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ABSTRACT

The adaptive refinement/derefinement processes of nested grids are very useful (o
solve time-dependent problems in which moving refinement areas are required. In this
paper our derefinement algorithm is briefly explained. The efficiency of the algorithm is
showed in a numerical example: a time-dependent convection-diffusion problem. The
derefinement algorithm enables us to use the multigrid method in order to solve the
equation system associated to the finite-element method. The additional computation
time required by this algorithm amounts less than 1% of total execution time. The
derefinement algorithm can be also used for local refining. Derefining after globai
refinement is thereby equivalent to a local refinement procedure, not requiring the use of
error indicators. The algorithm promises to be very useful in more complex problems
including non {inearity where we need to adapt the mesh to a changing solution.

L INTRODUCTION

The ability to automatically generate and adaptively control the discretizations in
the numerical solution of partial differential equations over general domains is critical to
the reliable application of numerical analysis techniques. In recent years there has been
an increased recognition that careful consideration must be given to the interrefationship
of these two areas in order to develop the most efficient procedures to adaptively solve
the various classes of problems under consideration. We can say that a2 good
discretization of the domain in which a problem in differential equations must be solved
is, at lest, as important as the numerical formulation of that problem. See (Zienkiewicz

and Zhu, 1991) and (Kasiyama and Okada, 1992).

There are many ways to implement an adaptive finite element method. One of the
basic choice is: element subdivision or mesh regeneration? The answer is not too clear.
See (Lewis et al., 1991). However, in the topic of nested meshes using local refinement,
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if the areas to be refined change with the time, the appearance of a large number of
nodes creates a serious difficulty. Many of these nodes ~though necessary in any past
time— are useless at the present moment. So, in this case, it seems necessary to develop a
derefinement algorithm able to remove dupe nodes, to get a good approximation of the
numerical solution obtained in previous time step and to be combined with a locai
refinement.

We have used triangular elements with three nodes and a version of the 4-T
algorithm of Rivara (Rivara, 1987) at the refining, (Ferragut, 1987). The particular
election of the algorithm at refining is important because the derefinement algorithm
must be understood as the inverse algorithm of the refinement one. We have chosen the
4-T algorithm of Rivara because it has suitable properties about the smoothness
condition and non-degeneracy. Besides that, the number of possibilities that appear for
an element and its sons at derefining is lesser than in other refinement algorithms.

With this combination (refinement and derefinement), we get families of sequences
of nested meshes more flexible than those obtained by local refinement only and with
the advantage that the number of equations does not increase so much during the whole
evolution process: (Plaza et al., 1992), (Ferragut et al., 1993) and (Plaza, 1993). Besides,
the fact of using nested grids enables us to use easily the multigrid method in order to
solve the system of equations associated to the finite element method (Hackbush and
Trottenburg, 1986). Supposing that the domain is defined by an irregular geometry, we
can obtain the initial mesh by using an automatic grid generator and afterwards applying

our adaptive process.

2. THE DEREFINEMENT PROCEDURE
2,1 Definitions and properties

LetT= {r, <T,<...< r,,} be a sequence of nested triangular grids and ; any triangu-

lation of T. One node N of 1, will be called a proper node of 7 if it does not belong to
any previous mesh. In other cases, N will be called an inherited node in 7. Similariy, the
edges and elements are named at each level. If an edge is divided in two at refining, it is
called the father edge of these two, and these are the son edges of the former. Similariy
the father elements and son elements are defined. As we are using the 4-T algorithm of
Rivara at refining, an element has four sons or less.

When an element is refined, some edges appear inside it. These edges are called
internal edges; these edges are called j-new edges by Rivara (Rivara, 1989). On the
boundary of the element some edges appear as well. Now these edges are called exrernal
edges. In this context, we have: i) any proper element of some triangulation either is
inherited in the following triangulation or has its sons there; ii) if an element has no
sons, it belongs to the finest mesh of the sequence of nested triangulations.

These definitions and properties are important because in contrast to the refinement
algorithm in which only the last mesh created and the new one that is being created are
involved, in the derefinement algorithm all levels of meshes are involved. The
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fundamental property of the derefinement algorithm is: iii) only those elements without
successors, i.e. elements thar belong to the finest mesh, can be eliminated.

2.2 Data Structure

The data structure allows an easy impiementation of the refinemenvderefinement
algorithm in standard finite element codes and can be summarized as follows:

a) Structure vectors: IMNODE("), IMFACE(') and IMELEM(') for the nodes, faces and

elements, respectively. In /MNODE oniy the proper nodes of each lt_:vcl are kept
because if one node belongs to a particular mesh, it belongs to the following meshes as

well. IMFACE and IMELEM keep the global numbers of all faces and_ elements
respectively of each level of 7. With this data structure the implementation of the

muitigrid method is relatively simpie.

b) Genealogy vectors: IR[.;] and IXH[-]. For each edge, /R reports the numbers of its
son edges and its father edge. Similarly, for each element, LYH gives us the number of
its son elements, its father element and the local number of its longest side.

c) Derefinement vectors: NODES(), NFACES(") and NELES(-). For each node, edge or
element, these vectors give us the level at which it is proper and the sign of the vectors
is used to control the derefinement procedure.

d) Sack vectors: NNSAC(), NFSAC()) and NESAC(:). In these vectors, the global
number of nodes, edges and elements, that have been eliminated, are kept to be used in
future refinements.

e) Surrounding edge: [EX("). For each node /EX reports the number of the edge at
which that node is at the middie point.

23 _The Algorithm
Let T={17<1<..<T1,} bea sequence of nested triangular grids, where 7,

represents the initial mesh and 7, the finest mesh in the sequence. Our goal is to obtain
another sequence after derefining T, said T". This means that the new sequence can be

written as follows: T'={ 1,< 1, <... < T, } where m < n. The derefinement algorithm

can be shortly described in this form:
INPUT: Sequence T={ 1,< 7,<...< 7, }
Loop in 'evels of T; for j = n to 2, do:

1. For each proper node of 7, the derefinement condition is evaluated and the nodes
and edges able to be eliminated are pointing out with the derefinement vectors.

2. Conformity of the arising new level j is assured.
3.a. If some proper node of 7, stays then, new nodal connections are defined for the
new level j, said 7). Genealogy vectors of 7 and 7, are modified.
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3.b. In other case, the current level j is deleted in the structure vectors. Genealogy
vectors of 7| are modified.

4. The changes in the mesh are inherited to the following meshes. The structure
vectors are compressed.

S. A new sequence of nested meshes T/ is obtained. This sequence is the new input
in the next iteration of the loop on meshes. T!= { 7,< T, <..< 7, < << Tnj’ }.

OUTPUT: Sequence T'={ 1,< 1,'< ... < T, }

We must take into account that only proper nodes are eligible in each mesh-level,
and out of these, only those suitable to be canceled out are taken for evaluation. That is
because if NV is a particular node that cannot be canceled and c is its swrounding edge.
then any node of the elements in which ¢ is an edge cannot be canceled either.

Once the derefinement condition has been checked in all the eligible proper nodes
of a particular mesh (inside the loop on levels), the conformity of the arising new levei
is assured maintaining some nodes that, otherwise, and concerning the derefinement
condition, could have been canceled. In fact, if a node, said P, belongs to the longes:
edge of an element in which there is another node Q on any other edge that must remain,

then the node P must remain too.

2.4 _Derefinement indicator

A proper node may be removed if the absolute difference between the values in this
node of the numerical solution and its corresponding interpolated function is less than a

sufficiently small parameter £>0. That is, if u, is the numerical solution for a given

mesh and uf is the interpoiated function of u, in the derefined mesh, we will get
"u,, - ":,L = s::p,u‘(x) -y (x)[ <&

Obviously, this derefinement indicator does not allow us to control the
discretization error; in an adaptive algorithm this control is usually performed by an
error indicator in the refinement process. It could be argued that the same error indicator
should be used as a derefinement indicator. However when we use a time step

integration scheme, a good approximation of the solution at time f, must be kept to
calculate the approximation at time ¢, , =¢, +Az,.
2.5 Conforming procedure

The procedure assuring the conformity of the mesh 7 is summarized in the
following. The concept of 1/2-non-conforming triangle is used, se¢ (Rivara, 1987).

Input (1, 7.1, Nodes)
While Conformity must be assured:
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Foreachre Tyt
[f ¢ is 1/2-non-conforming:
Change the derefinement vector for the node P of its longest side.
Assure conformity.
End if.
End for.
Output (T;, L1 Nodes)

(a) mesh 1 (b) mesh 2 (c) mesh 3

{d) initial situation (e) 1st iteration (f) 2nd iteration

Figure .- Conformity of the arising new sequence.

An example of how the conformity of the arising new level is assured can be seen
in Figure 1. There, the first line represents a sequence of three nested meshes in which
the proper nodes are pointed out in white. The second line shows the evolution respect
the derefinement vectors, when the third level is derefined. In the second line of the
figure, the white nodes mean the proper nodes of the third level that will stay according
to the derefinement condition (Figure 1-d) or according to the conformity of the mesh
(in Figure 1-e and 1-f); the black nodes are inherited nodes in this level and these are
marked because they are not suitable to be canceled out in order to assure the nestedness
of the sequence of meshes. The shaded area is the non-conforming area at each loop of
the iterative process of the conforming procedure applied to the third level.
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Once T' is obtained, the number of equation associated to each degree of

freedom/node must be redefined, maintaining the globai number of the npdc and the
previous numerical solution. At the same time the new number of equations of each

level is calculated. This aspect is important to apply again the finite element solver.

i-implicit fi lati
The principal numerical aspects, presented in this _sccn'on are studiedL in
(Montenegro et al., 1989). We consider the convection-diffusion problem defined in a
two-dimensional domain Q, of boundary I':

é‘—-{»ﬁ-f’u-?-(k@u)‘—'f (D
o

where u =wu(Z,1) is the solution in a fluid element placed in ¥ =x7 +x,; at time 1, this
solution may measure the temperature of the fluid element; ¥ = (%) is the velocity of
the medium carrying u, we consider the case in which the velocity field does not depend
of time; k=4k(X) > O represents the diffusivity of u, we study the lineal model:
S =/F(%,1) are the external heat sources. We suppose an initial solution in Q and
boundary conditions on I" such that the existence and uniqueness of solution is assured.
Equation (1) can be written as:

%—ﬁ-(k%):; @

Let be a fluid element at point P, defined by %, at time 1,. After a time step Ay, this
fluid element will be in position P, defined by %, at time 1,,, ; such that «,,,= 7, 4!
and ¥=x+AX. Using the following approximation

du _u(Er,,)-u(Er,) _u™(@)-u"(E) )
dt 4t A

and applying an Euler implicit scheme to equation (2), we obtain:
WE) - 20 T[0T @)= @) +(E) )
In order to evaluate u"(F) we try to write equations (4) in function of what happens at
the point P at every time. For all i = 1,2:
X =x(t,, - 4At) = x, - v(F)A +-A—;--i v(x) \_7";(5)4'0(41'3)

From this equation we can obtain Ax, =x, —x, and write:
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Z
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W(E) = u" (% - AT) = u"(3) - ZA: HM(E) 1{2&4:.3 u () Zsz ST | oglazy

i=i i 8x9x2 i=1 i
and then,
%" (%)
R EIE BN W LI O R 35 e e “ai‘ -o(ar’)
2 2 i=l j=| J

=] i =1
Finally, if we introduce this last expression in (4) we get the following semi-implicit
formulation that approximates the evoiution convection-diffusion process, where all the
terms are evaluated at the same point P, defined by %:
_ - ~ AIZ - 311" 2 azuﬂ
A v[kvu"“] = A f™ e AT +—2—Z(V~Vvi) —
1

i

At
ER ATy
2 oj i

Now, considering boundary conditions, it is easy to obtain the variational formulation
and then apply the finite element method. We have used a consistent integration in all
the terms of the final formulation.

3.2 Stability and consistency

Concerning the former formulation, we have used the principal stability results
obtained in one and two dimensions by the Von Neumann method, see (Montenegro et
al., 1989). About the consistency, on the lines of (Montenegro et al., 1989) and (Peraire
et al., 1986), for the analyzed semi-implicit formulation, particularized in one dimension
and with constant coefficients and without sources in the second member, it can be
proved that it is globally second-order accurate.

4. NUMERICAL RESULTS
4.1 A Convection-diffusion Problem

We consider the convection-diffusion linear problem (1) defined in a two-

dimensional domain Q, a unit square domain centered at the point {0.5.0.5), of boundary

. We suppose a rotating velocity field, with v =wx(1-x)(x,-0.5) and

vy =0X,(0.5-x,)(1~x,). In the present application we take @ =1000, ¥ =1 and f =0.
That is, a significant Peclet number about 125. On two opposite sides of the unit square
domain we impose null Neumann conditions, on the other ones we suppose Dirichlet
conditions, # = and u = 2, respectively. The initial solution is a given function similar
to the one represented in Figure 2(a) and it is captured automatically using the
refinement/derefinement algorithm. This combination enables us to get a good
approximation with a minimum number of nodes. In this example we have used the

following refinement indicator, 7, for an element £;:
n =h 'V"hl

h; being the diameter of £; and uy, the {inear numerical solution in the element.



296

FLUIDIZACION (HIDRODINAMICA.

APLICACIONES. TRANSFERENCIA DE CALOR)

(c) t=0.00815, 433 nodes
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(d) t=0.05714, 595 nodes

Figure 2.- Meshes and solution for an evolutive heat transfer problem.
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We know that 1<u(%,¢)<2 in all the evolution process, so, if we take a
derefinement parameter € = 0.005, we are sure that the error introduced by derefinement
is less than 2.5%, of the maximum value of the solution. The adaptive strategy was: only
one refinement in ten time steps followed by the derefinement procedure. In order to
evaluate the time increment, the stability condition, proposed by (Montenegro et al.,
1989), has been used. In each time step, one multigrid iteration is enough to solve the
system of equation associated to the finite element method. Figure 2 shows scvgral
meshes and solutions for different time steps. In order to obtain the stationary solution,
approximately in Figure 2(d), 2000 time steps have been calculated.
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