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Universidad Católica de la Santı́sima Concepción, Concepción, Chile
Gonadal development in limpets is well-known. However, the integration of

fecundity data on coastal management actions remains overlooked. Here, we

use fecundity of two exploited limpets (Patella ordinaria and P. aspera) to

demonstrate its potential as a conservation tool to preserve the harvested

populations of both species. From October 2021 to June 2022, 158 females of

P. ordinaria and 70 of P. aspera were collected from the coastal rocky shores of

the archipelago of Madeira (NE Atlantic Ocean). The fecundity in both species

appears to be determinate, and estimated batch fecundity 365,638 ± 204,462

oocytes for P. ordinaria and 73,029 ± 43,496 oocytes for P. aspera. The presence

of spawning individuals of both species until May is of significant relevance to

their management and conservation. A harvest-ban (November-March) is

currently implemented in the coastal governance actions of P. ordinaria and P.

aspera. Based on the fecundity results, small adjustments can be made to further

improve the conservation of adult individuals, which are important for the

continuity of future generations. So far, fecundity data constitute an

overlooked life trait of key importance to preserve populations of exploited

species, primarily those with limited mobility such as semi-sessile littoral limpets.
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reproduction, commercial species, conservation, limpet, intertidal, North-eastern
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1 Introduction

The extensive human footprint has underpinned drastic

changes to ecosystems all over the globe (Steffen et al., 2015;

Venter et al., 2016). Marine, freshwater and terrestrial realms

have been, and still are, subject to habitat loss and fragmentation

(Dubois et al., 2018; Jones et al., 2018; Ellis et al., 2021).

Conservation actions have been developed to halt this destructive

trend and also to preserve scarcely-touched areas on our planet

(Geldmann et al., 2013; Ward et al., 2022), such as the spatial

management with the creation of no-take marine reserves. The

main aim of a high portion of protected areas is to preserve certain

endangered species, e.g. large mammals in Africa (Pacifici et al.,

2020), or commercially valuable species, e.g. large-sized demersal

fish (Hackradt et al., 2014). The establishment of these protected

areas is mainly based on conventional biodiversity measures such

as, abundance of individuals, densities per surface area, and also

species richness in biodiversity hotspots (Blowes et al., 2020; Davies

et al., 2021). Their assessment is typically based on management

actions that follow up the previous parameters used to declare these

spaces as protected areas (Dudley and Stolton, 2008). Other

parameters remain overlooked such as, functional traits,

phylogenetic diversity or those related to fecundity or

reproductive potential (see exceptions Coleman et al., 2015;

Guilhaumon et al., 2015). The integration of information on

fecundity and reproductive potential would be an asset for

conservation assessment studies. However, most of the studies are

limited to the harvest control measures catch and bag limits, gear

restrictions, closed seasons and minimum size limit (Worm et al.,

2009; Gwinn et al., 2015; Liu et al., 2016). The latter has been used as

a threshold to separate reproductively active adults and pre-adults

or juveniles (e.g. Lavin et al., 2021), as it occurs in a wide range of

commercial marine species, i.e. fish, crustaceans and molluscs (Ellis

and Cowan, 2001; Alós et al., 2014; Sousa et al., 2019b). Fecundity

studies may provide a more accurate picture of the reproductive

cycle of a species throughout the year. There are management

actions that target this temporal variability on the reproductive

potential of the species such as, the implementation of seasons; yet,

they are mostly based on maturity stages data classified according

only to the progression of the gonads volume in the haemocoel, and

only focused on the months where reproductive individuals are

reported (de Mitcheson et al., 2020). An exhaustive analysis of

fecundity data is expected to identify nuances and subtle variations

of gonad development among individuals that may result in

accurate management actions that ensure the continuity of the

species under protection (Lambert, 2008).

Chronic fishing and harvesting activities have substantial effects

on the reproductive parameters of the targeted species (Walsh et al.,

2006; Wright and Trippel, 2009; Pellowe and Leslie, 2020).

Reproductive dynamics are thought to suffer shifts due to long-

term exploitation (Murphy et al., 1994; Sousa et al., 2019b; Pellowe

and Leslie, 2020). In harvested molluscs, such as intertidal and

shallow subtidal limpets, several reproductive parameters have been

used as a proxy to establish the exploitation status of their

populations (Riera et al., 2016; Sousa et al., 2019a). The impact of
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harvesting on littoral limpets from Madeira has been extensively

studied in recent years (e.g., Sousa et al., 2019a; Sousa et al., 2019b;

Sousa et al., 2020a; Sousa et al., 2020b). Reproductive parameters,

including size and age at first maturity, have traditionally been used

to assess the level of exploitation of P. ordinaria and P. aspera in this

region. The populations of these two exploited species have been

drastically reduced, with a more pronounced decrease in accessible

sites (Sousa et al., 2019a). The persistent exploitation of this coastal

resource has underpinned changes in life history traits, reproductive

output, genetic diversity, among others (Henriques et al., 2017).

These shifts are still occurring despite the implementation of

management actions such as a closed season during the

reproductive season (November-March) (Portaria n. 151/2022;

Sousa et al., 2019a) and a minimum harvesting size of 40 mm

shell length (Sousa et al., 2019b). This size limit management action

was implemented to prevent the harvest of a portion of the

spawning stock to maintain replenishment rates (as size at first

maturity for P. ordinaria and P. aspera are 37.5 and 37.4 mm SL,

respectively; Sousa et al., 2019b). This leaves a portion of the

spawning stock vulnerable to fishing pressure, diminishing the

reproductive output (Liu et al., 2016; Lavin et al., 2021) that

increases hyperallometrically with size and age (Hixon et al.,

2014; Barneche et al., 2018; Vasconcelos et al., 2023). This size-

selective harvesting is worrisome, especially for the protandrous

hermaphrodite P. aspera. In this species, smaller and younger

limpets reach sexual maturation as males, with a fraction of them

changing to females afterwards (Orton et al., 1956; Espinosa et al.,

2006; Espinosa et al., 2009; Martins et al., 2017; Sousa et al., 2019b).

This increase of females in larger size classes as the result of sex

change, make them extremely vulnerable and a target to harvest

(Espinosa et al., 2006), with overfishing affecting the more fecund

females and thus reducing the reproductive output of populations

(Espinosa et al., 2009). In this sense, we hypothesize that the

potential fecundity of P. aspera is lower when compared with P.

ordinaria, as a consequence of P. aspera being a protandrous

hermaphrodite. Also, asynchronous spawning seasons may be

expected between the northern and southern populations of both

species. Preliminary results on the fecundity of one of these species

were published recently (Vasconcelos et al., 2023). While studying

P. ordinaria sampled along the Madeiran archipelago during the

months of spawning, the authors found differences in the fecundity

of northern and southern populations of this species, which may be

indicative of this asynchrony.

We here used these two limpets as a model of study to explore

the potential of fecundity data to be integrated into coastal

management actions. The main goals of the present study are

to: (i) analyze at a microscopic level, the gametogenic stages of P.

ordinaria and P. aspera females, (ii) study the four main criteria

applied for fecundity type determination for both patellid limpets,

and (iii) compare the number and size of vitellogenic oocytes for

the northern and southern populations of Madeira. The

integration of the former parameters may result in management

actions that would potentially be the cornerstone of the

sustainable exploitation of these molluscs in the medium and

long-term.
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2 Material and methods

2.1 Data sampling

For this study, 158 specimens of Patella ordinaria (49.34 ± 6.86

mm total shell length, SL) and 70 P. aspera (45.65 ± 6.83 mm SL),

two species that coexist in the lower intertidal to the subtidal from 0

to 6 m deep (Côrte-Real et al., 1996; Sousa et al., 2017; Sousa et al.,

2020b), were randomly collected between October 2021 and June

2022 in four coastal settlements in the Madeira archipelago, two on

the North coast (Porto Moniz and São Vicente) and two on the

South coast (Funchal and Porto Santo) (Table 1; Figure 1). Due to

the fact that these species are winter breeders (Henriques et al.,

2012; Sousa et al., 2017), there were some limitations in the monthly

(e.g., December) and site (as the North coast of Porto Santo Island)

sampling of the reproductive stock, mainly due to the sea adverse

conditions, particularly on the north coast of the archipelago

(Castejón et al., 2022; Vasconcelos et al., 2023).

In the laboratory, fresh individuals were sorted by species,

measured for total shell length (SL, 0.01 mm accuracy) and

weighted for total body wet weight (TW, 0.01 g accuracy). A

small cut was made in the mantle at the posterior part of the foot

(Cañizares et al., 2021) the gonads gently removed and weighted

(GW, to the nearest 0.01 g). Sex was determined according to gonad

pigmentation Orton et al. (1956), and female gonads preserved as a

whole in Roti-Histofix ECO PLUS for histological analysis

(Vasconcelos et al., 2023).
2.2 Histological analysis and sexual cycle

Histological sections were assembled from small portions of

gonad dehydrated with ethanol at different concentrations (70, 90

and 95%) and embedded in Technovit 7100 resin (Vasconcelos
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et al., 2017). The homogeneity of oocyte distribution within ovaries

was checked from histological sections (5 mm) made on the

anterior, middle, and posterior regions of the ovary. As the

middle area was representative of the entire gonad, sections were

made on this part of the ovary, stained with methylene blue and

digitized using a visual image analysis system (Leica DM2700 P

microscope coupled to the Leica DFC 450 C camera and the

software Leica Application Suite X – LAS 3.7, Leica

Microsystems). Classification of oogenesis stages and oocytes into

previtellogenic (PO), vitellogenic (VO) and atresic oocytes (AO)

(Supplementary Figure 1) were based on Prusina et al. (2014)

(adopted and modified from McCarthy et al., 2008; Belkhodja

et al., 2011): inactive; early development; late active; ripe; atresic;

spawning; and spent.

The gonadosomatic index (GSI) was calculated according to the

equation:

GSI = 100*
GW
TW

(1)

where GW is the gonad weight (in g) and TW the total body wet

weight (in g).
2.3 Fecundity analysis

Fecundity of P. ordinaria and P. aspera, was assessed based on:

(i) the presence or absence of an hiatus between PO and VO; (ii) the

number of VO during the spawning period; (iii) average size of VO

throughout the spawning period; and (iv) the incidence of atresia

throughout the spawning period (Hunter, 1992; Greer Walker et al.,

1994; Murua et al., 2003). For the first three criteria, 95 P. ordinaria

(62 in the maturity stage ripe and 33 at the beginning of spawning)

and 30 P. aspera (27 in ripe and 3 at the beginning of spawning)

were analyzed. For the analysis of the first criterion, histological
TABLE 1 Number (N) of individuals and the average total length (TL, mm) and respective standard deviation (SD) of Patella ordinaria and P. aspera
from the archipelago of Madeira (NE Atlantic Ocean) sampled between October 2021 and June 2022.

Patella ordinaria Patella aspera

N Mean ± SD Min. - Max. N Mean ± SD Min. - Max.

October 2 52.45 ± 1.88 51.12 - 53.78 13 44.95 ± 8.59 28.14 - 65.64

November 11 46.22 ± 1.98 42.87 - 49.22 14 37.34 ± 3.65 32.35 - 42.61

January 18 42.93 ± 3.95 34.52 - 49.77 – – –

Month February 16 54.02 ± 5.09 41.61 - 62.91 15 49.50 ± 5.43 43.36 - 60.97

March 33 47.58 ± 9.64 24.92 - 61.37 14 48.60 ± 4.47 40.77 - 56.90

May 56 49.80 ± 5.48 41.53 - 64.93 14 47.55 ± 3.02 43.60 - 52.70

June 22 53.91 ± 3.68 46.28 - 61.22 – – –

Total 158 49.34 ± 6.86 24.92 - 64.93 70 45.65 ± 6.83 28.14 - 65.64

Island orientation North 123 49.12 ± 5.79 34.52 - 64.93 43 42.44 ± 6.15 32.35 - 52.70

South 35 47.85 ± 9.43 24.92 - 61.37 27 46.84 ± 6.90 28.14 - 65.64
Min Minimum, Max Maximum.
For P. aspera, there are no samples for the months January and June (-).
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sections were used, while for the second and third criteria, the

gravitometric method was applied (Hunter et al., 1989) following

the protocol used previously for P. ordinaria (Vasconcelos et al.,

2023). The number of oocytes per individual was registered and the

diameter measured on 2,766 PO (1,815 P. ordinaria and 951 P.

aspera) and 5,365 VO (3,614 P. ordinaria and 1,751 P. aspera) using

the ImageJ software v1.53r (http://imagej.nih.gov/ij/) (Schneider

et al., 2012). For the fourth criteria, the relative intensity of atresia,

defined as the percentage of atretic vitellogenic oocytes in relation to

total number of normal oocytes present in the ovary (Hunter and

Macewicz, 1985), was estimated by examining histological sections

of 104 gonads of P. ordinaria (16 in late active, 60 in ripe and 28 in

spawning stage) and 48 of P. aspera (19 in late active, 26 in ripe and

3 in the spawning stage). Gonads in the atresic state of maturation

were not considered as this could cause a miscalculation because the

vast majority of oocytes are in atresia. The prevalence of atresia

(defined as the proportion of females with atresia stage oocytes in

the total number of females) was also investigated.

Batch fecundity measurements were based on the direct

gravimetric method. From the histological examination, 46

females in the ripe stage (25 of P. ordinaria and 16 of P. aspera)

were selected and the number of VO counted throughout the

spawning season. Counts performed per specimen may be

underestimated due to the loss of some oocytes during the

gravimetric process. This problem was encountered by Guallart

et al. (2020) and Vasconcelos et al. (2023).
2.4 Data analysis

Differences in the average number and size of oocytes across

months were tested. As ANOVA assumptions were not met, the

non-parametric Kruskal-Wallis rank sum test (stats R package, R

Core Team, 2022) was used to investigate trends and differences in

oocyte size and number across months. Kruskal-Wallis test does not

require sample sizes to be the same in all groups. The effect size for

Kruskal-Wallis test was computed as the eta squared based on the

H-statistic (h 2, rstatix R package, Tomczak and Tomczak, 2014;

Kassambara, 2022b). The eta squared estimate ranges from 0 to 1,
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where values closer to 1 indicate a higher proportion of variance in

the dependent variable explained by the independent variable.

Values from 0.01 to < 0.06 represent a small effect, 0.06 to <

0.14 moderate effect and ≥ 0.14 a large effect (Tomczak and

Tomczak, 2014; Kassambara, 2022b). The post-hoc Pairwise

Wilcoxon Test was applied to calculate pairwise comparisons

across months with corrections for multiple testing (stats R

package, R Core Team, 2022). The method selected for adjusting

p values was the “BH” (Benjamini and Hochberg, 1995), a more

powerful method than the family-wise error rate. The relative

intensity of atresia throughout months was compared with the

Kruskal-Wallis rank sum test (stats R package, R Core Team, 2022).

The correlation between limpet size and the absolute batch

fecundity was investigated using the Pearson correlation test

(ggpubr R package, Kassambara, 2022a).
3 Results

3.1 Histological analysis and sexual cycle

The frequency distribution of different gametogenic stages

observed throughout the study period is illustrated in Figure 2.

Mature limpets were represented in all sampling months.

Gametogenesis occurred prior to October, with 50% of the

females in the Late active and 50% in Ripe stages in P. ordinaria

whilst only 39% in the Early active and Late Active stage in P.

aspera. Ripe gonads were more common from October to May in P.

ordinaria and from February to March in P. aspera. During

ripening, an average of 24% of female gonads of P. ordinaria were

in the atresic stage, with most of oocytes undergoing atresia. In P.

aspera, the atresic stage was observed in October, November and

February with an average of 19%.

The gonadosomatic index increased from October-November

to March for females of P. aspera and P. ordinaria respectively

(Figure 3). Monthly values revealed an increase from November to

March for both species (Kruskal-Wallis test (K-W); P. ordinaria:

H = 107.98, p < 0.001, h2
H = 0.687; P. aspera: H = 48.484, p < 0.001,

h2
H = 0.684; Figure 3), supporting the maturity frequency
FIGURE 1

Map showing the sampling areas (Funchal, Porto Moniz, Porto Santo and São Vicente) of Patella ordinaria and P. aspera collected from October
2021 to June 2022 in the Madeira archipelago (NE Atlantic Ocean).
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distributions based on the microscopic analysis of females gonads

(Figure 2). The maximum GSI values were found in March for both

species, where females of P. ordinaria attained 21.9% (10.9 ± 6.32,

mean ± SD) and the females of P. aspera 9.12% (5.14 ± 2.65).
3.2 Fecundity estimates

The homogeneity of variance and the normality of the distribution

of the number and size of PO and VO were tested for P. ordinaria and

P. aspera. Regarding the number (Levene’s test: W = 1.1629, p > 0.05)

and size (W = 1.7854, p > 0.05) of PO in P. ordinaria, we can assume

the homogeneity of variances across months. Number (W = 8.2877, p

< 0.001) and size (W = 6.5546, p < 0.001) of VO across months did

not exhibit homogeneous variance. For P. aspera, the number (Levene’s

test: W =7.1013, p < 0.001) and size (W = 3.1174, p < 0.05) of PO and

the number of VO (W = 3.6633, p < 0.05) did not exhibit

homogeneous variance across months. The size of VO (W = 2.1727,

p = 0.05466) exhibits homogeneity of the variances across months. The

size and number of PO and VO departed significantly from normality

(Shapiro-Wilk test: p < 0.001) in both species.

Fecundity was analyzed under the four above-mentioned

criteria. The analysis of the oocytes size frequency distribution

showed a distinct interruption between PO and VO in most of the

sampled months for both Patella species (Figure 4). A progressing

dominant cohort in the oocyte size frequency distribution can be

observed during the sampling period. The average size of PO varied

between 45 ± 18 mm (mean ± SD; 10 - 98 mm) for P. ordinaria and

47 ± 17 mm (15 - 100) for P. aspera. The size of VO ranged from 80

– 248 mm (149 mm ± 23) for P. ordinaria and from 83 – 216 mm
(136 mm ± 30) for P. aspera (Figure 4). For P. ordinaria, the average

number of PO decreased significantly from November till March
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(Kruskal-Wallis test (K-W): H = 28.132, p < 0.05, h2
H = 0.228;

Figure 5A). By contrast, for the same period there was an increase in

the number of VO (K-W: H = 40.799, p < 0.05, h2
H = 0.359;

Figure 5B). For P. aspera, the Kruskal-Wallis test showed significant

differences in the number of PO (H = 26.802, p < 0.05, h2
H = 0.519;

Figure 5E) and VO (H = 30.138, p < 0.05, h2
H = 0.599; Figure 5F).

Yet, there was no trend in the number of PO (Figure 5E) such as the

increase seen in VO from October to March (Figure 5F). The

average size of PO of both P. ordinaria (H = 8.2708, p > 0.05, h2
H =

0.00862; Figure 5C) and P. aspera (H = 8.9925, p > 0.05, h2
H=

0.00576; Figure 5G) did not vary significantly across months. The

size of VO of P. ordinaria decreased significantly from November

till June (H = 141.89, p < 0.05, h2
H = 0.0320; Figure 5D). During the

same period, the average size of VO of P. aspera increased

significantly (H = 189.3, p < 0.05, h2
H = 0.112; Figure 5H).

The number and size of PO and VO was analyzed per maturity

stage (Figure 6). For the VO, an increase in their number from Late

active to Ripe stage, followed by a decrease during spawning stage

was observed for both P. ordinaria (H = 30.774, p < 0.001, h2
H =

0.285; Figure 6B) and P. aspera (H= 20.94, p < 0.001, h2
H = 0.421;

Figure 6F). Regarding their size, there was an increased from Late

active to the Spawning stage in both P. ordinaria (H = 338.23, p <

0.001, h2
H = 0.102; Figure 6D) and P. aspera (H = 172.83, p < 0.001,

h2
H = 0.103; Figure 6H). PO attained their lowest number in the

Ripe stage (P. ordinaria: H = 26.406, p < 0.001, h2
H = 0.242,
FIGURE 3

Gonadosomatic index (GSI) for Patella ordinaria and P. aspera
sampled from October 2021 to June 2022 in the archipelago of
Madeira (NE Atlantic Ocean). Boxplot showing the minimum and
maximum values in the data, the 25th percentile, the median and the
75th percentile. Different letters indicate statistically significant
differences between months (p < 0.05).
FIGURE 2

Monthly variation of different gametogenic stages in Patella ordinaria
and P. aspera collected from October 2021 to June 2022 in the
Madeira archipelago (NE Atlantic Ocean).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1173629
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Vasconcelos et al. 10.3389/fmars.2023.1173629
Figure 6A; P. aspera: H = 17.625, p < 0.001, h2
H = 0.347; Figure 6E),

associated with an increase in their size from Late active to the Ripe

stage (P. ordinaria: H = 14.86, p < 0.001, h2
H = 0.00965; Figure 6C;

P. aspera: H = 6.4793, p < 0.05, h2
H = 0.00786; Figure 6G) followed

by a decrease in spawning stage in P. ordinaria.

As no clear trends were observed in the number and size of PO and

VO of both species (Figure 5), samples were spatially separated into

northern and southern populations. For the northern populations of

both species, the average number of PO decreased from November to

May (P. ordinaria: H = 14.143, p < 0.05, h2
H= 0.192; Figure 7A; P.

aspera: H = 8.5234, p < 0.05, h2
H = 0.502; Figure 7E). However, no

trends in their size were observed (Figures 7C, G). For P. ordinaria, the

average number of VO increase significantly from November to May

(H = 25.093, p < 0.05, h2
H= 0.381; Figure 7B) associated with a

decrease in their size (H = 87.476, p < 0.05, h2
H = 0.0506; Figure 7D).

For P. aspera, the opposite was observed. The number of VO decreased

significantly (H = 6.9579, p < 0.05, h2
H = 0.381; Figure 7F), with the

increase in their size (H = 86.021, p < 0.05, h2
H = 0.322; Figure 7H).

The southern populations of P. ordinaria and P. aspera were analyzed
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for number and size of VO (Supplementary Figure 2). From the

analysis of the only available months of sampling in the southern part

of the archipelago (October and March), there is an increasing trend in

the number of VO, although significant only for P. aspera (P.ordinaria:

H = 1.8968, p > 0.05, h2
H= 0.0332; P. aspera: H = 10.531, p < 0.05, h2

H

= 0.561). No trend was observed in the average size of VO (P.

ordinaria: H = 1.0521, p > 0.05, h2
H= 0.0000461; P. aspera: H =

1.4769, p > 0.05, h2
H= 0.000619).

There was an increase from 9.5± 2.12% (mean± SD) in November

to 24.4 ±15.4% in May in the relative intensity of the atresia for P.

ordinaria, although at the limit of significance (H = 12.154, p < 0.05,

h2
H= 0.0746; Figure 8). For P. aspera, no significant differences were

found in the relative intensity of atresia across months (H = 8.6772, p

> 0.05, h2
H= 0.0876; Figure 8), although atresia varied between 10.3 ±

1.53% in May to 44 ± 4.24% in January (Figure 8). The prevalence of

atresia, i.e. the proportion of females with oocytes in atresia, was high

for both species (P. ordinaria = 97%; P. aspera = 98%).

Lastly, batch fecundity, estimated based on females in the ripe

stage, ranged between 80,006 and 774,504 oocytes for females of P.
FIGURE 4

Oocyte size frequency distribution in the limpets Patella ordinaria and P. aspera sampled from October 2021 to June 2022 in the archipelago of
Madeira (NE Atlantic Ocean). PO Previtellogenic oocytes, VO vitellogenic oocytes.
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ordinaria with 45.72 mm SL and 61.37 mm SL, respectively

(354,572 ±189,883, mean ± SD). For P. aspera, batch fecundity

was on average 77,404 ± 43,910 oocytes, ranging from 22,371 (44.71

mm SL) to 177,202 oocytes (53.38 mm SL). A significant positive

correlation was found between the number of oocytes and the shell

size of P. ordinaria (Pearson’s correlation: R = 0.884, p < 0.001;

Supplementary Figure 3). This relationship was not that clear in P.

aspera (R = 0.272, p > 0.05; Supplementary Figure 3).
4 Discussion

Monitoring species’ life histories, particularly their reproductive

strategy, is crucial for their effective and long-term management.

However, much of the available information is based on the
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macroscopic identification of the maturity stages, which can lead

to errors (Neves et al., 2022). Until recently, all works published on

the reproductive biology of the limpets P. ordinaria and P. aspera to

determine their exploitation status in Madeira archipelago were

based on the macroscopic analysis of gonads (Henriques et al., 2012;

Sousa et al., 2017; Sousa et al., 2019b; Sousa et al., 2020a). In this

analysis, maturity stages are classified according only to the

progression of gonad volume in the haemocoel, going from either

the rudimentary virgin stage or resting after discharge of gametes

(inactive or neuter) to fully developed occupying the entire

haemocoel (stage V) (Orton et al., 1956). Only two recent works

refer to preliminary data on the fecundity of P. aspera (assays on

females fecundity to develop methodologies for the culture of both

limpet species, Castejón et al., 2022) and P. ordinaria (Vasconcelos

et al., 2023). In this regard, the present work fills the existing gaps by
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FIGURE 5

Monthly variation in the number (A, B, E, F) and size (C, D, G, H) of previtellogenic and vitellogenic oocytes of Patella ordinaria and P. aspera
sampled in the archipelago of Madeira (NE Atlantic Ocean). Boxplot shows the minimum and maximum values in the data, the 25th percentile, the
median and the 75th percentile. Different letters indicate statistically significant differences between months (p < 0.05).
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characterizing the fecundity of both limpet species based on

microscopic analysis of female gonads to support its management

in Madeira archipelago. Reproduction of both patellid limpets has

been considered to occur during winter, from November to April

(Henriques et al., 2012; Sousa et al., 2017), with spawning most

likely to occur from January till April (Pinto et al., 2010; Henriques

et al., 2012; Sousa et al., 2017) and with maximum GSI values

reported in January and February for P. aspera and P. ordinaria,

respectively (Pinto et al., 2010; Henriques et al., 2012; Sousa et al.,

2017). When using the microscopic analysis of females’ gonad in the

present work, adults in the maturity stages of ripe and spawning

were observed until May, despite the decrease in the GSI values after

the peak in March. This proves the importance of the microscopic

analysis in the determination of the spawning and resting periods.
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All lines of evidence to assess fecundity were analyzed for the

limpets P. ordinaria and P. aspera. During the spawning season, a

hiatus and a trend can be observed in the oocyte size frequency, with

two recognizable cohorts of oocytes, a smaller one of PO that

progresses across the sampling period to a larger one that represents

the VO. This is indicative of a disruption in the oocyte recruitment

with the fecundity well set before the onset of spawning (Hunter,

1992). This bimodal distribution has been previously observed for

P. ordinaria from Madeira archipelago (Vasconcelos et al., 2023),

S. granularis from the SE coast of South Africa (Vat, 2000) and P.

rustica from the SE Adriatic (Prusina et al., 2014). When analyzing

the number of oocytes across months and maturity stages, the

average number of PO decreased while the VO increased for both

limpet species. Also, an expected decrease in the number of VO at
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FIGURE 6

Number (A, B, E, F) and size (C, D, G, H) of previtellogenic and vitellogenic oocytes per maturity stages of Patella ordinaria and P. aspera sampled in
the archipelago of Madeira (NE Atlantic Ocean). Boxplot showing the minimum and maximum values in the data, the 25th percentile, the median and
the 75th percentile. Different letters indicate statistically significant differences between maturity stages (p < 0.05).
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the end of the spawning season, more precisely in May, was detected

for both species, corroborating the presence of the hiatus between

PO and VO and that no new VO are recruited to replace those that

have been shed during spawning. In a previous work on the

fecundity of P. ordinaria from the same region (Vasconcelos

et al., 2023), this predicted decrease could not be observed, most

likely due to the sampling period that lasted only till March. And

the mean diameter of VO increased significantly over the spawning

period, though more evident for P. aspera, corroborating the

presence of a dominant size class of oocytes that progresses

across months. Given the increase in the average size of VO and

the decrease in their number, we can suggest that this is the case of

determined fecundity. For indeterminate fecundity, the size of VO

might remain constant or decrease (Murua et al., 2003). The

evidences indicates that spawning, though to a lesser extent, may
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occur until May in both species, two months later than the end of

the harvest-ban season (November-March). For P. ordinaria (9.5%

- 24.4%) and P. aspera (10.3% - 44%), the low levels of the relative

intensity of atresia detected across months, may be also indicative of

determinate spawners (Hunter, 1992). The higher value found in

January for P. aspera (44%) is a consequence of the lower number of

individuals analyzed. Low levels of atresia were reported previously

for P. ordinaria of Madeira archipelago (7.9% - 20.8% Vasconcelos

et al., 2023).

Fecundity parameters also showed some variability between the

northern and southern populations for P. ordinaria and P. aspera.

Unfortunately, due to the absence of a greater number of samples

throughout the spawning season, the expected trends regarding the

number and size of VO were not as evident as when analyzed along

the stages of maturation (Figure 6). For the northern populations of
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FIGURE 7

Monthly variation in the number (A, B, E, F) and size (C, D, G, H) of previtellogenic and vitellogenic oocytes of Patella ordinaria and P. aspera
sampled in the north coast of the archipelago of Madeira (NE Atlantic Ocean). Boxplot shows the minimum and maximum values in the data, the
25th percentile, the median and the 75th percentile. Different letters indicate statistically significant differences between months (p < 0.05).
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P. ordinaria, there was an increase in the number of VO till May,

followed by a decrease. For P. aspera an increase in the size of VO

was observed from November to May. The fact that the samples are

too separated in time, i.e., without specimens between January and

May, it is hardly difficult to infer whether there is an increase or

decrease in the average size of VO of P. ordinaria and in the number

of VO of P. aspera. However, for P. ordinaria, a large number of

vitellogenic oocytes and an average GSI of 2.40% was still detected

in May, giving the suspicion that this population extends its

reproductive cycle beyond the currently established closed season.

The harsher hydrodynamic and higher speed wind, typical

conditions of the north coast of Madeira, induce spawning

(Orton et al., 1956). It is also very likely the extension of the

breeding season, when compared to the populations inhabiting the

south coasts of the archipelago. Though the environmental

conditions are the same for P. aspera, after the closed season the

largest individuals are the target of exploitation leading to a

reduction of females, as a fraction of males changes to females

after reaching sexual maturation. Hence, the removal of larger

animals will largely target females (Martins et al., 2017) that may

still be spawning, greatly affecting the reproductive potential of this

species. Regarding southern populations (Supplementary Figure 2),

as only the months of October and March are available, it is difficult

to infer trends throughout the spawning season. However, for both

limpets, there was an expected decrease in the number of PO and a
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consequent increase in the number of VO, though with no

significant increase in their average size.

The estimated fecundity (354,572 ± 189,883) was similar to that

previously obtained for P. ordinaria in the same area (average of

385,613 194,902 oocytes; 46 - 59 mm SL Vasconcelos et al., 2023)

but much higher than the one estimated in an assay for gametes and

larval production for P. ordinaria aquaculture which averaged

186,000 oocytes (37 - 57 mm SL, Castejón et al., 2022). The

fecundity in P. aspera females was on average 77,404 ± 43,910

oocytes, very similar to the one estimated in the same assay for P.

aspera aquaculture which averaged 59,000 oocytes (34 - 53 mm SL,

Castejón et al., 2022). Although the size range is similar for both

species, the lower average size of P. aspera explains, in part, the clear

differences in batch fecundity with P. ordinaria, as fecundity

increases hyperallometrically with size. Moreover, the size-

selective harvesting targets mainly females of the protandric

hermaphrodite species P. aspera. These differences are of

particular concern and should be taken in consideration when

creating possible new management measures for limpet

harvesting. P. ferruginea, currently considered at risk of extinction

(Guallart et al., 2020), shows greater fecundity for shell sizes smaller

than those sampled in the present work. For instance, while female

fecundity of P. ferruginea with 40.0 mm SL is around 189,200

oocytes (Chafarinas Islands; Guallart et al., 2020), P. ordinaria from

Madeira presents around 80,006 (present study) to 92,098 oocytes

(Vasconcelos et al., 2023) in females with 46 mm SL. For P.

ordinaria, Castejon et al. (2022) estimated an even lower

fecundity for specimens with 37 mm SL, which was around

12,000 oocytes. When considering the maximum sizes analyzed,

P. vulgata from the SW of England (500,000 eggs with 52 mm SL;

Ballantine, 1961), and Cellana ornata from southern New Zealand

(200,000 to 360,000 eggs for females > 40 mm SL; Dunmore and

Schiel, 2000), showed fecundities lower than those estimated for P.

ordinaria, but still higher than the ones verified for P. aspera

(177,202 oocytes for 53.38 mm SL). For females of P. ferruginea

with sizes higher than 80 mm SL, the number of oocytes ranged

from 2.3 to 5.0 million eggs (Espinosa et al., 2006; Guallart et al.,

2020). Since individuals of P. ordinaria and P. aspera larger than 60

mm SL are more common in the marine protected areas (MPAs) of

the Madeira archipelago (with maximum shell lengths of 79.63 mm

SL for P. ordinaria and 84.22 mm SL for P. aspera; Sousa et al.,

2020a), and that all specimens used were captured in areas of

considerable anthropogenic exploitation (capture only ceases

during the closed season between November and March), we

could not access or find evidence that these species can attain a

level of fecundity as high as that reported for P. ferruginea.

Moreover, as egg production is sensitive to selective pressures

(Ramirez Llodra, 2002), this may explain the lower levels

observed especially for P. aspera, the most popular limpet species

consumed by the Madeiran population. Like the taxa P. ferruginea

(Espinosa et al., 2006; Guallart et al., 2020), Cellana ornata

(Dunmore and Schiel, 2000) and C. sandwicensis (Mau et al.,

2018), P. ordinaria from Madeira exhibits size-dependent

fecundity. Whilst this relationship was not that clear for P. aspera

(present study and Castejón et al., 2022), limpets at MPAs may

exhibit higher batch fecundity.
FIGURE 8

Relative intensity of the atresia estimated for Patella ordinaria and P.
aspera sampled in the archipelago of Madeira (NE Atlantic Ocean)
across the spawning season. Boxplot showing the minimum and
maximum values in the data, the 25th percentile, the median and the
75th percentile. Different letters indicate statistically significant
differences between months (p < 0.05).
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Fecundity is one of the major cornerstones of population

biology (Bradshaw and McMahon, 2008). Temporal variations in

fecundity are influenced by a wide range of factors such as, age, body

size relationships, population density, mate choice, and

environmental variability. Reproductive and fecundity data have

traditionally been overlooked in fisheries management regardless of

their importance to leverage the reproductive potential of large

adult fish (Marshall et al., 2021). The integration of size-fecundity

relationships into stock assessment models have been shown to be

of utmost importance to achieve sustainable management goals,

and their potential to establish spatio-temporal closures (STCs) and

harvest slots (HSs) (Marshall et al., 2021). These limpets have

allometric growth (Henriques et al., 2012; Sousa et al., 2017);

hence, identifying and protecting size-age groups with maximum

reproductive potential has been previously shown as a pivotal step

to halt overfishing through managing growth of individuals and

recruitment of stocks (Brown-Peterson et al., 2011). In the present

study, the four criteria analyzed suggest that both exploited limpets

may have determinate fecundity. It also showed the presence of

spawning adults beyond the closed season (November-March),

during the months of April and May. Furthermore, a spatial

variability was observed between northern and southern

populations, where the former ones showed vitellogenic oocytes

till May in P. ordinaria whilst P. aspera showed a size increase of the

vitellogenic oocytes from November to May. This means that some

adults may be still spawning in May for both species, and hence to

get an effective conservation of adult specimens and to ensure

offspring of next generations, a more prolonged closed season till

May is urgently needed. As evidenced by this study, fecundity data

constitute a tool of key importance to preserve populations of

exploited species, primarily those with limited mobility such as

semi-sessile limpets.
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