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INTRODUCTION 
 
The nature of earth observation satellites attitude and orbit control systems make them inherently susceptible to 
microvibrations (MVB) [1]. The largest sources of MVB in the current satellite platforms market are: reaction wheels, 
mechanical movements inside the thermal control subsystem, the changing thermal environment, and the vibration of the 
satellite structure due to its flexibility [2]. MVBs can be categorized according to its frequency into two classes: low-
frequency and high-frequency. The first group affects the positioning accuracy of the image capture system, while the 
second one decreases the image spatial resolution. This work addresses the second group.  
The spatial resolution of satellite on-board imaging systems has continuously increased in the last few years [3]. This has 
positioned MVBs as an important factor in the payload performance budget. This aspect becomes many times a driving 
limiting factor in the on-space spatial resolution of the earth-observation payloads [4]. Consequently, it is generally 
complicated to test and calibrate on-ground, due to the difficulties of simulating the real environment at integrated 
satellite-level. It also presents more variance on satellite platforms on which the quality control processes are less stringent 
(like NewSpace [5]).  
This work proposes a lightweight multi-image super-resolution (MISR) algorithm that can help coping with MVB effects 
on hyperspectral (HS) payloads, resulting in an enhanced spatial and spectral image quality for the same on-board sensor 
and optics. The proposed algorithm addresses the following steps on the on-board image acquisition and image 
processing: 

1. Sampling frequency of the image sensor. 
2. Sub-pixel motion estimation between acquisitions: the current implementation works with MVB shifts of a 

resolution of a quarter of a pixel, but it can be generalized for smaller vibrations, and compensated with larger 
processing capability on-board. 

3. Image super-resolution (SR) technique: once the oversampled images have been analyzed, the algorithm 
proposes an efficient technique to build images with ×2 and ×4 spatial resolution. 

4. The influence of the HS sensor technology and optics in the super-resolution process. 
The used metrics for comparison of spatial image quality results are based on Structural Similarity Index (SSIM) [6] and 
Peak Signal-to-Noise Ratio (PSNR), while the fundamental metric to assess the degradation of the spectral content is 
based on the Spectral Angle Mapper (SAM) [7]. The simulated results on satellite images are in the range of 400 nm to 
2500 nm bands. 
The proposed algorithm paves the way to a real-time processing system that could autonomously cope on-board with the 
satellite MVBs, avoiding the need for downloading extra images with the sole purpose of dealing with this problem on-
ground. Furthermore, the algorithm could be used as well to obtain higher resolution images from the same sensor and 
optics on board, making more efficient use of the sensor capabilities. In both cases, it presents an alternative way to deal 
with the space-to-ground data bottleneck, which is general problem in earth-observation payloads. 
 
 



OBPDC 2022 
 

MATERIALS AND METHODS 
 
In the general MISR reconstruction case, three major steps can be identified: 

1. Acquisition: capturing a sequence of images from the same scene with sub-pixel shifts between each of the 
images of the sequence. 

2. Motion estimation: estimating the sub-pixel shift between the image taken as a reference for reconstruction and 
the rest of the sequence. 

3. Restoration or super-resolution: reconstructing the HR image.  
Each step will be treated separately in this section, together with the assumptions taken for data pre-processing between 
the acquisition from the sensor and algorithm input data. The metrics used to evaluate the results will also be explained 
at the end of the section. 
 
HS data acquisition and preprocessing assumptions 
 
Two different kinds of HS sensors are relevant to new space applications: push-broom and push-frame cameras. In both 
cases, the sampling frequency of earth-observation satellite imagers is commonly adjusted to offer the same spatial 
resolution alongtrack (defined by the integration time), and acrosstrack (defined by the pixel width) direction of the orbit 
motion. This is often an order of magnitude under the sensor sampling frequency capabilities. The proposed algorithm 
starts from the assumption that the sensor under study can indeed oversample the image sensor beyond the usual figures 
(the frequency of the pixel-width projection on Earth for squared pixel shape). This algorithm is only immediately 
applicable to push-frame sensors, although the technique is scalable to push-broom sensors with some adjustments 
(further details are included in DISCUSSION section).  

Push-frame HS sensor assumptions 
• The sensor is able to sample at least at double the frequency of the MVB that is needed to be addressed. 
• Lens distortion is small or the on-board image pre-processing can compensate it.  
• The illumination differences between exposures taken sequentially is negligible. 
• The on-board data-handling system is able to cope with extra sensor data. 
• MVB-induced motion can be simplified as global motion in a consecutive frate-to-frame basis. 

 
HS data sequence generation 
 
The image sequences used for this study have been artificially generated by applying a deterministic procedure to actual 
remote sensing images available in public repositories. The procedure to transform a single image into the necessary low-
resolution sequence and high-resolution reference image is the following: 

1. Define a rectangular crop of 128×512 pixels of the original image, leaving at least 16 pixels margin with respect 
to the end of the image on each side. All spectral information is kept in each pixel. This is called reference frame. 

2. Apply a MVB function (Figure 1) making rectangular crops of the same size but centered at a different pixel. 
Their relationship to the reference frame is the motion vector defined in the MVB function. These images 
constitute the high-resolution sequence (HR sequence). 

3. Decimate the images of the HR sequence by 2 and by 4 in X and Y dimensions, obtaining low-resolution (LR) 
and very low-resolution (VLR) frames respectively. 

4. Compose a sequence of all the images that belong to the same decimation factor ×2 into a low-resolution 
sequence, and another sequence for the ones belonging to decimation factor ×4 into the very low-resolution 
sequence. 

 
Figure 1. MVB function with a periodic and an aperiodic component. 
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Motion estimation 
 
With the purpose of targeting near-real-time execution, the algorithm used for motion estimation is chosen to be one of 
the simplest ones: sum of absolute differences (SAD). It has been demonstrated to provide stable outcomes for pixel, half-
pixel and quarter-pixel motion estimation when there is global motion. It works as follows: 

1. Two images of the sequence under study, reference and target, are selected and interpolated to four times their 
size in X and Y dimension. 

2. A search area is defined by the user (this is an optimization parameter). And then, a crop of the target image 
plus the search area is created, centered within the image. 

3. The crop estimates its global motion vector against the reference image, calculating the SAD against all the 
possible positions within the search area. 

4. The position with the minimum SAD is selected as the estimated motion vector.  
As the images had been interpolated ×4, each unit in the vectors represent a quarter of a pixel with respect to the low-
resolution reference images (e.g. resulting motion vector from SAD of [5,3] means [1.25, 0.75] in the reference image. 
 
Image reconstruction 
 
The approach used for SR in this study is the construction of HR HS images through the combination of several LR HS 
images with spectral information in the same bands, and sub-pixel displacement among them, which we denote as frames. 
Several frames compose what we denote as sequence. This follows the same rationale that denotes the baseline sensor as 
push-frame. 
The algorithm is based on the concept that each LR frame can be considered a down-sampled version of a HR image, 
which will ultimately be used as the true scene [8]. The SR algorithm will align LR observations of the same sequence 
with sub-pixel accuracy for finally combining them into an HR grid. The correct and fast motion estimation is the 
cornerstone of this approach, and the application of a motion vector to individually to each of the bands in the HS image. 
The algorithm works as shown in Figure 2.  

 
Figure 2. Diagram that synthesizes the super-resolution process in the developed algorithm. 

Once the motion estimator has computed the set of motion vectors for each macroblock (MB) of the sequence, those 
vectors will be used to shift every MB in a higher resolution grid. The algorithm considers several parameters of the 
motion estimation and the surrounding pixels to weight the importance in the grid of each sub-pixel coming from different 
frames. It calculates a final value for the sub-pixel position using relatively simple mathematical function. This process 
has been denoted as Shift and Add. Finally, if there is any pixel which has been not filled throughout this process, it will 
be marked as a hole, and then interpolated using a bilinear surface interpolator. The same strategy will be applied to each 
band. 
 
Evaluation metrics 
 
To analyze the quality of the SR HS images obtained by the algorithms, three different metrics have been considered: 

Structural Similarity Index (SSIM)  
It measures the image degradation as perceived change in structural information, and it is calculated as follows [6]: 
 

𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀(𝑥𝑥,𝑦𝑦) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1) + (2𝜎𝜎𝑥𝑥𝑦𝑦+𝐶𝐶2)
(𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶1) ∙ (𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2)

 ,                                                                 (1) 
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where 𝜇𝜇𝑥𝑥 is the average of 𝑥𝑥, 𝜇𝜇𝑦𝑦 is the average of 𝑦𝑦, 𝜎𝜎𝑥𝑥 is the variance of 𝑥𝑥, 𝜎𝜎𝑦𝑦 is the variance of 𝑦𝑦, 𝜎𝜎𝑥𝑥𝑦𝑦 is the covariance 
between 𝑥𝑥 and 𝑦𝑦, 𝐶𝐶1 = (𝑘𝑘1 ∙ 𝐿𝐿)2 and 𝐶𝐶2 = (𝑘𝑘2 ∙ 𝐿𝐿)2are two constants to stabilise the division with weak denominator, 
𝑘𝑘1 = 0.01, 𝑘𝑘2  = 0.03, and 𝐿𝐿 is the dynamic range of the pixel values. Higher values mean better image quality, and 1 is 
the maximum value, meaning that reference and study image are structurally identical. 

Peak Signal-to-Noise Ratio (PSNR)  
It measures the relationship between the maximum possible power of a signal and the power of corrupting noise that 
affects the fidelity of its representation. It is an absolute error metric, and it is calculated as follows:  
 

𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦)  =  10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑅𝑅2

𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝑦𝑦)
� ,                                                             (2) 

 
where R is the maximum fluctuation in the input image data type, and MSE is the Minimum Square Error. It is important 
to understand that higher values mean better image quality. 
         

Spectral Angle Mapper (SAM) 
It measures the spectral degradation of a pixel with respect to a reference spectral signature, in the form of an angle 
between their two vector representations. For evaluating image quality, the average value across the entire image is 
considered. It is a full-reference metric and it is calculated as follows [7]: 

𝑆𝑆𝑆𝑆𝑀𝑀(𝑎𝑎𝑛𝑛 , 𝑎𝑎�𝑛𝑛) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎 � 〈𝑎𝑎𝑛𝑛,𝑎𝑎�𝑛𝑛〉
‖𝑎𝑎𝑛𝑛‖∙‖𝑎𝑎�𝑛𝑛‖

�  ,                                                             (3) 
where 𝑎𝑎𝑛𝑛 and 𝑎𝑎�𝑛𝑛 are the corresponding individual pixel spectral vectors of the reference and super-resolved HSI 
respectively. Closer to zero values mean better image quality, and 0 degrees means identical spectral signature between 
reference and study image. 

Scoring methodology 
Two different scores are proposed. Their purpose is a more direct understanding of the performance of the proposed SR 
algorithm with respect to other methods found in the literature. 

𝑆𝑆𝑎𝑎𝑙𝑙𝑎𝑎𝑆𝑆 =  𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅∙𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀
𝑀𝑀𝑆𝑆𝑀𝑀

 ,                                                                             (4) 
where PSNR and SAM are defined in equations (1), (2) and (3). 
Examining equation (4), the following properties are noted: 

• The highest the score, the better the algorithm. 
• Metrics that have infinity (∞) as ideal value are in direct proportion with the score. 
• Metrics that have zero (0) as ideal value are in inverse proportion with the score. 

 
Processing platform 
 
All the results presented in this publication have been processed in a commercial computer with a CPU Intel® Core™ i7-
3540M running at 3.0 GHz and 8 Gigabytes of DDR3 RAM clocked at 1600 MHz. The MATLAB® version used for 
image visualization is 2020a, and the algorithm is implemented in C language. 
 
RESULTS 
 
A set of three HS sequences are presented to analyze the performance of the algorithm. As a starting point, the popular 
public HS image of Pavia University [9] is used. Furthermore, results about this image aid generalizing the relevance of 
the algorithm to different sensors and data applications. Such analysis is presented in [10]. 
The other two images are artificial sequences created using the procedure in section HS data sequence generation from 
two original images of Hyperion payload of the USGS EO-1 satellite available in the database [11]. These images are in 
the range from the Visible Human Spectrum to the SWIR (Short-Wave Infrared, from 400-2500 nm). The escalation 
factor (EF) denotes the spatial resolution enhancing objective of the algorithm; results for ×2 and ×4 have been obtained 
in all the image sequences. N denotes the number of frames that have been combined within the sequence under study. 
 
La Reunion 
 
This image is an extract from a real remote sensing measurement labelled as EO1H1530752015280110KF (Hyperion 
payload of the USGS EO-1 satellite [11]). The results are presented in Figure 5 for visual inspection, and in Figure 6 for 
quantitative assessment. Using EF=2 it can be appreciated that the sharpness of the different elements in the image has 
improved, in particular the diagonal lines and small objects, and the contrast has increased. Furthermore, using EF=4 it is 
more evident that the interpolated image has difficulties to follow diagonal straight lines, producing clear squared defects, 
while in the super-resolved image the overall contrast has diminished. 
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Figure 3. Visual inspection for image La Reunion: top, EF = 2, and bottom, EF = 4 at band corresponding to 1029 nm 

wavelength. On the left, the interpolated images, and its corresponding zoom over a representative area; on the right, the 
super-resolved images with a zoom in the exact same area for easier visual comparison. 

 
 

 
Figure 4. Variation of the performance of the proposed SR algorithm across the spectrum for PSNR and SSIM metrics 
in sequence La Reunion: left EF=2, and right EF=4. Average values for both performances along the studied spectra are 

presented in dashed lines as a general indication. 

In quantitative terms, the SSIM improvement curve is quite uniform along the whole spectrum for EF=2, while very 
irregular for the EF=4. The PSNR improvement is significant in EF=2, although only in the second half of the spectrum, 
and it is very mild overall in the EF=4 case. 
Additionally, the average SAM over the image has been calculated for both images with respect to the reference image, 
with an average improvement of 13.03% for the ×2, and 1.65% for ×4. An example of the gain obtained in an individual 
pixel with regards to the spectral signature is presented in Figure 7. 
 

 
Figure 5. Spectral signature for pixels of La Reunion: left, pixel (28,438) of ×2, and right, pixel (21,447) of ×4 image. 

 
Guraidhoo (Maldives) 
 
This image is as well an extract from a real remote sensing measurement labelled as EO1H1450572005025110KX from 
the Hyperion payload of the USGS EO-1 satellite [11]. The results are presented in Figure 8 for visual inspection, and in 
Figure 9 for quantitative assessment. 
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Figure 6. Visual inspection for image Guraidhoo: top, EF = 2, and bottom, EF = 4 at band corresponding to 790 nm 

wavelength. On the left, the interpolated images and its corresponding zoom over a representative area; on the right, the 
super-resolved images with a zoom in the exact same area for easier visual comparison. 

Using EF = 2, it can be appreciated that the sharpness of the different elements in the image has improved, in particular 
the diagonal lines and small objects (smaller islands and bays). Using EF = 4 it is more evident that the interpolated image 
has difficulties to follow small details and objects, producing clear squared defects, while in the super-resolved image 
some artifacts appear in the tiniest details (which has been demonstrated to depend on the selected images within the 
super-resolution sequence).  

 
Figure 7. Variation of the performance of the proposed SR algorithm across the spectrum for PSNR and SSIM metrics 
in sequence Guraidhoo: left EF=2, and right EF=4. Average values for both performances along the studied spectra are 

presented in dashed lines as a general indication. 

Quantitaively, the SSIM improvement curve is irregular along the spectrum for EF=2 and EF=4, nevertheless presenting 
a significant better performance than average in the range 900-1300 nm wavelength. The PSNR improvement is mild 
overall in both EF=2 and EF=4 cases. 
Similarly to La Reunion, the average SAM over the image has been calculated, with an average improvement of 12.18% 
for the ×2, and 6.27% for ×4. An example of the gain obtained in an individual pixel with regards to the spectral signature 
is presented in Figure 10. 

 
Figure 8. Spectral signature for pixels of La Reunion: left, pixel (72,386) of ×2, and right, pixel (55,423) of ×4 image. 

 
 
DISCUSSION 
 
To summarize the overall performance of the algorithm, a scoring system has been proposed in equation (4). Its 
comparison with the bilinear interpolation following such score is presented in Table 1. As deeply analyzed in [10] and 
here demonstrated valid also in remote sensing images in the SWIR range, despite its simplicity, the algorithm can be 
competitive against some state-of-the-art techniques.  
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Table 1. Comparison of the performance of the proposed SR algorithm against a bilinear interpolation following the 
scoring system presented in equation (4).  

Score\Sequence La Reunion 
×2  

La Reunion 
×4 

Guraidhoo 
×2 

Guraidhoo 
×2 

Runtime 
(s) 

Bilinear Interpolation 831.82 242.79 1338.59 449.11 0.072 
Proposed SR algorithm 1069.02 264.16 1672.73 501.91 1.67 

 
The execution time obtained in a commercial computer without hardware optimization leads to the conclusion that a real-
time execution at-the-edge is feasible in space application. In such a case, there would be a number of MVB cases that 
could be dealt with autonomously by the payload. Furthermore, better resolution images with the same sensor could even 
be obtained directly on-board thanks to some of MVB scenarios, not needing to download multiple images of the same 
scene to ground for post-processing. This represents an important latency and data volume reduction case. It should be 
kept in mind that the capability for dealing with MVB is bounded by the relation between the frequency of the MVB 
itself, and the sampling frequency of the sensor. 
Even if it is clear that there is a strong dependency on the selected images regarding the performance of the algorithm for 
the different analyzed bands, the results on ×2 scalation seem to be stable around 10% extra gain on average with respect 
to a linear interpolation when SSIM is discussed, while PSNR response is not conclusive.  
The potential to improve the overall spectral signature can be well appreciated in both the results of La Reunion and 
Guraidhoo sequences. In particular, it is remarkable the capability to follow the spectral firm of pixels in areas that define 
the borders of different materials, as the one reported in Figure 7 and Figure 10. This can be particularly useful for later 
semantic segmentation and environmental control applications (wildfire detection, disaster assessment, oil spill, to 
mention some). 
Part of the study has developed a similar technique for push-broom HS imagers, although the results where less 
conclusive, and too dependent on the decimation model, which emulates the specific sensor and optics. Further 
development on that line is one of the future lines of research as well as the embedded implementation in a rad-hard 
processor or FPGA to demonstrate the real-time capabilities. 
 
CONCLUSIONS 
 
In conclusion, a proposal for real-time algorithm that deals with MVB in push-frame hyperspectral sensors on board 
satellites has been presented, and its performance was demonstrated and compared with other algorithms. Its capability 
to improve the SSIM and SAM for bands in 400-2500 nm wavelengths in remote sensing HS images is remarkable and 
it can be particularly interesting for semantic segmentation at-the-edge and for small satellites with limited MVB control.  
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