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Abstract—Performance benchmarks have been used over the
years to compare different systems. These benchmarks can
be useful for researchers trying to determine how changes to
the technology, architecture, or compiler affect the system’s
performance. No such standard exists for systems deployed into
high radiation environments, making it difficult to assess whether
changes in the fabrication process, circuitry, architecture, or
software affect reliability or radiation sensitivity. In this paper,
we propose a benchmark suite for high-reliability systems that
is designed for field-programmable gate arrays (FPGAs) and
microprocessors. We describe the development process and report
neutron test data for the hardware and software benchmarks.

Index Terms—soft errors, soft error rates, software fault
tolerance, FPGAs

I. INTRODUCTION

Well-crafted performance benchmarks play an essential role
in computer architecture research [1]. These benchmarks are
used to compare different architectures and evaluate different
performance trade-offs. Benchmarks are also used to evaluate
compiler technology and determine the effect of the compiler
on the overall performance of the microprocessor. The great
advances in microprocessor performance over the last few
decades are due in part to the availability of high-quality
performance benchmarks that represent a variety of real-world
computing operations.

No such benchmarks are available for testing systems used
in high radiation environments. This situation has developed
because radiation-hardness assurance techniques are tradition-
ally applied only to circuit layouts or manufacturing processes.
Even though there are no standard test circuits available
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for these cases, most researchers compare their results to
similar circuits, such as flip-flops or D-latches [2]–[4], so the
community has found methods to work around not having
standard benchmarks.

In recent years, the radiation effects community has grown
to include organizations that are interested in testing and
using complex, commercially available devices such as field-
programmable gate arrays (FPGAs) [5] and microproces-
sors [6] in spacecraft or aircraft; and using parallel processors
in large High Performance Computing (HPC) centers [7].
Many of these organizations are designing post-manufacturing
hardware and software hardening techniques, such as modu-
lar redundancy, to increase resilience to single-event upsets
(SEUs) and single-event transients (SETs). It is necessary to
quantify how these techniques improve the resilience of these
complex systems to single-event effects (SEEs). For these
researchers, a standard benchmark of test circuits and codes
would be beneficial.

A standard benchmark would define a set of codes/circuits
and input vectors for testing that would ideally cover a number
of realistic algorithms used in these components. Further-
more, information about the compilation/synthesis process and
runtime environment provide a basis for repeatable results
and provides standards for other researchers upon which to
build. A baseline cross section without mitigation provides a
basis for determining whether mitigation methods effectively
mask SEEs and allows mitigation methods to be compared for
power, effectiveness, and overhead.

Currently, without a benchmark researchers have been test-
ing:

1) Homemade, synthetic designs that represent worst-case
scenarios,

2) Circuits from OpenCores [8], existing benchmarks, or a
vendor’s intellectual property (IP) generation tool, or

3) Proprietary designs that have been used previously by
the researchers and thus not available to other re-
searchers to verify and compare results.

These approaches make it difficult to assess the relative radia-
tion/reliability sensitivities, as no two organizations are using
the same set of circuits or codes. It also causes researchers to
focus on the parts of the test that can be compared, such as bit
(or device) cross sections or failure in time (FIT) rates1. Even
these representations can be difficult for comparing results

1FIT is defined as the number of failures that can be expected in one billion
(109) device-hours of operation.
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across organizations, if the same set of circuits and codes are
not used.

The reliability-focused benchmark suite described in this pa-
per aims to provide radiation effects and reliability researchers
with a consistent basis for current and future research. The
suite would allow designers and researchers to:
• Assess relative reliability improvements between miti-

gated and unmitigated designs;
• Compare mitigation methods for improvements in relia-

bility, performance, area, and power;
• Compare algorithms across architectures and process

changes;
• Assess architectural effects on reliability, such as using

or not using caches;
• Assess the effect of coding methods on reliability, such

as iterative solvers; and
• Compare test methodologies across organizations, includ-

ing both radiation testing and fault injection.
To this end, ten different organizations have collaborated
since March 2014 to develop a suite of benchmarks for
high-reliability applications. This paper presents proposed
benchmarks for mitigated codes and circuits. We present data
collected from testing FPGAs, microcontrollers, and parallel
processors using the proposed benchmarks.

The paper is organized as follows. A survey of related
benchmarks are presented in Section II. We present our
rationale for radiation benchmarks in Section III. Information
about the hardware and software benchmarks is presented in
Sections IV and V. Experimental data from neutron testing
are presented in Section VI. Finally, Section VII summarizes
the paper.

II. RELATED WORK

In this section, we list the benchmarks that helped com-
piler designers and computer architects to quantify how their
changes affect standard architectures. We continue with a
discussion of benchmarks used to assess software performance
and testability. We then present hardware benchmarks that
have been useful in design for test (DFT), where the bench-
marks allow researchers to explore testability and automatic
test pattern generation (ATPG). We start by discussing SEE
characterization testing, due to its similarities to benchmark
testing.

A. Standards for SEE Characterization testing

SEE characterization testing focuses on measuring the SEE
cross sections for components. For example, SEE character-
ization tests for a microprocessor would measure the SEU
sensitivities for caches and registers; SET sensitivities for
the logic; and SEFI sensitivities for the control logic. SEE
characterization tests for an FPGA would measure the SEU
sensitivities for the configuration memory, user memory and
flip-flops; SET sensitivities for the clocks and logic blocks;
and the SEFI sensitivities for the control logic and recon-
figuration ports. The standards for SEE characterization tests
for microprocessors and FPGAs are still evolving. There
are many fundamental questions that are unanswered. The

benchmark we are proposing is not intended for basic SEE
characterization tests. The assumption for this benchmark is
that basic SEE characterization has already been completed. It
is not within the scope of this paper or this research to clarify
standards for SEE characterization tests.

For researchers looking for existing SEE characterization
test guidelines, there are a number of different documents.
Irom described a guideline [9] has been the standard for
single-core microprocessors for several years. The follow-
on document from Guertin [10] is useful for understanding
how to perform multi-core microprocessor testing. Berg [11]
provides information about FPGA testing. Quinn [12] provides
guidance for testing complex systems.

B. Software Benchmarks

Two of the original software benchmarks are Dhrystone and
Whetstone, which are both synthetic benchmarks [13], [14]
created to represent the profile and behavior found in real ap-
plications. Modern compilers have been able to undermine the
benchmarking process through Dhrystone [15]. Whetstone and
Dhrystone have been replaced with more sophisticated bench-
marks, such as SPECint/SPECfp, Linpack, and CoreMark.
The Standard Performance Evaluation Corporation (SPEC)
was established as an independent organization to maintain
software benchmarks [16]. The SPEC benchmarks cover both
integer and floating point operations. Both benchmarks are
maintained with regular updates to the benchmark to keep
current with modern computing standards and applications.
This maintenance includes regular updates about problems
with the benchmark that affect the benchmarking process [17].
Linpack is most commonly used to compare supercomputer
ratings [18]. CoreMark is maintained by the Embedded Micro-
processor Benchmark Consortium (EEMBC) [19]. CoreMark
is meant as a replacement for Dhrystone, especially for smaller
microprocessors [15]. Unlike Dhrystone, CoreMark has spe-
cific rules for implementing the benchmark to maintain the
integrity of the benchmark.

Lately, some benchmark suites have been developed to eval-
uate the efficiency of parallel or heterogeneous HPC machines.
These benchmarks are continuously improving. Examples of
such suites are the University of Virginia RODINIA suite [20],
the NASA NAS Parallel Benchmark [21] and the Sandia mini-
applications [22]. Both RODINIA and NAS provide a repre-
sentative set of HPC algorithms written in portable languages.
The suite includes algorithms that are both memory-bound and
compute-bound so that an HPC architecture’s performances
can be measured under typical scenarios.

The final set of benchmarks presented are two bench-
marks designed for assessing power/energy efficiency. One
benchmark was used by the Defense Advanced Research
Projects Agency (DARPA) Power Efficiency Revolution for
Embedded Computing (PERFECT) program as part of the test,
assessment, and verification effort that was led by the Pacific
Northwest National Laboratory (PNNL) [23]. The PERFECT
benchmark suite includes both applications and code kernels;
it covers a range of application types. There is also the
EEMBC benchmark for power, called the EnergyBench [24].
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This benchmark is designed to assess power consumption
while running the EEMBC performance benchmarks. Like the
EEMBC performance benchmarks, the EnergyBench bench-
mark includes methods for certifying the results.

C. Hardware Benchmarks

Several hardware benchmarks were specifically designed
by the DFT and ATPG communities, such as ISCAS 85/89,
ITC’99, and IWLS 2005. The ISCAS 85 benchmark has
ten combinational circuits that were distributed in netlist for-
mat [25], [26]. It has since been translated into VHDL (VHSIC
Hardware Description Language) and Verilog [27] for ease
of implementation. The benchmark was extended to include
sequential circuits as well [28]. The ISCAS 85/89 benchmarks
are not packaged with expected stimuli. The ITC’99 bench-
mark has many different flavors; most of which were imple-
mented in VHDL, and some of which were implemented in
Electronic Design Interchange Format (EDIF). The version of
ITC’99 in which we are interested is the I99T benchmark that
was implemented by Politecnico di Torino [29], [30]. Finally,
there is the IWLS 2005 benchmark [31] that was designed by
Christoph Albrecht from the Cadence Research Laboratories
at Berkeley. The IWLS 2005 benchmark includes 84 circuits
that were collected from various sources, including ISCAS
85/89, ITC’99, and OpenCores. The IWLS 2005 benchmark
is available in Verilog.

III. RATIONALE FOR USING BENCHMARKS FOR
RADIATION TESTING

There are several criteria that we use when evaluating and
developing benchmarks, including:
• Repeatability of benchmark tests,
• Representative of deployed computing workloads,
• Availability of fixed input vectors, and
• Cross-platform implementation.

The ability to repeat test results is an important part of
standardized testing. By reporting the algorithms, the input
vector sets, the compilation/synthesis settings, and the run-
time environments, enough information about tests should be
defined so that researchers can either repeat or build from
published results. We will discuss our rationale behind the
need for standard algorithms, input vectors and portability in
a benchmark in this section.

We believe that a benchmark of realistic algorithms is more
likely to be adopted by the radiation effects community, be-
cause test results will provide realistic insight into spacecraft.
Furthermore, providing a defined set of algorithms to use
for testing will provide a basis for many organizations to
compare their results. By providing several different types
algorithms, it is possible that different aspects of the mitigation
methods can be highlighted. This variety allows researchers to
create focused mitigation methods that work well a subset of
algorithms. Matrix operations are very heavily used in HPC
algorithms, which has led to mitigation methods that focus
only on protecting matrices [32]–[34]. While these matrix
mitigation methods might not perform well for the entire
benchmark, they should out-perform most general mitigation

TABLE I
SIZE AND FUNCTIONALITY OF I99T SUITE CIRCUITS

VHDL Structures Function

Lines Proc Gates FF

b1 110 1 49 5 FSM

b2 70 1 27 4 FSM

b3 141 1 153 30 Arbiter

b4 102 1 628 66 Min/max

b5 332 3 574 34 Memory

b6 128 1 55 9 IRQ

b7 92 1 427 49 Count

b8 89 1 171 21 Find inclusions

b9 103 1 160 28 S2S Converter

b10 167 1 180 17 Voting

b11 118 1 548 31 Cipher

b12 569 4 1006 121 Game

b13 296 5 317 53 Analog sensor

b14 509 1 5678 245 Viper

b15 671 3 7974 448 80386

methods for matrix algorithms. Therefore, it is necessary to
provide a wide variety of algorithms that allows a wide range
of mitigation techniques to be tested.

For circuit tests, using defined input vector sets is essential
in creating repeatable experiments. Many hardware errors can
only be observed when the circuit is exercised with specific
inputs. The DFT and ATPG communities have studied meth-
ods for designing optimal input vector sets to cover particular
types of errors, such as stuck at faults, which can be useful
for our efforts. It is an open question whether the input vector
values affect the sensitivity of software, although there are
several known instances of where input vector size affects
software cross sections [35]–[37]. Furthermore, there is no
software equivalent to the DFT and ATPG communities, so the
effect of input vectors on software is not as well understood
as hardware. While it remains an open question, we would
prefer to provide input vector sets to the software benchmark
to at least focus on repeatability.

Finally, implementing algorithms in portable languages will
allow the benchmark to be implemented on several platforms.
Adoption of the benchmarks will be more likely if the cir-
cuits/codes can be built for many different platforms with
a wide variety of tools. To that end, algorithms that are
implemented in platform-specific languages, such as Native
Circuit Description (NCD) for Xilinx FPGAs or assembly
language for microprocessors, limits the ability to compare
cross sections across different architectures. It is also ideal to
provide the algorithms in source code, so that test designers
can compile the codes or synthesize the circuits using the set
of tools they expect to use on the deployed system. To meet
these requirements, we look for scalable circuits in standard
hardware description languages (HDLs) or scalable software
in standard programming languages that represented a wide
range of functionality.
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Although an initial set of benchmarks is presented in this
paper, we anticipate that this benchmark suite will expand
and evolve over time. As we gain experience with this initial
set of benchmarks, we anticipate expanding the benchmark
suite to include other benchmarks that address the limitations
of the current benchmarks and test additional features or
capabilities. Like most microprocessor benchmark suites, a
variety of benchmarks are needed to fully test the features
of a microprocessor or FPGA architecture.

IV. FPGA RADIATION BENCHMARK

The FPGA benchmark leverages ITC’99, which is a well-
established ATPG benchmark. This benchmark meets all of
our requirements, including a variety of realistic algorithms,
defined inputs, scalability, and portability. This benchmark is
specifically designed for testing and includes a set of input
vectors that are designed by the ATPG community. The circuits
are implemented in a common HDL, which makes them
easy to implement on different types of FPGAs. Because
many of the circuits are small, it is possible to synthesize
the circuits for a variety of differently sized FPGAs, even
if the mitigation technique increases the size of the circuit.
Finally, these circuits implement a wide range of functions
from finite state machines (FSM) to soft-core microprocessors.
Many of the circuits are realistic to how FPGAs are used
in embedded computing environments. Because of all the
qualities described, the ITC’99 benchmark is ideal for our
testing needs.

We are specifically adopting the I99T portion of the bench-
mark. The first 15 circuits in this benchmark are listed in
Table I; the rest are combinations and implementations of the
listed circuits. We initially focused on B13 at this stage and
collected data on this circuit in a radiation environment.

V. SOFTWARE RADIATION BENCHMARK

The software benchmark has been harder to design than the
FPGA benchmark. We were originally hampered by trying
to develop a benchmark that would have a standard set of
algorithms that would work with a range of processing archi-
tectures, including 16-bit microcontrollers, multi-core micro-
processors, and high-end Graphics Processing Units (GPUs).
While we could find individual codes, such as EEMBC’s
CoreMark, that could work on nearly all architectures, it is
not useful to compare an embedded microprocessor to a GPU.
Furthermore, existing software benchmarks tend to bundle
all of the functionality into one code. Therefore, there is
not an equivalent of I99T for software with multiple codes
covering different types of program coding styles and realistic
workloads. To that end, we are designing our own benchmark
suite of scalable algorithms with specific implementations for
classes of microprocessors.

The proposed software benchmark includes both a collec-
tion of different, simple algorithms that are realistic software
codes, and a few standard software benchmarks. We specifi-
cally want to cover sorting, Fast Fourier Transforms (FFTs),
and matrix algorithms, as they are commonly used in many
applications and are useful for evaluating the reliability of

parallel processors [38]–[40]. We also want to represent dif-
ferent data and program structures, because the corresponding
implementation of mitigation methods may differ as well. We
are also interested in algorithms where the computational load
could be homogeneously divided into parallel processes or run
on a single core. We are interested in leveraging some of the
existing benchmark suites.

The algorithms that we implemented for the software bench-
mark are:

• Advanced Encryption Standard (AES) 128,
• Cache test,
• CoreMark,
• Fast Fourier Transform (FFT),
• Hotspot,
• HPCCG,
• Matrix multiply (MxM ), and
• Quicksort (Qsort)

Information about these codes can be found in Table II. Table
II also indicates the two algorithms that are synthetic and
are specifically designed for test purposes. In some cases,
multiple implementations for parallel processors are available,
where trade-offs can be made between memory latencies
and performance. In the benchmark suite, we include both
a memory-bound and a computing-bound version of MxM
to account for the effects of algorithm implementation. All of
the algorithms are implemented in C, C++, and/or CUDA to
maximize implementation across several architectures.

Since most of the codes are scalable to microprocessors with
differing amounts of memory, by separating microprocessors
into classes, we can specify the problem size used for the
algorithm. We organize microprocessors into one of these
standard classes:

• General-purpose, multiple-core microprocessors,
• General-purpose, single-core microprocessors,
• Microcontrollers and ARM cores, and
• Soft-core microprocessors.

These classes each have a version of the benchmark that
could be implemented without changes to the functionality or
memory usage. These classes allow a standard set of rules for
executing the benchmark so that the results cannot be “gamed.”
By adjusting the benchmark and the rules for each class, test
results are standardized and easier to compare. Furthermore,
it will keep researchers from comparing dissimilar hardware.

We are still determining the role of input vectors in this
benchmark suite. Five out of the eight test codes have defined
input test vectors, while three (i.e., Fast Fourier Transform,
MxM , and Qsort) use randomized test vectors. While ran-
domized, MxM and Qsort use the C library for random with
specific seeds so that the test vectors are repeatable. Now that
a baseline of test results for the software benchmark has been
determined, it is possible that focused testing on input vector
values and sizes can be completed to define the input vectors
for the three algorithms. In particular, we need to focus on
Qsort, as that is the only algorithm that makes control flow
changes based on data, whereas FFT and MxM only compute
with the data.
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TABLE II
SOFTWARE BENCHMARK CHARACTERISTICS INCLUDING THE USE OF ARRAYS (ARR) OR LINKED LISTS (LIST) AS DATA STRUCTURES. OTHER QUALITIES

INCLUDE WHETHER THE CODE IS SYNTHETIC, INCLUDES MATRIX OPERATIONS, OR IS ALREADY USED AS A PERFORMANCE BENCHMARK.

Data Structure Program Structure Other Qualities

Array List Recursion Iteration Synthetic Matrix Ops Performance

AES

Cache X X

Coremark X X X X

FFT X

Hotspot X

HPCCG X X X X

MxM X X

Qsort X X

Fig. 1. Picture of LANSCE Test. The numbers at the top of the list correspond to the tests shown in Table III.

TABLE III
EXPERIMENTS IN THE LANSCE TEST. †MITIGATED AND UNMITIGATED

BENCHMARK, ∗ONLY UNMITIGATED

N. Benchmark Organization Component

1 s/w† LANL TI MSP430F2619

2 s/w† LANL TI MSP430FR5739

3 s/w† LANL TI Tiva

4 h/w† Madrid Artix-7

5 h/w† Torino Virtex-5

6 s/w† UFRGS 6 x Zynq

7 s/w∗ UFRGS Kaveri A10 APU

8 s/w† UFRGS Tesla K20 GPUs, Xeon-Phi

9 h/w∗ UFRGS Virtex-5

10 s/w∗ JPL Atmel AT91SAM9G20

11 s/w∗ JPL Freescale P2020

12 s/w + h/w† BYU Kintex-7

13 s/w∗ BYU Zynq

14 custom∗ Vanderbilt

VI. RADIATION TESTS USING THE BENCHMARKS

Initial radiation tests were completed at the Los Alamos
Neutron Science Center (LANSCE) in December 2014. Fig. 1
shows the test setup at LANSCE, although several boards were
added to the test later. The tests represented are shown in

Table III. A follow-on test was completed in January 2015.
The results of these tests were analyzed to determine cross
sections using the number of the errors from the tests and the
fluence from LANSCE’s dosimetry. The cross sections were
then converted to FITs using the fast neutron flux for New
York City (13 neutrons/cm2/hour).

The following discussion will provide results for micro-
controllers, ARM cores, GPUs, and FPGAs. These results
show the sensitivity to corrupted calculations, which is called
Silent Data Corruption (SDC) [41], and single-event functional
interrupts (SEFIs) in terms of FITs. For both SDC and SEFIs,
the FIT is reported, which is normalized to the FIT of the
unhardened version, called Relative FIT (R.FIT ), to allow
a quick comparison between different hardening strategies
applied to different codes or devices. The overhead represents
either: (1) the increase in area for hardware, or (2) the increase
in execution time for software. While it is possible that
hardware mitigation could cause an increase in the execution
time, it would only happen if it is necessary to decrease the
clock to meet timing.

A. Hardware Benchmark Results

For the circuit benchmark, we focused on the radiation
testing of the B13 circuit from ITC’99 benchmark suite. This
circuit is very small, so it was replicated 30 times for each of
the implementations on a Virtex-5LX50T Xilinx SRAM-based
FPGA. At LANSCE we tested an unmitigated version, an X-
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TMR mitigated version and a X-TMR/VERI-Place mitigated
version. The circuits were synthesized using the 9.2i version
of the Xilinx Integrated Synthesis Environment (ISE) Design
Suite. This version of ISE can be integrated with the X-TMR
tool. The X-TMR designs mitigated all of the logic. None of
the global signals (input, output, clock or reset) are mitigated.
These signals are registered immediately, which means that the
signals will triplicate after the first latch. We have found that
this method of handling global signals provides a reasonably
low cross section without the effort of making timing using
three sets of signals. The VERI-Place versions uses POLITO’s
software mitigation tool [42]. The X-TMR and VERI-Place
implementation take the same amount of FPGA resources,
because the VERI-Place mitigation tool hardens the circuit’s
physical netlist by acting on the logic placement position. The
test fixture does not scrub SEUs as SEUs accumulate, but once
the circuit reports an error. This means that there can be one
to many SEUs that contribute to an SEU.

Table IV reports the results for the three implementations.
The results report SDCs from the mitigated circuits normalized
to the SDCs from the unmitigated circuits, while the overhead
represents the increase of the circuit area. In these results,
the X-TMR results are larger than one would expect. One
issue with allowing SEUs to accumulate is that the X-TMR
mitigated circuits are only guaranteed to mask one SEU. Once
more than one SEU accumulates, a mitigated circuit is likely
to fail at three times the rate of the unmitigated circuit, because
of the increased size of the circuit from the mitigation process.
Therefore, it is possible that the cross section for a mitigated
circuit can be three times larger than an unmitigated circuit
when SEUs accumulate. These results show how well X-TMR-
mitigated circuits can mask accumulating SEUs. The VERI-
place-mitigated circuits perform even better than the X-TMR-
mitigated circuits under these conditions.

We need to continue experimentation with the hardware
benchmark, including testing more circuits and testing more
architectures. Although we focused on B13 for now, there are
many circuits available in the I99T. Fault emulation can be
helpful in testing more circuits in a uniform and thorough
manner, as fault emulation tests are less expensive than radi-
ation tests. We are preparing more circuits for radiation tests
by using fault emulation using the FT-UNSHADES platform.
FT-UNSHADES is able to emulate SEUs in both configuration
memory and the user flip-flops [43]–[45]. A diagram of the
system from [44] is shown in Fig. 2. One of the advantages
of FT-UNSHADES is that it is designed to load input test
vectors from DRAM, making it straightforward to work with
automated test vectors. The ability to test both the configura-
tion memory and the user flip-flops also increases coverage of
the circuit before radiation testing. Because radiation testing
could only cover a small portion of the testing, we intend to
use FT-UNSHADES to provide insight into the other circuits
through the use of fault emulation.

Finally, many new types of FPGA architectures are newly
accessible to the space community, such as the Altera Stratix-
V and the Microsemi RTG4. We would like to test more
architectures so that we could provide a cross-architecture
comparison.

TABLE IV
B13 TEST RESULTS ON THE XILINX VIRTEX-5 LX50T WITH 95%

CONFIDENCE INTERVALS

Impl. SDC Overhead

FIT R. FIT

Unhardened (2.10± 0.03)× 103 1.0 1.0

X-TMR (1.72± 0.01)× 103 0.82 4.56

VERI-Place (1.34± 0.04)× 102 0.06 4.56

Fig. 2. FT-UNSHADES system for fault injection of a Module Under Test
(MUT) [44].

B. Software Benchmark Results

We completed neutron testing of the software benchmark
on a number of components, including a flash-based micro-
controller, a ferroelectric-memory-based microcontroller, two
ARMs, and two GPUs. Many of these components were tested
with both mitigated and unmitigated codes.

Table V show the results for all of tested codes in the
software benchmark for two different microcontrollers and
two ARMs. The Texas Instruments components used the Code
Composer Studio compiler version 6.0. The software for the
two MSP430s was compiled with register optimizations (O0),
and the software for the Tiva was compiled with global
optimizations (O2). The Texas Instruments components do not
have a runtime environment. The Zynq ARM used the Xilinx
14.4 Software Development Kit compiler with register opti-
mizations (O0). We use the “bare metal” runtime environment
for the Zynq ARM. Each of the microcontroller and ARM
codes are mitigated using LANL’s Trikaya software mitigation
technique, which employs spatial and temporal triple modular
redundancy (TMR) [37].

Because each of these microprocessors has only a small
amount of SRAM, the FIT rates are very small. In some cases,
there are no errors from the code during many days of testing.
In these cases, the FIT is based on fluence−1, and the Poisson
confidence interval for null data is used. While most of the
time the mitigation decreases the FIT for the software, there
are few cases where that is not true. In two of these cases, the
mitigated code had no failures, and FIT based on fluence−1

is larger than the unmitigated FIT that was tested longer. In
the MSP430F2619 Qsort tests, one run of the software had 23



7

TABLE V
SOFTWARE BENCHMARK RESULTS FOR MICROCONTROLLERS AND ARM CORES IN FITS WITH 95% CONFIDENCE INTERVALS

TI MSP430F2619 TI MSP430FR5739 Xilinx XC020 ARM TI Tiva ARM

AES
Unmitigated 0.38 (0.04, 1.37) 0.85 (0, 3.1) 11,711 ± 203 0.30 (0, 1.1)

Mitigated 3 (1,5) 2 (0,7) 1 (0,4) 0.31 (0, 1.1)

Cache
Unmitigated 8 ± 2 10 (6, 15) 12 (6, 22) 75 ± 10

Mitigated 0.21 (0, 0.76) 2 (0, 8) 1 (1, 4) 0.27 (0, 1.0)

CoreMark Unmitigated 1.27 (0.51, 2.61) N/A 1 (0, 4) 0.75 (0.15, 2.2)

MxM
Unmitigated 4 (2, 6) 1 (0, 4) 2 (0.2, 8) 59 ± 13

Mitigated 0.27 (0, 1.0) 2 (0, 8) 1 (0.1, 6) 10 (7, 14)

QSort
Unmitigated 3 (2, 5) 25 (16, 38) 3 (0.7, 10) 59 ± 13

Mitigated 0.23 (0,0.88) – 1 (0.1, 6) –

TABLE VI
SOFTWARE BENCHMARK RESULTS FOR NVIDIA K20 IN FITS WITH 95% CONFIDENCE INTERVALS

bench. config SDC SEFI Overhead

FIT R. FIT FIT R. FIT

MxM

Unhardened (4.63± 0.80)× 102 1.0 (3.97± 0.52)× 102 1.0 1.0

ECC 44.91± 9.94 0.097 (6.07± 1.25)× 102 1.523 1.01

ABFT 8.34± 0.96 0.018 (4.47± 0.92)× 102 1.128 1.14

FFT

Unhardened (2.88± 0.39)× 103 1.0 (7.02± 0.86)× 102 1.0 1.0

ECC (4.14± 0.88)× 102 0.144 (1.01± 0.25)× 103 1.436 1.50

ABFT 51.84± 6.67 0.018 (8.20± 0.87)× 102 1.145 1.18

Hotspot

Unhardened (2.04± 0.31)× 102 1.0 (1.12± 0.17)× 102 1.0 1.0

ECC 18.16± 2.01 0.089 (1.11± 0.91)× 102 1.439 1.00

spacial DWC 3.26± 0.45 0.016 84± 0.92 0.750 2.45

time DWC 2.45± 0.34 0.012 8.85± 0.87 0.079 1.90

values in two arrays corrupted simultaneously, which caused
72 errors in the output values. While 60 errors were corrected
through the mitigation process, 12 were uncorrected. These 12
uncorrected errors skewed the results for that code as this one
run is the only run of 52 total runs that had any uncorrected
errors.

The AES code takes approximately the same amount of
memory space in each microcontroller, and the differences in
the cross sections are based on architectural differences among
the microcontrollers. The exception is the unmitigated imple-
mentation on the Xilinx Zynq ARM, which had thousands of
errors during the test. In this case, the test vectors were stored
in SRAM, due to the component’s lack of on-chip non-volatile
memory. The mitigated version of the Zynq ARM AES code
was able to suppress all of the SEUs in the test vectors.

The Trikaya technique is effective on many of the codes,
masking all or nearly all SEUs. For MxM , over 2 million
faults in the results matrix are masked using TMR, and only
41 faults are considered uncorrected. In comparison to other
methods, the increase in overhead is much higher: 1.01–
2.99 increase in data variables and 1.02–2.40 increase in
instructions. The execution time increases about 1.34–3.29
times, although there was a catastrophic mitigation of a cache
test code that increased the execution time by 983.22 times
due to an overuse of printf code.

Table VI shows the results for software benchmarks on
GPUs. We tested the 28-nm NVIDIA Kepler K20 GPU.
There are a total of 14 Streaming Multiprocessors (SMs)
and 192 Compute Unified Device Architecture (CUDA) cores
within each SM. Each SM has 64K registers, 64KB of com-
bined shared memory and L1 cache, and 48KB of read-only
data cache. SMs share 1536 KB of L2 cache and a total 6GB
GDDR5 memory. Register files, shared-memory, L1 and L2
caches are SECDED protected, read-only data cache is parity
protected. The K20 has CUDA capabilities 3.5 and can execute
up to 192 parallel threads per SM in a single computing cycle.
Tests were performed using a host PC running Ubuntu 14 and
CUDA compiler 7.0.

We implemented several different mitigation methods on the
NVIDIA K20 GPU: applying error-correcting codes (ECC)
to caches, registers, and shared memory; an Algorithm-Based
Fault Tolerance (ABFT) strategy for MxM and FFT ; and
spatial and temporal Duplication With Comparison (DWC)
for Hotspot. These results show that the increase in overhead
for ECC is very small, but the sensitivity to SEFIs increases,
due to ECC failures with multiple-cell upsets (MCUs). From
Table VI, it is easy to compare the impact of different hard-
ening strategies for MxM . It seems that ECC on GPUs has a
similar reliability improvement to LANL’s Trikaya technique,
but imposes a lower overhead. On the contrary, ABFT seems
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extremely efficient compared to other techniques.
In the future, dynamic profiling of the software benchmarks

and other codes would be helpful in determining the efficiency
of the software benchmark. Dynamic profiling will help users
to determine what percentage of time the code is spending
loading/storing memory values, branching, or completing other
operations. This type of information could help designers to
develop benchmarks with a greater overlap with flight codes.
Unfortunately, there is not an inexpensive method for obtaining
dynamic profiling results over a wide range of microproces-
sors. Furthermore, most of the existing tools are concerned
with test coverage, memory leaks, or security vulnerabilities.
This topic is best handled in detail elsewhere.

VII. SUMMARY

We have initiated a common set of hardware and software
benchmarks to evaluate reliability and radiation effects for
mitigation methods on FPGAs and microprocessors. These
benchmarks were used in neutron radiation testing to demon-
strate improvements in reliability for both FPGA circuits and
processor executables. The improvements in reliability are
achieved at an additional cost of hardware for FPGA circuits
and lower performance for the processor executables. The
use of these benchmarks will help to evaluate the trade-
off between improvements in reliability and additional cost.
These benchmarks can be useful for reliability and radiation
effects researchers who are interested in both understanding
the dynamic behavior of their systems and implementing
mitigation methods.
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[38] J. Krüger and R. Westermann, “Linear algebra operators for GPU
implementation of numerical algorithms,” in ACM Transactions on
Graphics (TOG), Vol. 22, No. 3, 2003, pp. 908–916.

[39] J. Liepe, C. Barnes, E. Cule, K. Erguler, P. Kirk, T. Toni, and M. P.
Stumpf, “ABC-SysBio–approximate Bayesian computation in Python
with GPU support,” Bioinformatics, Vol. 26, No. 14, pp. 1797–1799,
2010.

[40] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, Vol. 96, No. 5,
pp. 879–899, 2008.

[41] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in 11th International Symposium on High-
Performance Computer Architecture (HPCA-11), 2005, pp. 243–247.

[42] M. Desogus, L. Sterpone, and D. M. Codinachs, “Validation of a tool for
estimating the effects of soft-errors on modern SRAM-based FPGAs,”
in IEEE 20th International On-Line Testing Symposium (IOLTS), 2014,
pp. 111–115.

[43] M. Aguirre, J. N. Tombs, A. Torralba, and L. G. Franquelo,
“UNSHADES-1: An advanced tool for in-system run-time hardware
debugging,” in International Conference on Field-programmable Logic
and Applications (FPL), Vol. 2778, 2003, pp. 1170–1173.

[44] M. Aguirre, J. Tombs, F. Muoz, V. Baena, H. Guzman, J. Napoles,
A. Torralba, A. Fernandez-Leon, F. Tortosa-Lopez, and D. Merodio,
“Selective protection analysis using a SEU emulator: Testing protocol
and case study over the Leon2 processor,” IEEE Trans. Nucl. Sci.,
Vol. 54, No. 4, pp. 951–956, 2007.

[45] H. Guzman-Miranda, M. Aguirre, and J. Tombs, “Noninvasive fault clas-
sification, robustness and recovery time measurement in microprocessor-
type architectures subjected to radiation-induced errors,” IEEE Trans.
Instrum. Meas., Vol. 58, No. 5, pp. 1514–1524, 2009.


