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ABSTRACT 

The adapc.ive refinemenr/derefinemenc processes of nested grids are very useful co 
so ve ume-dependent problems in which moving refmemem areas are requireo. In thls 
paper our derefinement algorithm is briefly explained. Toe efficiency of the algorithm is 
showed in a nurnerical example: a úme-dependent convecúon-diffusion problem. The 
derefinement algorithm enables us to use thc multigrid method in order to solve the 

---------~cquation system associated~tcnlhe hnite-element mcthod. Tiie aaclitimud~computarillll ___ _ 
time rcquircd by this algorithm amounts less than 1 % of total execution time. Toe 
dercfinement algorithm can be also used for local refining. Derefining aftcr global 
refinement is thereby equivalent to a local refincment procedure, not requiring the use of 
error indicators. The algorithm promises to be ver¡ useful in more complex problems 
including non !inearity where we need to adapt the mesh to a changing solution. 

I. INTRODUCTION 

Toe abílity to automatically gcnerate and adaprively control the discretizations in 
the numerical solution of partial differcntial equarions over general domaíns is critical to 
the re!iab!e application of numerical analysis techniques. In recent years there has been 
an incrcased recognirion that careful consideration must be given to the interre!ationship 
of these two arcas in order to develop the most efficicnt procedures to adaptively sol ve 
the various classes of problems under consideration. We can say that ,1 good 
discrecization of the domain in which a problcm in differenrial equa.tions must be sol ved 
is, at lest, as important as the numerical formulation of that problem. See (Zienkiewicz 

--------,--an-,--Zliu, 1991) and (Kasiyama and Oleada, 1992). 

There are many ways to implement an adaprive finice element method. One of the 
basic choice is: elcment subdivision or mesh rcgeneration? The answer is not too clear. 
See (Lewis et al.. 1991 ). Howevcr, in the tapie ofncsted meshes using !ocal rctinement, 
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if the areas to be refined change wíth the time, the appearance of a large number o{ 

nades creates a serious difficulty. Many of thesc: nodes -though necessary in any past 
time- are useless at the present moment. So, in this case, it secms neccssary to develop a 
derefinement algorithm able to remove dupe nades, to get a good approximarion of the 
numerical solurion obtaincd in previous time step and to be combined wíth a locai 
retinement. 

We have used triangular elcments wíth thrcc nades and a vcrsíon of the 4-T 
algorithm of Rivara (Rivara, 1987) at thc rcfining, (Ferragut, 1987). Toe particular 
election of thc algorithm at refining is important because the derefinement algorithm 
must be understood as the inverse algorithm of the refinement one. We have chosen the 
4-T algorithm of ruvara because it has suitable properties about the srnoothness 
condition and non-degeneracy. Besides that, the number of possíbílities that appear for 
an element and its sons at derefining is lesser than in other refinement algorithms. 

With this combination (refinement and derefinement), we get families of sequences 
of ncsted meshes more flexible than thosc obtained by local refinement only and with 
the advamage that the number of equations does not increase so much during the whoJe 
evolution process: (Plaza et al., 1992), (Ferragut et al., l 993) and (Plaza, 1993 ). Besides, 
the fact of using nested grids enablcs us to use easily the multigrid method in order to 
salve the system of equarions associated to the finite element method (Hackbush and 
Trottenburg, 1986). Supposing that the domain is defined by an irregular geomerry, we 
can obtain the initial mesh by using an automatic grid generator and afterwards applying 
our adaprive process. 

2. THE DEREFINEMENT PROCEDURE 

2.1 Definitions and properties 

Let T = {-r1 <-r2 < ... < -rJ be a sequence of nested triangular grids and 1 any triangu

lation of T. One node N of 1 wíll be called a proper node o/ t¡ if it <loes not belong to 
any previous mesh. ln other cases, N wíll be called an inherited node in 'S· Similarly, the 
edges and elements are named at each level. If an edge is divided in two at refining, it is 
called the father edge of thcse two, and these are the son edges of the former. Similar! y 
the father eiements and son eiements are defined. As we are using the 4-T algorithm of 
Rivara at refining, an element has four sons or less. 

When an element is refined, sorne edges appear insidc it. These edges are called 
intemai edges; these edgcs are called j-new edges by Rivara (Rivara, 1989). On the 
boundary of the element sorne edges appear as well. Now these edges are called exremal 
edges. In this context, we have: i) any proper element of some triangulation either is 
inherited in the following triangulation or has its sons there; ii) if an element has no 
sons, it belongs to the finest mesh ofthe sequence ofnested triangulations. 

These definitions and properties are important because in contrast to the refinemcnt 
algorithm in which only the last mesh created and the new one that is being created are 
involved, in the derefinement algorithm ali leve/s of meshes are involved. Toe 
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fundamental property of the derefinement algorithm is: iii) oniy those eiemenrs without 
successors, i.e. e/emenrs rhar beionf.? to the /inesr mesh, can be eiíminared. 

2.2 Data Structure 

The data structure allows an easy implementation of the refinemem/derefinement 
algorithm in standard finite element codes and can be summarized as follows: 

a) Structure vectors: IMNODE(·), IMFACE(·) and IMELFM(-) for the nodes, faces and 

elements, respectively. In IMNODE only the proper nodes of each leve] are kepr 
because if one node belongs to a particular mesh, it belongs to the following meshes as 
well. IMFACE and IMELEM keep the global numbers of aJI faces and elements 
respectively of each leve! of T. With this data structure the implementation of the 
multigrid method is relatively simple. 

b) Geneaiogy vectors: IR[·,] and IXH{·,-]. For each edge, IR repons the numbers of its 

son edges and its father edge. Similarly, for each element, IXH gives us the number of 
its son elements, its father element and the local number ofits longest side. 

c) Derefinement vectors: NODES(-), NFACES(-) and NELES(-). For each nade, edge or 

element, thesc vcctors givc us the leve) at which it is proper and the sign of the vectors 
is used to control the derefinement proccdure. 

d) Sack vectors: NNSAC(), NFSAC() and NESAC(-). In these vectors, the global 

number of nodes, edges and elements, that have been eliminated, are kept to be used in 
future refinements. 

e) Surrounding edge: !EX{-). For each node IEX reports the number of the edge at 

which that node is at the middle point. 

2.3 The Algorithm 

Let T = ( r 1 < ~ < ... < rn } be a sequence of nested triangular grids, where r1 

represents the initial mesh and -r0 the finest mesh in the sequence. Our goal is to obtain 
another sequence after derefining T, said T'. This means that the new sequence can be 
written as follows: T' "" { -r1 < Ti' < ... < -rm' J where m ~ n. The derefinement algorithm 
can be shonly described in this form: 

INPUT: Sequence T "" { r1 < T2 < ... < "Z'n } 

Loop in 1evels ofT; for j ""n to 2, do: 

l. For each proper nade of -i¡ the derefinement condition is evaluated and the nodes 
and edges able to be eliminated are poínting out with the derefinement vectors. 

2. Conformity of thc arising new leve! j is assured. 

3.a. If sorne proper node of -i¡ stays then, new nodaJ connections are defined for the 

new leve! j, said -i¡i. Genealogy vectors of "ii and "i-i are modified. 
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3.b. In other case, the currcnt leve! j is dcleted in thc structure vectors. Genealogy 
vectors of 'tj.1 are modified. 

4. Toe changes in the mesh are inherited to the following meshes. The srructure 
vectors are compressed. 

5. A new sequence of nested meshes Ti is obtained. This sequence is the new input 
in the next iteration of the loop on meshes. Ti= { -r1 < ti< ... < TJ-1 < r/ < ... < r"/ } . 

OUTPUT: Sequence T' = { t'1 < ~• < ... < Tm' } 

We must take into account that only proper nades are eligible in each mesh-leve! , 
and out of these, only those suitable to be canceled out are taken far evaluation. That is 
because if N is a particular nade that cannot be canceled and e is its surrounding edge. 
then any nade ofthe elements in which e is an edge cannot be canceled either. 

Once the derefinement condition has been checked in aJI the eligible proper nades 
of a particular mesh (inside the loop on levels), the conformity of the arising new levei 
is assured maintaining sorne nades that, otherwisc, and conceming the derefinemem 
condition, could have been canccled. In fact, if a node, said P, belongs to the longesr 
edge of an element in which there is another nade Q on any other edge that must remain. 
then the nade P must remain too. 

2.4 Derefinement indicator 

A proper nade may be removed if the absolute difference between the values in this 
nade of the numerical solution and its corresponding interpolated function is less than a 

sufficiemly small parameter E>O. That is, if uh is the nurnerical solution far a given 

mesh and u: is the interpolated function of u,11 in the derefined mesh, we will get 

//uh -utl =~~u,11(x)-ut(x)j<e 

Obviously, this derefinement indicator does not allow us to control the 
discretization error; in an adaptive algorithm this control is usually performed by an 
error ind.icator in the refinement process. It could be argued that the same error indicator 
should oe used as a derefinement indicator. However when we use a time step 

integration scheme, a good approximation of the solution at time 1. must be kept to 

calcu.late the approximation at time , ... 1 = r. +lll •. 

2 s Confonnin& pmcedure 

Toe procedure assuring the confonnity of thc mesh "J is summarized in the 
following. The concept of 1/2-non-confonning triangle is used, see (Rivara, !987). 

Input(;, -r;.1, Nades) 

While Confonnity must be assured: 
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For each r E ~ -l : 

If t is 1/2-non-conforming: 

Change the derefinemenr vector for the node P of irs longest side. 

Assure conformiry. 

Endif. 

End far. 

Ourput rrj, ~ - l • Nodes) 

(a} mesh 1 (b) mesh 2 (e) mesh 3 

(d) inítial situation (e) 1 st iteration (f) 2nd iteration 

Figure 1.- Conformity of the arising new sequence. 

An example of how the conformity of the arising new leve! is assured can be seen 
in Figure 1. There, the first line represents a sequence of three nested meshes in whích 
the proper nodes are pointed out in white. Toe second line shows the evolution respecr 
the derefinement vectors, when the third leve! is derefined. In the second line of the 
figure, the whíte nodes mean the proper nodes ofthe thírd leve! that will stay according 
to the derefinement condition (Figure 1-d) or according to the conformity of the mesh 
(in Figure 1-e and 1-f); the black nades are inherited nodes in this leve! and these are 
marked because they are not suitable to be canceled out in order to assure the nested.ness 
of the sequence of meshes. Toe shaded area is the non-conformirig arca at each loop of 
the iterative process ofthe conforming procedure applied to the thírd leve!. 
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Once T' is obtained, the number of equation associated to each degree of 
freedom/node must be redefined, maintaining . the global number of the node and the 
previous numerical solution. At the same time the new number of equations of each 
level is calculated. This aspect is imponant to apply again the finite clement solver. 

3. CONVECTION-DIFFUSION PROBLEM 

3. 1 Semj-implicit formularion 

The principal numerical aspects, presented in this secrion are studied in 
(Montenegro et al., 1989). We consider the convection-diffusion problem defined in a 
two-dimensional domain n, ofbounda.ry r: 

au - -(-) -+v -Vu-V- k'vu = f 
di 

(!) 

where u= u(i,r ) is the solution in a fluid elcment placed in i =:e/+ :cJ at time r, this 

solution may mcasure the temperature of the fluid elcment; ii = v(i) is the velocity of 
the mediwn carrying u, we consider the case in which the velocity ñcld does not depend 

of time; k = k(i) > O represents the diffusivity of u, we study the lineal model : 

f::: f(i , t) are the external heat sources. We suppose an inicial solu1ion in n and 
boundary conditions on r such that the existence and uniqueness of solution is assured. 
Equation ( l) can be written as: 

du -(-) --V- k'vu =/ 
dt 

(2) 

Lct be a fluid elcment at point f:., defined by l, at time r •. Aftcr a rime stcp dí, this 

fluid element will be in posirion P, defined by i, at time 1 .. 1 ; such that , •• 1= 1. +at 

and i = K +iH. Using the following approximation 

du .. u(i,rr¡+l ) -u(f,t,¡) _ ull+1(i)-un(g) 

dt .di - tJJ 
(3) 

and applying an Euler implicit scheme to equarion (2), wc obtain: 

un+l(i)-dt v -[ k(i)Vun .. 1(i) l = atf" .. '(.i) +un(i) (4) 

In arder to evaluate u"ff) we try to write equations ( 4) in funcrion of what happens at 
the point P at every time. For ali i = 1,2: 

2 

!J = X¡(t,.+l - di)= X¡ - v¡(.r).dt +~ v(i)-Vv¡(i)+O(tJJ3
) 

2 
From thís equation we can obtain óx, = x, - !i and write: 
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and then, 

2 Ju"(r) .1!2 2. _ t,¡2 2 2 _ _ J'u"(i) J 
ii"(t) = u"U)-dl'" v (r)--·-+-)1 ii(r) v'v (x)j+-'") v.(.r)v.(.rl----,-0(41 1 - ,,:.. ' a.r 2 -'-l ' 2 ,,:.. .... ' 1 a.r ar 

1::I i 1=1 ,==l r=I I J 

Finally, ifwe introduce this last expression in (4) we get the following semi-impiicit 
formularion that approximates the evolution convection-diffusion process, where ali the 
terms are evaluated at the same point P, defined by i: 

2 1.n 2 ¡;2 n 
n+I F, [ ,=, n+I] n+I n - - n 41 L - r,, ) C7U 41 L U u -.Lllv· kvu =.Lllf +u -4/v-v'u +- (v·vv. -+- v.v.--_-_ 

2 'ax. 2 ')íJxdX 
j ¡ ,.; j ; 

Now, considering boundary conditions, ir is easy to obtain the variational formulation 
and then apply the ñnite element method. We have used a consisten! imegration in ali 
the terms of the final formulation. 

J.2 Stabilitv and consistency 

Concerning the former formulation. we have used the principal stability results 
obtained in one and two dimensions bv the Von Neumann method, see (Montenegro et 
al., 1989). About the consistency, on the lines of(Montenegro et al., 1989) and (Peraire 
et al., J 986), for the analyzed semi-implícit formulation, particularized in one dimension 
and with constan! coefficients and without sources in the second member, it can be 
preved that it is globally second-order accurate. 

4. NUMERICAL RESULTS 

4.1 A Convection-diffusion Problem 

We consider the convection-diffusion linear problem (1) defined in a two

dimensíonal domain n, a unit square domain centered at the point ( 0.5. 0.5), of boundary 

r. We suppose a rotating ve!ocity field, with v1 =a>.x1(1-:c1)(:c2 -0.5) and 

v2 = a> :c2 ( 0.5 - .r1 )(1- .r2 ). In the present application we take úJ == 1000, k = 1 and / = O. 
That is, a significant Peclet number about 125. On two opposite sides of the unit square 
domain we ímpose null Neumann condítions, on the other ones we suppose Dirichlet 
conditions, u== 1 and u= 2, respectively. The initial solution is a given function similar 
to the one represented in Figure 2(a) and it is captured automatically using the 
refinement/derefinement algorithm. Thís combinatíon enables us to ger a good 
approximation with a mínimum number of nades. In this example we have used the 

following refinement indícator, TI;, for an element .O¡: 

TI, = h, /Vu~j 

h¡ beíng the diameter of Qi and u1i the linear numerical solution in the elernent. 
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(a) t=0.00001, 1337 nades (b) t=0 .00274, 617 nodes 

(e) t=0.00815, 433 nodes (d) t=0.05714, 595 nades 

Figure 2. - Mesh es and solution for an evolutive heat transfer problem. 
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We know that 1 ~ u(i,t) S 2 in ali the evolution process, so, if we take a 

derefinement parametcr e= 0.005, we are sure that the error introduced by derefinement 
is less than 2.5%, ofthe maximwn valuc ofthe solution. The adaptive strategy was: only 
ene rcfinemcnt in ten rime stcps followcd by the dcrefinement proccdurc. In arder to 
evaluate the time incrcment, the stability condition, proposed by (Montenegro et al., 
1989), has been used. In each time step, one multigrid iteration is enough to salve the 
system of equation associated to the finite element method. Figure 2 shows severa! 
meshes and solutions fer different time steps. In arder to obtain the stationary solution, 
approximately in Figure 2(d), 2000 time steps have been calculated. 
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