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Sasakian m-hyperbolic locally conforma! 

Kahler manifolds 

J.C. MARRERO - J. ROCHA<•> 

RIASSUNTO: Si studia una classe particolare di varieta Kii.hleriane localmente con­
formi e, come principale risultato, si dimostm che lo spazio di ricoprimento universale 
di tale varieta e il prodotto di una varietd c-Sasakiana con uno spazio iperbolico di 
dimensione dispari. 

ABSTRACT: In this paper, we study a particular class of locally conformal Kii.hler 
manifolds and, as main result, we prove that the universal covering space of such man­
ifolds is the product of a c-sasakian manifold with a hyperbolic space o/ odd dimension. 
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1 - lntroduction 

An almost Hermitian manifold v 2n is called locally conforma! Kahler 
if its metric is conformally related to a Kahler metric in sorne neighbour­
hood of every point of v2n. Such manifolds have been studied by various 
authors (see, for instance, [14], [23], [24], [25], [6], [16], [8], ... ). 
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Examples of locally conforma! Kahler manifolds are provided by the 
generalized Hopf manifolds which are locally conformal Kahler manifolds 
with parallel Lee form (see [24] and [25]). The main non-Kiihler example 
of such manifolds is the Hopf manifold (see [13], [23]), which is defined 
as the quotient 

Hn = (Cn - {O}) 
º A>. 

where A,. is a cyclic group of transformations. Another example of a non­
Kahler compact generalized Hopf manifold is the nilmanifold N ( r, 1) x S 1

, 

where N(r, 1) = r(r, 1) \ H(r, 1) is a compact quotient of the generalized 
Heisenberg group H(r, 1) by a discret subgroup r(r, 1) (see [61). Ex­
amples of non-Ka.hler compact locally conforma! Kiihler manifolds with 
non-parallel Lee form are obtained in [22) and [1]. 

On the other hand, if we denote by ~ 2 the p-dimensional unit sphere 
of constant sectional curvature ¿. (e E IR, e f= O) then, it is well known 
that the Calabi-Eckmann manifolds v2n+2m = s;;--1 x 8~+1 (n ~ 1, m ~ 
O) admit a hermitian structure (J, g), where gis the product metric (see 
[5]). In fact, assuming n ~ m + 1, we have (see [5], [23] and [10]): 
l. H n = 1 and m = O then the structure ( J, g) is Kahler, 
2. H n ~ 2 and m = O then v2n+2m :::; v2n and H~ are diffeomorphic 

and (J,g) is a non-Kahler locally conforma! Kahler structure and, 
3. H n ~ 2 and m ~ 1 then the structure ( J, g) is hermitian but it is 

not locally conforma! Kiihler. 
Now, we can consider the product manifold v2n+2m = s;;--1 xH;m+i, 

where H:m+i is the (2m+ 1 )-dimensional hyperbolic space of constant 
curvature -e- (e E lR, e f= O). Then the manifold v2n+2

m also admits a 
hermitian structure (J,g), where gis the product metric. Moreover, we 
obtain 
l. The structure ( J, g) is locally conforma! Kahler ( see corollary 3.1) • 
2. There exist 2m unit 1-forms ai, •.• , o:2m on v2n+2m which are inde­

pendient and such that 

(1.1) O:; o J = Om+; , Om+; o J = -a; , O¡(B) = O 

(1.2) 
2m 1 

Vw = 2c2 ~)ak ® ak) , Vai = - 2(ai ® w) 
k=l 
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for i E {1, 2, ... , 2m} and j E {1, ... , m}, where 'v denotes the Levi­
Civita connection of the metric g and w and B are the Lee 1-form 
and the Lee vector field respectively of v2n+2m (see corollary 3.1). 

3. The local conforma! Kahler metrics are flat (see corollary 6.3). 

In this paper, we study a particular class of locally conforma! Kiihler 
manifolds which we call sasakian m-hyperbolic locally conforma! Kiihler 
manifolds, with m E 1N, m ~ O. These manifolds have similar properties 
to the locally conforma! Kahler manifold s::-1 

X H;m+l. A (2n+2m)­
dimensional Iocally con.formal Kahler manifold (V2n+2m, J, g) is said to 
be sasakian m-hyperbolic locally conforma! Kahler if there exist 2m unit 
1-forms a 1, •.• , a 2m on v2n+2m which are independient and satisfy (1.1) 
and (1.2), where e= -~ i= O at every point. In particular, a gener­
alized Hopf manifold is a sasakian 0-hyperbolic locally conforma! Kahler 
manifold. 

In section 2, we give sorne results on locally conforma! Kahler, c­
sasakian and c-kenmotsu manifolds. In section 3, we introduce the def­
inition of m-hyperbolic locally conforma! Kahler structure on a l.c.K. 
manifold. If (J,g) is a l.c.K. structure on a (2n+2m)-dimensional mani-
fold v2n+2m and ai, ... , a 2m are independient 1-forms on v2n+2m then, 
we say that (J, g, ai, ... , a 2m) is a m-hyperbolic locally conforma! Kii.hler 
structure on v2n+2m if 

aj O J = am+j, 

1 
da·= --(a·/\ w) • 2 1 

a¡(B) = O 

j E {l, ... ,m} 

i E {l,2, ... ,2m} 

i E {1, 2, ... , 2m}, 

where w and B are the Lee 1-form and the Lee vector field respectively 
of v2n+2m. We prove that the product manifold of a (2n-1)-dimensional 
c-sasakian manifold N anda (2m+l)-dimensional c-kenmotsu manifold 
M admits locally a m-hyperbolic locally conforma! Kahler structure (see 
proposition 3.3). Moreover, if the manifold Mis the (2m+l)-dimensional 
hyperbolic space (H;m+l, (ds2 )c) then the m-hyperbolic locally conforma! 
Kii.hler structure is globally defined and the 1-forms a¡ (i = 1, ... , 2m) 
satisfy (1.2). In section 4, we introduce the definition of sasakian m­
hyperbolic locally conforma! Kiihler (sasakian m-hyperbolic l.c.K.) man-
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ifold as a (2n+2m)-dimensional manifold v2n+2m endowed of a m-hyper­
bolic l.c.K. structure (J,g, et1, ••• , et2m) such that the unit 1-forms ai 

(i = 1, ... , 2m) satisfy (1.2), where e = -~ I= O at every point. In 
this section, we characterize the sasakian m-hyperbolic 1.c.K. manifolds 
and we obtain sorne properties of these manifolds (see propositions 4.4 
and 4.5). As consequence, we prove that a compact manifold cannot be 
a sasakian m-hyperbolic l.c.K. manifold with m ~ 1 (see corollary 4.1). 
In section 5, we study the Riemann curvature tensor R of a sasakian m­
hyperbolic l.c.K. manifold (V2n+2m, J, g, et1 , •.• , et2m). We determine the 
vector .fields R(X, Y)U, R(X, Y)A¡ and R(X, Y)V, for ali vector fields 
X, Y on V2n+2m, in terms of et¡, u, v = -u o J, A¡, U and V, where u 
and U are the unit Lee form and the unit Lee vector field respectively of 
v2n+2m and A¡ are the vector fields on v2n+2m given by c:t¡(X) = g(X, A¡), 
1 ::5 i ::5 2m (see propositions 5.1 and 5.2). In particular, we obtain ex­
plicit formulas for the sectional curvature of a plane section containing 
A¡, U or V and for the Ricci curvature in the direction of these vectors 
(see corollaries 5.1 and 5.2). 

In section 6, we prove that on a sasakian m-hyperbolic l.c.K. man­
ifold (V2n+2m, J, g, a 1, •.. , et2m) the leaves of the foliation J have an in­
duced c-sasakian structure, where J is the foliation on v2n+2m given 
by u = O, a¡ = O, 1 ::5 i ::5 2m. Then, we say that a sasakian m­
hyperbolic l.c.K. manifold is sasakian(k) m-hyperbolic locally conforma! 
Kab.ler (k E IR) if every leaf N of the foliation J is of constant /{)N" 

sectional curvature k, where ( ip N, eN, TJN, 9N) is the induced c-sasakian 
structure on N. Finally, using the results of the above sections, we ob­
tain that the universal covering space V2

n+
2

m of a sasakian m-hyperbolic 
l.c.K. manifold (V2n+2m, J, g, et1, ••• , et2m) is the product of a (2n-1)­
dimensional c-sasakian manifold (N, /{)N, eN, TJN, 9N) with the {2m+l)­
dimensional hyperbolic space and we describe the induced sasakian m-
h b li 1 - -2n+2m ( h yper o c .c.K. structure (J, g, 7i1, ••• , a 2m) on V see t eorem 
6.1). Moreover, if V2n+2m is a sasakian(k) m-hyperbolic l.c.K. manifold, 
then we determine, up to almost complex isometries, the almost Hermi-
t . a.nif, ld (V2n+2m - ) ( ) I . l ·r y2n+2m 1an m o , J, g see corollary 6.4 . n part1cu ar, 1 

is a sasakian(c2) m-hyperbolic l.c.K. manifold then we have that the lo­
cal conforma! Ka.hler metrics are flat and the manifold V

2
n+

2
m is almost 

complex isometric to s2;-1 x H:m+i (see corollaries 6.3 and 6.4). 
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2 - Preliminaries 

Let V be a G00 almost Hermitian manifold with metric g, Riemannian 
connection 'il and almost complex structure J. Denote by x(V) the Lie 
algebra of G00 vector fields on V and by N J the Nijenhuis tensor of V, 
that is, 

(2.1) NJ(X, Y)= [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y] 

for X, Y El:(V). 
The Kahler 2-form nis given by 

(2.2) n(X, Y) = g(X, JY) 

and the Lee l-form w is defined by 

1 
w(X) = (n _ 1 )6n(JX) 

for X E .I('V), where 6 denotes the codifferential and dim V =2n. 
An almost Hermitian manifold (V, J, g) is said to be: 
Kahlerian if 'v J = O; Locally conformal Kii.hler (l.c.K.) if every point 

x E V has an open neighbourhood U such that the structure ( J, e-u g) is 
Kahler on U, where u : U -- IR is a real differentiable function on U 
(see [14], [23], [24], [6], ... ). 

Let (V, J, g) be an almost hermitian manifold with Lee form w and 
'il the Levi-Civita connection of the metric g. Consider 

(2.3) 
- 1 1 1 
'ilxY = 'ilxY - 2w(X)Y - 2w(Y)X + 2g(X, Y)B 

for X, Y E.I(V), where B is the Lee vector field of V given by w(X) = 
g(X, B). 'il is a torsionless linear connection on V, which is called the 
Weyl connection of g (see [19]). Moreover, if (V,J,g) is l.c.K. then V is 
the Levi-Civita connection of the local metrics cu g (see [23]). In fact, in 
[23], I. VAISMAN proves 

PROPOSITION 2.1. The following are equivalent: 
1. (V, J, g) is a l. c.K. manifold. 
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2. The Lee f onn w is el o sed and 

(2.4) 

for all X EX(V). 
8. The Lee fonn w is closed and 

(2.5) 
1 1 1 1 

(VxJ)Y = 2w(JY)X - 2w(Y)JX - 2g(X, JY)B + 2g(X, Y)JB 

for all X, Y EX(V). 
4. The Lee fonn w is closed and 

(2.6) 

Among the l.c.K. manifolds, those such that V w = O are called gen­
eralized Hopf manifolds (see [24] and [25]). 

On the other hand, let M be an almost contact metric manifold with 
metric g and almost contact structure ( cp, €, 11). Then we have 

cp2 = -I +11®€ 11(€) = 1 
g(cpX, cpY) = g(X, Y) - 17(X)17(Y) 

for X, Y EX(M), where I denotes the identity transformation (see [2] and 
(3)). Denote by Nv, the Nijenhuis tensor of cp, that is 

Nv,(X, Y) = [cpX, cpY] - cp[cpX, Y] - cp[X, cpY] + cp2 [X, Y] 

for X, Y EX(M). The fundamental 2-form tp of Mis given by 

</J(X, Y) = g(X, cpY). 

An almost contact metric manifold M is said to be c-sasakian (see 
[11]), with e E IR, e-/: O if 

(2.7) 
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and it is called c-kenmotsu (see [11)) if 

(2.8) N.., + 2dr¡ @e = O , d<f> = -2cr¡ /\ </> , dr¡ = O. 

The manifold M is said to be sasakian if it is 1-sasakian. 
If ( M, cp, e, r¡, g) is a c-sasakian manifold or a c-kenmotsu manifold 

then 

(2.9) 

where L denotes the Lie derivate on M. 
Let (H;m+l, (ds2)c) be the (2m+l)-<!imensional hyperbolic space, i.e., 

and (ds2)c is the Riemannian metric given by 

l 2m+l 

(ds2)c = ( )2 L (dxi) 2 
, (e=/: O). 

CX2m+l i=l 

(H;m+l, (ds2)c) is a complete simply connected Riemannian manifold 
with constant negative curvature -c2. 

The vector fields E¡ (i = 1, ... ,2m + 1) on H:m+l defined by 

(2.10) 

form an orthonormal basis for this space. 
The dual basis of 1-forms is given by 

(2.11) 

for i = 1, ... , 2m + l. 

dx¡ 
O¡=--­

(CX2m+1) 

Then, it is not difficult to prove that 

(2.12) 
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for i E {1, ... , 2m }, where V is the Levi-Civita connection of the metric 
(ds2)c, 

Let ( cp H~m+l, ea~m+l, 11H~m+1, g H~m+l) be the almost contact metric 
structure on H:m+I defined by 

m 

(2.13) 
'PH2m+l = ~(Ei@ <lm+i - Em+i@ <l¡) 1 eH2m+1 = E2m+1 e L..., e 

i=l 

7JH2m+l = <l2m+1 1 gH2m+1 = (ds2
)c, 

e e 

Then (see [12], [7)), the almost contact metric structure (c,oH2m+1, 
e 

eH2m+1, 1JH2m+i,9H2m+l = (ds2)c) on H;m+l is c-kenmotsu. 
e e e 

Let (M, cp, ~' r¡, g) be an almost contact metric manifold and x a point 
of M. Aplane section 1r in the tangent space to M at x, TxM, is called 
a cp-section if there exists a unit vector X in TxM orthogonal to e such 
that {X, cpX} is an orthonormal basis of 1r. Then the sectional curvature 
Kxv,x = g(R(X, cpX)c,oX, X) is called a <p-sectional curvature. 

A c-sasakian manifold is said to be a c-sasakian space form if M has 
constant cp-sectional curvature. Examples of sasakian space forms are 
provided by the manifolds s2n-1 , IR2n-l and IR X cnn-l _ In fact, the 
unit sphere S2n-l has a sasakian structure of constant rp-sectional cur­
vature k, for ali k > -3 (see [20] and [21)); the real (2n-1)-dimensional 
number space IR2

n-I is a sasakian space form with k = -3 [18]; and 
the product manifold IR x CDn-1, where cnn-1 is a simply connected 
bounded complex domain in cn- l with negative constant holomorphic 
sectional curvature, has a sasakian structure of constant rp-sectional cur­
vature k, for ali k < -3 [21]. 

Let (M,cp,e,11,g) be a sasakian manifold with constant rp- sectional 
curvature k. Put 

I I I 1 / 1 
c;i = 'P , e = e.e , ,,, = _,,, , g = -g 

e c2 

where e E IR, e i= O. Then, (M, cp', f, 77', g') is a c-sasakian space form 
of constant cp-sectional curvature kc2. We denote by M(c, kc2

) the c­
sasakian manifold with this structure. 

In (21], Tanno proves that if (M,cp,€,r¡,g) and (M',cp',e',r,',g') are 
(2n-1)-dimensional complete simply connected sasakian manifolds of con­
stant <p-sectional curvature k, then, M is almost contact isometric to M', 
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i.e., there exists an isometry F of M into M' such that F. o cp = cp' o F. 
and F.{={'. Therefore, by using this result, we deduce 

PROPOSITION 2.2. Let M be a {2n-1}-dimensional complete simply 
connected c-sasakian manifold with constant cp-sectional curvature k. 
1. If k > -3c2, then M is almost contact isometric to s2n-1(c, k). 
2. IJ k = -3c2, then Mis almost contact isometric to 1R.2n-

1 (c, -3c2) = 
IR2n-1 (e). 

3. If k <-3c2, then Mis almost contact isometric to (ffi.x cnn- 1 )(e, k). 

REMARK. lt is clear that the manifold S2n-1(c, c2) ÍS s;:-1 (see 
section 1). 

Ali the manifolds considered in this paper are assumed to be con­
nected. 

3 - m-Hyperbolic locally conforma! Kiihler structures 

In this section, we study a particular class of structures on a l.c.K. 
manifold which we call m-hyperbolic locally conforma! Kahler structures. 

First, we describe the local structure of a c-kenmotsu manifold (see 
[12] and [15]). For this purpose, we examine the following example: 

Let M be the product manifold L x V, where L is an open interval 
(a, b), -oo ~ a < b ~ oo, and (V, J', G) is a 2m-dimensional Kahlerian 
manifold. Let E be a nowhere vanishing vector field on L, E* its dual 
field of 1-forms and u a positive function on L such that d(ln u) = -2cE•, 
with e E IR, e #- O. Put 

{ 

cp(a'E,X) = (O,J'X) , 

(3.1) { = (E,O) , 17 = (E*,O) 

g((a' E, X), (b' E, Y))= uG(X, Y)+ a'b', 

where a' and b' are differentiable functions on lvl, and X, Y E X(V). Then 
it is not difficult to check that (M, cp, {, 17, g) is a c-kenmotsu manifold. 

The converse holds locally, i.e., 

PROPOSITION 3.1. [15] Jf (M2m+i,cp,{,17,g) is a (2m+l)-dimensio­
nal c-kenmotsu manifold, then the manifold M2m+l is locally the product 
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( a, b) x v2m, where ( a, b) is an open interval and v2m is a 2m-dimensional 
Kii.hlerian manifold, on which the structure (cp, e, r¡, g) is gíven as in (3.1). 

Let (N, 'PN, f.N, TlN, 9N) be a c-sasakian manifold and (M, C{)M, eM, T/M, 
9M) a (2m+ 1)-dimensional c-kenmotsu manifold, with e E 1R, e=/= O. Let 
us consider the product manifold V = N x M with the almost hermitian 
structure ( J, g) defined by: 

{3.2) { 
J(x, x') = (cpNx - TlM(x') eN, C{)Mx' + TJN(x) eM) 

g((X, X'), (Y, Y'))= 9N(X, Y)+ 9M(X', Y') 

where X, Y E X.(N) and X', Y' E X.(M). 

PROPOSITION 3.2. The almost Hermitian manifold (V, J,g) is a 
l.c.K. manifold with Lee form 

where 7rM : N x M --+ M is the canonical projection onto the second 
factor. 

PROOF. Let X, Y be vector fields on N and X', Y' vector fields on 
M. Then: 

Ni((X,X'),(Y, Y'))= 

= (N'PN(X, Y)+ 2d11N(X, Y) {N -2d11M(X',cpMY') {N-

- 2dr¡M(C{)MX', Y') €N + TlM(Y') (L(N'PN )X -11M(X') (L(N'PN )Y+ 

+211N(X) d17M(Y',€M) €N+2r¡N(Y) d11M(€M,X') f.N, 

N'PM(X', Y')+ 2dr¡M(X', Y') {M + 2d11N('PNX, Y) {M+ 

+ 2dr¡N(X, 'PNY) {M + 11N(X) (L(M'PM)Y' -11N(Y) (L(M'PM)X'-

- 277M{X') dr¡N(f.N, Y) f.M + 277M(Y') dr¡N(f.N, X) {M) 

where Ni, N'PN and N'PM denote the Nijenhuis tensors of J, 'f)N and 'PM 

respectively and L denotes the Lie derivate operator on N and M. 
Thus, from (2.7), {2.8) and (2.9), we obtain that Ni((X, X'), (Y, Y')) = O. 
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On the other hand, using (2.2) and (3.2), the Kahler 2-form n of the 
almost Hermitian manifold (V, J, g) is given by 

where <PN and <PM denote the fundamental 2-forms of N and M respec­
tively and where 1rN: V= N x M--+ Nis the projection of V onto the 
first factor. Then, from (2.7), (2.8) and (3.3), we have that: 

Consequently, since T/M is a closed 1-form, we deduce that the almost 
hermitian manifold (V, J, g) is l.c.K. with Lee form w = -2 e 1f'ÍvtT/M · O 

Next, we shall study the l.c.K. structure (J, g) on the product mani­
fold N X M. 

PROPOSITION 3.3. Let (J,g) be the l.c.K. structure given by (3.2) 
on the product manifold N x M. Then, for every point (p, q) E N x M 
there exists an open neighbourhood U of q in M and 2m independent 
1-forms 0.1, ... , o.2m on U, such that: 

where 1ru : N x U --+ U is the projection onto the second factor and w 
and B are the Lee 1-form and the Lee vector field respectively of N x M. 

PROOF. If u= (p, q) is a point of the product manifold V= N x kf 
then, using proposition 3.1, we deduce that there exists an open neigh­
bourhood U' = (a,b) x V of q, a positive function u and a nowhere 
vanishing vector field E on ( a, b) such that 

(3.5) d{lnu) = -2cr¡M , €M = E, 

and the almost contact structure ('PM, {M, f'JM, 9M) on U' is given by (3.1), 
where (V, J', G) is a 2m-dimensional Kiihlerian manifold and (a, b) is an 
open interval, -oo $ a < b $ oo. 
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Suppose that q = (l, v) with l E L and v E V. Since (V, J', G) is a 
Kiihlerian manifold there exists a coordinate neighbourhood W of v in 
V, with coordinates (x1 , ••• , x2m), such that: 

(3.6) J' a _ a 
8xm+i - 8xi 

for i E {1, ... ,m}. 
Let U be the open neighbourhood of q in M given by U = ( a, b) x W. 

From (3.1), (3.5) and using proposition 3.2, we have that: 

(3.7) w = 1ri, (d(lna)) , B = -2c{M. 

Now, define on U the 1-forms a¡ by 

(3.8) vu . 
a¡= -dx' 

e 

i E {1, ... , 2m}. Then, from (3.6), (3.7) and (3.8), we obtain (3.4). O 
The above results suggests us to consider the following particular 

class of l.c.K. structure: 

DEFINITION 3.1. Let (V, J,g) be a (2n + 2m)-dimensional l.c.K. 
manifold with Lee form w and Lee vector field B, and let a 1 , .. , a 2m be 
independent 1-forms on V, with m ~ O. We say that (J,g,ai, ... ,a2m) 
is a m-hyperbolic locally conformal Kahler (m-hyperbolic l.c.K.) 
structure on V if 

(3.9) 
O'.j o J = O'.m+j Clm+j o J = -a; 

do:¡= -~(o:¡ A w) 

j E {l, ... ,m} 

iE{l,2, ... ,2m} 

o:¡(B) = O i E {1,2, ... ,2m}. 

REMARK. -lf (N,cpN,{N,'f/N,9N) is a c-sasakian manifold and 
(M,cpM,f.M,'f/M,9M) is a (2m+l)-dimensional c-kenmotsu manifold, with 
e E JR, e =/:- O, then, from proposition 3.3, we deduce that for every point 
(p, q) E N x M, there exists an open neighbourhood U of q in M and 
2m 1-forms 0'.1, ... , 02m on U, such that (J, g, 1r.-i,a1, ... , 1ri,a2m) is a m­
hyperbolic l.c.K. structure on N x U, where (J,g) is the l.c.K. structure 
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given by (3.2) on the manifold N x M and 1ru : N x U --+ U is the 
projection onto the second factor: 

Now, let H;m+i be the (2m + 1)-dimensional hyperbolic space. 
Denote by a1, ... , a2m the 1-forms on H;m+l given by (2.11) and by 
( ({)H2m+l, €H2m+1, T/H2m+l' 9H2m+l) the c-kenmotsu structure on H;m+l 

e e e e 
given by (2.13). Then, if N is a c-sasakian manifold and 1r H2m+1 : 

N x HJm+i ----+ H;m+l is the projection onto the second factor, we ~btain 
that 

COROLLARY 3.1. The almost Hermitian structure (J,g) given by 
(3.2) onto the product manifold N x H;m+l is l.c.K. with Lee form 

Moreover, (J,g, rr~2m+1a1, •.. , 7r~2m+ia2m) is a m-hyperbolic l.c.K. struc-
c e 

ture on N x H;m+l and we have that 

2m 

(3.10) 
'vw = 2c2 '°'(1r~2m+1a;) ® (1r~2m+1a;) L.,¡ e e 

j=l 

'\77r~~m+lai = -~(7r~~m+1lt¡) ® W 

for i E {1, ... , 2m}, where 'V is the Levi-Civita connection of the Rie­
mannian metric g. 

PROOF. The first part of this corollary follows from proposition 3.2. 
Let B be the Lee vector field of the product manifold N x H;m+I. 

Then, using (3.2) and proposition 3.2 we have that 

(3.11) B = -2cE2m+l 

where E2m+i is the vector field on H;m+I given by (2.10). 
Therefore, from (2.11), (2.13), (3.2) and (3.11) we obtain that 

(J, 9, 7r~2m+101, •.. , 7r~2m+l a2m) is a m-hyperbolic l.c.K. structure on 
e e 

N X H2m+l 
e 

Finally, using (2.12), (2.13) and (3.2), we deduce (3.10). O 
REMARK. In proposition 3.1 we described the local structure of a 

c-kenmotsu manifold. It is not difficult to prove that in the particular 
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case of the c-kenmotsu manifold (H;m+i 1 ({)H2m+l 1 {H2m+l I T/H2m+l, 9 H2m+l) 
e e e e 

such a proposition is globally true. In fact, H;m+l = IR2m x (O, oo) and 
thus it is sufficient to take in ( 3.1), ( J', G) the usual Kahlerian structure 
on 1R2

m and 

(3.12) 

where x2m+l is the coordinate on the interval (O, oo). Consequently, 
from (2.11), (3.8) and (3.12), we also deduce that (J,g,1r~2m+1a1,••· 

e 

••• 1 11";2m+1 a2m) is a m-hyperbolic l.c.K. structure on the product mani-
c 

fold N X Jí;m+l, 

Now, denote by Ni (i = 1, 2, 3) the following (2n - 1)-dimensional 
c-sasakian manifolds of constant <p-sectional curvature k (see proposition 
2.2), 

Let ( J¡, g¡) be the almost Hermitian structure on Ni x H;m+l (i=l,2,3) 
given by (3.2). Then, from corollary 3.1, we deduce that 

COROLLARY 3.2. The almost Hermitian structure (Ji,9i) onto the 
product manifold N¡ x H;m+l {i = 1, 2, 3) is l.c.K. wi.th Lee form 

- 2 • W - - C7l"H2m+l1]H2m+l. 
e e 

Moreover, (Ji,9i,1rH•2m+ia1, ••• ,1r;2m+1<l2m) is am-hyperbolic l.c.K. 
e e 

strocture on N¡ x Jí;m+l satisfying {3.10). 

4 - Sasakian m-byperbolic locally conforma! Kahler manifolds 

The results obtained in corollary 3.1 suggest us to introduce the fol­
lowing definition. 

DEFINITION 4.1. Let (J,g,ai, ... ,a2m) be a m-hyperbolic l.c.K. 
strocture on a manifold v2n+2m of dimension (2n+2m), su.ch that a1, • • • 
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... , a2m are unit 1-forms. We say that v 2n+2m is a sasakian m-hyper­
bolic locally conformal Kii.hler (sasakian m-hyperbolic l.c.K.) 
manifold if 

(4.1) 

for i E {1, ... , 2m}, where w is the Lee form of v2n+2m, V is the Levi­
Civita connection of the metric g and l = llwll i= O at every point. 

If (v2n+2m, J, g, o:i, ... , o:2m) is a sasaldan m-hyperbolic 1.c.K. mani­
fold then v2n+2m is said to have a sasakian m-hyperbolic l.c.K. strocture 
(J,g,a1,••· ,0:2m), 

We remark that the above definition generalizes the notion of gener­
alized Hopf manifold. In fact, a generalized Hopf manifold is a sasakian 
0-hyperbolic l.c.K. manifold. 

In this section, our intention is to obtain information about the struc­
ture of the sasakian m-hyperbolic l.c.K. manifolds and we begin by intro­
ducing sorne of their properties. 

Let (V2n+2m, J, g, a 1 , .. , o:2m) be a sasakian m-hyperbolic l.c.K. man­
ifold and denote by Ai, with 1 $; i $; 2m, the vector fields on v2n+2m 

given by 

(4.2) a¡(X) = g(X,A¡) 

for all X EX(V2n+2m). From (3.9) and ( 4.2), we obtain that 

(4.3) 

for i E {1, ... ,m}. Moreover, 

PROPOSITION 4.1. On a sasakian m-hyperbolic l.c.K. manifold 
v2n+2m the vector fields A¡ and A;, with i i= j, are orthogonal. 
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PROOF. lf B is the Lee vector field of v2n+2m then, from (3.9) and 
(4.2), we have that 

(v' A;o:i)B = -(V A;w)Ai 

and thus, using (4.1), we deduce that 

(4.4) 

Consequently, from ( 4.4) and since l -::j:. O at every point, we obtain 
that o;(A¡) = O. 

This completes the proof. O 
We also have, 

PROPOSITION 4.2. On a sasakian m-hyperbolic l.c.K. manifold the 
Lee 1-form has constant norm. 

PROOF. Let (V2n+2m, J, g, o:1 , •• , o:2m) be a sasaldan m-hyperbolic 
l.c.K. manifold with Lee 1-form w and Lee vector field B and let X be a 
vector field on V2"+2

m. Denote by l = llwll- Then, using (4.1) and (3.9), 
we get 

On the other hand 

(V xw)B = ldl(X) 

and thus, since l -::j:. O at every point, we have that dl(X) = O. 
Therefore, we deduce that dl = O which implies that l is constant. D 
Let (V2n+2m, J, g, 0:1, ... , o:2m) be a sasakian m-hyperbolic l.c.K. 

manifold with Lee vector field B and Lee form w. Then, in the rest 
of this paper, we shall use the following notation 

(4.5) l = llwll , u=~ , 
l 

B u= - ' V = -u o J ' V = JU. 
l 

From (3.9}, (4.3) and (4.5) we obtain that 

(4.6) 
u(V) = v(U) = u(A¡} = v(A¡} = O 

o¡(U) = o¡(V) = O 
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for i E { 1, ... , 2m}. 
Moreover, if nis the Ka.hler 2-form of v 2n+2m then, using that n is 

nondegenerate and (4.6), we have that 

PROPOSITION 4.3. 
v2n+2m 

On a sasakian m-hyperbolic l.c.K. manifold 

m 

S1 = tp + 2(¿(a; /\ am+;) +V/\ u) 
j=l 

where 1/; is a 2-form of rank (2n - 2) such that: 

1/;n-l /\U/\ V/\ CY.¡ A ... /\ CY.2m =/: O 

'1/J(X, Ai) = 1/;(X, U) = 1/J(X, V) = O 

/orí E {1, ... ,2m}. 

Next, we give sorne characterizations of sasakian m-hyperbolic l.c.K. 
manifold. 

PROPOSITION 4.4. Let (J, g, CY.1 1 •• , CY.2m) be a m-hyperbolic l.c.K. 
structure on a manifold (2n + 2m)-dimensional v2

n+
2

m such that o:1 , ••• 

. . . , a2m are unit 1-forms and the Lee form w =/: O at every point. Then, 
(v2n+2m, J,g,a1, •• ,a2m) is a sasakian m-hyperbolic l.c.K. manifold if and 
only if l = llwll is constant and one of the following relations holds 

(i) 

(ii) 

(iv) 

m 

+¿(a;® Am+j - Om+; ® A;)) 
j=l 

l 
"vv = -1/J 

2 

for i E {1, ... , 2m}. 

l 
Va·= --o:•'°" u 1 2 11()1 

l 
VA·= --o:·'°" U 1 2 11()1 

l 
VA¡= --o:¡® U 

2 

l 
Va:·= --o:·'°" u l 2 ¡1()1 
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PROOF. 

The proposition follows from (2.5), (4.1), (4.3) and using proposition 
4.2 and the relations: 

1 
'vu = yVw , 'vxV = ('vxJ)U + J('v xU). o 

Now, we deduce another result for a sasakian m-hyperbolic l.c.K. 
manifold v2n+2m. Denote by L the Lie derivate on v2n+2m. 

PROPOSITION 4.5. Let (V2n+2m, J, g, a 1, ••. , o2m) be a sasakian 
m-hyperbolic l.c.K. manifold. Then, V is a Killing vector field for the 
me trie g. M oreover, the f ollowing relations hold 

(4.7) l 
[U A-]= --A· , , 

2 
, 

(4.8) 

(4.9) 

(4.10) Luv = O, LA¡ v = O , 

/ori,jE{l, ... ,2m} andkE{l, ... ,m}. 

l 
dv = -'if;, 

2 

PaooF. Using proposition 4.4 and since V is a torsionless linear 
connection on V2n+2m we obtain (4.7). 

Let X, Y be vector fields on v2n+2m. Then, we have that 

2dv(X,Y) = (Vxv)Y -('vyv)X 

and thus, from proposition 4.4, we deduce that 

(4.11) l 
dv(X, Y) = 2'if;(X, Y). 
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On the other hand, by the classical formula of the Levi-Civita con­
nection [13] we have that, 

(Lvg)(X, Y)= 2g(VxV, Y) - 2dv(X, Y) 

and therefore, using (4.11) and proposition 4.4, we obtain that V is a 
Killing vector field. 

Now, from (2.5), (4.3), proposition 4.4 and from the fact that 

(LxJ)(Y) = (V xJ)(Y) - V JYX + J(VyX) 

for all X, Y EX(V2n+2m), we deduce (4.8) and (4.9). 
Finally, using (4.11), (4.6), proposition 4.3 and the relations 

Luv = d(iuv) +iu(dv) , LA1v = d(iA1v) +iAi(dv) 

with 1 :S j ~ 2m, we prove that Luv = LAiv = O, 1 ~ j ~ 2m. O 
Next, using proposition 4.5, we obtain an interesting result 

COROLLARY 4.1. A compact manifold cannot admit a sasakian 
m-hyperbolic l.c.K. stru.cture with m ~ l. 

PROOF. Let (V2n+2m,J,g,a1, ... ,02m) be a compact sasakian m­
hyperbolic l.c.K. manifold, with m ~ l. Then, from proposition 4.3, we 
deduce that the (2n + 2m)-form 'Y on v2n+2m given by 

'Y= O¡/\ ... /\ 02m /\U/\ V/\ 'lpn-l 

is a volume element. 
On the other hand, using (3.9) and (4.10), we obtain that 

"f = d( (~z)ª1 /\,,, /\ 02~ /\V/\ t/Jn-l) 

which, in view of Stokes' theorem, is a contradiction. O 
REMARK. It is well known that the compact Hopf manifolds admit a 

l.c.K. structure with parallel Lee form (see (24] and [25]), i.e., the compact 
Hopf manifolds are compact sasakian 0-hyperbolic l.c.K. manifolds ( other 
examples of compact sasakian 0-hyperbolic l.c.K. manifolds are obtained 
in [6]). Consequently, corollary 4.1 is not true for m = O. 
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5 - The curvature tensor on a sasakian m-hyperbolic 1.c.K. ma­
nifold 

In this section, we shall study the Riemann curvature tensor of a 
sasakian m-hyperbolic l.c.K. manifold. 

Let (V2n+2m, J,g, a1~ ••• , a2m) be a (2n + 2m)-dimensional sasakian 
m-hyperbolic l.c.K. manifold and Iet Ai be as in ( 4.2) and l, u, U, v and 
V as in (4.5). Then, if R is the Riemann curvature tensor of v2n+2m, we 
have, 

PROPOSITION 5.1. On a sasakian m-hyperbolic l.c.K. manifold 
y2n+2m 

l2 2m 

R(X, Y)U = - 2 ¿(a¡/\ u)(X, Y)A¡ 
i=l 

(5.1) 

(5.2) (
z)22m 

R(X, U)Y = 2 ~(a¡(X)a¡(Y)U - a¡(X)u(Y)A¡) 

(5.3) [2{h } R(X, Y)A¡ = 2 ?;(a¡/\ a3)(X, Y)A3+(a¡ /\ u)(X, Y)U 

(5.4) R(X, A¡)Y = -(~) 
2 

{ u(X)a¡(Y)U - u(X)u(Y)A¡+ 

+ t(a;(X)a;(Y)A; - c>¡(X)a¡{Y)A;)} 

where i E {1, ... , 2m} and X, Y E.I(V2n+2m). 

PROOF. From proposition 4.4 we deduce that 

l 2m 

R(X, Y)U = 2 ¿(2da¡(X, Y)A¡ + a¡(Y)'v' xAi - a¡(X)'v'yA¡) = 
i=l 

2m 

= l¿da¡(X, Y)A¡ 
i=l 

l 
R(X, Y).A¡ = - 2{2da¡(X, Y)U + a¡(Y)'v'xU - a¡(X)'v'yU} 

l 2m 

= --{2da¡(X, Y)U - l ¿(a¡/\ a;)(X, Y)Aj} 
2 j=l 
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for all X, Y EX(V2n+Zm). 

Thus, using (3.9), we obtain (5.1) and (5.3). 
(5.2) and (5.4) follow from (5.1) and (5.3) respectively and using the 

relation 

(5.5) g(R(X, Y)Z, W) = -g(R(Z, W)Y, X) 

for all X, Y, Z, W E X(V2n+2m). o 
Also, we have 

PROPOSITION 5.2. On a sasakian m-hyperbolic l.c.K. manifold 
y2n+2m 

(5.6) R(X, Y)V = (~)2 {-v(X)Y + v(Y)X + 2(v /\ u)(X, Y)U+ 

2m 

+ 2 ¿(v A a;)(X, Y)A;} 
i=l 

(5.7) R(X, V)Y = (~) 
2 

{ v(Y)X - u(X)v(Y)U + 
2m 2m 

+(u(X)u(Y)+ ¿ a;(X)a;(Y)-g(X, Y))V- :~:::>~¡(X)v(Y)A;} 
i=l i=l 

/or all X, Y EX(V2n+2m). 

PROOF. Using propositions 4.4 and 4.5 and since the 1-form u is 
closed we obtain that 

R(X,Y)V= 
l zm 

= --{(v' xJ)Y - (v'yJ)X + l'l/)(X, Y)U - l ¿(v /\ ai)(X, Y)Ai+ 
2 j=l 

l m 

+ u(X)(- -( JY + v(Y)U - u(Y)V + ¿(o¡(Y)Am+i-om+i(Y)A¡)))+ 
2 ~l 

l m 
- u(Y)(- 2(JX +v(X)U-u(X)V + ¿(o¡(X)Am+i - etm+i(X)A¡)))+ 

i=l 
m 

+ ¿(2do¡(X, Y)Am+i - 2dam+i(X, Y)A¡ -la¡(Y)am+i(X)U+ 
i=l 
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Thus, from (2.5), (3.9) and proposition 4.3, we deduce (5.6). 
(5.7) follows from (5.5) and (5.6). O 
Let x be a point of v2n+2m. Denote by Kxv and by p(X, X) the 

sectional curvature for the plane section in TxM with orthonormal basis 
{X, Y} and the Ricci curvature in the direction X respectively. Then, by 
using (5.1), (5.3) and (5.6), we obtain 

COROLLARY 5.1. On a sasakian m-hyperbolic l.c.K. manifold 
v2n+2m 

KuA¡ = KA;A; = -(~)2 
p(U, U) = p(~, A¡) = -2m(-~) 

2 

for i,j E {1, ... , 2m}. 

COROLLARY 5.2. On a sasakian m-hyperbolic l.c.K. manifold 
v2n+2m 

KA;v=Kuv =0 
l 

p(V, V)= 2(n -1)(2)2 

/orí E {1, ... ,2m}. 

From proposition 5.1, we have 

COROLLARY 5.3. On a sasakian m-hyperbolic l.c.K. manifold 
V2n+2m 

z2 m 
R(X, Y)Z = R(X', Y')Z' + 2{¿(o¡ /\ u)(X, Y)(a;(Z)U - u(Z)A;)+ 

í=l 

2m 

- L Oj(Z){ct¡ /\ Oj)(X, Y)A;} 
i,j=l 
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for all X, Y, Z E.I(V2n+2m), where X', Y' and Z' are the orthogonal 
projections o/ X, Y and Z respectively onto the tangent planes o/ the 
leaves of the foliation i given by u= O, a¡ = O, with 1 ~ i $ 2m. 

Let R be the curvature tensor of the Weyl connection V given in 
(2.3). Then, 

PROPOSITION 5.3. 
y2n+2m 

On a sasakian m-hyperbolic l.c.K. manifold 

(5.8) R(X, Y)Z = R(X', Y')Z' - ~ {g(Y', Z')X' - g(X', Z')Y'}, 

for all X, Y, Z E.I(v2n+2m}, where X', Y' and Z' are the orthogonal 
projections o/ X, Y and Z respectívely onto the tangent planes of the 
leaves of the foliation i given by u= O, O¡= O, wíth l ~ í $ 2m. 

PROOF. Using proposition 4.4 anda well known relation (see [9], pg. 
115) we deduce 

z2 2m 

R(X, Y)Z = R(X, Y)Z + ¡{¿(a¡(Y)a¡(Z}X - a¡(X)a¡(Z)Y + 
i=l 

+ g(Y, Z)a¡(X)Ai - g(X, Z)a¡(Y)A¡)+ 

+ ( u(X)g(Y, Z) - u(Y)g(X, Z) )U+ 

+ (u(Y)u(Z)X -u(X)u(Z)Y) - (g(Y, Z)X - g(X, Z)Y)} 

for all X, Y, Z E.I(V2n+2m), and thus the result follows from corollary 
5.3. O 

6 - The universal covering space of a sasakian m-hyperbolic 
l.c.K. manifold 

In this section we shall study the universal covering space of a sasa.­
kian m-hyperbolic l.c.K. manifold. 

Let (V2n+2m, J, g, a 1, •.• , a 2m) be a sasakian m-hyperbolic l.c.K. 
manifold and let A¡ be (1 $ i $ 2m) as in (4.2) and l, u, U, v, V as in 
(4.5). Denote by e=-½ and by l the foliation given by u= O, a¡= O, 
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1 ~ i ~ 2m. i defines on v2n+2m a foliation of dimension (2n-1), which 
we call the canonical foliation of v2n+2m. Using (4.7), proposition 4.4 
and corollary 5.1, we deduce 

PROPOSITION 6.1. The canonical foliation J of a sasakian m-
hyperbolic l.c.K. manifold is totally geodesic with integrable normal bun­
dle. Moreover, if J.l is the foliation determined by the normal bundle of 
J, then i.L also is totally geodesic and its leaves are of constant sectional 
curvature -c2

• 

Let i : N --+ v2n+2m be the inmersion of a generic leaf N of 
the canonical foliation J. We define an almost contact metric structure 
('PN,~N,1/N,UN) on N by 

for all X EX(N). Then, we have 

PROPOSITION 6.2. The almost contact metric strocture (cpN,f.N, 
1/N,UN) on Nis c-sasakian. 

PROOF. Let X, Y be vector fields on N and NJ, N'PN and L the Ni­
jenhuis tensors of J and 'PN and the Líe derivate on v2n+2m respectively. 
Then, 

N'l'N(X, Y)+ 2dr¡N(X, Y)f.N = 
= Ni(X, Y)-v(Y){(LuJ)X + (Luv)(X)U}+ 

+ v(X){(LuJ)Y + (Luv)(Y)U} + 2(dv(JX, Y)+ dv(X, JY))U 

which, from (2.6), (4.8) and (4.10), implies that the structure ('PN, f.N, 1JN) 
is normal, i.e., N'l'N +2dr¡N ® f.N = O. 

On the other hand, if <!>N and n denote the fundamental 2-form of 
N and the Kliltler 2-form of v2n+2m respectively then, using (6.1), we 
obtain that 

<PN = i"'O = i"' (1/J + 2 I:(o:¡ /\ O:m+i) + 2v /\ u) = iºtp. 
1=1 
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Thus, from (4.10), we deduce that 

Consequently, (cpN,{N,T/N,9N) is a c-sasakian structure on N. □ 

Now, consider the inmersion j: M--+ v 2n+2m of a generic leaf M of 
the foliation J.L on v2n+2m. We define an almost contact metric structure 

(<pM,{M,7JM,9M) on M by 

(6.2) 
'PM(Y) = JY + (fu)(Y)V IM, {M = U IM, 

TJM = (j•u), 9M = j° 9, 

for all Y EX(M). Then, we have 

PROPOSITION 6.3. The almost contact metric structure ( <p M, f.M, 
TJM, 9M) on M is c-kenmotsu. 

PROOF. Let X, Y be vector fields on M and N"'M the Nijenhuis tensor 
of <p M. Then, 

Nv,M(X, Y)= Ni(X, Y)+ u(Y){(LvJ)(X) - (Lvu)(X)V}+ 

- u(X){(LvJ)(Y) - (Lvu)(Y)V} 

and thus, using (4.8), (2.6) and since Lvu = O, we obtain that 
N'PM (X, Y) = o. 

On the other hand, it is clear that the 1-form TJM is closed. Moreover, 
if <PM is the fundamental 2-form of M then, from (6.2), we deduce that 
<PM = j*Q, which, using (2.6), implies that d</>M = <PM /\ j*w, i.e., 

This completes the proof. O 
Let N be a leaf of the canonical foliation J and ('PN, f.N, TJN, 9N) the 

induced c-sasakian structure on N. 
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Suppose that Nis of constant C,ON-sectional curvature k. Then, from 
(6.1) and using a theorem of Ogiue [17] and the fact that the foliation J 
is totally geodesic, we have that 

(6.3) 

R(X,Y)Z = 
1 

=¡(k + 3c2)(g(Y, Z)X - g(X, Z)Y)+ 

1 
+¡(k - c2 ){v(X)v(Z)Y - v(Y)v(Z)X + (g(X, Z)v(Y)+ 

-g(Y, Z)v(X))V + g(JY, Z)JX - g(JX, Z)JY + 

+2g(X, JY)JZ + (v(X)g(JY, Z) - v(Y)g(JX, Z)+ 

+2v(Z)g(X, JY))U} 

for all X, Y, Z E X(N), where R is the Riemann curvature tensor of 
V2n+2m. 

Now, we give the following definition. 

DEFINITION 6.1. A sasakian m-hyperbolic l.c.K. manifold is called 
sasakian (k) m-hyperbolic l.c.K. (k E IR) if every leaf N of the canon­
ical f oliation l is of constant c,o N-sectional curvature k, where ( cp N, ~N, T/N, 
9N) is the induced c-sasakian structure on N given by (6.1). 

If (V2n+2m, J, g, 01, ••• , o 2m) is a sasakian(k) m-hyperbolic l.c.K. 
manifold then v2n+2m is said to have a sasakian{k) m-hyperbolic l.c.K. 
structure (J, g, o 1, ... , 02m). 

Let v2n+2 m be a sasakian m-hyperbolic l.c.K. manifold. Denote by R 
the curvature tensor of the Weyl connection V on v2n+2m given by (2.3). 

From ( ) and using corollary 5.3 and proposition 5.3, we obtain 

COROLLARY 6.1. If (v2n+2m' J, g, 01, ..• , 02m) is a sasakian m-
hyperbolic l. c.K. manifold then, the following conditions are equivalent: 

i) (V2n+2m, J, g, 01, •.. , o 2m) is a sasakian(k} m-hyperbolic l.c.K. man­
ifold. 
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ii) For all X, Y, Z E X(V2n+2m) 

R(X, Y)Z = 

(6.4) 

= ~(k + 3c2)(g(Y', Z')X' - g(X', Z')Y')+ 

1 + ¡(k - c2
){ v(X)v(Z)Y' - v(Y)v(Z)X' + (g(X', Z')v(Y)+ 

- g(Y', Z')v(X))V + g(JY',Z')JX' - g(JX',Z')JY'+ 

+ 2g(X', JY')JZ' + (v(X)g(JY', Z') - v(Y)g(JX', Z')+ 
[2 m 

+ 2v(Z)g(X', JY'))U} + 2{¿(a¡ A u)(X, Y)(a¡(Z)U+ 
i=l 

2m 

- u(Z)A) - ¿ o:i(Z)(ai A ai)(X, Y)Ai} 
i,i=l 

where X', Y' and Z' are the orthogonal projections of X, Y and Z 
respectively onto the tangent planes of the leaves of the canonical 
foliation. 

iii) For all X, Y, Z E X(V2"+2m) 

R(X,Y)Z= 

= ~(k - c2){g(Y', Z')X' - g(X', Z')Y' + v(X)v(Z)Y'+ 

(6.5) - v(Y)v(Z)X' + (g(X', Z')v(Y) - g(Y', Z')v(X))V + 

+ g(JY', Z')JX' - g(JX', Z')JY' + 2g(X', JY')JZ'+ 

+ (v(X)g(JY', Z')-v(Y)g(JX', Z') + 2v(Z)g(X', JY'))U} 

where X', Y' and Z' are the orthogonal projections of X, Y and Z 
respectively onto the tangent planes of the leaves of the canonical 
foliation. 

If (V2n+2m, J, g, a 1, ••• , a 2m) is a sasakian m-hyperbolic l.c.K. man­
ifold then, every point x E v2n+2m has an open neighbourhood U such 
that the structure ( J, e-" g) is Kahler on U and R is the curvature tensor 
of the local metric e" g, where u : U __. JR is a real differentiable func­
tion on U (see section 2). Moreover, using (6.5) and proposition 5.3, we 
deduce 
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COROLLARY 6.2. Let v2n+2m be a sasakian m-hyperbolic l.c.K. 
manifold. Then, the following conditions are equivalent: 

i) v 2n+2m is a sasakian(c2) m-hyperbolic l.c.K. manifold. 
ii) The leaves of the canonical foliation are of constant sectional curva­

ture c2
• 

iii) The local metrics cu g are ftat, i. e., R = O. 

Next, we introduce a definition which will be useful in the sequel. 
Let N, k be a (2n-1)-dimensional manifold and a real number re­

spectively and let (H;m+l, (ds2)c) be the {2m+ 1)-dimensional hyperbolic 
space, with e < O. 

DEFINITION 6.2. A distinguished sasakian m-hyperbolic(c) 
l.c.K. (respectively distinguished sasakian {k) m-hyperbolic(c) 
l.c.K.) structure on v2n+2m = N x H;m+l is a sasakian m-hyperbolic 
l.c.K. {respectively sasakian{k) m-hyperbolic l.c.K.) structure (J, g, o:1 , .•• 

• • . , o:2m) on v2n+2m, such that: 
i) The metric g is of the form 

where da2 is a Riemann metric on N and, 
ii) The Lee 1-Jorm w and the 1-forms ai, 1 ~ i ~ 2m, are given by 

dx; 
O:¡=--

CX2m+1 

where (xi, ... , X2m+1) are the usual coordinates on H;m+l. 

We have, 

PROPOSITION 6.4. lf (J, g, a:1, ••• , a:2m) is a distinguished sasakian 
m-hyperbolic( e) l. c.K. structure on v2n+2m = N x H;m+l, then the man­
ifold N carries an induced c-sasakian structure (cpN,EN,T/N,9N) and the 
almost hermitian structure (J,g) on v2n+2m is given by (3.2). Moreover, 
if (J, 9, a:i, ... , 0:2m) is a distinguished sasakian{k) m-hyperbolic(c} l.c.K. 
structure on v2n+2m, then N is of constant C()N-sectional curvature k. 
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PROOF. From definition 6.2, we obtain that 

for all i E {l, ... , 2m }, where (x1, ... , x2m+i) are the usual coordinates 
on the hyperbolic space H;m+l. 

By using (4.6) and first and second relation of (4.7) and (4.10) we 
deduce that ~N = -JU = -V and 1/N = u o J = -v define a vector field 
anda 1-form respectively on N. 

Let X be a vector field on N. Then, X= X +v(X)V with v(X) = O. 
Define 'PNX = JX. 

From (4.9) and first and third relation of (4.8) we have that 'PN 
defines a (1, 1)-tensor field on N. 

Now, it is easy to check that ('PN,~N,1JN,9N = do-2
) is an almost 

contact metric structure on N. 
On the other hand, from definition 6.2, we deduce that the leaves 

of the canonical foliation of v2n+2m are N x {(x~, ... , xgrn+i)}, with 
(x~, ... ,xgm+i) E H;m+i. Thus, by proposition 6.2, we get a c-sasakian 
structure on each N X {(x?, .. , ,xgm+1n, (x?,••· ,x~m+l) E H;m+l. In 
fact, if (x~, ... , xgm+l) E H;m+l then, it is not diflicult to check that 
the application icx?,····xgm+il of N x {(x~, ... ,xgm+l)} into N given by 

icx?,--· ,xgm+il(x, x~, ... , xgm+l) = x is an almost contact isometry. 
This, in view of proposition 6.2 and definition 6.1, completes the 

~~ o 
REMARK. Let (N,cpN,~N,1/N,9N) be a c-sasakian manifold. Then, 

using corollary 3.1, we obtain that the product manifold N x H;m+l 
carries an induced distinguished sasakian m-hyperbolic(c) l.c.K. struc­
ture ( J, g, a 1 , ••• , o:2m). Moreover, it is clear that if N is of constant 
cp wsectional curvature k then ( J, g, o:1 , ••• , o:2m) is a distinguished sasa­
kian( k) m-hyperbolic(c) l.c.K. structure on N x H;m+i, Therefore, the 
converse of proposition 6.4 is also true. 

Using the above remark and corollary 6.2 we obtain 

COROLLARY 6.3. On the sasakian m-hyperbolic l.c.K. manifold 
s::-1 x H;m+i the local conformal Kiihler metrics are ftat. 
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Next, we shall describe the universal covering space of a sasakian 
m-hyperbolic l.c.K. manifold. 

THEOREM 6.1. The universal covering space of a (2n + 2m)-
dimensional complete sasakian m-hyperbolic l.c.K. manifold v2n+2m with 
Lee form w is a product space V 2n+2m = N x H;m+i, where N is the 
universal covering space of an arbitrary leaf of the canonical foliation of 
v2n+2m, e= -llw!l/2 and H;m+l is the (2m + !)-dimensional hyperbolic 

-2n+2m 
space. The lift of the sasakian m-hyperbolic l.c.K. structure to V 
gives a distinguished sasakian m-hyperbolic(c) l.c.K. structure on V

2
n+

2
m. 

Moreover, if the structure 0JV2n+2m is a sasakian{k} m-hyperbolic l.c.K. 
structure, then, considering the indu.ced c-sasakian structure on N, we 
have: 

i) If k > -3c2, then N is almost contact isometric to s2n-1 
( e, k); 

ii) If k = -3c2, then Nis almost contact isometric to IR.2n-
1(c); 

iii) If k < -3c2, then N is almost contact isometric to (IR. x C nn-i) ( e, k). 

PROOF. Let (V2n+2m, J, g, a1, ... , a 2m) be a (2n + 2m)-dimensional 
complete sasakian m-hyperbolic l.c.K. manifold and u the unit Lee form 
of V2n+2m. 

Denote by g the induced metric on V
2
n+

2
m. Then, using proposition 

6.1 and theorem A of [4], we deduce that (V
2
n+

2
m1g) is the lliemannian 

product N x H;m+i, where N is the universal covering space of an arbi­
trary leaf of the canonical foliation j and e = - ~. Moreover, if jJ. is 
the foliation determined by the normal bundle of ~ then, the lift of the 
foliations j and iJ. to V

2
n+

2
m are the foliations with leaves of the form 

N x {x} (x E HJm+l) and {n} x H;m+l (n E N) respectively. 
Now, let ai and u be the lift of a; (1 $ i $ 2m) and u respectively to 

-2n+2m 
V . Then, it is clear, from (3.9) and from the fact that u is a closed 
1-form, that {u, a1, ••• , ci2m} is a global basis of 1-forms on H;m+l. The 
dual basis of vector fields on H;m+l is given by {U, A1 , ... , A2m}, being 
U and .A¡ (1 $ i $ 2m) the lift of U and A; (1 $ i $ 2m) respectively to 
-2n+2m 
V . Thus, using the following lemma 6.1, we obtain that 
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for i E {1, ... , 2m }, where (x1, .•• , x2m+1) are the usual coordinates on 
H;m+l. Consequently, 

_ dx2m+l 
u=--

CX2m+1 

_ dx¡ 
' 0!¡=-­

CX2m+1 

for i E {1, ... , 2m }, which implies that the lift of the sasakian m-hyper­

bolic l.c.K. structure (J, g, 0!1, ... , <l2m) to V
2
n+

2
m is a distinguished sasa,­

kian m-hyperbolic(c) l.c.K. structure on v2
n+

2
m. 

If (J, g, a 1 , ... , <l2m) is a sasakian(k) m-hyperbolic l.c.K. structure on 
v2n+2m, then the lift of this sasakian(k) m-hyperbolic l.c.K. structure to 

V
2
n+

2
m gives a distinguished sasakian(k) m-hyperbolic(c) l.c.K. structure 

V 2n+2m d h e . N . . l d l on an t erfüore, smce 1s a sunp y connecte comp ete man-
ifold, the rest of theorem follows using proposition 6.4 and proposition 
2.2. O 

LEMMA 6.1. Let M be a (2m + !)-dimensional complete, sim-
ply connected, Riemannian manifold of constant negative curvature -e? 
(e f:- O) and U, Ai vector fields on M such that {U,A1 , ••• ,A2m} form 
an orthonormal basis for M and [U, A¡] = cA¡, [A¡, A;] = O for i, j E 
{1, ... , 2m}. Then, there is an isometry F of M to the (2m + !)­
dimensional hyperbolic space H;m+l, satisfying 

for i E {1, ... , 2m}, where (xi, ... , x 2m+1) are the usual coordinates on 
H 2m+l 

e • 

PROOF. Let x be a point of M. We consider the linear isometry L 
of T:,;M onto Tco, ... ,o,t)(H;m+l) given by 

a 
L((A¡):z:) = c(-

8
) leo, ... ,0,1) 

X¡ 

for i E { 1, ... , 2m}. Then, there is an isometry F of M onto H;m+l such 
that the differential of F at x is L (see, for instance, [13}) and thus, using 
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the relations [U,A) = cAi, [Ai,A;J = O (1 ~ i,j ~ 2m) we prove that 

far i E {1, ... ,2m}. o 
Finally, from theorem 6.1, we deduce 

COROLLARY 6.4. : Let v2n+2m be a complete sasakian(k) m-hyper­

bolic l.c.K. manifold, V
2
n+

2
m the universal covering space of v 2n+2m and 

c = -llwll/2, where w is the Lee 1-form of v2n+2m. 

i) If k > -3c2, then v2
n+

2
m is almost complex isometric to s2n- 1(c, k) X 

n2m+1 
e , 

ii) If k = -3c2, then V
2
n+

2
m is almost complex isometric to JR2n-1(c) X 

H 2m+1 and 
e ' 

iii) If k < -3c2, then V
2

n+2m is almost complex isometric to (IR X 

CDn- 1)(c,k) X H;m+l. 
In particular, iJV2

n+2m is a complete sasakian(c2) m-hyperbolic l.c.K. 
manifold then V

2
n+

2
m is almost complex isometric to s:;i-1 x H;m+i. 
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