
Simulation of 3D evolution problems via
refinement and derefinement tetrahedral

algorithms

Ángel Plaza^ Miguel A. Padrón^ Graham F. Carey^

Abstract

In this paper we present the simulation of 3D evolution problems by the use of a
three-dimensional refinement/derefinement algorithm for nested tetrahedral grids. The
algorithm is based on an adaptive refinement scheme and on an inverse algorithm intro-
duced by the authors. These algorithms work first on the skeleton of the 3D triangulation,
the set of the triangular faces. Both schemes are fully automatic.

Introduction

In the área of finite element methods the efficient approximate solution of partial differential
equations local refinement is critical. Adaptivity of the mesh is particularly important in three-
dimensional problems because the problem size and computational cost grow very rapidly as
the mesh size is reduced. The elements that offer the simplest cholee in any dimensión are
triangles in two dimensions and tetrahedra in three dimensions (simplices). Many diíFerent
refinements and improvement techniques for two- and three-dimensional triangulations are
now available. For a discussion of different techniques for local grid refinement see [4].

In 2D our refinement algorithm is equivalent to the 4T algorithm of Rivara [17, 18, 19j.
Figure 1 shows the partition of a triangle into four (a) and the patterns used for local refinement
(b) and (c).

Figure 1' 4-Triangies-refinement patterns

In three dimensions several techniques have been developed in the last five years for refining
(and coarsening) tetrahedral meshes by means ofbisection of tetrahedra [2], [8,9], [7], [10,1].
However, these algorithms are not applicable to any initial mesh and need some kind of pre-
processing.

Recently Plaza and Carey [12, 13] have presented a generalization of the 4-T Rivara algo­
rithm to three dimensions. The algorithm works first on the triangular faces of the tetrahedra,
the skeleton of the 3D-triangulation, and then subdivides the interior of each tetrahedron in
a consistent manner with the subdivisión of the skeleton. As in the refinement case, the dere­
finement algorithm is based on the skeleton wliere the conformity of the mesh in assured, and
then the interior of the tetrahedra is reconstructed.

Here, we present the main ideas for a suitable combination of refinement and derefinement.

249

Definitions

Let V = {Xo,Xi,... ,Xm} be a set of m + 1 points in R^ (I < m < n) such that

{XQXÍ: 1 < Z < m} is a linearly independent set of vectors. Then the closed convex hull of V
denoted by S =< V >=< Xo,Xi,... .X^ > is called an m-simplex in i?", while the points
XQ, . . . , Xm are called vértices of S, and the number m is said to be the dimensión of S.

o

Let f2 be a bounded set in i?" with non-empty interior, f j / 0, and poligonal boundary
5f2, and consider a partition of Q. into a set T = { í j , . . . ,í¿} of n-simplices, such that any
adjacent simplex elements share an entire face or edge or a common vértex, i.e. there are
no non-conforming nodes in r. Then we can say that T is a conforming simplex mesh or a
conforming triangulation for f2.

Let T be an n-simplicial mesh. The set SA;Í(T) = {/ : / is an (n — l)-face of some
t e T} will be called the skeleton or the (n - l)-skeleton of T [3]. For instance, the skeleton
of a triangulation in three dimensions is comprised of the faces of the tetrahedra, and in two
dimensions the skeleton is the set of the edges of the triangles.

Two (conforming) triangulations r and r* of the same bounded set Q. are said to be nested,
and we write T < r* if the following condition holds: "^t € T, 3 ¿I , . . . ,tp € T* such that
í = íi U . . . U íp. We also say that r is coarser than r* or that T* is finer than r.

Since bisection of the elements is used, all the new nodes will appear at the midpoints of
edges of previous levéis of mesh. We cali the surrounding edge of a node N the edge in which
N is at the midpoint. Besides, for each edge e we cali the hull of e, denoted by h{e), the set
of elements sharing edge e. Note that this set is not convex in general.

The Refinement Algorithm

The refinement algorithm in 2D

Let r be the initial triangulation, let í be a triangle to be subdivided, and let L be the hst
of triangles to be subdivided. The first step of the algorithm is the subdivisión of the edges of
t, Figure 2(b). Then the adjacent triangle t* is checked to make it conforming. The proccess
ends when no further edge in any adjacent triangle is divided for conformity.

/* Input variables: í, triangle to be refined, and T, 2D triangular mesh
Output variables: L, Hst of triangles to be refined
Interna! variables: í', triangle; l{t), l{t*) longest-edges of triangles t and t* respectively */

Add t to the list L: L = LUt
For each edge e of í, do

Subdivide e
/* let t* be the neighbouring triangle of £ by the edge e,
and let /(í*) be the longest-edge of t* */
While Z(í)^ í (r) , do

Add í* to the list L: L = LUf*
Subdivide edge l{t*)
l{t) := l{t*); t := í*
/* let í* be the neighboring triangle of t by the edge l(t)
and l{t*) be the longest-edge of f */

End While
End For

2.'iO

(c) (d)

F îgure 2: 2D refinement algorithm

The refinement algorithm in 3D

Let r be a three-dimensional tetrahedral grid and ÍQ be a tetrahedron in the grid to be
refined. The 3D algorithm as proposed by Plaza and Carey [15] is:

/* Input variables: ÍQI tetrahedron to be refined, and r, 3D triangular mesh
Output variables: new mesh r
Interna! variables: L, set of nodos; Ne,P.Pr', nodes; e,e*, edges; / , face; í, tetrahedron */

/* 1. Edge subdivisión */

For each edge e € ÍQ do
Bisect e producing new-node ,Vp
I = L U iVe

End For
/* 2. The conformity is ensured */
While L 7̂ 0 do

/* Let F be a node from L with surrounding edge ep */
For each tetrahedron t 6 h{ep) do

For each non-conforming face / of # do
Bisect the longest-edge e* of / producing new-node Pe- at the midpoint of e*
L = ¿ U Pe-

End For
End For
L = L-P

End While
/* 3. The subdivisión o¡ the skeleton is performed * j
For each triangular face / € skl[r') to be subdivided do

Subdivide /
End For 251

/* 4- The subdivisión of the tetrahedra is performed */
For each tetrahedron í e r to be subdivided do

Subdivide í
End For
End.

Some of the properties of the previous algorithm are sumarized at the end of the paper.
The complexity of the algorithm has been estimated by OiNa) + 0{Nf) + 0{Ni) [16], where
Âa is the number of added nodes, Â ^ is the number of involved faces, and Nt the number
of involved tetrahedra. Nunaerical experimcnts also indícate that in practice the algorithm
performs like a linear complexity algorithm [12].

The Derefinement Algori thm in 3D

Por the 2D versión of the derefinement algorithm see References [5] [14]. For coarsening a
refined mesh we may construct an inverse algorithm based on the previous refinement scheme.
Note that all levéis of mesh are involved at derefining, We have to take into account at
derefining the genealogy of the edges, faces or elements.

To each topological element of the mesh (node, edge, face or tetrahedron) we assign an
integer numbei. This number gives us the level in which the corresponding element han been
created. Besides we use the sign of these numbers to control the derefinement procedure. That
is, if the number is positive, the corresponding topological element must remain. On the other
hand, if the number is negative it implies that this element must be removed. The vector
in which for each type of topological elements these numbers are kept is called, derefinement
vector.

A proper node N is called an eligible proper node for derefining if N can be removed from
the mesh while attending to the conformity condilion. This means, that a particular node
N is eligible if A'' can be removed from the mesh and the mesh remains conforming, and N
is not-eligible if its removal makes the mesh non-conforming. Henee, the conformity of each
level is assured by maintaining some nodes that, otherwise, given the derefinement condition,
might have been removed.

The derefinement condition we are using in .3D is the same as that which has been used
in 2D [5]. A proper node may be removed if the absolute difference between the valúes in
this node of the numerical solution an its corresponding interpolated function is less than a
sufficiently small parameter e > 0. That is, if u/j is the numerical solution for a given mesh
and u\ is the interpolated function of uu in the derefined mesh, we will get

ÜM/i - "hll = s^Px I Uh{x) - u'^(x) |< e

This error indicator at derefining does not allow us to control the discretization error; in
an adaptive algorithm this control is usually performed by an error indicator in the refinement
process. The subjacent idea is that when a time-step integration scheme is used, a good
approximation of the solution when time is í,i+i = t„ +Aí„ is the previous solution when time
is t„. So the described error indicator at derefining can be considered optimal in the sense
that a given solution is approximated with a mínimum number of nodes after derefining. If
á > O is a given tolerance for the error in the máximum norm, a practical criterion to choose e
would be to take a valué sufficiently smaller than d, for example e w 0.15. Similarly, one may
choose for e a small fraction of \\u\\^ or, another characteristic valué according to the problem
or to the range of the expected solution,

252

However, it should be noted that the algorithms are independent from the refinement or
derefinement criteria involved. So the same error indicator used at refining could be used as
a derefinement error indicator as well.

The outline of the 3D derefinement algorithm is as follows:

/* Input variables: Refined sequence of meshes T = {TI < r^ < • • • < Tk}
Output variables: New derefined sequence T™ = {TI < TJ < . . . s < T^}
Internal variables; Â , node; e, edge; h(e), hull of e; / ; triangular face; t, tetrahedron;
derefinememt indicators */

/* Loop in levéis of T */
For j = A: to 2, do

For each eligible proper node N e TJ, do
/* 1. The derefinement condition is evaluated */
1.1. The derefinement condition is checked
1.2. The nodes and edges are pointed out
/* 2. The conformity is ensured locally */
I* let e be surrounding edge of A'̂ , and /i(e) the hull of e */
For each tetrahedron í e h[e), do

make Â conforming in t
End For

End For
/* 3. The sequence of meshes is re-defined */
For each / G sfcí(Tj_i), do

3.1 Subdivide / by the 4-T partition of Rivara
End For
For each í € r^-i, do

3.2 Perform the new subdivisión of í
End For

End For.

As in the 2D case, the concept of adjacency is the central idea in the algorithm in 3D. In
order to check the elements belonging to the hull of the edge e we go from that edge to a face
/ , called the supporting face for e, in which e is an edge, and from this face to the neighboring
elements of the face. See [16] for details.

The Refinement/Derefinement Combination and Prop-
erties

By combining the above two strategies we obtain the composite refinement/derefinement
scheme. This combination can be outlined as follows:

Initial rnesh generation and set up of the parameters for refining and derefining
For nsteps = 1, to N^ax, do

For i = 1, to Nr, do
1. Computation of the new timestep A,;(í)
2. Solution of the corresponding system of equations
3. Computation of the refinement error indicator
4. Local refinement

End For 253

5. Derefinement of the mesh, with tolerance
End For.

Several properties of the algorithms and their combination are the following: 1) Both rcfine-
nient and derefinement procedurcs can be appliod to any initial triangula.tion, (̂ ven to strong
non-convex regions, without any preprocessing [11]. Both procedures are Hnite and exhibit
linear complexity (J{N), where A' is the number oí nodes [13] [16]. 2) The i'ehnenient proce-
dure can be applied to any initial triangulation, even to strong non-convex regions, without
any preprocessing [11], 3) The derefinement condition is evaluated in a mínimum number of
nodes: the elegible proper nodes. 4) The nested nature of the grids make the use of multigrid
methods relatively easy [6, 5]. 5) In the resolution of an evolutinary process, removing dupe
nodes keeps the number of equations bounded. This is an important feature because in a finite
element code most of the CPU time is employed in the resolution of the associated system of
equations [5]. 6) The idea of using the skeleton, could be applied to obtain similar algorithms
in higher dimensions.

a) 535 n./ 2452 t.

b) 234 n. / 939 t.

c) 996 / 4650

d) 400 / 1705

407 / 1697

i ^,

f) 36 / 74

Figure 3: Simulation example in 3 dimensions.
After approximating the singularity the mesh is derefined.

The sequence must be read from a) to f). The number of nodes & tets involved are indicated

Numerical Examples and Concluding Remarks

We present here only one simulation example m 3D. Figure 3 sliows the evolution of ineshes
when a combination of (local) refinement foUowed by a derehnenient algürithm is api^liod to
get the moving refinement área. Note how the refinement aroa changes as the singularity
moves.

The refinement and coarsening algorithms presented here provide a very useful tool for the
treatment of unsteady problems in three dimensions, Adaptivity of the mesh is particularly
important in three-dimensional problems because problem size and computational cost grow

254

very rapidly as the mesh size is reduced. With the refinement/derefinement combination
families of sequences of nested meshes are obtained, and the multigrid method can be used in
an easy way to solve the system of equations associated with the finite-element method [6].
These ideas are clearly relevant in other áreas such as approximation of surfaces, visualization,
data compression and solid modelling.

References

[1] D. N. Arnold, A. Mukherjee, and L. Pouly. Locally adapted tetrahedral meshes using
bisection. SIAM J. Sci. Comput, 1997.

[2] E. Bánsch. Local mesh refinement in 2 and 3 dimensions. IMPACT Corn. Sci. Eng.,
3:181-191, 1991.

[3] M. Berger. Geometry. Springer-Verlag, 1987.

[4] G. F. Carey. Computational Grids: Generation, Refinement and Solution Strategies.
Taylor and Francis, 1997.

[5] L. Ferragut, R. Montenegro, and A. Plaza. Efficient refinement/derefinement algorithm
of nested meshes to solve evolution problems. Comm. Num. Meth. Eng., 10:403-412,
1994.

[6] W. Hackbush. Multigrid Methods and Applications. Springer Verlag, 1985.

[7] I. Kossaczky. A recursive approach to local mesh refinement in two and three dimensions.
J. Comp. Ápp. Math., 55:275-288, 1994.

[8] A. Liu and B. Joe. On the shape of tetrahedra from bisection. Math. Comp., 63:141-154,
1994.

[9] A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based on bisection.
SIAM J. Sci. Comput, 16:1269-1291, 1995.

[10] A. Mukherjee. An adaptive finite element code for elliptic boundary valué problems in three
dimensions with applications in numerical relativity. PhD thesis, Penn. State University,
1996.

[11] M. A. Padrón. A 3D derefinement algorithm for tetrahedral nested meshes based on the
squeleton. PhD thesis, University of Las Palmas de Gran Canaria, 1999. In Spanish.

[12] .\. Plaza and G. F. Carey. About local refinement of tetrahedral grids based on bisection.
In 5th ínter. Mesh. Rovndtahle. pages 123-136. Sandia Corporation, 1996.

[13] A. Plaza and G. F. Carey. Refinement of simplicial grids based on the skeleton. App.
Num. Math., 32(2):195-2Í8, 2000.

[14] A. Plaza, R. Montenegro, and L. Ferragut. An improved derefinement algorithm of
nested meshes. In M. Papadrakakis, editor. Advances in Post and Preprocessing for
Finite Element Technology, pages 175-180. Civil-Comp Ltd., 1994.

[15] A. Plaza, M. A. Padrón, and G. F. Carey. .\ 3d derefinement algorithm for tetrahedral
grids. In McNU'97, Trends in unstructured mesh generation, pages 17-23, 1997.

255

[16] A. Plaza, M. A Padrón, and G. F. Carey. A 3d refinement/derefinement combination to
solve evolution problems. App. Num. Math., 32(4):401-418, 2000.

[17] M. C. Rivara. Mesh refinement based on the generalized bisection of simplices. SIAM J.
Numer. Anal., 2:604-613, 1984.

[18] M. C. Rivara. A grid generator based on 4-triangles conforming mesh refinement algo-
rithms. Int. J. Num. Meth. Eng., 24:1343-1354, 1987.

[19] M. C. Rivara. Local modification of meshes for adaptive and/or multigrid finite-element
methods. J. Comp. and Appl. Math., 36:79-89, 1991.

1 Department of Mathematics. U.L.P.G.C., 35017-Las Palmas de Gran Canaria. Spain. Sup-
ported in part by Project PI1999/146 from Gobierno de Canarias. E-mail: aplaza@dma.ulpgc

2 Department of Civil Engineering. U.L.P.G.C.

3 Texas Institute for Computational and Applied Mathematics (TICAM), ASE/EM Dept., Uni-
versity of Texas at Austin. U.S.A. E-mail: carey@cfdlab.ae.utexas.edu Supported by ARPA
grant number DABT63-96-C-0061.

256

mailto:carey@cfdlab.ae.utexas.edu

