Rendiconti di Matematica, Serie VII Volume 13 , Roma (1993), 41-74

Sasakian m-hyperbolic locally conforma! Kahler manifolds

J.C. **MARRERO** - **J. ROCHA<•>**

RIASSUNTO: *Si studia una classe particolare di varieta Kii.hleriane localmente conformi* e, come *principale risultato, si dimostm che lo spazio di ricoprimento universale di tale varieta* e il *prodotto di una varietd c-Sasakiana con uno spazio iperbolico di dimensione dispari.*

ABSTRACT: *In this paper, we study a particular class of locally conformal Kähler manifolds and, as main result, we prove that the universal covering space of such manifolds is the product of a c-sasakian manifold with a hyperbolic space of odd dimension.*

KEY WORDS: *Locally conformal Kiihler manifolds* - *Generalized Hopf manifolds* - *Sasakian manifolds* - *Kenmotsu manifolds* - *Hyperbolic space.*

A.M.S. CLASSIFICATION: 53Cl5 - 53C25 - 53C55

1 - lntroduction

An almost Hermitian manifold V^{2n} is called locally conformal Kähler if its metric is conformally related to a Kähler metric in some neighbourhood of every point of V^{2n} . Such manifolds have been studied by various authors (see, for instance, $[14]$, $[23]$, $[24]$, $[25]$, $[6]$, $[16]$, $[8]$, ...).

^{(•&}gt;supported by the "Consejería de Educación del Gobierno de **Canarias"**

Examples of locally conforma! Kahler manifolds are provided by the generalized Hopf manifolds which are locally conformal Kahler manifolds with parallel Lee form (see [24] and $[25]$). The main non-Kähler example of such manifolds is the Hopf manifold (see [13], [23]), which is defined as the quotient

$$
H_o^n = \frac{(C^n - \{0\})}{\Delta_\lambda}
$$

where Δ_{λ} is a cyclic group of transformations. Another example of a non-Kähler compact generalized Hopf manifold is the nilmanifold $N(r,1)\times S^1,$ where $N(r, 1) = \Gamma(r, 1) \setminus H(r, 1)$ is a compact quotient of the generalized Heisenberg group $H(r, 1)$ by a discret subgroup $\Gamma(r, 1)$ (see [6]). Examples of non-Kähler compact locally conformal Kähler manifolds with non-parallel Lee form are obtained in [22) and [1].

On the other hand, if we denote by S^p_{r2} the p-dimensional unit sphere of constant sectional curvature c^2 ($c \in \mathbb{R}, c \neq 0$) then, it is well known $\text{that the Calabi-Eckmann manifolds } V^{2n+2m} = S_{c^2}^{2n-1} \times S_{c^2}^{2m+1} \ (n \geq 1, m \geq 1)$ 0) admit a hermitian structure (J, g) , where g is the product metric (see [5]). In fact, assuming $n \ge m + 1$, we have (see [5], [23] and [10]):

- 1. If $n = 1$ and $m = 0$ then the structure (J, g) is Kähler,
- 2. If $n \ge 2$ and $m = 0$ then $V^{2n+2m} = V^{2n}$ and H_o^n are diffeomorphic and (J, g) is a non-Kähler locally conformal Kähler structure and,
- 3. If $n \geq 2$ and $m \geq 1$ then the structure (J, g) is hermitian but it is not locally conformal Kähler.

Now, we can consider the product manifold $V^{2n+2m} = S_{c2}^{2n-1} \times H_c^{2m+1}$, where H_c^{2m+1} is the (2m+1)-dimensional hyperbolic space of constant curvature $-c^2$ ($c \in \mathbb{R}$, $c \neq 0$). Then the manifold V^{2n+2m} also admits a hermitian structure (J, g) , where g is the product metric. Moreover, we obtain

- 1. The structure (J, g) is locally conformal Kähler (see corollary 3.1).
- 2. There exist 2m unit 1-forms $\alpha_1, \ldots, \alpha_{2m}$ on V^{2n+2m} which are independient and such that

(1.1)
$$
\alpha_j \circ J = \alpha_{m+j}, \quad \alpha_{m+j} \circ J = -\alpha_j, \quad \alpha_i(B) = 0
$$

(1.2)
$$
\nabla \omega = 2c^2 \sum_{k=1}^{2m} (\alpha_k \otimes \alpha_k) , \quad \nabla \alpha_i = -\frac{1}{2} (\alpha_i \otimes \omega)
$$

for $i \in \{1, 2, ..., 2m\}$ and $j \in \{1, ..., m\}$, where ∇ denotes the Levi-Civita connection of the metric g and ω and B are the Lee 1-form and the Lee vector field respectively of V^{2n+2m} (see corollary 3.1).

3. The local conforma! Kahler metrics are flat (see corollary 6.3).

In this paper, we study a particular class of locally conformal Kähler manifolds which we call sasakian m-hyperbolic locally conformal Kähler manifolds, with $m \in \mathbb{N}$, $m \geq 0$. These manifolds have similar properties to the locally conformal Kähler manifold $S_{c}^{2n-1} \times H_c^{2m+1}$. A (2n+2m)dimensional locally conformal Kähler manifold (V^{2n+2m}, J, g) is said to be sasakian m-hyperbolic locally conformal Kähler if there exist 2m unit 1-forms $\alpha_1, \ldots, \alpha_{2m}$ on V^{2n+2m} which are independient and satisfy (1.1) and (1.2), where $c = -\frac{\|\omega\|}{2} \neq 0$ at every point. In particular, a generalized Hopf manifold is a sasakian 0-hyperbolic locally conformal Kähler manifold.

In section 2, we give some results on locally conformal Kähler, csasakian and c-kenmotsu manifolds. In section 3, we introduce the definition of m-hyperbolic locally conforma! Kahler structure on a l.c.K. manifold. If (J, g) is a l.c.K. structure on a $(2n+2m)$ -dimensional manifold V^{2n+2m} and $\alpha_1, \ldots, \alpha_{2m}$ are independient 1-forms on V^{2n+2m} then, we say that $(J, g, \alpha_1, \ldots, \alpha_{2m})$ is a m-hyperbolic locally conformal Kähler structure on V^{2n+2m} if

$$
\alpha_j \circ J = \alpha_{m+j}, \qquad \alpha_{m+j} \circ J = -\alpha_j \qquad j \in \{1, \ldots, m\}
$$

\n
$$
d\alpha_i = -\frac{1}{2}(\alpha_i \wedge \omega) \qquad i \in \{1, 2, \ldots, 2m\}
$$

\n
$$
\alpha_i(B) = 0 \qquad i \in \{1, 2, \ldots, 2m\},
$$

where ω and B are the Lee 1-form and the Lee vector field respectively of V^{2n+2m} . We prove that the product manifold of a $(2n-1)$ -dimensional c-sasakian manifold *N* anda (2m+l)-dimensional c-kenmotsu manifold M admits locally a m-hyperbolic locally conformal Kähler structure (see proposition 3.3). Moreover, if the manifold M is the $(2m+1)$ -dimensional hyperbolic space $(H_c^{2m+1}, (ds^2)_c)$ then the m-hyperbolic locally conformal Kähler structure is globally defined and the 1-forms α_i $(i = 1, ..., 2m)$ satisfy (1.2). In section 4, we introduce the definition of sasakian mhyperbolic locally conformal Kähler (sasakian m-hyperbolic l.c.K.) manifold as a $(2n+2m)$ -dimensional manifold V^{2n+2m} endowed of a m-hyperbolic l.c.K. structure $(J, g, \alpha_1, \ldots, \alpha_{2m})$ such that the unit 1-forms α_i $(i = 1, \ldots, 2m)$ satisfy (1.2), where $c = -\frac{\|\omega\|}{2} \neq 0$ at every point. In this section, we characterize the sasakian m-hyperbolic 1.c.K. manifolds and we obtain sorne properties of these manifolds (see propositions 4.4 and 4.5). As consequence, we prove that a compact manifold cannot be a sasakian m-hyperbolic l.c.K. manifold with $m \geq 1$ (see corollary 4.1). In section 5, we study the Riemann curvature tensor R of a sasakian mhyperbolic l.c.K. manifold $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$. We determine the vector fields $R(X, Y)U$, $R(X, Y)A_i$ and $R(X, Y)V$, for all vector fields X, Y on V^{2n+2m} , in terms of α_i , $u, v = -u \circ J$, A_i , U and V , where u and U are the unit Lee form and the unit Lee vector field respectively of V^{2n+2m} and A_i are the vector fields on V^{2n+2m} given by $\alpha_i(X) = g(X, A_i)$, $1 \leq i \leq 2m$ (see propositions 5.1 and 5.2). In particular, we obtain explicit formulas for the sectional curvature of a plane section containing A_i , U or V and for the Ricci curvature in the direction of these vectors (see corollaries 5.1 and 5.2).

In section 6, we prove that on a sasakian m-hyperbolic l.c.K. manifold $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ the leaves of the foliation $\mathfrak F$ have an induced c-sasakian structure, where $\mathfrak F$ is the foliation on V^{2n+2m} given by $u = 0, \alpha_i = 0, 1 \le i \le 2m$. Then, we say that a sasakian mhyperbolic l.c.K. manifold is sasakian(k) m-hyperbolic locally conformal Kähler $(k \in \mathbb{R})$ if every leaf *N* of the foliation \mathfrak{F} is of constant φ_{N} sectional curvature k, where $(\varphi_N, \xi_N, \eta_N, g_N)$ is the induced c-sasakian structure on N. Finally, using the results of the above sections, we obtain that the universal covering space \overline{V}^{2n+2m} of a sasakian m-hyperbolic l.c.K. manifold $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ is the product of a $(2n-1)$ dimensional c-sasakian manifold $(N, \varphi_N, \xi_N, \eta_N, g_N)$ with the $(2m+1)$ dimensional hyperbolic space and we describe the induced sasakian mhyperbolic l.c.K. structure $(\overline{J}, \overline{g}, \overline{\alpha}_1, \ldots, \overline{\alpha}_{2m})$ on \overline{V}^{2n+2m} (see theorem 6.1). Moreover, if V^{2n+2m} is a sasakian(k) m-hyperbolic l.c.K. manifold, then we determine, up to almost complex isometries, the almost Hermitian manifold $(\overline{V}^{2n+2m}, \overline{J}, \overline{g})$ (see corollary 6.4). In particular, if V^{2n+2m} is a sasakian (c^2) m-hyperbolic l.c.K. manifold then we have that the local conformal Kähler metrics are flat and the manifold \overline{V}^{2n+2m} is almost complex isometric to $S_{c2}^{2n-1} \times H_c^{2m+1}$ (see corollaries 6.3 and 6.4).

2 - Preliminaries

Let V be a C^{∞} almost Hermitian manifold with metric g, Riemannian connection ∇ and almost complex structure J. Denote by $\mathfrak{X}(V)$ the Lie algebra of C^{∞} vector fields on *V* and by N_J the *Nijenhuis tensor* of *V*, that is,

(2.1)
$$
N_J(X,Y) = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y]
$$

for $X, Y \in \mathfrak{X}(V)$.

The *Kähler 2-form* Ω is given by

$$
(2.2) \t\t \Omega(X,Y) = g(X,JY)
$$

and the *Lee 1-form* ω is defined by

$$
\omega(X)=(\frac{1}{n-1})\delta\Omega(JX)
$$

for $X \in \mathfrak{X}(V)$, where δ denotes the codifferential and dim $V = 2n$.

An almost Hermitian manifold (V, J, g) is said to be:

Kählerian if $\nabla J = 0$; *Locally conformal Kähler (l.c.K.)* if every point $x \in V$ has an open neighbourhood U such that the structure $(J, e^{-\sigma}g)$ is Kähler on U, where $\sigma: U \longrightarrow \mathbb{R}$ is a real differentiable function on U (see [14], [23], [24], [6], ...).

Let (V, J, g) be an almost hermitian manifold with Lee form ω and ∇ the Levi-Civita connection of the metric g. Consider

(2.3)
$$
\overline{\nabla}_X Y = \nabla_X Y - \frac{1}{2} \omega(X) Y - \frac{1}{2} \omega(Y) X + \frac{1}{2} g(X, Y) B
$$

for X, $Y \in \mathfrak{X}(V)$, where B is the *Lee vector field* of V given by $\omega(X) =$ $g(X, B)$. $\overline{\nabla}$ is a torsionless linear connection on V, which is called the *Weyl connection* of g (see [19]). Moreover, if (V, J, g) is l.c.K. then $\overline{\nabla}$ is the Levi-Civita connection of the local metrics $e^{-\sigma}g$ (see [23]). In fact, in [23], I. VAISMAN proves

PROPOSITION 2.1. *The following are equivalent: 1. (V,* J, *g) is a l. c.K. manifold.*

2. The Lee form w is closed and

$$
\nabla_X J = 0
$$

for all $X \in \mathfrak{X}(V)$ *.*

8. The Lee fonn w *is closed and*

(2.5)
\n
$$
(\nabla_X J)Y = \frac{1}{2}\omega(JY)X - \frac{1}{2}\omega(Y)JX - \frac{1}{2}g(X,JY)B + \frac{1}{2}g(X,Y)JB
$$

for all $X, Y \in \mathfrak{X}(V)$.

4. *The Lee fonn* w *is closed and*

$$
(2.6) \t d\Omega = \omega \wedge \Omega \t, \t N_J = 0.
$$

Among the l.c.K. manifolds, those such that $\nabla \omega = 0$ are called gen*eralized Hopf manifolds* (see [24] and [25]).

On the other hand, let *M* be an almost contact metric manifold with metric g and almost contact structure (φ, ξ, η) . Then we have

$$
\varphi^2 = -I + \eta \otimes \xi \qquad \eta(\xi) = 1
$$

$$
g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)
$$

for $X, Y \in \mathfrak{X}(M)$, where *I* denotes the identity transformation (see [2] and (3). Denote by N_{φ} the Nijenhuis tensor of φ , that is

$$
N_{\varphi}(X,Y)=[\varphi X,\varphi Y]-\varphi[\varphi X,Y]-\varphi[X,\varphi Y]+\varphi^2[X,Y]
$$

for $X, Y \in \mathfrak{X}(M)$. The *fundamental 2-form* ϕ of *M* is given by

$$
\phi(X,Y)=g(X,\varphi Y)\,.
$$

An almost contact metric manifold M is said to be *c-sasakian* (see [11]), with $c \in \mathbb{R}, c \neq 0$ if

$$
(2.7) \t\t N_{\varphi} + 2d\eta \otimes \xi = 0 \t , \t d\eta = c\phi
$$

and it is called *c-kenmotsu* (see [11)) if

(2.8)
$$
N_{\varphi} + 2d\eta \otimes \xi = 0
$$
, $d\phi = -2c\eta \wedge \phi$, $d\eta = 0$.

The manifold *M* is said to be *sasakian* if it is 1-sasakian.

If $(M, \varphi, \xi, \eta, g)$ is a c-sasakian manifold or a c-kenmotsu manifold then

$$
(2.9) \t\t\t L_{\xi}\varphi=0
$$

where L denotes the Lie derivate on M.

Let $(H_c^{2m+1}, (ds^2)_c)$ be the $(2m+1)$ -dimensional *hyperbolic space*, i.e.,

$$
H_c^{2m+1} = \{(x_1, \ldots, x_{2m+1}) \in \mathbb{R}^{2m+1}/x_{2m+1} > 0\}
$$

and $(ds^2)_c$ is the Riemannian metric given by

$$
(ds^2)_c = \frac{1}{(cx_{2m+1})^2} \sum_{i=1}^{2m+1} (dx_i)^2 \quad , \quad (c \neq 0).
$$

 $(H_c^{2m+1}, (ds^2)_c)$ is a complete simply connected Riemannian manifold with constant negative curvature $-c^2$.

The vector fields E_i $(i = 1, ..., 2m + 1)$ on H_c^{2m+1} defined by

$$
(2.10) \t\t\t E_i = (cx_{2m+1})\frac{\partial}{\partial x_i}
$$

form an orthonormal basis for this space.

The dual basis of 1-forms is given by

$$
\alpha_i = \frac{dx_i}{(cx_{2m+1})}
$$

for $i = 1, ..., 2m + 1$.

Then, it is not difficult to prove that

(2.12)
$$
\begin{cases} \nabla \alpha_{2m+1} = -c \sum_{i=1}^{2m} \alpha_i \otimes \alpha_i \\ \nabla \alpha_i = c \alpha_i \otimes \alpha_{2m+1} \end{cases}
$$

Let $(\varphi_{H^{2m+1}_{\sigma}}, \xi_{H^{2m+1}_{\sigma}}, \eta_{H^{2m+1}_{\sigma}}, g_{H^{2m+1}_{\sigma}})$ be the almost contact metric structure on H_c^{2m+1} defined by

$$
(2.13) \qquad \varphi_{H_c^{2m+1}} = \sum_{i=1}^m (E_i \otimes \alpha_{m+i} - E_{m+i} \otimes \alpha_i) , \ \xi_{H_c^{2m+1}} = E_{2m+1}
$$
\n
$$
\eta_{H_c^{2m+1}} = \alpha_{2m+1} , \ g_{H_c^{2m+1}} = (ds^2)_c .
$$

Then (see [12], [7]), the almost contact metric structure $(\varphi_{H_c^{2m+1}},$ $\xi_{H^{2m+1}}$, $\eta_{H^{2m+1}}$, $g_{H^{2m+1}} = (ds^2)_c$ on H_c^{2m+1} is c-kenmotsu.

Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold and x a point of *M.* A plane section π in the tangent space to *M* at *x*, T_xM , is called a φ -section if there exists a unit vector *X* in T_xM orthogonal to ξ such that $\{X, \varphi X\}$ is an orthonormal basis of π . Then the sectional curvature $K_{X\varphi X} = g(R(X, \varphi X)\varphi X, X)$ is called a φ -sectional curvature.

A c-sasakian manifold is said to be a c-sasakian space form if *M* has constant φ -sectional curvature. Examples of sasakian space forms are provided by the manifolds S^{2n-1} , \mathbb{R}^{2n-1} and $\mathbb{R} \times CD^{n-1}$. In fact, the unit sphere S^{2n-1} has a sasakian structure of constant φ -sectional curvature k, for all $k > -3$ (see [20] and [21]); the real (2n-1)-dimensional number space \mathbb{R}^{2n-1} is a sasakian space form with $k = -3$ [18]; and the product manifold $\mathbb{R} \times CD^{n-1}$, where CD^{n-1} is a simply connected bounded complex domain in C^{n-1} with negative constant holomorphic sectional curvature, has a sasakian structure of constant φ -sectional curvature k, for all $k < -3$ [21].

Let $(M, \varphi, \xi, \eta, g)$ be a sasakian manifold with constant φ - sectional curvature k. Put

$$
\varphi' = \varphi
$$
, $\xi' = c\xi$, $\eta' = \frac{1}{c}\eta$, $g' = \frac{1}{c^2}g$

where $c \in \mathbb{R}$, $c \neq 0$. Then, $(M, \varphi', \xi', \eta', g')$ is a c-sasakian space form of constant φ -sectional curvature kc^2 . We denote by $M(c, kc^2)$ the csasakian manifold with this structure.

In [21], Tanno proves that if $(M, \varphi, \xi, \eta, g)$ and $(M', \varphi', \xi', \eta', g')$ are (2n-1)-dimensional complete simply connected sasakian manifolds of constant φ -sectional curvature k , then, M is almost contact isometric to M' ,

i.e., there exists an isometry *F* of *M* into *M'* such that $F_* \circ \varphi = \varphi' \circ F_*$ and $F_*\xi = \xi'$. Therefore, by using this result, we deduce

PROPOSITION 2.2. *Let M be a {2n-1}-dimensional complete simply connected c-sasakian manifold with constant cp-sectional curvature* k.

- 1. If $k > -3c^2$, then M is almost contact isometric to $S^{2n-1}(c, k)$.
- 2. If $k = -3c^2$, then M is almost contact isometric to $\mathbb{R}^{2n-1}(c, -3c^2) =$ $\mathbb{R}^{2n-1}(c)$.
- *3.* If $k < -3c^2$, then M is almost contact isometric to $(\mathbb{R} \times CD^{n-1})(c, k)$.

REMARK. It is clear that the manifold $S^{2n-1}(c, c^2)$ is $S^{2n-1}_{c^2}$ (see section 1).

Ali the manifolds considered in this paper are assumed to be connected.

3 - **m-Hyperbolic locally conforma! Kiihler structures**

In this section, we study a particular class of structures on a l.c.K. manifold which we call m -hyperbolic locally conformal Kähler structures.

First, we describe the local structure of a c-kenmotsu manifold (see [12] and [15]). For this purpose, we examine the following example:

Let *M* be the product manifold $L \times V$, where *L* is an open interval (a, b) , $-\infty \le a < b \le \infty$, and (V, J', G) is a 2m-dimensional Kählerian manifold. Let E be a nowhere vanishing vector field on L , E^* its dual field of 1-forms and σ a positive function on *L* such that $d(\ln \sigma) = -2cE^*$, with $c \in \mathbb{R}$, $c \neq 0$. Put

(3.1)
$$
\begin{cases} \varphi(a'E, X) = (0, J'X) , \\ \xi = (E, 0) , \quad \eta = (E^*, 0) \\ g((a'E, X), (b'E, Y)) = \sigma G(X, Y) + a'b' , \end{cases}
$$

where *a'* and *b'* are differentiable functions on M, and $X, Y \in \mathfrak{X}(V)$. Then it is not difficult to check that $(M, \varphi, \xi, \eta, g)$ is a c-kenmotsu manifold.

The converse holds locally, i.e.,

PROPOSITION 3.1. [15] *If* $(M^{2m+1}, \varphi, \xi, \eta, g)$ *is a* $(2m+1)$ *-dimensional c-kenmotsu manifold, then the manifold* M²m+l is *locally the product* $(a, b) \times V^{2m}$, where (a, b) is an open interval and V^{2m} is a $2m$ -dimensional *Kählerian manifold, on which the structure* (φ, ξ, η, q) *is given as in* (3.1) *.*

Let $(N, \varphi_N, \xi_N, \eta_N, g_N)$ be a c-sasakian manifold and $(M, \varphi_M, \xi_M, \eta_M, g_N)$ g_M) a $(2m+1)$ -dimensional c-kenmotsu manifold, with $c \in \mathbb{R}$, $c \neq 0$. Let us consider the product manifold $V = N \times M$ with the almost hermitian structure (J, g) defined by:

(3.2)
$$
\begin{cases} J(X, X') = (\varphi_N X - \eta_M(X') \xi_N, \ \varphi_M X' + \eta_N(X) \xi_M) \\ g((X, X'), (Y, Y')) = g_N(X, Y) + g_M(X', Y') \end{cases}
$$

where $X, Y \in \mathfrak{X}(N)$ and $X', Y' \in \mathfrak{X}(M)$.

PROPOSITION 3.2. *The almost Hermitian manifold* (V, J,g) *is a l.c.K. manifold with Lee form*

$$
\omega = -2 c \pi_M^* \eta_M
$$

where $\pi_M : N \times M \longrightarrow M$ is the canonical projection onto the second *factor.*

PROOF. Let X, Y be vector fields on N and X', Y' vector fields on M. Then:

$$
N_{J}((X, X'), (Y, Y')) =
$$

= $\left(N_{\varphi_{N}}(X, Y) + 2d\eta_{N}(X, Y) \xi_{N} - 2d\eta_{M}(X', \varphi_{M}Y') \xi_{N} - 2d\eta_{M}(\varphi_{M}X', Y') \xi_{N} + \eta_{M}(Y') (L_{\xi_{N}}\varphi_{N})X - \eta_{M}(X') (L_{\xi_{N}}\varphi_{N})Y +$
+ $2\eta_{N}(X) d\eta_{M}(Y', \xi_{M}) \xi_{N} + 2\eta_{N}(Y) d\eta_{M}(\xi_{M}, X') \xi_{N},$
 $N_{\varphi_{M}}(X', Y') + 2d\eta_{M}(X', Y') \xi_{M} + 2d\eta_{N}(\varphi_{N}X, Y) \xi_{M} +$
+ $2d\eta_{N}(X, \varphi_{N}Y) \xi_{M} + \eta_{N}(X) (L_{\xi_{M}}\varphi_{M})Y' - \eta_{N}(Y) (L_{\xi_{M}}\varphi_{M})X' -$
- $2\eta_{M}(X') d\eta_{N}(\xi_{N}, Y) \xi_{M} + 2\eta_{M}(Y') d\eta_{N}(\xi_{N}, X) \xi_{M}$

where N_J , N_{φ_N} and N_{φ_M} denote the Nijenhuis tensors of J, φ_N and φ_M respectively and *L* denotes the Lie derivate operator on *N* and *M.* Thus, from (2.7), (2.8) and (2.9), we obtain that $N_J((X, X'), (Y, Y')) = 0$.

On the other hand, using (2.2) and (3.2), the Kähler 2-form Ω of the almost Hermitian manifold (V, J, g) is given by

$$
(3.3) \qquad \qquad \Omega = \pi_N^* \phi_N + \pi_M^* \phi_M + 2(\pi_M^* \eta_M \wedge \pi_N^* \eta_N)
$$

where ϕ_N and ϕ_M denote the fundamental 2-forms of N and M respectively and where $\pi_N: V = N \times M \longrightarrow N$ is the projection of V onto the first factor. Then, from (2.7) , (2.8) and (3.3) , we have that:

$$
d\Omega = -2c(\pi_M^* \eta_M) \ \wedge \ \Omega.
$$

Consequently, since η_M is a closed 1-form, we deduce that the almost hermitian manifold (V, J, g) is l.c.K. with Lee form $\omega = -2 c \pi_M^* \eta_M$. \Box

Next, we shall study the l.c.K. structure (J, g) on the product manifold $N \times M$.

PROPOSITION 3.3. Let (J, g) be the *l.c.K.* structure given by (3.2) *on the product manifold* $N \times M$. *Then, for every point* $(p, q) \in N \times M$ *there exists an open neighbourhood U of* q *in M and* 2m *independent 1-forms* $\alpha_1, \ldots, \alpha_{2m}$ *on U*, *such that:*

$$
(3.4) \begin{cases} \pi_U^* \alpha_j \circ J = \pi_U^* \alpha_{m+j}, \qquad \pi_U^* \alpha_{m+j} \circ J = -\pi_U^* \alpha_j \quad j \in \{1, \dots, m\} \\ d(\pi_U^* \alpha_i) = -\frac{1}{2} \pi_U^* \alpha_i \wedge \omega, \quad (\pi_U^* \alpha_i)(B) = 0 \qquad i \in \{1, \dots, 2m\} \end{cases}
$$

where $\pi_{II}: N \times U \longrightarrow U$ is the projection onto the second factor and ω and B are the Lee 1-form and the Lee vector field respectively of $N \times M$.

PROOF. If $u = (p, q)$ is a point of the product manifold $V = N \times M$ then, using proposition 3.1, we deduce that there exists an open neighbourhood $U' = (a, b) \times V$ of *q*, a positive function σ and a nowhere vanishing vector field E on (a, b) such that

(3.5)
$$
d(\ln \sigma) = -2c\eta_M \quad , \quad \xi_M = E,
$$

and the almost contact structure $(\varphi_M, \xi_M, \eta_M, g_M)$ on *U'* is given by (3.1), where (V, J', G) is a 2m-dimensional Kählerian manifold and (a, b) is an open interval, $-\infty \le a < b \le \infty$.

Suppose that $q = (l, v)$ with $l \in L$ and $v \in V$. Since (V, J', G) is a Kählerian manifold there exists a coordinate neighbourhood W of v in V, with coordinates (x_1, \ldots, x_{2m}) , such that:

(3.6)
$$
J' \frac{\partial}{\partial x^i} = -\frac{\partial}{\partial x^{m+i}} , \quad J' \frac{\partial}{\partial x^{m+i}} = \frac{\partial}{\partial x^i}
$$

for $i \in \{1, ..., m\}$.

Let U be the open neighbourhood of q in M given by $U = (a, b) \times W$. From (3.1) , (3.5) and using proposition 3.2, we have that:

(3.7)
$$
\omega = \pi_U^* \left(d(ln \sigma) \right) , B = -2c \xi_M.
$$

Now, define on U the 1-forms α_i by

$$
\alpha_i = \frac{\sqrt{\sigma}}{c} dx^i
$$

 $i \in \{1, ..., 2m\}$. Then, from (3.6), (3.7) and (3.8), we obtain (3.4). \Box

The above results suggests us to consider the following particular class of l.c.K. structure:

DEFINITION 3.1. *Let* (V, J, g) be a $(2n + 2m)$ -dimensional *l.c.K. manifold with Lee form* ω *and Lee vector field B, and let* $\alpha_1, \ldots, \alpha_{2m}$ be *independent 1-forms on V, with* $m \geq 0$. We say that $(J, g, \alpha_1, \ldots, \alpha_{2m})$ is *a m-hyperbolic locally conformal Kahler (m-hyperbolic l.c.K.) structure on V* if

(3.9)
$$
\alpha_j \circ J = \alpha_{m+j} \quad \alpha_{m+j} \circ J = -\alpha_j \quad j \in \{1, ..., m\}
$$

$$
d\alpha_i = -\frac{1}{2}(\alpha_i \wedge \omega) \quad i \in \{1, 2, ..., 2m\}
$$

$$
\alpha_i(B) = 0 \quad i \in \{1, 2, ..., 2m\}.
$$

REMARK. If $(N, \varphi_N, \xi_N, \eta_N, g_N)$ is a c-sasakian manifold and $(M,\varphi_M,\xi_M,\eta_M,g_M)$ is a $(2m+1)$ -dimensional c-kenmotsu manifold, with $c \in \mathbb{R}$, $c \neq 0$, then, from proposition 3.3, we deduce that for every point $(p, q) \in N \times M$, there exists an open neighbourhood U of q in M and 2m 1-forms $\alpha_1, \ldots, \alpha_{2m}$ on U, such that $(J, g, \pi_U^* \alpha_1, \ldots, \pi_U^* \alpha_{2m})$ is a mhyperbolic l.c.K. structure on $N \times U$, where (J, g) is the l.c.K. structure given by (3.2) on the manifold $N \times M$ and $\pi_U : N \times U \longrightarrow U$ is the projection onto the second factor:

Now, let H_c^{2m+1} be the $(2m + 1)$ -dimensional hyperbolic space. Denote by $\alpha_1, \ldots, \alpha_{2m}$ the 1-forms on H_c^{2m+1} given by (2.11) and by $(\varphi_{H^{2m+1}}, \xi_{H^{2m+1}}, \eta_{H^{2m+1}}, g_{H^{2m+1}})$ the c-kenmotsu structure on H_c^{2m+1} given by (2.13). Then, if N is a c-sasakian manifold and $\pi_{H^{2m+1}}$: $N \times H_c^{2m+1} \longrightarrow H_c^{2m+1}$ is the projection onto the second factor, we obtain that

COROLLARY 3.1. *The almost Hermitian structure (J,g) given by* (3.2) *onto the product manifold* $N \times H_c^{2m+1}$ *is l.c.K. with Lee form*

$$
\omega = -2c\pi_{H_c^{2m+1}}^*\eta_{H_c^{2m+1}}.
$$

Moreover, $(J, g, \pi^*_{H_c^{2m+1}}\alpha_1, \ldots, \pi^*_{H_c^{2m+1}}\alpha_{2m})$ *is a m-hyperbolic l.c.K. structure on* $N \times H_c^{2m+1}$ *and we have that*

(3.10)
$$
\nabla \omega = 2c^2 \sum_{j=1}^{2m} (\pi_{H_c^2 m + 1}^* \alpha_j) \otimes (\pi_{H_c^2 m + 1}^* \alpha_j)
$$

$$
\nabla \pi_{H_c^2 m + 1}^* \alpha_i = -\frac{1}{2} (\pi_{H_c^2 m + 1}^* \alpha_i) \otimes \omega
$$

for $i \in \{1, \ldots, 2m\}$, where ∇ *is the Levi-Civita connection of the Riemannian metric g.*

PROOF. The first part of this corollary follows from proposition 3.2.

Let *B* be the Lee vector field of the product manifold $N \times H_c^{2m+1}$. Then, using (3.2) and proposition 3.2 we have that

$$
(3.11) \t\t B = -2cE_{2m+1}
$$

where E_{2m+1} is the vector field on H_c^{2m+1} given by (2.10).

Therefore, from (2.11), (2.13), (3.2) and (3.11) we obtain that $(J, g, \pi_{H_c^{2m+1}}^* \alpha_1, \ldots, \pi_{H_c^{2m+1}}^* \alpha_{2m})$ is a *m*-hyperbolic l.c.K. structure on $N \times H_c^{2m+1}$
Finally using (2.12) (2.13) and (3.2), we deduce (3.10).

Finally, using (2.12) , (2.13) and (3.2) , we deduce (3.10) .

REMARK. In proposition 3.1 we described the local structure of a c-kenmotsu manifold. It is not difficult to prove that in the particular

case of the c-kenmotsu manifold $(H_c^{2m+1}, \varphi_{H_c^{2m+1}}, \xi_{H_c^{2m+1}}, \eta_{H_c^{2m+1}}, g_{H_c^{2m+1}})$ such a proposition is globally true. In fact, $H_c^{2m+1} = \mathbb{R}^{2m} \times (0, \infty)$ and thus it is sufficient to take in (3.1) , (J', G) the usual Kählerian structure on \mathbb{R}^{2m} and

(3.12)
$$
\sigma = \frac{1}{(x_{2m+1})^2} , E = (cx_{2m+1}) \frac{\partial}{\partial x_{2m+1}}
$$

where x_{2m+1} is the coordinate on the interval $(0, \infty)$. Consequently, from (2.11), (3.8) and (3.12), we also deduce that $(J, g, \pi_{H^{2m+1}}^*\alpha_1, \ldots)$ \ldots , $\pi_{H^{2m+1}}^{*}\alpha_{2m}$) is a m-hyperbolic l.c.K. structure on the product manifold $N \times H_c^{2m+1}$.

Now, denote by N_i $(i = 1, 2, 3)$ the following $(2n - 1)$ -dimensional c-sasakian manifolds of constant φ -sectional curvature k (see proposition 2.2),

$$
N_1 = S^{2n-1}(c, k)
$$
, $N_2 = \mathbb{R}^{2n-1}(c)$, $N_3 = (\mathbb{R} \times CD^{n-1})(c, k)$.

Let (J_i, g_i) be the almost Hermitian structure on $N_i \times H_c^{2m+1}$ (i=1,2,3) given by (3.2). Then, from corollary 3.1, we deduce that

COROLLARY 3.2. *The almost Hermitian structure* (J_i, g_i) onto the *product manifold* $N_i \times H_c^{2m+1}$ $(i = 1, 2, 3)$ *is l.c.K. with Lee form*

$$
\omega = -2c\pi_{H_c^{2m+1}}^*\eta_{H_c^{2m+1}}.
$$

Moreover, $(J_i, g_i, \pi_{H_c^{2m+1}}^* \alpha_1, \ldots, \pi_{H_c^{2m+1}}^* \alpha_{2m})$ *is a m-hyperbolic l.c.K. structure on* $N_i \times H_c^{2m+1}$ *satisfying* (3.10).

4 - Sasakian m-hyperbolic locally conformal Kähler manifolds

The results obtained in corollary 3.1 suggest us to introduce the following definition.

DEFINITION 4.1. *Let* $(J, g, \alpha_1, \ldots, \alpha_{2m})$ *be a m-hyperbolic l.c.K. structure on a manifold* V^{2n+2m} *of dimension* $(2n+2m)$ *, such that* α_1, \ldots \ldots , α_{2m} are unit 1-forms. We say that V^{2n+2m} is a sasakian m-hyper*bolic locally conformal Kähler (sasakian m-hyperbolic l.c.K.) manifold if*

(4.1)
$$
\begin{cases} \nabla \omega = \frac{l^2}{2} \sum_{j=1}^{2m} \alpha_j \otimes \alpha_j \\ \nabla \alpha_i = -\frac{1}{2} \alpha_i \otimes \omega \end{cases}
$$

for $i \in \{1, \ldots, 2m\}$, where ω *is the Lee form of* V^{2n+2m} , ∇ *is the Levi-Civita connection of the metric g and* $l = ||\omega|| \neq 0$ *at every point.*

If $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ is a sasakian m-hyperbolic l.c.K. manifold then V^{2n+2m} is said to have a *sasakian m-hyperbolic l.c.K. structure* $(J, g, \alpha_1, \ldots, \alpha_{2m}).$

We remark that the above definition generalizes the notion of generalized Hopf manifold. In fact, a generalized Hopf manifold is a sasakian 0-hyperbolic l.c.K. manifold.

In this section, our intention is to obtain information about the structure of the sasakian m-hyperbolic l.c.K. manifolds and we begin by introducing some of their properties.

Let $(V^{2n+2m}, J, g, \alpha_1, ..., \alpha_{2m})$ be a sasakian m-hyperbolic l.c.K. manifold and denote by A_i , with $1 \leq i \leq 2m$, the vector fields on V^{2n+2m} given by

$$
(4.2) \qquad \qquad \alpha_i(X) = g(X, A_i)
$$

for all $X \in \mathfrak{X}(V^{2n+2m})$. From (3.9) and (4.2), we obtain that

$$
(4.3) \t\t JA_i = -A_{m+i} \t, JA_{m+i} = A_i
$$

for $i \in \{1, \ldots, m\}$. Moreover,

PROPOSITION 4.1. *On a sasakian m-hyperbolic l.c.K. manifold* V^{2n+2m} the vector fields A_i and A_j , with $i \neq j$, are orthogonal.

PROOF. If B is the Lee vector field of V^{2n+2m} then, from (3.9) and (4.2), we have that

 $(\nabla_{A_i}\alpha_i)B = -(\nabla_{A_i}\omega)A_i$

and thus, using (4.1), we deduce that

(4.4)
$$
-\left(\frac{l^2}{2}\right) = -\left(\frac{l^2}{2}\right) \sum_{\substack{k=1\\k\neq i}}^{2m} (\alpha_k(A_i))^2 - \left(\frac{l^2}{2}\right)
$$

Consequently, from (4.4) and since $l \neq 0$ at every point, we obtain that $\alpha_i(A_i) = 0$.

This completes the proof. We also have,

PROPOSITION 4.2. *On a sasakian m-hyperbolic* l.c.K. *manifold the Lee 1-form has constant norm.*

PROOF. Let $(V^{2n+2m}, J, g, \alpha_1, ..., \alpha_{2m})$ be a sasakian m-hyperbolic l.c.K. manifold with Lee 1-form ω and Lee vector field B and let X be a vector field on V^{2n+2m} . Denote by $l = ||\omega||$. Then, using (4.1) and (3.9), we get

$$
(\nabla_X\omega)B=0\,.
$$

On the other hand

$$
(\nabla_X \omega)B = Idl(X)
$$

and thus, since $l \neq 0$ at every point, we have that $dl(X) = 0$.

Therefore, we deduce that $dl = 0$ which implies that l is constant. \Box Let $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ be a sasakian m-hyperbolic l.c.K. manifold with Lee vector field B and Lee form ω . Then, in the rest of this paper, we shall use the following notation

(4.5)
$$
l = ||\omega||
$$
, $u = \frac{\omega}{l}$, $U = \frac{B}{l}$, $v = -u \circ J$, $V = JU$.

From (3.9) , (4.3) and (4.5) we obtain that

(4.6)
$$
u(V) = v(U) = u(A_i) = v(A_i) = 0
$$

$$
\alpha_i(U) = \alpha_i(V) = 0
$$

for $i \in \{1, ..., 2m\}$.

Moreover, if Ω is the Kähler 2-form of V^{2n+2m} then, using that Ω is nondegenerate and (4.6), we have that

PROPOSITION 4.3. *v2n+2m On a sasakian m-hyperbolic l.c.K. manifold*

$$
\Omega = \psi + 2(\sum_{j=1}^{m} (\alpha_j \wedge \alpha_{m+j}) + v \wedge u)
$$

where ψ is a 2-form of rank $(2n - 2)$ such that:

$$
\psi^{n-1} \wedge u \wedge v \wedge \alpha_1 \wedge \ldots \wedge \alpha_{2m} \neq 0
$$

$$
\psi(X, A_i) = \psi(X, U) = \psi(X, V) = 0
$$

for $i \in \{1, ..., 2m\}$.

Next, we give some characterizations of sasakian m -hyperbolic l.c.K. manifold.

PROPOSITION 4.4. *Let* $(J, g, \alpha_1, \ldots, \alpha_{2m})$ *be a m-hyperbolic l.c.K.* $structure on a manifold (2n + 2m)$ -dimensional V^{2n+2m} such that α_1, \ldots ..., α_{2m} are unit 1-forms and the Lee form $\omega \neq 0$ at every point. Then, $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ *is a sasakian m-hyperbolic l.c.K. manifold if and only if* $l = ||\omega||$ *is constant and one of the following relations holds*

(i)
$$
\nabla u = \frac{l}{2} \sum_{j=1}^{2m} \alpha_j \otimes \alpha_j \qquad \nabla \alpha_i = -\frac{l}{2} \alpha_i \otimes u
$$

(ii)
$$
\nabla U = \frac{l}{2} \sum_{j=1}^{2m} \alpha_j \otimes A_j \qquad \nabla A_i = -\frac{l}{2} \alpha_i \otimes U
$$

(iii)
$$
\nabla V = -\frac{l}{2} \Big[J + v \otimes U - u \otimes V +
$$

$$
+ \sum_{j=1}^{m} (\alpha_j \otimes A_{m+j} - \alpha_{m+j} \otimes A_j)) \nabla A_i = -\frac{l}{2} \alpha_i \otimes U
$$

(iv)
$$
\nabla v = \frac{l}{2} \psi \qquad \nabla \alpha_i = -\frac{l}{2} \alpha_i \otimes u
$$

for $i \in \{1, ..., 2m\}$.

PROOF.

The proposition follows from (2.5) , (4.1) , (4.3) and using proposition 4.2 and the relations:

$$
\nabla u = \frac{1}{l} \nabla \omega \quad , \quad \nabla_X V = (\nabla_X J)U + J(\nabla_X U).
$$

Now, we deduce another result for a sasakian m -hyperbolic l.c.K. manifold V^{2n+2m} . Denote by *L* the Lie derivate on V^{2n+2m} .

PROPOSITION 4.5. Let $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ be a sasakian *m-hyperbolic l.c.K. manifold. Then,* V *is* a *Killing vector field for the metric g. Moreover, the following relations hold*

(4.7)
$$
[U, V] = 0, \quad [V, A_i] = 0, \quad [A_i, A_j] = 0, \quad [U, A_i] = -\frac{l}{2}A_i
$$

(4.8)
$$
L_U J = 0
$$
, $L_V J = 0$, $L_{A_k} J = -\frac{l}{2} (v \otimes A_k - u \otimes A_{m+k})$

(4.9)
$$
L_{A_{m+k}}J = -\frac{l}{2}(v \otimes A_{m+k} + u \otimes A_k)
$$

(4.10)
$$
L_U v = 0
$$
, $L_{A_i} v = 0$, $dv = \frac{l}{2} \psi$,

for $i, j \in \{1, ..., 2m\}$ *and* $k \in \{1, ..., m\}$.

PROOF. Using proposition 4.4 and since ∇ is a torsionless linear connection on V^{2n+2m} we obtain (4.7).

Let X, Y be vector fields on V^{2n+2m} . Then, we have that

$$
2dv(X,Y)=(\nabla_Xv)Y-(\nabla_Yv)X
$$

and thus, from proposition 4.4, we deduce that

(4.11)
$$
dv(X,Y) = \frac{l}{2}\psi(X,Y).
$$

On the other hand, by the classical formula of the Levi-Civita connection [13] we have that,

$$
(L_Vg)(X,Y) = 2g(\nabla_X V, Y) - 2dv(X,Y)
$$

and therefore, using (4.11) and proposition 4.4, we obtain that V is a Killing vector field.

Now, from (2.5), (4.3), proposition 4.4 and from the fact that

$$
(L_XJ)(Y) = (\nabla_X J)(Y) - \nabla_{JY} X + J(\nabla_Y X)
$$

for all $X, Y \in \mathfrak{X}(V^{2n+2m})$, we deduce (4.8) and (4.9).

Finally, using (4.11), (4.6), proposition 4.3 and the relations

$$
L_U v = d(i_U v) + i_U(dv) \quad , \quad L_{A_j} v = d(i_{A_j} v) + i_{A_j}(dv)
$$

with $1 \le j \le 2m$, we prove that $L_U v = L_{A_i} v = 0, 1 \le j \le 2m$. Next, using proposition 4.5, we obtain an interesting result

COROLLARY 4.1. *A compact manifold cannot admit a sasakian* m -hyperbolic *l.c.K.* structure with $m \geq 1$.

PROOF. Let $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ be a compact sasakian mhyperbolic l.c.K. manifold, with $m \geq 1$. Then, from proposition 4.3, we deduce that the $(2n + 2m)$ -form γ on V^{2n+2m} given by

$$
\gamma = \alpha_1 \wedge \ldots \wedge \alpha_{2m} \wedge u \wedge v \wedge \psi^{n-1}
$$

is a volume element.

On the other hand, using (3.9) and (4.10), we obtain that

$$
\gamma = d\left(\left(\frac{1}{ml}\right)\alpha_1 \wedge \ldots \wedge \alpha_{2m} \wedge v \wedge \psi^{n-1}\right)
$$

which, in view of Stokes' theorem, is a contradiction. \Box

REMARK. It is well known that the compact Hopf manifolds admit a l.c.K. structure with parallel Lee form (see (24] and [25]), i.e., the compact Hopf manifolds are compact sasakian 0-hyperbolic l.c.K. manifolds (other examples of compact sasakian 0-hyperbolic l.c.K. manifolds are obtained in [6]). Consequently, corollary 4.1 is not true for $m = 0$.

5 - **The curvature tensor on a sasakian m-hyperbolic** 1.c.K. ma**nifold**

In this section, we shall study the Riemann curvature tensor of a sasakian m-hyperbolic l.c.K. manifold.

Let $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ be a $(2n+2m)$ -dimensional sasakian m-hyperbolic l.c.K. manifold and let A_i be as in (4.2) and l, u, U, v and V as in (4.5). Then, if R is the Riemann curvature tensor of V^{2n+2m} , we have,

PROPOSITION 5.1. *On a sasakian m-hyperbolic l.c.K. manifold* **y2n+2m**

(5.1)
$$
R(X,Y)U = -\frac{l^2}{2}\sum_{i=1}^{2m}(\alpha_i \wedge u)(X,Y)A_i
$$

(5.2)
$$
R(X,U)Y = \left(\frac{l}{2}\right)^2 \sum_{i=1}^{2m} (\alpha_i(X)\alpha_i(Y)U - \alpha_i(X)u(Y)A_i)
$$

(5.3)
$$
R(X,Y)A_i = \frac{l^2}{2} \left\{ \sum_{j=1}^{2m} (\alpha_i \wedge \alpha_j)(X,Y)A_j + (\alpha_i \wedge u)(X,Y)U \right\}
$$

(5.4)
$$
R(X, A_i)Y = -\left(\frac{l}{2}\right)^2 \left\{ u(X)\alpha_i(Y)U - u(X)u(Y)A_i + \sum_{j=1}^{2m} (\alpha_j(X)\alpha_i(Y)A_j - \alpha_j(X)\alpha_j(Y)A_i) \right\}
$$

where $i \in \{1, ..., 2m\}$ *and* $X, Y \in \mathfrak{X}(V^{2n+2m})$.

PROOF. From proposition 4.4 we deduce that

$$
R(X,Y)U = \frac{l}{2} \sum_{i=1}^{2m} (2d\alpha_i(X,Y)A_i + \alpha_i(Y)\nabla_X A_i - \alpha_i(X)\nabla_Y A_i) =
$$

\n
$$
= l \sum_{i=1}^{2m} d\alpha_i(X,Y)A_i
$$

\n
$$
R(X,Y)A_i = -\frac{l}{2} \{2d\alpha_i(X,Y)U + \alpha_i(Y)\nabla_X U - \alpha_i(X)\nabla_Y U\}
$$

\n
$$
= -\frac{l}{2} \{2d\alpha_i(X,Y)U - l \sum_{j=1}^{2m} (\alpha_i \wedge \alpha_j)(X,Y)A_j\}
$$

for all $X, Y \in \mathfrak{X}(V^{2n+2m})$.

Thus, using (3.9) , we obtain (5.1) and (5.3) .

(5.2) and (5.4) follow from (5.1) and (5.3) respectively and using the relation

$$
(5.5) \qquad \qquad g(R(X,Y)Z,W) = -g(R(Z,W)Y,X)
$$

for all $X, Y, Z, W \in X(V^{2n+2m})$. Also, we have

PROPOSITION 5.2. *On a sasakian m-hyperbolic l.c.K. manifold* V^{2n+2m}

(5.6)
$$
R(X,Y)V = \left(\frac{l}{2}\right)^2 \{-v(X)Y + v(Y)X + 2(v \wedge u)(X,Y)U + 2\sum_{i=1}^{2m} (v \wedge \alpha_i)(X,Y)A_i\}
$$

(5.7)
$$
R(X,V)Y = \left(\frac{l}{2}\right)^2 \{v(Y)X - u(X)v(Y)U + 2\sum_{i=1}^{2m} \alpha_i(X)u(Y) + \sum_{i=1}^{2m} \alpha_i(X)u
$$

for all X, Y $\in \mathfrak{X}(V^{2n+2m})$.

PROOF. Using propositions 4.4 and 4.5 and since the 1-form *u* is closed we obtain that

$$
R(X,Y)V =
$$

\n
$$
= -\frac{l}{2}\{(\nabla_X J)Y - (\nabla_Y J)X + l\psi(X,Y)U - l\sum_{j=1}^{2m} (v \wedge \alpha_j)(X,Y)A_j +
$$

\n
$$
+ u(X)(-\frac{l}{2}(JY + v(Y)U - u(Y)V + \sum_{i=1}^{m} (\alpha_i(Y)A_{m+i} - \alpha_{m+i}(Y)A_i))) +
$$

\n
$$
- u(Y)(-\frac{l}{2}(JX + v(X)U - u(X)V + \sum_{i=1}^{m} (\alpha_i(X)A_{m+i} - \alpha_{m+i}(X)A_i))) +
$$

\n
$$
+ \sum_{i=1}^{m} (2d\alpha_i(X,Y)A_{m+i} - 2d\alpha_{m+i}(X,Y)A_i - l\alpha_i(Y)\alpha_{m+i}(X)U +
$$

\n
$$
+ l\alpha_{m+i}(Y)\alpha_i(X)U)\}.
$$

 (5.7) follows from (5.5) and (5.6) .

Let *x* be a point of V^{2n+2m} . Denote by K_{XY} and by $\rho(X, X)$ the sectional curvature for the plane section in T_xM with orthonormal basis $\{X, Y\}$ and the Ricci curvature in the direction X respectively. Then, by using (5.1) , (5.3) and (5.6) , we obtain

COROLLARY 5.1. *On a sasakian m-hyperbolic l.c.K. manifold* V^{2n+2m}

$$
K_{XU} = -\left(\frac{l}{2}\right)^2 \sum_{i=1}^{2m} (\alpha_i(X))^2,
$$

\n
$$
K_{XA_i} = -\left(\frac{l}{2}\right)^2 \{(u(X))^2 + \sum_{j=1, j\neq i}^{2m} (\alpha_j(X))^2\}
$$

\n
$$
K_{UA_i} = K_{A_iA_j} = -\left(\frac{l}{2}\right)^2
$$

\n
$$
\rho(U, U) = \rho(A_i, A_i) = -2m\left(\frac{l}{2}\right)^2
$$

for $i, j \in \{1, \ldots, 2m\}$.

COROLLARY 5.2. *On a sasakian m-hyperbolic l.c.K. manifold* V^{2n+2m}

$$
K_{XV} = \left(\frac{l}{2}\right)^2 \{1 - (u(X))^2 - \sum_{j=1}^{2m} (\alpha_i(X))^2\}
$$

\n
$$
K_{A_iV} = K_{UV} = 0
$$

\n
$$
\rho(V, V) = 2(n-1)\left(\frac{l}{2}\right)^2
$$

for $i \in \{1, \ldots, 2m\}$.

From proposition 5.1, we have

COROLLARY 5.3. *On a sasakian m-hyperbolic l.c.K. manifold* V^{2n+2m}

$$
R(X,Y)Z = R(X',Y')Z' + \frac{l^2}{2}\left\{\sum_{i=1}^m(\alpha_i \wedge u)(X,Y)(\alpha_i(Z)U - u(Z)A_i) + \right.
$$

$$
-\sum_{i,j=1}^{2m}\alpha_j(Z)(\alpha_i \wedge \alpha_j)(X,Y)A_i\}
$$

for all $X, Y, Z \in \mathfrak{X}(V^{2n+2m})$, where X' , Y' and Z' are the orthogonal projections of X, Y and Z respectively onto the tangent planes of the *leaves of the foliation* \mathfrak{F} *given by* $u = 0$ *,* $\alpha_i = 0$ *, with* $1 \leq i \leq 2m$.

Let \overline{R} be the curvature tensor of the Weyl connection $\overline{\nabla}$ given in (2.3). Then,

PROPOSITION 5.3. V^{2n+2m} *On a sasakian m-hyperbolic l.c.K. manifold*

(5.8)
$$
\overline{R}(X,Y)Z = R(X',Y')Z' - \frac{l^2}{4}\{g(Y',Z')X' - g(X',Z')Y'\},
$$

for all X, Y, Z $\in \mathfrak{X}(V^{2n+2m})$, *where X', Y' and Z' are the orthogonal* projections of X, Y and Z respectively onto the tangent planes of the *leaves of the foliation* \mathfrak{F} *given by* $u = 0$ *,* $\alpha_i = 0$ *, with* $1 \leq i \leq 2m$.

PROOF. Using proposition 4.4 and a well known relation (see [9], pg. 115) we deduce

$$
\overline{R}(X,Y)Z = R(X,Y)Z + \frac{l^2}{4} \left\{ \sum_{i=1}^{2m} (\alpha_i(Y)\alpha_i(Z)X - \alpha_i(X)\alpha_i(Z)Y +
$$

+ $g(Y,Z)\alpha_i(X)A_i - g(X,Z)\alpha_i(Y)A_i \right\} +$
+ $(u(X)g(Y,Z) - u(Y)g(X,Z))U +$
+ $(u(Y)u(Z)X - u(X)u(Z)Y) - (g(Y,Z)X - g(X,Z)Y) \}$

for all X, Y, Z $\in \mathfrak{X}(V^{2n+2m})$, and thus the result follows from corollary $5.3.$

6 – The universal covering space of a sasakian m-hyperbolic l.c.K. manifold

In this section we shall study the universal covering space of a sasakian m-hyperbolic l.c.K. manifold.

Let $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ be a sasakian m-hyperbolic l.c.K. manifold and let A_i be $(1 \le i \le 2m)$ as in (4.2) and *l*, *u*, *U*, *v*, *V* as in (4.5). Denote by $c=-\frac{l}{2}$ and by $\mathfrak F$ the foliation given by $u=0$, $\alpha_i=0$,

 $1 \leq i \leq 2m$. *f* defines on V^{2n+2m} a foliation of dimension $(2n-1)$, which we call the *canonical foliation* of V^{2n+2m} . Using (4.7), proposition 4.4 and corollary 5.1, we deduce

PROPOSITION 6.1. *The canonical foliation* $\mathfrak F$ *of a sasakian mhyperbolic l.c.K. manifold is totally geodesic with integrable normal bun*dle. Moreover, if \mathfrak{F}^{\perp} *is the foliation determined by the normal bundle of* $\mathfrak{F},$ then \mathfrak{F}^{\perp} also is totally geodesic and its leaves are of constant sectional $curvature -c^2$.

Let $i : N \longrightarrow V^{2n+2m}$ be the inmersion of a generic leaf *N* of the canonical foliation \mathfrak{F} . We define an almost contact metric structure $(\varphi_N,\xi_N,\eta_N,g_N)$ on *N* by

(6.1)
$$
\varphi_N X = JX + (i^*v)(X)U|_N
$$
, $\xi_N = -V|_N$, $\eta_N = -(i^*v)$, $g_N = i^*g$

for all $X \in \mathfrak{X}(N)$. Then, we have

PROPOSITION 6.2. *The almost contact metric structure* $(\varphi_N, \xi_N,$ η_N, q_N) on N is c-sasakian.

PROOF. Let X, Y be vector fields on N and N_J , N_{φ_N} and L the Nijenhuis tensors of *J* and φ_N and the Lie derivate on V^{2n+2m} respectively. Then,

$$
N_{\varphi_N}(X,Y) + 2d\eta_N(X,Y)\xi_N =
$$

= $N_J(X,Y) - v(Y)\{(L_UJ)X + (L_Uv)(X)U\} +$
+ $v(X)\{(L_UJ)Y + (L_Uv)(Y)U\} + 2(dv(JX,Y) + dv(X,JY))U$

which, from (2.6), (4.8) and (4.10), implies that the structure $(\varphi_N, \xi_N, \eta_N)$ is normal, i.e., $N_{\varphi_N} + 2d\eta_N \otimes \xi_N = 0$.

On the other hand, if ϕ_N and Ω denote the fundamental 2-form of *N* and the Kähler 2-form of V^{2n+2m} respectively then, using (6.1), we obtain that

$$
\phi_N = i^*\Omega = i^*\bigg(\psi + 2\sum_{i=1}^m(\alpha_i\wedge\alpha_{m+i}) + 2v\wedge u\bigg) = i^*\psi.
$$

Thus, from (4.10), we deduce that

$$
d\eta_N=c\phi_N.
$$

Consequently, $(\varphi_N,\xi_N,\eta_N,g_N)$ is a c-sasakian structure on N. \Box

Now, consider the inmersion $j: M \longrightarrow V^{2n+2m}$ of a generic leaf M of the foliation \mathfrak{F}^{\perp} on V^{2n+2m} . We define an almost contact metric structure $(\varphi_M, \xi_M, \eta_M, g_M)$ on M by

(6.2)
$$
\varphi_M(Y) = JY + (j^*u)(Y)V|_M, \quad \xi_M = U|_M,
$$

$$
\eta_M = (j^*u), \quad g_M = j^*g,
$$

for all $Y \in \mathfrak{X}(M)$. Then, we have

PROPOSITION 6.3. *The almost contact metric structure* $(\varphi_M, \xi_M,$ (η_M, g_M) on M is c-kenmotsu.

PROOF. Let *X*, *Y* be vector fields on *M* and N_{φ_M} the Nijenhuis tensor of φ_M . Then,

$$
N_{\varphi_M}(X,Y) = N_J(X,Y) + u(Y)\{(L_VJ)(X) - (L_Vu)(X)V\} +
$$

- u(X)\{(L_VJ)(Y) - (L_Vu)(Y)V\}

and thus, using (4.8), (2.6) and since $L_V u = 0$, we obtain that $N_{\varphi_M}(X, Y) = 0.$

On the other hand, it is clear that the 1-form η_M is closed. Moreover, if ϕ_M is the fundamental 2-form of *M* then, from (6.2), we deduce that $\phi_M = j^*\Omega$, which, using (2.6), implies that $d\phi_M = \phi_M \wedge j^*\omega$, i.e.,

$$
d\phi_M=-2c\eta_M\wedge\phi_M.
$$

This completes the proof. \Box

Let *N* be a leaf of the canonical foliation \mathfrak{F} and $(\varphi_N, \xi_N, \eta_N, g_N)$ the induced c-sasakian structure on N.

Suppose that N is of constant φ_N -sectional curvature k. Then, from (6.1) and using a theorem of Ogiue [17] and the fact that the foliation $\mathfrak F$ is totally geodesic, we have that

$$
R(X,Y)Z =
$$

= $\frac{1}{4}(k+3c^2)(g(Y,Z)X - g(X,Z)Y)+$
+ $\frac{1}{4}(k-c^2)\{v(X)v(Z)Y - v(Y)v(Z)X + (g(X,Z)v(Y) +$
- $g(Y,Z)v(X))V + g(JY,Z)JX - g(JX,Z)JY +$
+ $2g(X,JY)JZ + (v(X)g(JY,Z) - v(Y)g(JX,Z) +$
+ $2v(Z)g(X,JY))U\}$

for all X, Y, $Z \in \mathfrak{X}(N)$, where R is the Riemann curvature tensor of *V2n+2m.*

Now, we give the following definition.

DEFINITION 6.1. *A sasakian m-hyperbolic l.c.K. manifold is called* **sasakian (k) m-hyperbolic l.c.K.** $(k \in \mathbb{R})$ if every leaf N of the canon*ical foliation* \mathfrak{F} *is of constant* φ_N -sectional curvature k, where $(\varphi_N, \xi_N, \eta_N,$ g_N) is the induced c-sasakian structure on N given by (6.1) .

If $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ is a sasakian(k) m-hyperbolic l.c.K. manifold then V^{2n+2m} is said to have a *sasakian(k)* m-hyperbolic l.c.K. *structure* $(J, g, \alpha_1, \ldots, \alpha_{2m}).$

Let V^{2n+2m} be a sasakian m-hyperbolic l.c.K. manifold. Denote by \overline{R} the curvature tensor of the Weyl connection $\overline{\nabla}$ on V^{2n+2m} given by (2.3).

From () and using corollary 5.3 and proposition 5.3, we obtain

COROLLARY 6.1. *If* $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ *is a sasakian mhyperbolic l. c.K. manifold then, the following conditions are equivalent:*

i) $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ is a sasakian(k) m-hyperbolic l.c.K. man*ifold.*

ii) For all X, Y, Z
$$
\in \mathfrak{X}(V^{2n+2m})
$$

\n
$$
R(X,Y)Z =
$$
\n
$$
= \frac{1}{4}(k+3c^2)(g(Y',Z')X' - g(X',Z')Y') +
$$
\n
$$
+ \frac{1}{4}(k-c^2)\{v(X)v(Z)Y' - v(Y)v(Z)X' + (g(X',Z')v(Y) +
$$
\n
$$
- g(Y',Z')v(X)V + g(JY',Z')JX' - g(JX',Z')JY' +
$$
\n
$$
+ 2g(X',JY')JZ' + (v(X)g(JY',Z') - v(Y)g(JX',Z') +
$$
\n
$$
+ 2v(Z)g(X',JY'))U\} + \frac{l^2}{2}\{\sum_{i=1}^m (\alpha_i \wedge u)(X,Y)(\alpha_i(Z)U +
$$
\n
$$
- u(Z)A_i) - \sum_{i,j=1}^2 \alpha_j(Z)(\alpha_i \wedge \alpha_j)(X,Y)A_i\}
$$

where X', Y' *and Z' are the orthogonal projections of X, Y and Z respectively onto the tangent planes of the leaves of the canonical foliation.*

iii) *For all X, Y, Z* $\in \mathfrak{X}(V^{2n+2m})$

$$
\overline{R}(X,Y)Z =
$$
\n
$$
= \frac{1}{4}(k-c^2)\{g(Y',Z')X' - g(X',Z')Y' + v(X)v(Z)Y' +
$$
\n(6.5)
$$
-v(Y)v(Z)X' + (g(X',Z')v(Y) - g(Y',Z')v(X))V +
$$
\n
$$
+ g(JY',Z')JX' - g(JX',Z')JY' + 2g(X',JY')JZ' +
$$
\n
$$
+ (v(X)g(JY',Z') - v(Y)g(JX',Z') + 2v(Z)g(X',JY'))U\}
$$

where X', *Y' and Z' are the orthogonal projections of X, Y and Z respectively onto the tangent planes of the leaves of the canonical foliation.*

If $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ is a sasakian m-hyperbolic l.c.K. manifold then, every point $x \in V^{2n+2m}$ has an open neighbourhood U such that the structure $(J, e^{-\sigma}g)$ is Kähler on U and \overline{R} is the curvature tensor of the local metric $e^{-\sigma}g$, where $\sigma: U \longrightarrow \mathbb{R}$ is a real differentiable function on *U* (see section 2). Moreover, using (6.5) and proposition 5.3, we deduce

COROLLARY 6.2. Let V^{2n+2m} be a sasakian m-hyperbolic *l.c.K. manifold. Then, the following conditions are equivalent:*

- i) V^{2n+2m} *is a sasakian(c²)* m-hyperbolic *l.c.K. manifold.*
- ii) *The leaves of the canonical foliation are of constant sectional curva* $ture c²$.
- iii) *The local metrics* $e^{-\sigma}$ *a* are flat, *i.e.*, $\overline{R} = 0$.

Next, we introduce a definition which will be useful in the sequel.

Let *N*, *k* be a (2n-1)-dimensional manifold and a real number respectively and let $(H^{2m+1}, (ds^2)_c)$ be the $(2m+1)$ -dimensional hyperbolic space, with $c < 0$.

DEFINITION 6.2. *A distinguished sasakian m-hyperbolic(c) l.c.K. (respectively distinguished sasakian {k) m-hyperbolic(c) l.c.K.) structure on* $V^{2n+2m} = N \times H_c^{2m+1}$ *is a sasakian m-hyperbolic l.c.K. (respectively sasakian(k) m-hyperbolic l.c.K.) structure* (J, g, α_1, \ldots) \ldots , α_{2m}) *on* V^{2n+2m} *, such that:*

i) *The metric g is of the form*

$$
g=d\sigma^2+(ds^2)_c
$$

*where da*²*is a Riemann metric on N and,*

ii) *The Lee 1-form* ω *and the 1-forms* α_i , $1 \leq i \leq 2m$, *are given by*

$$
\omega = -2 \frac{dx_{2m+1}}{x_{2m+1}} , \ \ \alpha_i = \frac{dx_i}{cx_{2m+1}}
$$

where (x_1, \ldots, x_{2m+1}) *are the usual coordinates on* H_c^{2m+1} .

We have,

PROPOSITION 6.4. *If* $(J, g, \alpha_1, \ldots, \alpha_{2m})$ *is a distinguished sasakian* m -hyperbolic(c) *l.c.K.* structure on $V^{2n+2m} = N \times H_c^{2m+1}$, then the man*ifold N carries an induced c-sasakian structure* $(\varphi_N, \xi_N, \eta_N, g_N)$ and the *almost hermitian structure* (J, g) on V^{2n+2m} is given by (3.2) . Moreover, *if* $(J, g, \alpha_1, \ldots, \alpha_{2m})$ *is a distinguished sasakian*(k) *m-hyperbolic(c) l.c.K.* structure on V^{2n+2m} , then N is of constant φ_N -sectional curvature k.

PROOF. From definition 6.2, we obtain that

$$
g = d\sigma^2 + (ds^2)_c \quad , \quad U = (cx_{2m+1})\frac{\partial}{\partial x_{2m+1}} \quad , \quad A_i = (cx_{2m+1})\frac{\partial}{\partial x_i}
$$

for all $i \in \{1, \ldots, 2m\}$, where (x_1, \ldots, x_{2m+1}) are the usual coordinates on the hyperbolic space H_c^{2m+1} .

By using (4.6) and first and second relation of (4.7) and (4.10) we deduce that $\xi_N = -JU = -V$ and $\eta_N = u \circ J = -v$ define a vector field anda 1-form respectively on N.

Let *X* be a vector field on *N*. Then, $X = \overline{X} + v(X)V$ with $v(\overline{X}) = 0$. Define $\varphi_N X = J\overline{X}$.

From (4.9) and first and third relation of (4.8) we have that φ_N defines a $(1, 1)$ -tensor field on N.

Now, it is easy to check that $(\varphi_N,\xi_N,\eta_N,g_N = d\sigma^2)$ is an almost contact metric structure on N.

On the other hand, from definition 6.2, we deduce that the leaves of the canonical foliation of V^{2n+2m} are $N \times \{(x_1^0, \ldots, x_{2m+1}^0)\}$, with $(x_1^0, \ldots, x_{2m+1}^0) \in H_c^{2m+1}$. Thus, by proposition 6.2, we get a c-sasakian structure on each $N \times \{(x_1^0, \ldots, x_{2m+1}^0)\}, (x_1^0, \ldots, x_{2m+1}^0) \in H_c^{2m+1}$. In fact, if $(x_1^0, \ldots, x_{2m+1}^0) \in H_c^{2m+1}$ then, it is not difficult to check that the application $i_{(x_1^0,\ldots,x_{2m+1}^0)}$ of $N \times \{(x_1^0,\ldots,x_{2m+1}^0)\}$ into N given by $i_{(x_1^0,\ldots,x_{2m+1}^0)}(x,x_1^0,\ldots,x_{2m+1}^0) = x$ is an almost contact isometry.

This, in view of proposition 6.2 and definition 6.1, completes the $~\Box$

REMARK. Let $(N, \varphi_N, \xi_N, \eta_N, g_N)$ be a c-sasakian manifold. Then, using corollary 3.1, we obtain that the product manifold $N \times H_c^{2m+1}$ carries an induced distinguished sasakian m -hyperbolic (c) l.c.K. structure $(J, g, \alpha_1, \ldots, \alpha_{2m})$. Moreover, it is clear that if *N* is of constant φ_N -sectional curvature *k* then $(J, g, \alpha_1, \ldots, \alpha_{2m})$ is a distinguished sasakian(*k*) m-hyperbolic(c) l.c.K. structure on $N \times H_c^{2m+1}$. Therefore, the converse of proposition 6.4 is also true.

Using the above remark and corollary 6.2 we obtain

COROLLARY 6.3. *On the sasakian m-hyperbolic l.c.K. manifold* $S_{c2}^{2n-1} \times H_c^{2m+1}$ the local conformal Kähler metrics are flat.

Next, we shall describe the universal covering space of a sasakian m-hyperbolic l.c.K. manifold.

THEOREM 6.1. *The universal covering space of a* $(2n + 2m)$ dimensional complete sasakian m-hyperbolic *l.c.K. manifold* V^{2n+2m} with Lee form ω is a product space $\overline{V}^{2n+2m} = N \times H_c^{2m+1}$, where N is the *universal covering space of an arbitrary leaf of the canonical foliation of* V^{2n+2m} , $c = -\|\omega\|/2$ and H_c^{2m+1} *is the* $(2m + 1)$ -dimensional hyperbolic space. The lift of the sasakian m-hyperbolic l.c.K. structure to \overline{V}^{2n+2m} gives a distinguished sasakian m-hyperbolic(c) *l.c.K.* structure on \overline{V}^{2n+2m} . *Moreover, if the structure of* V^{2n+2m} *is a sasakian(k) m*-hyperbolic *l.c.K.* structure, then, considering the induced c-sasakian structure on N, we *have:*

- i) *If* $k > -3c^2$, *then N is almost contact isometric to* $S^{2n-1}(c, k)$;
- ii) If $k = -3c^2$, then N is almost contact isometric to $\mathbb{R}^{2n-1}(c)$;
- iii) *If* $k < -3c^2$, *then N is almost contact isometric to* $(\mathbb{R} \times CD^{n-1})(c, k)$.

PROOF. Let $(V^{2n+2m}, J, g, \alpha_1, \ldots, \alpha_{2m})$ be a $(2n+2m)$ -dimensional complete sasakian m-hyperbolic l.c.K. manifold and *u* the unit Lee form of V^{2n+2m} .

Denote by \bar{g} the induced metric on \bar{V}^{2n+2m} . Then, using proposition 6.1 and theorem A of [4], we deduce that $(\overline{V}^{2n+2m}, \overline{g})$ is the Riemannian product $N \times H_c^{2m+1}$, where N is the universal covering space of an arbitrary leaf of the canonical foliation $\mathfrak F$ and $c = -\frac{\|\omega\|}{2}$. Moreover, if $\mathfrak F^{\perp}$ is the foliation determined by the normal bundle of $\mathfrak F$ then, the lift of the foliations $\mathfrak F$ and $\mathfrak F^{\perp}$ to \overline{V}^{2n+2m} are the foliations with leaves of the form $N \times \{x\}$ ($x \in H_c^{2m+1}$) and $\{n\} \times H_c^{2m+1}$ ($n \in N$) respectively.

Now, let $\overline{\alpha}_i$ and \overline{u} be the lift of α_i ($1 \leq i \leq 2m$) and *u* respectively to \overline{V}^{2n+2m} . Then, it is clear, from (3.9) and from the fact that \overline{u} is a closed 1-form, that ${\{\overline{u}, \overline{\alpha}_1, \dots, \overline{\alpha}_{2m}\}}$ is a global basis of 1-forms on H_c^{2m+1} . The dual basis of vector fields on H_c^{2m+1} is given by ${\{\overline{U}, \overline{A}_1, \ldots, \overline{A}_{2m}\}}$, being \overline{U} and \overline{A}_i ($1 \le i \le 2m$) the lift of U and A_i ($1 \le i \le 2m$) respectively to \overline{V}^{2n+2m} . Thus, using the following lemma 6.1, we obtain that

$$
\overline{U} = (cx_{2m+1})\frac{\partial}{\partial x_{2m+1}}, \ \ \overline{A}_i = (cx_{2m+1})\frac{\partial}{\partial x_i}
$$

for $i \in \{1, \ldots, 2m\}$, where (x_1, \ldots, x_{2m+1}) are the usual coordinates on H_c^{2m+1} . Consequently,

$$
\overline{u} = \frac{dx_{2m+1}}{cx_{2m+1}} \quad , \quad \overline{\alpha}_i = \frac{dx_i}{cx_{2m+1}}
$$

for $i \in \{1, \ldots, 2m\}$, which implies that the lift of the sasakian *m*-hyperbolic l.c.K. structure $(J, g, \alpha_1, \dots, \alpha_{2m})$ to \overline{V}^{2n+2m} is a distinguished sasakian m-hyperbolic(c) l.c.K. structure on \overline{V}^{2n+2m} .

If $(J, q, \alpha_1, \ldots, \alpha_{2m})$ is a sasakian(k) m-hyperbolic l.c.K. structure on V^{2n+2m} , then the lift of this sasakian(k) m-hyperbolic l.c.K. structure to \overline{V}^{2n+2m} gives a distinguished sasakian (k) m -hyperbolic(c) l.c.K. structure on \overline{V}^{2n+2m} and therefore, since N is a simply connected complete manifold, the rest of theorem follows using proposition 6.4 and proposition 2.2. \Box

LEMMA $6.1.$ Let M be a $(2m + 1)$ -dimensional complete, simply connected, Riemannian manifold of constant negative curvature $-c^2$ $(c \neq 0)$ *and U, A_i vector fields on M such that* $\{U, A_1, \ldots, A_{2m}\}$ *form an orthonormal basis for M and* $[U, A_i] = cA_i$ *,* $[A_i, A_j] = 0$ *for* $i, j \in$ $\{1, \ldots, 2m\}$. Then, there is an isometry F of M to the $(2m + 1)$ $dimensional$ *hyperbolic space* H_c^{2m+1} , *satisfying*

$$
F_*U=(cx_{2m+1})\frac{\partial}{\partial x_{2m+1}}\quad,\quad F_*A_i=(cx_{2m+1})\frac{\partial}{\partial x_i},
$$

for $i \in \{1, \ldots, 2m\}$, *where* (x_1, \ldots, x_{2m+1}) *are the usual coordinates on* H_c^{2m+1} .

PROOF. Let x be a point of M . We consider the linear isometry L of T_xM onto $T_{(0,\ldots,0,1)}(H_c^{2m+1})$ given by

$$
L(U_x) = c(\frac{\partial}{\partial x_{2m+1}})|_{(0,\ldots,0,1)} \quad , \quad L((A_i)_x) = c(\frac{\partial}{\partial x_i})|_{(0,\ldots,0,1)}
$$

for $i \in \{1, \ldots, 2m\}$. Then, there is an isometry *F* of *M* onto H^{2m+1} such that the differential of F at x is L (see, for instance, [13]) and thus, using the relations $[U, A_i] = cA_i$, $[A_i, A_j] = 0$ $(1 \le i, j \le 2m)$ we prove that

$$
F_*U = (cx_{2m+1})\frac{\partial}{\partial x_{2m+1}} , \quad F_*A_i = (cx_{2m+1})\frac{\partial}{\partial x_i},
$$

for $i \in \{1, ..., 2m\}$.

Finally, from theorem 6.1, we deduce

COROLLARY 6.4. *: Let* V^{2n+2m} be a complete sasakian(k) m-hyperbolic *l.c.K. manifold,* \overline{V}^{2n+2m} the universal covering space of V^{2n+2m} and $c = -\|\omega\|/2$, where ω *is the Lee 1-form of* V^{2n+2m} .

- i) If $k > -3c^2$, then \overline{V}^{2n+2m} is almost complex isometric to $S^{2n-1}(c,k) \times$ H^{2m+1} .
- ii) If $k = -3c^2$, then \overline{V}^{2n+2m} is almost complex isometric to $\mathbb{R}^{2n-1}(c) \times$ H^{2m+1} and.
- iii) *If k* $\langle -3c^2, t \rangle$ then \overline{V}^{2n+2m} *is almost complex isometric to* (IR \times CD^{n-1} $(c, k) \times H_c^{2m+1}$.

In particular, if V^{2n+2m} is a complete sasakian(c²) *m*-hyperbolic l.c.K. manifold then \overline{V}^{2n+2m} is almost complex isometric to $S^{2n-1}_{2n} \times H^{2m+1}_{2}$.

Acknowledgements

The authors are grateful to the referee for helpful suggestions and remarks concerning this paper.

REFERENCES

- [l] L.C. DE ANDRES L.A. CORDERO M. FERNANDEZ J.J. MENCIA: *Examples o/ four-dimensional compact locally conformal Kiihler solvmanifolds,* Geometriae Dedicata 29 (1989), 227-232.
- [2] D.E. BLAIR: *The theory o/ quasi-sasakian structures,* J. Diff. Geom. 1 (1967), 331-345.
- [3J D.E. BLAIR: *Contact Manifolds in Riemannian Geometry,* Lecture Notes in Math., **509,** Springer (1976).

- (4] R.A. BLUMENTHAL J.J. HEBDA: *De Rham decomposition theorems for foliated manifolds,* Ann. Inst. Fourier, Grenoble, **33** (1983), 183-198.
- [5) E. CALABI B. ECKMANN: *A class o/ compact, complex manifolds which are not algebraic,* Ann. of Math. 58 (1953), 494-500.
- [6] L.A. CORDERO M. FERNANDEZ M. DE LEON: *Compact locally conformal Kiihler nilmanifolds,* Geometriae Dedicata 21 (1986), 187-192.
- (7) D. CHINEA J.C. GONZALEZ: *A classification o/ almost contact metric manifolds,* Ann. Mat. Pura ed appl. (IV) 156 (1990), 15-36.
- [8] B.Y. CHEN P. PICCINNI: *The canonical foliations of a locally conformal Kähler manifold,* Ann. di Mat. Pura ed appl. 141 (4) (1985), 289-305.
- [9] S.I. GOLDBERG: *Curvature and homology,* Academic Press, New York, 1962.
- [10) A. GRAY L.M. HERVELLA: *The sixteen classes o/ almost hermitian manifolds and their linear invariants,* Ann. Mat. Pura ed appl. **123** (1980), 35-58.
- [11) D. JANSSENS L. VANHECKE: *Almost contact structures and curvature tensors,* Kodai Math. J. 4 (1981), 1-27.
- [12) K. KENMOTSU: *A class o/ almost contact Riemannian manifolds,* Tohoku Math. Journ. 24 (1972), 93-103.
- [13] S. KOBAYASHI K. NOMIZU: *Foundations o/ Differential Geometry,* Vol. I and II. Intersc. Pub!., New York (1969).
- [14] P. LIBERMANN: *Sur les structures presque complexes et autres structures infinitesimales regulieres,* Bull. Soc. Mat. France 83 (1955), 195-224.
- [15] J.C. MARRERO: The local structure of trans-sasakian manifolds, Ann. di Mat. Pura ed appl. (IV) 162 (1992), 77-86.
- [16] K. MATSUMOTO: *On locally conformal Kähler space forms*, Internat. J. Math. Sci. 8 (1) (1985), 69-74.
- [17] K. OGIUE: *On almost contact manifolds admitting axiom of planes or axiom of free mobility,* Kodai Math. Sem. Rep. 16 (1964), 223-232.
- [18] M. OKUMURA: On infinitesimal conformal and proyective transformations of nor*mal contact spaces,* Tohoku Math. J. 14 {1962), 398-412.
- [19] G. TALLINI: *Metriche locali dotate di una connessione globale su una varieta differentiabile,* Period. Math. 46 (1968), 340-358.
- [20) S. TANNO: *The topology o/ contact Riemannian mani/olds,* Illinois J. Math. **12** (1968),700-717.
- (21) S. TANNO: *Sasakian manifolds with constant* φ *-holomorphic sectional curvature*, Tohoku Math. J. 21 (1969), 501-507.
- [22] F. TRICERRI: *Some examples of locally conformal Kähler manifolds*, Rend. Sem. Mat. Univ. Politec. Torino **40** (1) (1982), 81-92.
- [23] l. VAISMAN: *On locally conforma! almost Kiihler manifolds,* Israel J. Math. **24** (1976), 338-351.
- (24] l. VAISMAN: *Locally conforma! Kiihler manifolds with parallel Lee form,* Rend. Mat. VI 12 (1979), 263-284.
- [25] I. VAISMAN: *Generalized Hopf manifolds*, Geometriae Dedicata 13 (1982), 231-255.

Lavoro pervenuto al/a redazione il 7 *novembre 1991 ed accettato perla pubblicazione* il *1 ottobre 1992*

INDIRIZZO DEGLI AUTOR!:

J.C. Marrero - J. Rocha - Depto. Matemática Fundamental - Universidad de **La Laguna** - Tenerife - Canary lsland - Spain