de la talla del conjunto de los ejemplares de P. edwardsii.

	Longitud de caparazón (LC, mm)					
n	Mínimo	Máximo	Media	Desv.típ.		
701	12,0	29,2	21,6	4,4		

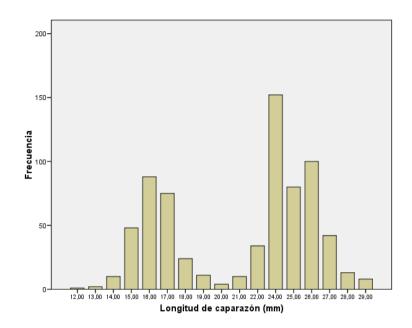


Fig. 51.- Distribución de frecuencias de tallas del conjunto de las muestras de *P. edwardsii*.

3.6.2.- Relación talla-peso

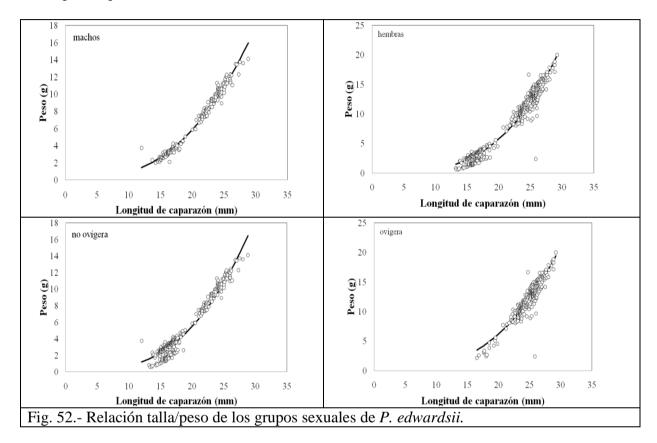
Se calcularon las relaciones talla-peso por grupo sexual y para el total de ejemplares, usando la ecuación: P=a x L^b.

En la Tabla 63 se muestran los estadísticos descriptivos (mínimo, máximo, media y desviación típica) de la talla (longitud de caparazón, LC en mm) y del peso (peso total, P en g) de la muestra (n= 701 individuos) de camarones soldado medidos y pesados en laboratorio. Los parámetros de las variables talla y peso han sido expresados en función de los grupos sexuales considerados en el análisis (machos, hembras, individuos no ovígeros y hembras ovígeras).

Tabla 63.- Estadísticos descriptivos de la talla y el peso para los diferentes grupos sexuales de *P. edwardsii*.

Grupo sexual	N		Mínimo	Máximo	Media	Desv. tip.
Martar	215	Peso (g)	2,0	14,12	6,9	3,5
Machos	213	Long de caparazón (mm)	12,0	28,8	20,5	4,0
I I a mala ma a	486	Peso (g)	0,6	20,0	9,1	5,1
Hembras	480	Long de caparazón (mm)	13,2	29,2	22,0	4,4
T 1'''	377	Peso (g)	0,6	14,12	5,2	3,5
Indiviuos no ovígeros	311	Long de caparazón (mm)	12,0	28,8	18,8	3,9
Hamburg arrange	325	Peso (g)	2,15	20,0	12,1	3,0
Hembras ovígeras	323	Long de caparazón (mm)	16,5	29,2	24,8	2,0
Total	701	Peso (g)	0,6	20,0	8,4	4,8
10181	/01	Long de caparazón (mm)	12,0	29,2	21,6	4,4

En la Tabla 64 se presentan los parámetros de las diferentes curvas de las relaciones talla-peso de cada grupo sexual de camarón soldado. La curva de regresión potencial explica para todos los grupos más del 85% de la varianza de los datos.


Tabla 64.- Parámetros de la relación talla-peso y test de comparación de coeficiente de alometría para los diferentes grupos sexuales de *P. edwardsii*.

Grupo sexual Parámetro		Estimación	Error típico	Intervalo de confianza al 95%		\mathbf{r}^2	4.4554
Grupo sexual	rarameno	Límite inferior	Límite superior	Límite inferior	Límite superior	1	t-test
Ovígeras	a	0,0007392	0,0001917	0,000361	0,001116		
	b	3,016541	0,080026	2,859102	3,173978	0,853	0,212
No ovígeras	a	0,0006866	0,0000724	0,000544	0,000829		
	b	3,001368	0,0335915	2,939085	3,071188	0,966	0,147
Machos	a	0,001557	0,000163	0,001236	0,001879		
	b	2,75042	0,0330893	2,68520	2,815653	0,981	7,576*
Hembras	a	0,0003168	0,0000505	0,000218	0,000415		
	b	3,2765	0,04888	3,18053	3,37262	0,958	8,394*

 $t>t_{0,05, n>500}=1,65$

En la Figura 52 se representan las diferentes curvas de las relaciones talla-peso de cada grupo sexual de camarón soldado.

En machos, el coeficiente alométrico *b* tomó valores claramente inferiores a 3, indicando el test de análisis de comparación del coeficiente la existencia de alometría negativa. En las hembras el t-test puso de manifiesto la existencia de una alometría positiva. En los restantes grupos sexuales el coeficiente alométrico *b* registró valores que no diferían significativamente de 3, por lo que exhiben un coeficiente isométrico.

3.6.3.- Sex-ratio

En la Tabla 65 se muestran las proporciones de sexos (sex-ratio) de *P. edwardsii* en cada estrato batimétrico. Las hembras de camarón soldado son más abundantes en los estratos batimétricos de 150 y 250 m, quintuplicando el número de machos (150 m, 1:5.40; 250 m, 1:5.11). En el estrato más profundo (350 m), por el contrario, los machos son más abundantes, triplicando el número de hembras (350 m, 1:0,34). La sex-ratio para el cómputo global de ejemplares estudiados (n=867) fue 1:3,03 (75,2% de hembras frente a 24,8% de machos). En todos los casos el test de chi cuadrado puso de manifiesto que las diferencias eran significativas.

Tabla 65.- Sex-ratio por estrato batimétrico y para el total de ejemplares de *P. edwardsii*.

Estrato	Sexo	n	Sex-ratio	χ2	
	Machos	73			
150 m	Hembras	394	1:5,40	220,62*	
	Total	467			
	Machos	44			
250 m	Hembras	225	1:5,11	121,3*	
	Total	269			
	Machos	98		32,35*	
350 m	Hembras	33	1:0,34		
	Total	131			
	Machos	215			
Total	Hembras	652	1:3,03	220,6*	
	Total	867			

 $^{*\}chi 2 > \chi_{t0,05} = 3,84$

3.6.4.- Porcentaje de hembras ovígeras

En la Tabla 66 se muestra el porcentaje de hembras ovígeras frente al de individuos no ovígeros en cada estrato batimétrico y para el total de ejemplares estudiados de *P. edwardsii*. En el estrato de 150 m se observó el mayor porcentaje de hembras ovígeras (44,65%), disminuyendo drásticamente con la profundidad: 18,60% en el estrato de 250 m y 13,43% en el de 350 m (Figura 53). Para el total de ejemplares de los tres estratos (n=1068), el porcentaje hembras ovígeras fue de 30,43% frente al 69,57% de individuos no ovígeros. En todos los casos el test de chi cuadrado puso de manifiesto que las diferencias eran significativas.

Tabla 66.- Porcentaje de hembras ovígeras en los estratos batimétricos de 150, 250 y 350 m y

para el total de la muestra de P. edwardsii.

Estrato	Condición ovígera	n	%	χ2
	Total hembras ovígeras	238	44,65	
150 m	Total individuos no ovígeros	295	55,35	6,10*
	Total individuos	533	100,00	
	Total hembras ovígeras	69	18,60	
250 m	Total individuos no ovígeros	302	81,40	146,3*
	Total individuos	371	100,00	
	Total hembras ovígeras	18	13,43	
350 m	Total individuos no ovígeros	116	86,57	71,67*
	Total individuos	134	100,00	
	Total hembras ovígeras	325	30,43	
Total	Total individuos no ovígeros	743	69,57	163,6*
	Total individuos	1068	100,00	

 $^{*\}chi 2 > \chi_{t0.05} = 3,84$

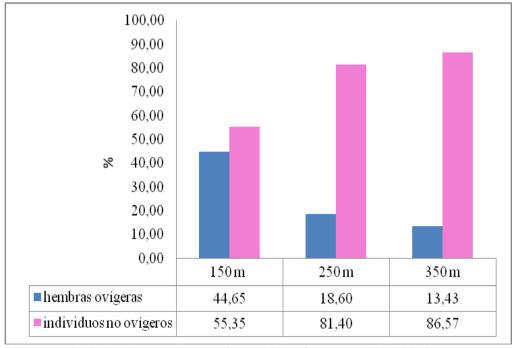


Fig. 53.- Porcentaje de hembras ovígeras de *P. edwardsii* por profundidad.

3.6.5.- Desarrollo de los huevos fecundados

En la Tabla 67 se indican los porcentajes de los distintos estadios de desarrollo de los huevos fecundados presentes en la carga ovígera de *P. edwardsii* en cada estrato batimétrico estudiado (150, 250 y 350 m) y para el total de la muestra analizada. El estadio 1 mostró el mayor porcentaje en todos los estratos, representando el 61,23% de la carga ovígera del conjunto muestral; su valor máximo se observó en el estrato de 250 m (75,36%) y su valor mínimo en el de 150 m (57,14%). El estadio 2 registró un 21,23% de la carga ovígera total, con valor máximo en 350 m (22,22%) y mínimo en 250 m (18,84). Los estadios 3 y 4 mostraron porcentajes muy bajos en todos los estratos.

En la Figura 54 se ilustran las frecuencias de los cuatro estadios de desarrollo de los huevos de *P. edwardsii* por estrato batimétrico y para la carga ovígera total.

Tabla 67.- Porcentaje de los estadios de desarrollo de los huevos de *P. edwardsii* por profundidad.

Estrato	Estado de desarrollo de los huevos	n	%
	Estadio 1	136	57,14
	Estadio 2	52	21,85
150 m	Estadio 3	42	17,65
	Estadio 4	8	3,36
	Total hembras ovígeras	238	100,00
	Estadio 1	52	75,36
	Estadio 2	13	18,84
250 m	Estadio 3	2	2,90
	Estadio 4	2	2,90
	Total hembras ovígeras	69	100,00
	Estadio 1	11	61,11
	Estadio 2	4	22,22
350 m	Estadio 3	2	11,11
	Estadio 4	1	5,56
	Total hembras ovígeras	18	100,00
	Estadio 1	199	61,23
	Estadio 2	69	21,23
Total	Estadio 3	46	14,15
	Estadio 4	11	3,38
	Total hembras ovígeras	325	100,00

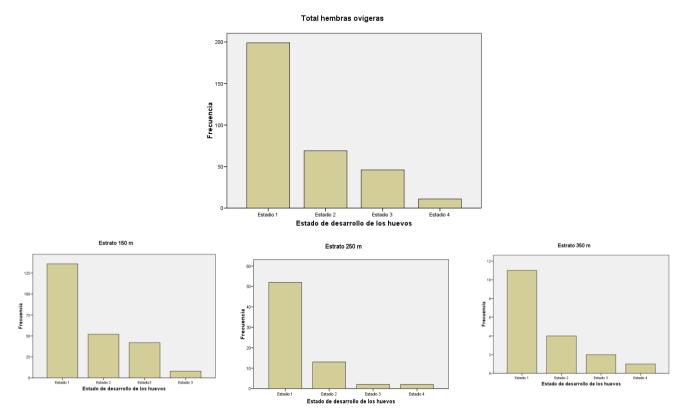


Fig. 54.- Frecuencia de los cuatro estadios de desarrollo de los huevos de *P. edwardsii* por cada estrato batimétrico y para la carga ovígera total.

4.- DISCUSIÓN Y CONCLUSIONES

- Las actividades enmarcadas en la Acción piloto 2.2 del proyecto, en particular la realización de la campaña "Agadir 2011-05" en aguas de Marruecos y la celebración del Grupo de Trabajo post-campaña en Gran Canaria, han contribuido notablemente a la consolidación y el reforzamiento del Observatorio marino atlántico canario-marroquí OMARAT.

En este sentido, se ha constatado un excelente grado de cooperación entre los socios (INRH, UIZ, IEO, ULL & ICCM) y buena cohesión entre el equipo científico-técnico canariomarroquí en tierra y a bordo.

- El tren de nasas camaroneras semi-flotantes (de elaboración artesanal) y la carnada empleada (sable blanco: local, disponible, abundante y relativamente barata) han resultado idóneos para la captura de camarón soldado (*Plesionika edwardsii*) como especie-objetivo.
- Este sistema de pesca ha mostrado un alto grado de selectividad específica, caracterizado por un bycatch (especies acompañantes con interés comercial) muy bajo y una captura incidental (descartes) casi inexistente.

El bycatch ha estado compuesto por otras especies de camarones pandálidos, de los géneros *Plesionika, Heterocarpus* y *Chlorotocus*, así como por algunos peces óseos en cantidades testimoniales.

- Los análisis de cluster realizados, tanto en número de ejemplares como en peso de las especies capturadas, han evidenciado que ninguna especie puede ser considerada como acompañante en las capturas de camarón soldado *Plesionika edwardsii*.
- Las características oceanográficas de la región prospectada y la naturaleza del sustrato predominante en cada uno de los sectores de trabajo han resultado ser factores condicionantes de la presencia y de la abundancia de la especie-objetivo, el camarón soldado.

Los perfiles de temperatura del agua del mar hasta 400 m de profundidad y las imágenes de satélite obtenidos han permitido constatar una mayor estabilidad térmica en el sector más meridional (Sidi Ifni-Tiznit) de la zona de estudio, contrariamente a lo que se ha observado en el sector más septentrional (Oued Souss-Agadir) caracterizado por una gran variabilidad ambiental.

Además, la ausencia de *P. edwardsii* en el sector Oued Souss-Agadir también puede estar relacionada con el hecho de que la isoterma de 13-14°C (temperatura óptima para la especie-objetivo) se ha localizado en aguas más profundas (por debajo de 350 m). Sin embargo, la abundancia máxima de esta especie en esta zona del Atlántico nororiental ha sido encontrada en aguas más someras (150-350 m), donde se sitúa dicha isoterma.

- La especie-objetivo aparentemente está asociada a fondos duros con pendiente (inclinación) rodeados por fondos blandos. Por el contrario, los fondos planos y más o menos blandos no parecen estar poblados por la especie-objetivo, sino por la gamba blanca o rosada *Parapenaeus longirostris*.
- Los análisis de correspondencia no han aportado datos concluyentes sobre el estrato batimétrico de mayor abundancia de *P. edwardsii*. En los taludes insulares de los

archipiélagos del Atlántico nororiental la escasez y la gran inclinación del hábitat se refleja en una marcada sucesión y solapamiento de las especies de camarones Pandalidae. Por el contrario, la gran amplitud y la suave inclinación de la plataforma continental atlántica marroquí se traducen en una baja competencia de estos pandálidos por el espacio y, por ende, en un mayor rango de distribución batimétrica.

- Los resultados de rendimiento de las pescas exploratorias han indicado que, en el área prospectada (30° 21' N - 29° 26' N, 100-400 m), la especie-objetivo presenta valores máximos de CPUE en el sector más meridional (Sidi Ifni-Tiznit), con clara tendencia a la disminución en el sentido sur-norte hasta registrar valores nulos en el sector más septentrional (Oued Souss-Agadir).

Las CPUE máximas de la zona sur del sector Sidi Ifni-Tiznit alcanzaron valores de 240, 250 y 370 g/nasa/noche que, a la vista de nuestra experiencia, han de considerarse elevados en relación con lo encontrado en aguas de los archipiélagos del Atlántico nororiental.

- Los resultados biológicos preliminares (solo relativos al mes de mayo) de la especieobjetivo no parecen mostrar diferencias con el patrón general observado para esta especie en el Atlántico nororiental.

5.- RECOMENDACIONES

Por orden cronológico, el equipo investigador recomienda acometer, en el marco de un nuevo proyecto de cooperación canario-marroquí, las siguientes actuaciones:

a.- Verificar la asociación de la especie-objetivo al tipo de sustrato duro.

Ello implica realizar un número significativo de pescas comparativas entre fondos blandos y fondos duros en un mismo sector de experimentación. Estos resultados son de crucial importancia a la hora de estimar, por un lado, el área o distribución del stock entre las isobatas de máxima abundancia de la especie y, por otro, la biomasa virgen del mismo.

b.- Establecer los límites geográficos del stock hacia el sur del área prospectada en el presente estudio.

Esto supone efectuar una serie de pescas exploratorias desde Sidi Ifni (aproximadamente en 29° 36' N), en dirección sur hasta Tarfaya (aproximadamente en 28° 15' N). La importancia de esta acción reside en la localización y delimitación del recurso con vistas a su cuantificación.

c.- Evaluar la biomasa virgen y explotable del stock.

Esta actuación será fundamental para el establecimiento del nivel de capturas recomendable en la zona estudiada.

d.- Llevar a cabo acciones de transferencia de tecnología de pesca.

Estas actuaciones permitirán la capacitación y formación de profesionales marroquíes para el desarrollo sostenible de una nueva actividad económica ligada a un nuevo recurso marisquero.

e.- Realizar actividades de promoción y divulgación del recurso.

Este conjunto de acciones perseguirán la valorización de este nuevo producto pesquero en la región, incluyendo experiencias piloto de comercialización del mismo en Marruecos y Canarias.

6.- BIBLIOGRAFÍA

Anadón, R. (1981) Crustáceos Decápodos recogidos durante la campaña "Altor VII" en las costas noroccidentales de África (Noviembre, 1975). *Result. Exp. Cient.* (Supl. *Inv. Pesq.*, Barcelona) 7: 151-159.

Bas, C., A. Arias & A. Guerra (1976) Pescas efectuadas durante la campaña «Atlor V» (C. Bojador-C. Blanco, abril-mayo 1974). Características y tratamiento de las capturas. *Res. Exp. Cient. B/O Cornide*, 5: 161-172.

Baba, K., E. Macpherson, G.C.B. Poore, S.T. Ahyong, A. Bermúdez, P. Cabezas, C.W. Lin, M. Nizinski, C. Rodrigues & K.E. Schnabel (2008) Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura – families Chirostylidae, Galatheidae and Kiwaidae). *Zootaxa*, 1905: 220 pp.

Burukovsky, R.N. (1980) Peculiarities of the distribution by depth of shrimps along the Atlantic coast of Morocco. *Okeanologiya*, 20 (6): 1098-1102.

Burukovsky, R.N. (1982) Shrimps of the Sahara coastal waters: species composition and distribution patterns. **Zool. Zh.**, 61 (9): 1330-1338.

Crosnier, A. & J. Forest (1973) Les crevettes profondes de l'Atlantique Oriental Tropical. *Faune Trop.* (ORSTOM), 19: 409 pp.

García-Raso, J.E. (1996) Crustacea Decapoda (excl. Sergestidae) from Ibero-Moroccan waters. Results of Balgim-84 Expedition. *Bull. Mar. Sci.*, 58 (3): 730-752.

González, J.A. (1995) Catálogo de los Crustáceos Decápodos de las islas Canarias. Publicaciones Turquesa. Santa Cruz de Tenerife: 282 pp.

González, J.A. & J.I. Santana (1996) Shrimps of the family Pandalidae (Crustacea, Decapoda) off the Canary Islands, Eastern Central Atlantic. *S. Afr. J. mar. Sci.*, 17: 173-182.

González, J.A. & O. Tariche (2009) (eds.) Una mirada sobre la biodiversidad marina y bases para su gestión sostenible. Recursos pesqueros potenciales de profundidad de Cabo Verde. Dirección General de Relaciones con África del Gobierno de Canarias. Las Palmas de Gran Canaria: 176 pp.

González, J.A., J. Carrillo, J.I. Santana, P. Martínez Baño & F. Vizuete (1992) La pesquería de Quisquilla, *Plesionika edwardsii* (Brandt, 1851), con tren de nasas en el Levante español. Ensayos a pequeña escala en Canarias. *Inf. Téc. Sci. Mar.*, 170: 31 pp.

González, J.A., V.M. Tuset, I.J. Lozano & J.I. Santana (1997) Biology of *Plesionika narval* (Crustacea, Decapoda, Pandalidae) around the Canary Islands (Eastern Central Atlantic). *Estuar.*, *Coast. Shelf Sci.*, 44: 339-350.

González, J.A., J.A. Quiles, V.M. Tuset, M.M. García-Díaz & J.I. Santana (2001) Data on the family Pandalidae around the Canary Islands, with first record of *Plesionika antigai* (Caridea). *Hydrobiologia*, 449: 71-76 (J.P.M. Paula, A.A.V. Flores & C.H.J.M. Fransen, eds., Advances in Decapod Crustacean Research).

Holthuis, L.B. (1980) FAO species catalogue. Vol. 1. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. *FAO Fish. Synop.*, 125 (1): 1-271.

Holthuis, L.B. (1987) Crevettes. Homards, Langoustines, Langoustes et Cigales. Vrais Crabes. *En*: W. Fischer, M.L. Bauchot et M. Schneider (eds.), Fiches FAO d'identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de pêche 37. Vol. I. Végétaux et Invertébrés. FAO/CEE. Rome: 189-368.

Lagardère, J.P. (1971) Les crevettes des côtes du Maroc. *Trav. Inst. Scient. Cherifien et Fac. Scien.*, *sér. Zool.*, Rabat, 36: 1-140.

Lagardère, J.P. (1981) Crevettes. *En*: W. Fischer, G. Bianchi et W.B. Scott (eds.), Fiches FAO d'identification des espèces pour les besoins de la pêche. Atlantique centre-est; zones de pêche 34, 47 (en partie). Minis. Pêch. Océans Canada. ONU-FAO. Ottawa, vol. VI: 1-4 + fiches.

Lloris, D. & J. Rucabado (1998) Guide FAO d'identification des espèces pour les besoins de la pêche. Guide d'identification des ressources marines vivantes du Maroc. Rome, FAO: 263 pp. + XXVIII pl. en couleur.

Maurin, C. (1951) Note sur les crevettes des côtes du Maroc. *Ann. biol. Copenhague*, 8: 91-92.

Maurin, C. (1961) Répartition des crevettes profondes sur les côtes sud du bassin occidental de la Méditerranée et dans la région atlantique ibéro-marocaine. *Rapp. Comm. int. Mer Médit.*, 16 (2): 529-532.

Maurin, C. (1963) Les crevettes capturées par la «Thalassa» au large des côtes du Rio de Oro et de Mauritanie. Ecologie et pêche. *Cons. int. Explor. Mer*, Com. Mollusques et Crustacés, 48: 1-5.

Maurin, C. (1965) Les crevettes profondes de la région atlantique ibéro-marocaine: répartition bathymétrique et géographique, importance économique. *Rapp. Cons. Explor. Mer*, 156: 116-119.

Maurin, C. (1968a) Les Crustacés capturés par la «Thalassa» en 1962 dans le détroit canarien, au Rio de Oro et en Mauritanie. *En*: Symposium ressources vivantes du plateau continental africain du détroit de Gibraltar au Cap Vert. CIEM/FAO, Communication n. 7: 9 pp. multigr.

Maurin, C. (1968b) Les crustacés capturés par la «Thalassa» au large des côtes nord-ouest africaines. *Rev. roum. Biol., Sér. Zool.*, 13 (6): 479-493.

Maurin, C. & M. Bonnet (1969) Le chalutage au large des côtes nord-ouest africaines. Résultats des campagnes de la «Thalassa». *Science et Pêche*, 177: 1-17.

Miyake, S. & K. Baba (1970) The Crustacea Galatheidae from the tropical-subtropical region of West Africa, with a list of the known species. *Atlantide Rep.*, 11: 61-97.

Santana, J.I., J.A. González, I.J. Lozano & V.M. Tuset (1997) Life history of *Plesionika edwardsi* (Crustacea, Decapoda, Pandalidae) around the Canary Islands (Eastern Central Atlantic). *S. Afr. J. mar. Sci.*, 18: 39-48.

Udekem d'Acoz, C. (d') (1999) Inventaire et distribution des crustacés décapodes de l'Atlantique nord-oriental, de la Méditerranée et des eaux continentales adjacentes au nord de 25° N. *Patrimoines naturels* (M.N.H.N./S.P.N.), 40: i-x + 383 pp.

Zariquiey Álvarez, R. (1968) Crustáceos Decápodos Ibéricos. *Inv. Pesq.*, 32: xv + 510 pp.

ANEXO FOTOGRÁFICO

Nasas estibadas y preparando la maniobra de calado del aparejo.

Boyas de flotación del aparejo, maniobra de virado y recolección de la captura.

Recolección de la captura y triado de especies y ejemplares a bordo.

Identificación de ejemplares y realización de muestreos biológicos en laboratorio en el ICCM.

Preparación de ejemplares para colecciones biológicas de referencia y reuniones del Grupo de Trabajo en el ICCM.