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Sasakian m-hyperbolic locally conforma! 

Kahler manifolds 

J.C. MARRERO - J. ROCHA<•> 

RIASSUNTO: Si studia una classe particolare di varieta Kii.hleriane localmente con
formi e, come principale risultato, si dimostm che lo spazio di ricoprimento universale 
di tale varieta e il prodotto di una varietd c-Sasakiana con uno spazio iperbolico di 
dimensione dispari. 

ABSTRACT: In this paper, we study a particular class of locally conformal Kii.hler 
manifolds and, as main result, we prove that the universal covering space of such man
ifolds is the product of a c-sasakian manifold with a hyperbolic space o/ odd dimension. 
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1 - lntroduction 

An almost Hermitian manifold v 2n is called locally conforma! Kahler 
if its metric is conformally related to a Kahler metric in sorne neighbour
hood of every point of v2n. Such manifolds have been studied by various 
authors (see, for instance, [14], [23], [24], [25], [6], [16], [8], ... ). 
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Examples of locally conforma! Kahler manifolds are provided by the 
generalized Hopf manifolds which are locally conformal Kahler manifolds 
with parallel Lee form (see [24] and [25]). The main non-Kiihler example 
of such manifolds is the Hopf manifold (see [13], [23]), which is defined 
as the quotient 

Hn = (Cn - {O}) 
º A>. 

where A,. is a cyclic group of transformations. Another example of a non
Kahler compact generalized Hopf manifold is the nilmanifold N ( r, 1) x S 1

, 

where N(r, 1) = r(r, 1) \ H(r, 1) is a compact quotient of the generalized 
Heisenberg group H(r, 1) by a discret subgroup r(r, 1) (see [61). Ex
amples of non-Ka.hler compact locally conforma! Kiihler manifolds with 
non-parallel Lee form are obtained in [22) and [1]. 

On the other hand, if we denote by ~ 2 the p-dimensional unit sphere 
of constant sectional curvature ¿. (e E IR, e f= O) then, it is well known 
that the Calabi-Eckmann manifolds v2n+2m = s;;--1 x 8~+1 (n ~ 1, m ~ 
O) admit a hermitian structure (J, g), where gis the product metric (see 
[5]). In fact, assuming n ~ m + 1, we have (see [5], [23] and [10]): 
l. H n = 1 and m = O then the structure ( J, g) is Kahler, 
2. H n ~ 2 and m = O then v2n+2m :::; v2n and H~ are diffeomorphic 

and (J,g) is a non-Kahler locally conforma! Kahler structure and, 
3. H n ~ 2 and m ~ 1 then the structure ( J, g) is hermitian but it is 

not locally conforma! Kiihler. 
Now, we can consider the product manifold v2n+2m = s;;--1 xH;m+i, 

where H:m+i is the (2m+ 1 )-dimensional hyperbolic space of constant 
curvature -e- (e E lR, e f= O). Then the manifold v2n+2

m also admits a 
hermitian structure (J,g), where gis the product metric. Moreover, we 
obtain 
l. The structure ( J, g) is locally conforma! Kahler ( see corollary 3.1) • 
2. There exist 2m unit 1-forms ai, •.• , o:2m on v2n+2m which are inde

pendient and such that 

(1.1) O:; o J = Om+; , Om+; o J = -a; , O¡(B) = O 

(1.2) 
2m 1 

Vw = 2c2 ~)ak ® ak) , Vai = - 2(ai ® w) 
k=l 
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for i E {1, 2, ... , 2m} and j E {1, ... , m}, where 'v denotes the Levi
Civita connection of the metric g and w and B are the Lee 1-form 
and the Lee vector field respectively of v2n+2m (see corollary 3.1). 

3. The local conforma! Kahler metrics are flat (see corollary 6.3). 

In this paper, we study a particular class of locally conforma! Kiihler 
manifolds which we call sasakian m-hyperbolic locally conforma! Kiihler 
manifolds, with m E 1N, m ~ O. These manifolds have similar properties 
to the locally conforma! Kahler manifold s::-1 

X H;m+l. A (2n+2m)
dimensional Iocally con.formal Kahler manifold (V2n+2m, J, g) is said to 
be sasakian m-hyperbolic locally conforma! Kahler if there exist 2m unit 
1-forms a 1, •.• , a 2m on v2n+2m which are independient and satisfy (1.1) 
and (1.2), where e= -~ i= O at every point. In particular, a gener
alized Hopf manifold is a sasakian 0-hyperbolic locally conforma! Kahler 
manifold. 

In section 2, we give sorne results on locally conforma! Kahler, c
sasakian and c-kenmotsu manifolds. In section 3, we introduce the def
inition of m-hyperbolic locally conforma! Kahler structure on a l.c.K. 
manifold. If (J,g) is a l.c.K. structure on a (2n+2m)-dimensional mani-
fold v2n+2m and ai, ... , a 2m are independient 1-forms on v2n+2m then, 
we say that (J, g, ai, ... , a 2m) is a m-hyperbolic locally conforma! Kii.hler 
structure on v2n+2m if 

aj O J = am+j, 

1 
da·= --(a·/\ w) • 2 1 

a¡(B) = O 

j E {l, ... ,m} 

i E {l,2, ... ,2m} 

i E {1, 2, ... , 2m}, 

where w and B are the Lee 1-form and the Lee vector field respectively 
of v2n+2m. We prove that the product manifold of a (2n-1)-dimensional 
c-sasakian manifold N anda (2m+l)-dimensional c-kenmotsu manifold 
M admits locally a m-hyperbolic locally conforma! Kahler structure (see 
proposition 3.3). Moreover, if the manifold Mis the (2m+l)-dimensional 
hyperbolic space (H;m+l, (ds2 )c) then the m-hyperbolic locally conforma! 
Kii.hler structure is globally defined and the 1-forms a¡ (i = 1, ... , 2m) 
satisfy (1.2). In section 4, we introduce the definition of sasakian m
hyperbolic locally conforma! Kiihler (sasakian m-hyperbolic l.c.K.) man-
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ifold as a (2n+2m)-dimensional manifold v2n+2m endowed of a m-hyper
bolic l.c.K. structure (J,g, et1, ••• , et2m) such that the unit 1-forms ai 

(i = 1, ... , 2m) satisfy (1.2), where e = -~ I= O at every point. In 
this section, we characterize the sasakian m-hyperbolic 1.c.K. manifolds 
and we obtain sorne properties of these manifolds (see propositions 4.4 
and 4.5). As consequence, we prove that a compact manifold cannot be 
a sasakian m-hyperbolic l.c.K. manifold with m ~ 1 (see corollary 4.1). 
In section 5, we study the Riemann curvature tensor R of a sasakian m
hyperbolic l.c.K. manifold (V2n+2m, J, g, et1 , •.• , et2m). We determine the 
vector .fields R(X, Y)U, R(X, Y)A¡ and R(X, Y)V, for ali vector fields 
X, Y on V2n+2m, in terms of et¡, u, v = -u o J, A¡, U and V, where u 
and U are the unit Lee form and the unit Lee vector field respectively of 
v2n+2m and A¡ are the vector fields on v2n+2m given by c:t¡(X) = g(X, A¡), 
1 ::5 i ::5 2m (see propositions 5.1 and 5.2). In particular, we obtain ex
plicit formulas for the sectional curvature of a plane section containing 
A¡, U or V and for the Ricci curvature in the direction of these vectors 
(see corollaries 5.1 and 5.2). 

In section 6, we prove that on a sasakian m-hyperbolic l.c.K. man
ifold (V2n+2m, J, g, a 1, •.. , et2m) the leaves of the foliation J have an in
duced c-sasakian structure, where J is the foliation on v2n+2m given 
by u = O, a¡ = O, 1 ::5 i ::5 2m. Then, we say that a sasakian m
hyperbolic l.c.K. manifold is sasakian(k) m-hyperbolic locally conforma! 
Kab.ler (k E IR) if every leaf N of the foliation J is of constant /{)N" 

sectional curvature k, where ( ip N, eN, TJN, 9N) is the induced c-sasakian 
structure on N. Finally, using the results of the above sections, we ob
tain that the universal covering space V2

n+
2

m of a sasakian m-hyperbolic 
l.c.K. manifold (V2n+2m, J, g, et1, ••• , et2m) is the product of a (2n-1)
dimensional c-sasakian manifold (N, /{)N, eN, TJN, 9N) with the {2m+l)
dimensional hyperbolic space and we describe the induced sasakian m-
h b li 1 - -2n+2m ( h yper o c .c.K. structure (J, g, 7i1, ••• , a 2m) on V see t eorem 
6.1). Moreover, if V2n+2m is a sasakian(k) m-hyperbolic l.c.K. manifold, 
then we determine, up to almost complex isometries, the almost Hermi-
t . a.nif, ld (V2n+2m - ) ( ) I . l ·r y2n+2m 1an m o , J, g see corollary 6.4 . n part1cu ar, 1 

is a sasakian(c2) m-hyperbolic l.c.K. manifold then we have that the lo
cal conforma! Ka.hler metrics are flat and the manifold V

2
n+

2
m is almost 

complex isometric to s2;-1 x H:m+i (see corollaries 6.3 and 6.4). 
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2 - Preliminaries 

Let V be a G00 almost Hermitian manifold with metric g, Riemannian 
connection 'il and almost complex structure J. Denote by x(V) the Lie 
algebra of G00 vector fields on V and by N J the Nijenhuis tensor of V, 
that is, 

(2.1) NJ(X, Y)= [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y] 

for X, Y El:(V). 
The Kahler 2-form nis given by 

(2.2) n(X, Y) = g(X, JY) 

and the Lee l-form w is defined by 

1 
w(X) = (n _ 1 )6n(JX) 

for X E .I('V), where 6 denotes the codifferential and dim V =2n. 
An almost Hermitian manifold (V, J, g) is said to be: 
Kahlerian if 'v J = O; Locally conformal Kii.hler (l.c.K.) if every point 

x E V has an open neighbourhood U such that the structure ( J, e-u g) is 
Kahler on U, where u : U -- IR is a real differentiable function on U 
(see [14], [23], [24], [6], ... ). 

Let (V, J, g) be an almost hermitian manifold with Lee form w and 
'il the Levi-Civita connection of the metric g. Consider 

(2.3) 
- 1 1 1 
'ilxY = 'ilxY - 2w(X)Y - 2w(Y)X + 2g(X, Y)B 

for X, Y E.I(V), where B is the Lee vector field of V given by w(X) = 
g(X, B). 'il is a torsionless linear connection on V, which is called the 
Weyl connection of g (see [19]). Moreover, if (V,J,g) is l.c.K. then V is 
the Levi-Civita connection of the local metrics cu g (see [23]). In fact, in 
[23], I. VAISMAN proves 

PROPOSITION 2.1. The following are equivalent: 
1. (V, J, g) is a l. c.K. manifold. 



46 J.C. MARRERO • J. ROCHA [6] 

2. The Lee f onn w is el o sed and 

(2.4) 

for all X EX(V). 
8. The Lee fonn w is closed and 

(2.5) 
1 1 1 1 

(VxJ)Y = 2w(JY)X - 2w(Y)JX - 2g(X, JY)B + 2g(X, Y)JB 

for all X, Y EX(V). 
4. The Lee fonn w is closed and 

(2.6) 

Among the l.c.K. manifolds, those such that V w = O are called gen
eralized Hopf manifolds (see [24] and [25]). 

On the other hand, let M be an almost contact metric manifold with 
metric g and almost contact structure ( cp, €, 11). Then we have 

cp2 = -I +11®€ 11(€) = 1 
g(cpX, cpY) = g(X, Y) - 17(X)17(Y) 

for X, Y EX(M), where I denotes the identity transformation (see [2] and 
(3)). Denote by Nv, the Nijenhuis tensor of cp, that is 

Nv,(X, Y) = [cpX, cpY] - cp[cpX, Y] - cp[X, cpY] + cp2 [X, Y] 

for X, Y EX(M). The fundamental 2-form tp of Mis given by 

</J(X, Y) = g(X, cpY). 

An almost contact metric manifold M is said to be c-sasakian (see 
[11]), with e E IR, e-/: O if 

(2.7) 
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and it is called c-kenmotsu (see [11)) if 

(2.8) N.., + 2dr¡ @e = O , d<f> = -2cr¡ /\ </> , dr¡ = O. 

The manifold M is said to be sasakian if it is 1-sasakian. 
If ( M, cp, e, r¡, g) is a c-sasakian manifold or a c-kenmotsu manifold 

then 

(2.9) 

where L denotes the Lie derivate on M. 
Let (H;m+l, (ds2)c) be the (2m+l)-<!imensional hyperbolic space, i.e., 

and (ds2)c is the Riemannian metric given by 

l 2m+l 

(ds2)c = ( )2 L (dxi) 2 
, (e=/: O). 

CX2m+l i=l 

(H;m+l, (ds2)c) is a complete simply connected Riemannian manifold 
with constant negative curvature -c2. 

The vector fields E¡ (i = 1, ... ,2m + 1) on H:m+l defined by 

(2.10) 

form an orthonormal basis for this space. 
The dual basis of 1-forms is given by 

(2.11) 

for i = 1, ... , 2m + l. 

dx¡ 
O¡=--

(CX2m+1) 

Then, it is not difficult to prove that 

(2.12) 
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for i E {1, ... , 2m }, where V is the Levi-Civita connection of the metric 
(ds2)c, 

Let ( cp H~m+l, ea~m+l, 11H~m+1, g H~m+l) be the almost contact metric 
structure on H:m+I defined by 

m 

(2.13) 
'PH2m+l = ~(Ei@ <lm+i - Em+i@ <l¡) 1 eH2m+1 = E2m+1 e L..., e 

i=l 

7JH2m+l = <l2m+1 1 gH2m+1 = (ds2
)c, 

e e 

Then (see [12], [7)), the almost contact metric structure (c,oH2m+1, 
e 

eH2m+1, 1JH2m+i,9H2m+l = (ds2)c) on H;m+l is c-kenmotsu. 
e e e 

Let (M, cp, ~' r¡, g) be an almost contact metric manifold and x a point 
of M. Aplane section 1r in the tangent space to M at x, TxM, is called 
a cp-section if there exists a unit vector X in TxM orthogonal to e such 
that {X, cpX} is an orthonormal basis of 1r. Then the sectional curvature 
Kxv,x = g(R(X, cpX)c,oX, X) is called a <p-sectional curvature. 

A c-sasakian manifold is said to be a c-sasakian space form if M has 
constant cp-sectional curvature. Examples of sasakian space forms are 
provided by the manifolds s2n-1 , IR2n-l and IR X cnn-l _ In fact, the 
unit sphere S2n-l has a sasakian structure of constant rp-sectional cur
vature k, for ali k > -3 (see [20] and [21)); the real (2n-1)-dimensional 
number space IR2

n-I is a sasakian space form with k = -3 [18]; and 
the product manifold IR x CDn-1, where cnn-1 is a simply connected 
bounded complex domain in cn- l with negative constant holomorphic 
sectional curvature, has a sasakian structure of constant rp-sectional cur
vature k, for ali k < -3 [21]. 

Let (M,cp,e,11,g) be a sasakian manifold with constant rp- sectional 
curvature k. Put 

I I I 1 / 1 
c;i = 'P , e = e.e , ,,, = _,,, , g = -g 

e c2 

where e E IR, e i= O. Then, (M, cp', f, 77', g') is a c-sasakian space form 
of constant cp-sectional curvature kc2. We denote by M(c, kc2

) the c
sasakian manifold with this structure. 

In (21], Tanno proves that if (M,cp,€,r¡,g) and (M',cp',e',r,',g') are 
(2n-1)-dimensional complete simply connected sasakian manifolds of con
stant <p-sectional curvature k, then, M is almost contact isometric to M', 
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i.e., there exists an isometry F of M into M' such that F. o cp = cp' o F. 
and F.{={'. Therefore, by using this result, we deduce 

PROPOSITION 2.2. Let M be a {2n-1}-dimensional complete simply 
connected c-sasakian manifold with constant cp-sectional curvature k. 
1. If k > -3c2, then M is almost contact isometric to s2n-1(c, k). 
2. IJ k = -3c2, then Mis almost contact isometric to 1R.2n-

1 (c, -3c2) = 
IR2n-1 (e). 

3. If k <-3c2, then Mis almost contact isometric to (ffi.x cnn- 1 )(e, k). 

REMARK. lt is clear that the manifold S2n-1(c, c2) ÍS s;:-1 (see 
section 1). 

Ali the manifolds considered in this paper are assumed to be con
nected. 

3 - m-Hyperbolic locally conforma! Kiihler structures 

In this section, we study a particular class of structures on a l.c.K. 
manifold which we call m-hyperbolic locally conforma! Kahler structures. 

First, we describe the local structure of a c-kenmotsu manifold (see 
[12] and [15]). For this purpose, we examine the following example: 

Let M be the product manifold L x V, where L is an open interval 
(a, b), -oo ~ a < b ~ oo, and (V, J', G) is a 2m-dimensional Kahlerian 
manifold. Let E be a nowhere vanishing vector field on L, E* its dual 
field of 1-forms and u a positive function on L such that d(ln u) = -2cE•, 
with e E IR, e #- O. Put 

{ 

cp(a'E,X) = (O,J'X) , 

(3.1) { = (E,O) , 17 = (E*,O) 

g((a' E, X), (b' E, Y))= uG(X, Y)+ a'b', 

where a' and b' are differentiable functions on lvl, and X, Y E X(V). Then 
it is not difficult to check that (M, cp, {, 17, g) is a c-kenmotsu manifold. 

The converse holds locally, i.e., 

PROPOSITION 3.1. [15] Jf (M2m+i,cp,{,17,g) is a (2m+l)-dimensio
nal c-kenmotsu manifold, then the manifold M2m+l is locally the product 
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( a, b) x v2m, where ( a, b) is an open interval and v2m is a 2m-dimensional 
Kii.hlerian manifold, on which the structure (cp, e, r¡, g) is gíven as in (3.1). 

Let (N, 'PN, f.N, TlN, 9N) be a c-sasakian manifold and (M, C{)M, eM, T/M, 
9M) a (2m+ 1)-dimensional c-kenmotsu manifold, with e E 1R, e=/= O. Let 
us consider the product manifold V = N x M with the almost hermitian 
structure ( J, g) defined by: 

{3.2) { 
J(x, x') = (cpNx - TlM(x') eN, C{)Mx' + TJN(x) eM) 

g((X, X'), (Y, Y'))= 9N(X, Y)+ 9M(X', Y') 

where X, Y E X.(N) and X', Y' E X.(M). 

PROPOSITION 3.2. The almost Hermitian manifold (V, J,g) is a 
l.c.K. manifold with Lee form 

where 7rM : N x M --+ M is the canonical projection onto the second 
factor. 

PROOF. Let X, Y be vector fields on N and X', Y' vector fields on 
M. Then: 

Ni((X,X'),(Y, Y'))= 

= (N'PN(X, Y)+ 2d11N(X, Y) {N -2d11M(X',cpMY') {N-

- 2dr¡M(C{)MX', Y') €N + TlM(Y') (L(N'PN )X -11M(X') (L(N'PN )Y+ 

+211N(X) d17M(Y',€M) €N+2r¡N(Y) d11M(€M,X') f.N, 

N'PM(X', Y')+ 2dr¡M(X', Y') {M + 2d11N('PNX, Y) {M+ 

+ 2dr¡N(X, 'PNY) {M + 11N(X) (L(M'PM)Y' -11N(Y) (L(M'PM)X'-

- 277M{X') dr¡N(f.N, Y) f.M + 277M(Y') dr¡N(f.N, X) {M) 

where Ni, N'PN and N'PM denote the Nijenhuis tensors of J, 'f)N and 'PM 

respectively and L denotes the Lie derivate operator on N and M. 
Thus, from (2.7), {2.8) and (2.9), we obtain that Ni((X, X'), (Y, Y')) = O. 
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On the other hand, using (2.2) and (3.2), the Kahler 2-form n of the 
almost Hermitian manifold (V, J, g) is given by 

where <PN and <PM denote the fundamental 2-forms of N and M respec
tively and where 1rN: V= N x M--+ Nis the projection of V onto the 
first factor. Then, from (2.7), (2.8) and (3.3), we have that: 

Consequently, since T/M is a closed 1-form, we deduce that the almost 
hermitian manifold (V, J, g) is l.c.K. with Lee form w = -2 e 1f'ÍvtT/M · O 

Next, we shall study the l.c.K. structure (J, g) on the product mani
fold N X M. 

PROPOSITION 3.3. Let (J,g) be the l.c.K. structure given by (3.2) 
on the product manifold N x M. Then, for every point (p, q) E N x M 
there exists an open neighbourhood U of q in M and 2m independent 
1-forms 0.1, ... , o.2m on U, such that: 

where 1ru : N x U --+ U is the projection onto the second factor and w 
and B are the Lee 1-form and the Lee vector field respectively of N x M. 

PROOF. If u= (p, q) is a point of the product manifold V= N x kf 
then, using proposition 3.1, we deduce that there exists an open neigh
bourhood U' = (a,b) x V of q, a positive function u and a nowhere 
vanishing vector field E on ( a, b) such that 

(3.5) d{lnu) = -2cr¡M , €M = E, 

and the almost contact structure ('PM, {M, f'JM, 9M) on U' is given by (3.1), 
where (V, J', G) is a 2m-dimensional Kiihlerian manifold and (a, b) is an 
open interval, -oo $ a < b $ oo. 
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Suppose that q = (l, v) with l E L and v E V. Since (V, J', G) is a 
Kiihlerian manifold there exists a coordinate neighbourhood W of v in 
V, with coordinates (x1 , ••• , x2m), such that: 

(3.6) J' a _ a 
8xm+i - 8xi 

for i E {1, ... ,m}. 
Let U be the open neighbourhood of q in M given by U = ( a, b) x W. 

From (3.1), (3.5) and using proposition 3.2, we have that: 

(3.7) w = 1ri, (d(lna)) , B = -2c{M. 

Now, define on U the 1-forms a¡ by 

(3.8) vu . 
a¡= -dx' 

e 

i E {1, ... , 2m}. Then, from (3.6), (3.7) and (3.8), we obtain (3.4). O 
The above results suggests us to consider the following particular 

class of l.c.K. structure: 

DEFINITION 3.1. Let (V, J,g) be a (2n + 2m)-dimensional l.c.K. 
manifold with Lee form w and Lee vector field B, and let a 1 , .. , a 2m be 
independent 1-forms on V, with m ~ O. We say that (J,g,ai, ... ,a2m) 
is a m-hyperbolic locally conformal Kahler (m-hyperbolic l.c.K.) 
structure on V if 

(3.9) 
O'.j o J = O'.m+j Clm+j o J = -a; 

do:¡= -~(o:¡ A w) 

j E {l, ... ,m} 

iE{l,2, ... ,2m} 

o:¡(B) = O i E {1,2, ... ,2m}. 

REMARK. -lf (N,cpN,{N,'f/N,9N) is a c-sasakian manifold and 
(M,cpM,f.M,'f/M,9M) is a (2m+l)-dimensional c-kenmotsu manifold, with 
e E JR, e =/:- O, then, from proposition 3.3, we deduce that for every point 
(p, q) E N x M, there exists an open neighbourhood U of q in M and 
2m 1-forms 0'.1, ... , 02m on U, such that (J, g, 1r.-i,a1, ... , 1ri,a2m) is a m
hyperbolic l.c.K. structure on N x U, where (J,g) is the l.c.K. structure 
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given by (3.2) on the manifold N x M and 1ru : N x U --+ U is the 
projection onto the second factor: 

Now, let H;m+i be the (2m + 1)-dimensional hyperbolic space. 
Denote by a1, ... , a2m the 1-forms on H;m+l given by (2.11) and by 
( ({)H2m+l, €H2m+1, T/H2m+l' 9H2m+l) the c-kenmotsu structure on H;m+l 

e e e e 
given by (2.13). Then, if N is a c-sasakian manifold and 1r H2m+1 : 

N x HJm+i ----+ H;m+l is the projection onto the second factor, we ~btain 
that 

COROLLARY 3.1. The almost Hermitian structure (J,g) given by 
(3.2) onto the product manifold N x H;m+l is l.c.K. with Lee form 

Moreover, (J,g, rr~2m+1a1, •.. , 7r~2m+ia2m) is a m-hyperbolic l.c.K. struc-
c e 

ture on N x H;m+l and we have that 

2m 

(3.10) 
'vw = 2c2 '°'(1r~2m+1a;) ® (1r~2m+1a;) L.,¡ e e 

j=l 

'\77r~~m+lai = -~(7r~~m+1lt¡) ® W 

for i E {1, ... , 2m}, where 'V is the Levi-Civita connection of the Rie
mannian metric g. 

PROOF. The first part of this corollary follows from proposition 3.2. 
Let B be the Lee vector field of the product manifold N x H;m+I. 

Then, using (3.2) and proposition 3.2 we have that 

(3.11) B = -2cE2m+l 

where E2m+i is the vector field on H;m+I given by (2.10). 
Therefore, from (2.11), (2.13), (3.2) and (3.11) we obtain that 

(J, 9, 7r~2m+101, •.. , 7r~2m+l a2m) is a m-hyperbolic l.c.K. structure on 
e e 

N X H2m+l 
e 

Finally, using (2.12), (2.13) and (3.2), we deduce (3.10). O 
REMARK. In proposition 3.1 we described the local structure of a 

c-kenmotsu manifold. It is not difficult to prove that in the particular 
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case of the c-kenmotsu manifold (H;m+i 1 ({)H2m+l 1 {H2m+l I T/H2m+l, 9 H2m+l) 
e e e e 

such a proposition is globally true. In fact, H;m+l = IR2m x (O, oo) and 
thus it is sufficient to take in ( 3.1), ( J', G) the usual Kahlerian structure 
on 1R2

m and 

(3.12) 

where x2m+l is the coordinate on the interval (O, oo). Consequently, 
from (2.11), (3.8) and (3.12), we also deduce that (J,g,1r~2m+1a1,••· 

e 

••• 1 11";2m+1 a2m) is a m-hyperbolic l.c.K. structure on the product mani-
c 

fold N X Jí;m+l, 

Now, denote by Ni (i = 1, 2, 3) the following (2n - 1)-dimensional 
c-sasakian manifolds of constant <p-sectional curvature k (see proposition 
2.2), 

Let ( J¡, g¡) be the almost Hermitian structure on Ni x H;m+l (i=l,2,3) 
given by (3.2). Then, from corollary 3.1, we deduce that 

COROLLARY 3.2. The almost Hermitian structure (Ji,9i) onto the 
product manifold N¡ x H;m+l {i = 1, 2, 3) is l.c.K. wi.th Lee form 

- 2 • W - - C7l"H2m+l1]H2m+l. 
e e 

Moreover, (Ji,9i,1rH•2m+ia1, ••• ,1r;2m+1<l2m) is am-hyperbolic l.c.K. 
e e 

strocture on N¡ x Jí;m+l satisfying {3.10). 

4 - Sasakian m-byperbolic locally conforma! Kahler manifolds 

The results obtained in corollary 3.1 suggest us to introduce the fol
lowing definition. 

DEFINITION 4.1. Let (J,g,ai, ... ,a2m) be a m-hyperbolic l.c.K. 
strocture on a manifold v2n+2m of dimension (2n+2m), su.ch that a1, • • • 
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... , a2m are unit 1-forms. We say that v 2n+2m is a sasakian m-hyper
bolic locally conformal Kii.hler (sasakian m-hyperbolic l.c.K.) 
manifold if 

(4.1) 

for i E {1, ... , 2m}, where w is the Lee form of v2n+2m, V is the Levi
Civita connection of the metric g and l = llwll i= O at every point. 

If (v2n+2m, J, g, o:i, ... , o:2m) is a sasaldan m-hyperbolic 1.c.K. mani
fold then v2n+2m is said to have a sasakian m-hyperbolic l.c.K. strocture 
(J,g,a1,••· ,0:2m), 

We remark that the above definition generalizes the notion of gener
alized Hopf manifold. In fact, a generalized Hopf manifold is a sasakian 
0-hyperbolic l.c.K. manifold. 

In this section, our intention is to obtain information about the struc
ture of the sasakian m-hyperbolic l.c.K. manifolds and we begin by intro
ducing sorne of their properties. 

Let (V2n+2m, J, g, a 1 , .. , o:2m) be a sasakian m-hyperbolic l.c.K. man
ifold and denote by Ai, with 1 $; i $; 2m, the vector fields on v2n+2m 

given by 

(4.2) a¡(X) = g(X,A¡) 

for all X EX(V2n+2m). From (3.9) and ( 4.2), we obtain that 

(4.3) 

for i E {1, ... ,m}. Moreover, 

PROPOSITION 4.1. On a sasakian m-hyperbolic l.c.K. manifold 
v2n+2m the vector fields A¡ and A;, with i i= j, are orthogonal. 
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PROOF. lf B is the Lee vector field of v2n+2m then, from (3.9) and 
(4.2), we have that 

(v' A;o:i)B = -(V A;w)Ai 

and thus, using (4.1), we deduce that 

(4.4) 

Consequently, from ( 4.4) and since l -::j:. O at every point, we obtain 
that o;(A¡) = O. 

This completes the proof. O 
We also have, 

PROPOSITION 4.2. On a sasakian m-hyperbolic l.c.K. manifold the 
Lee 1-form has constant norm. 

PROOF. Let (V2n+2m, J, g, o:1 , •• , o:2m) be a sasaldan m-hyperbolic 
l.c.K. manifold with Lee 1-form w and Lee vector field B and let X be a 
vector field on V2"+2

m. Denote by l = llwll- Then, using (4.1) and (3.9), 
we get 

On the other hand 

(V xw)B = ldl(X) 

and thus, since l -::j:. O at every point, we have that dl(X) = O. 
Therefore, we deduce that dl = O which implies that l is constant. D 
Let (V2n+2m, J, g, 0:1, ... , o:2m) be a sasakian m-hyperbolic l.c.K. 

manifold with Lee vector field B and Lee form w. Then, in the rest 
of this paper, we shall use the following notation 

(4.5) l = llwll , u=~ , 
l 

B u= - ' V = -u o J ' V = JU. 
l 

From (3.9}, (4.3) and (4.5) we obtain that 

(4.6) 
u(V) = v(U) = u(A¡} = v(A¡} = O 

o¡(U) = o¡(V) = O 
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for i E { 1, ... , 2m}. 
Moreover, if nis the Ka.hler 2-form of v 2n+2m then, using that n is 

nondegenerate and (4.6), we have that 

PROPOSITION 4.3. 
v2n+2m 

On a sasakian m-hyperbolic l.c.K. manifold 

m 

S1 = tp + 2(¿(a; /\ am+;) +V/\ u) 
j=l 

where 1/; is a 2-form of rank (2n - 2) such that: 

1/;n-l /\U/\ V/\ CY.¡ A ... /\ CY.2m =/: O 

'1/J(X, Ai) = 1/;(X, U) = 1/J(X, V) = O 

/orí E {1, ... ,2m}. 

Next, we give sorne characterizations of sasakian m-hyperbolic l.c.K. 
manifold. 

PROPOSITION 4.4. Let (J, g, CY.1 1 •• , CY.2m) be a m-hyperbolic l.c.K. 
structure on a manifold (2n + 2m)-dimensional v2

n+
2

m such that o:1 , ••• 

. . . , a2m are unit 1-forms and the Lee form w =/: O at every point. Then, 
(v2n+2m, J,g,a1, •• ,a2m) is a sasakian m-hyperbolic l.c.K. manifold if and 
only if l = llwll is constant and one of the following relations holds 

(i) 

(ii) 

(iv) 

m 

+¿(a;® Am+j - Om+; ® A;)) 
j=l 

l 
"vv = -1/J 

2 

for i E {1, ... , 2m}. 

l 
Va·= --o:•'°" u 1 2 11()1 

l 
VA·= --o:·'°" U 1 2 11()1 

l 
VA¡= --o:¡® U 

2 

l 
Va:·= --o:·'°" u l 2 ¡1()1 
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PROOF. 

The proposition follows from (2.5), (4.1), (4.3) and using proposition 
4.2 and the relations: 

1 
'vu = yVw , 'vxV = ('vxJ)U + J('v xU). o 

Now, we deduce another result for a sasakian m-hyperbolic l.c.K. 
manifold v2n+2m. Denote by L the Lie derivate on v2n+2m. 

PROPOSITION 4.5. Let (V2n+2m, J, g, a 1, ••. , o2m) be a sasakian 
m-hyperbolic l.c.K. manifold. Then, V is a Killing vector field for the 
me trie g. M oreover, the f ollowing relations hold 

(4.7) l 
[U A-]= --A· , , 

2 
, 

(4.8) 

(4.9) 

(4.10) Luv = O, LA¡ v = O , 

/ori,jE{l, ... ,2m} andkE{l, ... ,m}. 

l 
dv = -'if;, 

2 

PaooF. Using proposition 4.4 and since V is a torsionless linear 
connection on V2n+2m we obtain (4.7). 

Let X, Y be vector fields on v2n+2m. Then, we have that 

2dv(X,Y) = (Vxv)Y -('vyv)X 

and thus, from proposition 4.4, we deduce that 

(4.11) l 
dv(X, Y) = 2'if;(X, Y). 
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On the other hand, by the classical formula of the Levi-Civita con
nection [13] we have that, 

(Lvg)(X, Y)= 2g(VxV, Y) - 2dv(X, Y) 

and therefore, using (4.11) and proposition 4.4, we obtain that V is a 
Killing vector field. 

Now, from (2.5), (4.3), proposition 4.4 and from the fact that 

(LxJ)(Y) = (V xJ)(Y) - V JYX + J(VyX) 

for all X, Y EX(V2n+2m), we deduce (4.8) and (4.9). 
Finally, using (4.11), (4.6), proposition 4.3 and the relations 

Luv = d(iuv) +iu(dv) , LA1v = d(iA1v) +iAi(dv) 

with 1 :S j ~ 2m, we prove that Luv = LAiv = O, 1 ~ j ~ 2m. O 
Next, using proposition 4.5, we obtain an interesting result 

COROLLARY 4.1. A compact manifold cannot admit a sasakian 
m-hyperbolic l.c.K. stru.cture with m ~ l. 

PROOF. Let (V2n+2m,J,g,a1, ... ,02m) be a compact sasakian m
hyperbolic l.c.K. manifold, with m ~ l. Then, from proposition 4.3, we 
deduce that the (2n + 2m)-form 'Y on v2n+2m given by 

'Y= O¡/\ ... /\ 02m /\U/\ V/\ 'lpn-l 

is a volume element. 
On the other hand, using (3.9) and (4.10), we obtain that 

"f = d( (~z)ª1 /\,,, /\ 02~ /\V/\ t/Jn-l) 

which, in view of Stokes' theorem, is a contradiction. O 
REMARK. It is well known that the compact Hopf manifolds admit a 

l.c.K. structure with parallel Lee form (see (24] and [25]), i.e., the compact 
Hopf manifolds are compact sasakian 0-hyperbolic l.c.K. manifolds ( other 
examples of compact sasakian 0-hyperbolic l.c.K. manifolds are obtained 
in [6]). Consequently, corollary 4.1 is not true for m = O. 
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5 - The curvature tensor on a sasakian m-hyperbolic 1.c.K. ma
nifold 

In this section, we shall study the Riemann curvature tensor of a 
sasakian m-hyperbolic l.c.K. manifold. 

Let (V2n+2m, J,g, a1~ ••• , a2m) be a (2n + 2m)-dimensional sasakian 
m-hyperbolic l.c.K. manifold and Iet Ai be as in ( 4.2) and l, u, U, v and 
V as in (4.5). Then, if R is the Riemann curvature tensor of v2n+2m, we 
have, 

PROPOSITION 5.1. On a sasakian m-hyperbolic l.c.K. manifold 
y2n+2m 

l2 2m 

R(X, Y)U = - 2 ¿(a¡/\ u)(X, Y)A¡ 
i=l 

(5.1) 

(5.2) (
z)22m 

R(X, U)Y = 2 ~(a¡(X)a¡(Y)U - a¡(X)u(Y)A¡) 

(5.3) [2{h } R(X, Y)A¡ = 2 ?;(a¡/\ a3)(X, Y)A3+(a¡ /\ u)(X, Y)U 

(5.4) R(X, A¡)Y = -(~) 
2 

{ u(X)a¡(Y)U - u(X)u(Y)A¡+ 

+ t(a;(X)a;(Y)A; - c>¡(X)a¡{Y)A;)} 

where i E {1, ... , 2m} and X, Y E.I(V2n+2m). 

PROOF. From proposition 4.4 we deduce that 

l 2m 

R(X, Y)U = 2 ¿(2da¡(X, Y)A¡ + a¡(Y)'v' xAi - a¡(X)'v'yA¡) = 
i=l 

2m 

= l¿da¡(X, Y)A¡ 
i=l 

l 
R(X, Y).A¡ = - 2{2da¡(X, Y)U + a¡(Y)'v'xU - a¡(X)'v'yU} 

l 2m 

= --{2da¡(X, Y)U - l ¿(a¡/\ a;)(X, Y)Aj} 
2 j=l 
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for all X, Y EX(V2n+Zm). 

Thus, using (3.9), we obtain (5.1) and (5.3). 
(5.2) and (5.4) follow from (5.1) and (5.3) respectively and using the 

relation 

(5.5) g(R(X, Y)Z, W) = -g(R(Z, W)Y, X) 

for all X, Y, Z, W E X(V2n+2m). o 
Also, we have 

PROPOSITION 5.2. On a sasakian m-hyperbolic l.c.K. manifold 
y2n+2m 

(5.6) R(X, Y)V = (~)2 {-v(X)Y + v(Y)X + 2(v /\ u)(X, Y)U+ 

2m 

+ 2 ¿(v A a;)(X, Y)A;} 
i=l 

(5.7) R(X, V)Y = (~) 
2 

{ v(Y)X - u(X)v(Y)U + 
2m 2m 

+(u(X)u(Y)+ ¿ a;(X)a;(Y)-g(X, Y))V- :~:::>~¡(X)v(Y)A;} 
i=l i=l 

/or all X, Y EX(V2n+2m). 

PROOF. Using propositions 4.4 and 4.5 and since the 1-form u is 
closed we obtain that 

R(X,Y)V= 
l zm 

= --{(v' xJ)Y - (v'yJ)X + l'l/)(X, Y)U - l ¿(v /\ ai)(X, Y)Ai+ 
2 j=l 

l m 

+ u(X)(- -( JY + v(Y)U - u(Y)V + ¿(o¡(Y)Am+i-om+i(Y)A¡)))+ 
2 ~l 

l m 
- u(Y)(- 2(JX +v(X)U-u(X)V + ¿(o¡(X)Am+i - etm+i(X)A¡)))+ 

i=l 
m 

+ ¿(2do¡(X, Y)Am+i - 2dam+i(X, Y)A¡ -la¡(Y)am+i(X)U+ 
i=l 
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Thus, from (2.5), (3.9) and proposition 4.3, we deduce (5.6). 
(5.7) follows from (5.5) and (5.6). O 
Let x be a point of v2n+2m. Denote by Kxv and by p(X, X) the 

sectional curvature for the plane section in TxM with orthonormal basis 
{X, Y} and the Ricci curvature in the direction X respectively. Then, by 
using (5.1), (5.3) and (5.6), we obtain 

COROLLARY 5.1. On a sasakian m-hyperbolic l.c.K. manifold 
v2n+2m 

KuA¡ = KA;A; = -(~)2 
p(U, U) = p(~, A¡) = -2m(-~) 

2 

for i,j E {1, ... , 2m}. 

COROLLARY 5.2. On a sasakian m-hyperbolic l.c.K. manifold 
v2n+2m 

KA;v=Kuv =0 
l 

p(V, V)= 2(n -1)(2)2 

/orí E {1, ... ,2m}. 

From proposition 5.1, we have 

COROLLARY 5.3. On a sasakian m-hyperbolic l.c.K. manifold 
V2n+2m 

z2 m 
R(X, Y)Z = R(X', Y')Z' + 2{¿(o¡ /\ u)(X, Y)(a;(Z)U - u(Z)A;)+ 

í=l 

2m 

- L Oj(Z){ct¡ /\ Oj)(X, Y)A;} 
i,j=l 
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for all X, Y, Z E.I(V2n+2m), where X', Y' and Z' are the orthogonal 
projections o/ X, Y and Z respectively onto the tangent planes o/ the 
leaves of the foliation i given by u= O, a¡ = O, with 1 ~ i $ 2m. 

Let R be the curvature tensor of the Weyl connection V given in 
(2.3). Then, 

PROPOSITION 5.3. 
y2n+2m 

On a sasakian m-hyperbolic l.c.K. manifold 

(5.8) R(X, Y)Z = R(X', Y')Z' - ~ {g(Y', Z')X' - g(X', Z')Y'}, 

for all X, Y, Z E.I(v2n+2m}, where X', Y' and Z' are the orthogonal 
projections o/ X, Y and Z respectívely onto the tangent planes of the 
leaves of the foliation i given by u= O, O¡= O, wíth l ~ í $ 2m. 

PROOF. Using proposition 4.4 anda well known relation (see [9], pg. 
115) we deduce 

z2 2m 

R(X, Y)Z = R(X, Y)Z + ¡{¿(a¡(Y)a¡(Z}X - a¡(X)a¡(Z)Y + 
i=l 

+ g(Y, Z)a¡(X)Ai - g(X, Z)a¡(Y)A¡)+ 

+ ( u(X)g(Y, Z) - u(Y)g(X, Z) )U+ 

+ (u(Y)u(Z)X -u(X)u(Z)Y) - (g(Y, Z)X - g(X, Z)Y)} 

for all X, Y, Z E.I(V2n+2m), and thus the result follows from corollary 
5.3. O 

6 - The universal covering space of a sasakian m-hyperbolic 
l.c.K. manifold 

In this section we shall study the universal covering space of a sasa.
kian m-hyperbolic l.c.K. manifold. 

Let (V2n+2m, J, g, a 1, •.• , a 2m) be a sasakian m-hyperbolic l.c.K. 
manifold and let A¡ be (1 $ i $ 2m) as in (4.2) and l, u, U, v, V as in 
(4.5). Denote by e=-½ and by l the foliation given by u= O, a¡= O, 
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1 ~ i ~ 2m. i defines on v2n+2m a foliation of dimension (2n-1), which 
we call the canonical foliation of v2n+2m. Using (4.7), proposition 4.4 
and corollary 5.1, we deduce 

PROPOSITION 6.1. The canonical foliation J of a sasakian m-
hyperbolic l.c.K. manifold is totally geodesic with integrable normal bun
dle. Moreover, if J.l is the foliation determined by the normal bundle of 
J, then i.L also is totally geodesic and its leaves are of constant sectional 
curvature -c2

• 

Let i : N --+ v2n+2m be the inmersion of a generic leaf N of 
the canonical foliation J. We define an almost contact metric structure 
('PN,~N,1/N,UN) on N by 

for all X EX(N). Then, we have 

PROPOSITION 6.2. The almost contact metric strocture (cpN,f.N, 
1/N,UN) on Nis c-sasakian. 

PROOF. Let X, Y be vector fields on N and NJ, N'PN and L the Ni
jenhuis tensors of J and 'PN and the Líe derivate on v2n+2m respectively. 
Then, 

N'l'N(X, Y)+ 2dr¡N(X, Y)f.N = 
= Ni(X, Y)-v(Y){(LuJ)X + (Luv)(X)U}+ 

+ v(X){(LuJ)Y + (Luv)(Y)U} + 2(dv(JX, Y)+ dv(X, JY))U 

which, from (2.6), (4.8) and (4.10), implies that the structure ('PN, f.N, 1JN) 
is normal, i.e., N'l'N +2dr¡N ® f.N = O. 

On the other hand, if <!>N and n denote the fundamental 2-form of 
N and the Kliltler 2-form of v2n+2m respectively then, using (6.1), we 
obtain that 

<PN = i"'O = i"' (1/J + 2 I:(o:¡ /\ O:m+i) + 2v /\ u) = iºtp. 
1=1 
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Thus, from (4.10), we deduce that 

Consequently, (cpN,{N,T/N,9N) is a c-sasakian structure on N. □ 

Now, consider the inmersion j: M--+ v 2n+2m of a generic leaf M of 
the foliation J.L on v2n+2m. We define an almost contact metric structure 

(<pM,{M,7JM,9M) on M by 

(6.2) 
'PM(Y) = JY + (fu)(Y)V IM, {M = U IM, 

TJM = (j•u), 9M = j° 9, 

for all Y EX(M). Then, we have 

PROPOSITION 6.3. The almost contact metric structure ( <p M, f.M, 
TJM, 9M) on M is c-kenmotsu. 

PROOF. Let X, Y be vector fields on M and N"'M the Nijenhuis tensor 
of <p M. Then, 

Nv,M(X, Y)= Ni(X, Y)+ u(Y){(LvJ)(X) - (Lvu)(X)V}+ 

- u(X){(LvJ)(Y) - (Lvu)(Y)V} 

and thus, using (4.8), (2.6) and since Lvu = O, we obtain that 
N'PM (X, Y) = o. 

On the other hand, it is clear that the 1-form TJM is closed. Moreover, 
if <PM is the fundamental 2-form of M then, from (6.2), we deduce that 
<PM = j*Q, which, using (2.6), implies that d</>M = <PM /\ j*w, i.e., 

This completes the proof. O 
Let N be a leaf of the canonical foliation J and ('PN, f.N, TJN, 9N) the 

induced c-sasakian structure on N. 
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Suppose that Nis of constant C,ON-sectional curvature k. Then, from 
(6.1) and using a theorem of Ogiue [17] and the fact that the foliation J 
is totally geodesic, we have that 

(6.3) 

R(X,Y)Z = 
1 

=¡(k + 3c2)(g(Y, Z)X - g(X, Z)Y)+ 

1 
+¡(k - c2 ){v(X)v(Z)Y - v(Y)v(Z)X + (g(X, Z)v(Y)+ 

-g(Y, Z)v(X))V + g(JY, Z)JX - g(JX, Z)JY + 

+2g(X, JY)JZ + (v(X)g(JY, Z) - v(Y)g(JX, Z)+ 

+2v(Z)g(X, JY))U} 

for all X, Y, Z E X(N), where R is the Riemann curvature tensor of 
V2n+2m. 

Now, we give the following definition. 

DEFINITION 6.1. A sasakian m-hyperbolic l.c.K. manifold is called 
sasakian (k) m-hyperbolic l.c.K. (k E IR) if every leaf N of the canon
ical f oliation l is of constant c,o N-sectional curvature k, where ( cp N, ~N, T/N, 
9N) is the induced c-sasakian structure on N given by (6.1). 

If (V2n+2m, J, g, 01, ••• , o 2m) is a sasakian(k) m-hyperbolic l.c.K. 
manifold then v2n+2m is said to have a sasakian{k) m-hyperbolic l.c.K. 
structure (J, g, o 1, ... , 02m). 

Let v2n+2 m be a sasakian m-hyperbolic l.c.K. manifold. Denote by R 
the curvature tensor of the Weyl connection V on v2n+2m given by (2.3). 

From ( ) and using corollary 5.3 and proposition 5.3, we obtain 

COROLLARY 6.1. If (v2n+2m' J, g, 01, ..• , 02m) is a sasakian m-
hyperbolic l. c.K. manifold then, the following conditions are equivalent: 

i) (V2n+2m, J, g, 01, •.. , o 2m) is a sasakian(k} m-hyperbolic l.c.K. man
ifold. 
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ii) For all X, Y, Z E X(V2n+2m) 

R(X, Y)Z = 

(6.4) 

= ~(k + 3c2)(g(Y', Z')X' - g(X', Z')Y')+ 

1 + ¡(k - c2
){ v(X)v(Z)Y' - v(Y)v(Z)X' + (g(X', Z')v(Y)+ 

- g(Y', Z')v(X))V + g(JY',Z')JX' - g(JX',Z')JY'+ 

+ 2g(X', JY')JZ' + (v(X)g(JY', Z') - v(Y)g(JX', Z')+ 
[2 m 

+ 2v(Z)g(X', JY'))U} + 2{¿(a¡ A u)(X, Y)(a¡(Z)U+ 
i=l 

2m 

- u(Z)A) - ¿ o:i(Z)(ai A ai)(X, Y)Ai} 
i,i=l 

where X', Y' and Z' are the orthogonal projections of X, Y and Z 
respectively onto the tangent planes of the leaves of the canonical 
foliation. 

iii) For all X, Y, Z E X(V2"+2m) 

R(X,Y)Z= 

= ~(k - c2){g(Y', Z')X' - g(X', Z')Y' + v(X)v(Z)Y'+ 

(6.5) - v(Y)v(Z)X' + (g(X', Z')v(Y) - g(Y', Z')v(X))V + 

+ g(JY', Z')JX' - g(JX', Z')JY' + 2g(X', JY')JZ'+ 

+ (v(X)g(JY', Z')-v(Y)g(JX', Z') + 2v(Z)g(X', JY'))U} 

where X', Y' and Z' are the orthogonal projections of X, Y and Z 
respectively onto the tangent planes of the leaves of the canonical 
foliation. 

If (V2n+2m, J, g, a 1, ••• , a 2m) is a sasakian m-hyperbolic l.c.K. man
ifold then, every point x E v2n+2m has an open neighbourhood U such 
that the structure ( J, e-" g) is Kahler on U and R is the curvature tensor 
of the local metric e" g, where u : U __. JR is a real differentiable func
tion on U (see section 2). Moreover, using (6.5) and proposition 5.3, we 
deduce 
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COROLLARY 6.2. Let v2n+2m be a sasakian m-hyperbolic l.c.K. 
manifold. Then, the following conditions are equivalent: 

i) v 2n+2m is a sasakian(c2) m-hyperbolic l.c.K. manifold. 
ii) The leaves of the canonical foliation are of constant sectional curva

ture c2
• 

iii) The local metrics cu g are ftat, i. e., R = O. 

Next, we introduce a definition which will be useful in the sequel. 
Let N, k be a (2n-1)-dimensional manifold and a real number re

spectively and let (H;m+l, (ds2)c) be the {2m+ 1)-dimensional hyperbolic 
space, with e < O. 

DEFINITION 6.2. A distinguished sasakian m-hyperbolic(c) 
l.c.K. (respectively distinguished sasakian {k) m-hyperbolic(c) 
l.c.K.) structure on v2n+2m = N x H;m+l is a sasakian m-hyperbolic 
l.c.K. {respectively sasakian{k) m-hyperbolic l.c.K.) structure (J, g, o:1 , .•• 

• • . , o:2m) on v2n+2m, such that: 
i) The metric g is of the form 

where da2 is a Riemann metric on N and, 
ii) The Lee 1-Jorm w and the 1-forms ai, 1 ~ i ~ 2m, are given by 

dx; 
O:¡=--

CX2m+1 

where (xi, ... , X2m+1) are the usual coordinates on H;m+l. 

We have, 

PROPOSITION 6.4. lf (J, g, a:1, ••• , a:2m) is a distinguished sasakian 
m-hyperbolic( e) l. c.K. structure on v2n+2m = N x H;m+l, then the man
ifold N carries an induced c-sasakian structure (cpN,EN,T/N,9N) and the 
almost hermitian structure (J,g) on v2n+2m is given by (3.2). Moreover, 
if (J, 9, a:i, ... , 0:2m) is a distinguished sasakian{k) m-hyperbolic(c} l.c.K. 
structure on v2n+2m, then N is of constant C()N-sectional curvature k. 
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PROOF. From definition 6.2, we obtain that 

for all i E {l, ... , 2m }, where (x1, ... , x2m+i) are the usual coordinates 
on the hyperbolic space H;m+l. 

By using (4.6) and first and second relation of (4.7) and (4.10) we 
deduce that ~N = -JU = -V and 1/N = u o J = -v define a vector field 
anda 1-form respectively on N. 

Let X be a vector field on N. Then, X= X +v(X)V with v(X) = O. 
Define 'PNX = JX. 

From (4.9) and first and third relation of (4.8) we have that 'PN 
defines a (1, 1)-tensor field on N. 

Now, it is easy to check that ('PN,~N,1JN,9N = do-2
) is an almost 

contact metric structure on N. 
On the other hand, from definition 6.2, we deduce that the leaves 

of the canonical foliation of v2n+2m are N x {(x~, ... , xgrn+i)}, with 
(x~, ... ,xgm+i) E H;m+i. Thus, by proposition 6.2, we get a c-sasakian 
structure on each N X {(x?, .. , ,xgm+1n, (x?,••· ,x~m+l) E H;m+l. In 
fact, if (x~, ... , xgm+l) E H;m+l then, it is not diflicult to check that 
the application icx?,····xgm+il of N x {(x~, ... ,xgm+l)} into N given by 

icx?,--· ,xgm+il(x, x~, ... , xgm+l) = x is an almost contact isometry. 
This, in view of proposition 6.2 and definition 6.1, completes the 

~~ o 
REMARK. Let (N,cpN,~N,1/N,9N) be a c-sasakian manifold. Then, 

using corollary 3.1, we obtain that the product manifold N x H;m+l 
carries an induced distinguished sasakian m-hyperbolic(c) l.c.K. struc
ture ( J, g, a 1 , ••• , o:2m). Moreover, it is clear that if N is of constant 
cp wsectional curvature k then ( J, g, o:1 , ••• , o:2m) is a distinguished sasa
kian( k) m-hyperbolic(c) l.c.K. structure on N x H;m+i, Therefore, the 
converse of proposition 6.4 is also true. 

Using the above remark and corollary 6.2 we obtain 

COROLLARY 6.3. On the sasakian m-hyperbolic l.c.K. manifold 
s::-1 x H;m+i the local conformal Kiihler metrics are ftat. 
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Next, we shall describe the universal covering space of a sasakian 
m-hyperbolic l.c.K. manifold. 

THEOREM 6.1. The universal covering space of a (2n + 2m)-
dimensional complete sasakian m-hyperbolic l.c.K. manifold v2n+2m with 
Lee form w is a product space V 2n+2m = N x H;m+i, where N is the 
universal covering space of an arbitrary leaf of the canonical foliation of 
v2n+2m, e= -llw!l/2 and H;m+l is the (2m + !)-dimensional hyperbolic 

-2n+2m 
space. The lift of the sasakian m-hyperbolic l.c.K. structure to V 
gives a distinguished sasakian m-hyperbolic(c) l.c.K. structure on V

2
n+

2
m. 

Moreover, if the structure 0JV2n+2m is a sasakian{k} m-hyperbolic l.c.K. 
structure, then, considering the indu.ced c-sasakian structure on N, we 
have: 

i) If k > -3c2, then N is almost contact isometric to s2n-1 
( e, k); 

ii) If k = -3c2, then Nis almost contact isometric to IR.2n-
1(c); 

iii) If k < -3c2, then N is almost contact isometric to (IR. x C nn-i) ( e, k). 

PROOF. Let (V2n+2m, J, g, a1, ... , a 2m) be a (2n + 2m)-dimensional 
complete sasakian m-hyperbolic l.c.K. manifold and u the unit Lee form 
of V2n+2m. 

Denote by g the induced metric on V
2
n+

2
m. Then, using proposition 

6.1 and theorem A of [4], we deduce that (V
2
n+

2
m1g) is the lliemannian 

product N x H;m+i, where N is the universal covering space of an arbi
trary leaf of the canonical foliation j and e = - ~. Moreover, if jJ. is 
the foliation determined by the normal bundle of ~ then, the lift of the 
foliations j and iJ. to V

2
n+

2
m are the foliations with leaves of the form 

N x {x} (x E HJm+l) and {n} x H;m+l (n E N) respectively. 
Now, let ai and u be the lift of a; (1 $ i $ 2m) and u respectively to 

-2n+2m 
V . Then, it is clear, from (3.9) and from the fact that u is a closed 
1-form, that {u, a1, ••• , ci2m} is a global basis of 1-forms on H;m+l. The 
dual basis of vector fields on H;m+l is given by {U, A1 , ... , A2m}, being 
U and .A¡ (1 $ i $ 2m) the lift of U and A; (1 $ i $ 2m) respectively to 
-2n+2m 
V . Thus, using the following lemma 6.1, we obtain that 
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for i E {1, ... , 2m }, where (x1, .•• , x2m+1) are the usual coordinates on 
H;m+l. Consequently, 

_ dx2m+l 
u=--

CX2m+1 

_ dx¡ 
' 0!¡=-

CX2m+1 

for i E {1, ... , 2m }, which implies that the lift of the sasakian m-hyper

bolic l.c.K. structure (J, g, 0!1, ... , <l2m) to V
2
n+

2
m is a distinguished sasa,

kian m-hyperbolic(c) l.c.K. structure on v2
n+

2
m. 

If (J, g, a 1 , ... , <l2m) is a sasakian(k) m-hyperbolic l.c.K. structure on 
v2n+2m, then the lift of this sasakian(k) m-hyperbolic l.c.K. structure to 

V
2
n+

2
m gives a distinguished sasakian(k) m-hyperbolic(c) l.c.K. structure 

V 2n+2m d h e . N . . l d l on an t erfüore, smce 1s a sunp y connecte comp ete man-
ifold, the rest of theorem follows using proposition 6.4 and proposition 
2.2. O 

LEMMA 6.1. Let M be a (2m + !)-dimensional complete, sim-
ply connected, Riemannian manifold of constant negative curvature -e? 
(e f:- O) and U, Ai vector fields on M such that {U,A1 , ••• ,A2m} form 
an orthonormal basis for M and [U, A¡] = cA¡, [A¡, A;] = O for i, j E 
{1, ... , 2m}. Then, there is an isometry F of M to the (2m + !)
dimensional hyperbolic space H;m+l, satisfying 

for i E {1, ... , 2m}, where (xi, ... , x 2m+1) are the usual coordinates on 
H 2m+l 

e • 

PROOF. Let x be a point of M. We consider the linear isometry L 
of T:,;M onto Tco, ... ,o,t)(H;m+l) given by 

a 
L((A¡):z:) = c(-

8
) leo, ... ,0,1) 

X¡ 

for i E { 1, ... , 2m}. Then, there is an isometry F of M onto H;m+l such 
that the differential of F at x is L (see, for instance, [13}) and thus, using 
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the relations [U,A) = cAi, [Ai,A;J = O (1 ~ i,j ~ 2m) we prove that 

far i E {1, ... ,2m}. o 
Finally, from theorem 6.1, we deduce 

COROLLARY 6.4. : Let v2n+2m be a complete sasakian(k) m-hyper

bolic l.c.K. manifold, V
2
n+

2
m the universal covering space of v 2n+2m and 

c = -llwll/2, where w is the Lee 1-form of v2n+2m. 

i) If k > -3c2, then v2
n+

2
m is almost complex isometric to s2n- 1(c, k) X 

n2m+1 
e , 

ii) If k = -3c2, then V
2
n+

2
m is almost complex isometric to JR2n-1(c) X 

H 2m+1 and 
e ' 

iii) If k < -3c2, then V
2

n+2m is almost complex isometric to (IR X 

CDn- 1)(c,k) X H;m+l. 
In particular, iJV2

n+2m is a complete sasakian(c2) m-hyperbolic l.c.K. 
manifold then V

2
n+

2
m is almost complex isometric to s:;i-1 x H;m+i. 
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