MODELLING NORTH-ATLANTIC WATER COLUMN RESPIRATORY CO₂ PRODUCTION, VERTICAL CARBON FLUX, NUTRIENT RETENTION EFFICIENCY, AND BENTHIC RESPIRATION

Theodore T. Packard¹, Ico Martínez¹, Natalia Osma^{2,3}, Igor Fernández-Urruzola² May Gómez¹

¹Marine Ecophysiology Group, IU-ECOAQUA, University of Las Palmas de Gran Canaria, Las Palmas, Spain

theodore.packard@ulpgc.es, ico.martinez@ulpgc.es, may.gomez@ulpgc.es

²Millennium Institute of Oceanography, University of Concepción, Concepción, Chile.

³Department of Aquatic Systems, Faculty of Environmental Science, University of Concepción, Concepción, Chile

natalia.osma@imo-chile.cl, igor.fernandez@imo-chile.cl

Abstract: New North Atlantic rates of carbon-flux (F_c), oxygen utilization (OUR), and mineralization, when combined with new oceanographic concepts, can provide new insight into the dynamics of metabolic ocean biogeochemistry. Here, data from heliumtritium dating, advection-diffusion modeling, apparent oxygen utilization, respiratory electron transport activity (ETS), and three different types of sediment traps were used to calculate new metabolic-based rates. First, we used OUR to calculate CO2 remineralization (J_c) profiles. J_c , at 100m, ranged from 0.4 to 109 millimol $CO_2 \, m^{-3} \, yr^{-1}$ and from 1000m, it ranged lower, from 0.001 to 4.3 millimol CO₂ m⁻³ yr⁻¹. Secondly, we used J_c to calculate carbon flux (F_c) profiles. These, plus measured F_c, ranged from 1.5 to 17.8 millimol C m⁻² yr⁻¹ at 100m and to 0.03 to 12.1 millimol C m⁻² yr⁻¹ at 1000m. Thirdly, integrating J_c from the bottom of the mixed layer to the seafloor yielded New Production (NP) and Export Production (E). The two are considered equal. We found a North Atlantic NP range of 0.07 to 23.3 mol C m⁻² yr⁻¹. Fourth, from the ratio, J_c/F_c, we calculated the nutrient retention efficiency (NRE = $(J_c/F_c)*100$) that predicts future regenerated production. NRE is inversely related to carbon-flux transfer efficiency (T_{eff}) and both NRE and T_{eff} are related to b, the attenuation exponents of J_c and F_c. For a 50m water column centered at 125m, NRE ranged from 51 to 27% while Teff ranged from 49 to 73%. In a 50m water column at 1025m, NRE ranged, much lower, from 8 to 4 % while Teff ranged, much higher, from 92 to 96%. Fifth, benthic J_c was calculated, using different limits of integration, from F_c. It varied indirectly with water column NRE. For the North Atlantic, we found that benthic J_c ranged from 2.1 to 7040.0 millimol C m⁻² yr⁻¹.

Key words: OUR, AOU, respiratory ETS, ocean metabolism, ocean particle flux.

Acknowledgments: This research was funded by TIAA-CREF and Social Security (USA) to TTP.