MODELLING NEW PRODUCTION FROM NITRATE REDUCTASE ACTIVITY AND LIGHT IN THE PERU CURRENT UPWELLING

Laura Salas-Collado¹, May Gómez¹, Richard C. Dugdale², Ico Martínez¹, Dolors Blasco³, Richard T. Barber⁴, Frances P. Wilkerson², Theodore T. Packard¹

¹ Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, University Las Palmas de Gran Canaria (ULPGC), Canary Islands,SPAIN.

laura.salas102@alu.ulpgc.es, may.gomez@ulpgc.es, ico.martinez@ulpgc.es, theodore.packard@ulpgc.es ²Romberg Tiburon Centre, San Francisco State University, San Francisco, U. S. A.

rdugdale@sfsu.edu, fwilkers@sfsu.edu

³ Institut de Ciències del Mar (CSIC), Barcelona, SPAIN. dolorsblasco@gmail.com
⁴ Nicholas School of the Environment and Earth Sciences, Duke University, Beaufort, NC, USA. rbarber@duke.edu

Abstract: New Production (NP) is limited by NO_3^- , NH_4^+ , and light (hv). Here we use a model derived from Michaelis-Menten kinetics to calculate NP from euphotic-zone phytoplankton NR activity and hv.

 $NP = -\partial [NO_3^-] / \partial t = [NR] * [hv] / (K_{lt} + [hv])$

We calculated Peruvian upwelling NP at 15° S (C-Line) during austral fall, March-April-May 1977 from R/V WECOMA data of the Coastal Upwelling Ecosystem Analysis program. NP, at 50% hv, ranged from 1.37 μ M C h⁻¹ at the upwelling centre, to 0.15 μ M C h⁻¹ 9 km downstream, to 0.37 μ M C h⁻¹ 57 km further downstream over the Peru Trench. It compared well with 14 C carbon productivity measurements ranging from 0.29 - 2.65 μ M C h⁻¹ and 0.04 - 1.37 μ M C h⁻¹ for the 6 h (gross) and 24 h (net) productivity. Oceanographic conditions during April 1977 made the C-Line an ideal site to compare spring 1977 NP with fall 1976 NP data collected by the R/V Eastward. Those 1976 NP values ranged slightly higher (0.15 to 3.49 μ M C h⁻¹) than those we found. The surface temperature background at the upwelling-centre in April 1977 reached 16.41 °C whereas in September 1976 it was 14.07 °C. For the C-Line, NO_3^{-1} stayed above 10 μ M, and NH_4^{+1} stayed below 0.1 μ M. C-Line Chlorophyll, averaging 1.39 μ g L⁻¹ in April 1977, was lower than what it was for the same stations 6 months earlier (3.85 μ g L⁻¹). NR, averaging 0.045 μ M h⁻¹ for C-Line stations in April 1977, was a fourth of what it was 6 months earlier in September 1976 (0.20 μ M h⁻¹). In conclusion, overall NP for austral fall 1977, in nitrogen units, ranged from 22.6 to 206.8 nM N h⁻¹. In carbon units, median NP in austral fall was only 42% (0.76 μ M C h⁻¹) of NP in austral spring (1.82 μ M C h⁻¹).

Key words: primary production, nitrogen uptake, nitrate reductase, phytoplankton.

Acknowledgments: The Coastal Upwelling Ecosystem Analysis (CUEA) program was funded by the International Decade of Ocean Exploration (IDOE) office of the U.S. Nacional Science Foundation. These are results from OCE-75-23718A01 (CUEA-12 grant to T.T. Packard).