

RISK ASSESSMENT OF COASTAL FLOOD Applied to Boca Barranco beach, island of Gran Canaria, Spain

GUILHERME CLARINDO MARCOS

Tutors

GERMAN RODRIGUEZ RODRIGUEZ¹ CONCEIÇÃO JUANA FORTES² MARIA TERESA REIS²

Masters in Coastal Management 2012/2014

¹ FIMATA – Marine Physics and Remote Sensing / Department of Physics – ULPGC - Spain
 ² LNEC / DHA – National Laboratory of Civil Engineering / Department of Hydraulics and Environments– Lisbon, Portugal

CONTENTS

INTRODUCTION
 METHODOLOGY
 STUDY AREA

3.1 Data

3.2 Wave climate3.2.1 Results of the propagation

3.3. Run-up Calculations and flood level 3.3.1 Results

3.4. Risk assessment 3.4.1. Results

4. CONCLUSIONS

1.INTRODUCTION

Humans have preferentially established their settlements on the coast. This has undergone a dramatic acceleration in a few decades.

It is obvious that

Establishing settlements in coastal areas provides greater ease of access to many natural resources and opportunities for socio-economic improvement.

It is estimated that

¹⁄₄ of the world's population lives within 100 km away from the sea and in areas of lower elevation to 100 meters.

This results in

Greater exposure of people and property to various natural hazards related to the dynamic behavior of the sea.

COASTAL FLOODING..... What is it?

Can be defined as the temporary occupation by water areas that are usually free.(NOAA,2011)

In this context

The present study aims to evaluate the level of risk associated with coastal flooding on beaches as well as coastal structures existing in Boca Barranco Beach.

2.METHODOLOGY

LNEC - National Laboratory of Civil Engineering DHA - Department of Hydraulics and Environments Lisbon, Portugal

This work is linked to **HIDRALERTA Project** Prediction System and Alert Floods in Coastal and Port.

(Neves et al., 2010, Santos et al., 2011, Silva et al., 2011, Reis et al., 2011, Neves et al., 2012 Rocha et al., 2013; Poseiro et al., 2013).

DEPARTAMENTO DE HIDRÁULICA E AMBIENTE HYDRAULICS AND ENVIRONMENT DEPARTMENT

2.METHODOLOGY

Wave climate determination

Run-up estimation

(Empirical models)

Risk assessment

Wave climate determination

Run-up

estimation

(Empirical models)

Risk assessment

The main objective of the application of the models is to estimate :

Flood level (referred to the hydrographic zero)

EMPIRICAL MOD	ELS RUN-UP
Hunt (1959)	$R = H\xi = H\left(\frac{\tan\beta}{\sqrt{\frac{H_0}{L_0}}}\right)$
Guza & Thornton (1982)	$R_S = 0.71 H_S + 0.035$
Holman (1986)	$\xi_{storm} = 6.3\beta$ $R_{2\%} = (5.2\beta + 0.20)H_S$
Nielsen & Hanslow (1991)	$R_{2\%} = 1.98 * L_{RU}$ $L_{RU} = 0.6 * \tan \beta * (H_{orms} L_{0})^{0.5}$ para tan6 ≥ 0.10 $L_{RU} = 0.05 * (H_{orms} * L_{0})^{0.5}$ para tan6 ≤ 0.10
Ruggiero et al. (2001)	$R_{2\%} = 0.27 (\tan\beta \ H_0 L_0)^{1/2}$
Stockdon et al. (2006)	$R_{2\%} = 0.043 * (H_0 L_0)^{0.5}$ para $\xi_0 < 0.3$
Teixeira (2009)	$R_{m\acute{a}x} = 0.80 * H_{s} + 0.62$ $R_{m\acute{a}x} = 1.08 * H_{s} * \xi_{0}$

1.INTRODUCTION - 2.METHODOLOGY - 3.STUDY AREA- 3.1 Data; 3.2 Wave Climate; 3.3 Empirical models; 3.4 Risk assesment – 4. CONCLUSIONS

Shand et al 2011

Wave climate determination

Run-up

estimation

(Empirical models)

Risk assessment

	Kisk Asse	ssmet
Description	Consequence (Indicative script)	Degree
NSIGNIFICANT	Stable geological, natural sand beach, busy casual leisure premises and reduced ecological value.	1
CONSIDERABLE	Weak geological features, or possessing any shrub vegetation, areas of frequent leisure type.	2
VERY SERIOUS	Coastal protection infrastructure; relevant economic activities; very weak and unstable geological vegetation.	5
SEVERE	Permanent human occupation (urban areas); natural elements of great ecological value that are difficult to recover.	10
	Permanent human occupation; absolutely unique areas with a great historical / natural value where the loss is irretrievable; beach-dune	
CATASTROPHIC	system.	25

3.STUDY AREA

3.1 Data <u>Tide records</u>

The values are relative to zero the gauge, which does not match the hydrographic zero. <u>All the values supplied by</u> <u>the State Ports were applied a correction -0.14 m. to</u> <u>refer them to the hydrographic zero</u>, as indicated in the protocols and data files in the gauge.

HINDCAST SUR

Bathymetry

The bathymetry which includes the location of the sources of wave data, provided by the **British Oceanographic Data Centre (BODC)**, GRID with a resolution of 30 arcseconds.

Homogenized bathymetric data bases

This step is to interpolate the bathymetry data to obtain a regular grid, as required by the SWAN model – GIS tools » Contour , kriging, fishnet

3.2 Wave Climate

Hindcast/ Forecast data point 22 years

Wave propagation Features of simulations

≈ 150.000 sea state to propagate

1 sea state = 3 minuts in computational calculation, all sea states = 10 mounths

We decided propagate the sea states in equivalent groups.

FILTER PROCESS	Mín	Máx	Interval
Hs (m)	0,5	7,5	0,5
Tp (s)	6	22	2
Direction referred north (sexagesimal degrees)	0	180	20
Tide	0	3	0,5
Number of waves to propagate			47.452

3.2 Wave Climate

3.2 Wave Climate

Results of the Propagation

to output points

Р5	Mean	Max	Min
HS_P (m)	1.1	7.1	0.15
TP_P (s)	10.6	21	6.1

3.3 EMPIRICAL MODELS

Run up Estimation

6 PROFILES

Crossing 3 case studies

EMPIRICAL MODELS

for RUN-UP

- The significant wave height = Hs
- Wave length = Lo
- Wave climate in offshore zone = Hm0, Pk, Dm
- The slope of the beach face (profile) = β

Authors	Run- up, R
(1050)	$R_{2\%} = \tan \beta * (H * L_0)^{0.5}$
Hunt (1959)	$R_{2\%} = 3 * H$
Holmon (1996)	$R_{2\%} = H_0 * (0.83 * \xi_0 + 0.20)$
Holman (1966)	$R_{2\%} = H_s * (0.78 * \xi_s + 0.20)$
	$R_{2\%} = L_{RU} (-\ln(0.02))^{0.5}$
Nielsen & Hanslow (1991)	$L_{RU} = 0.6 * \tan \beta * (H_{orms} L_0)^{0.5}$
	$L_{RU} = 0.05 * (H_{orms} * L_0)^{0.5}$
	$R_{2\%} = 0.043 * (H_0 L_0)^{0.5}$
Stockdon et al. (2006)	$R_{2\%} = 1.1 * (0.35 * \tan \beta * (H_0 L_0)^{0.5} + [(H_0 L_0 (0.563 * (\tan \beta)^{0.5} + 0.004))^{0.5}] / 2)$
	$R_{max} = 0.80 * H_{s} + 0.62$
Teixeira (2009)	$R_{m \alpha x} = 1.08 * H_s * \xi_0$
	$R_{2\%} 0.27 * (\tan \beta * H_0 L_0)^{0.5}$
Ruggiero et al. (2001)	$R_{2\%} = 0.5 * H_0 - 0.22$
Guza & Thornton (1982)	$R_{s} = 0.71 * H_{0} + 0.035$

FLOOD LEVEL CALCULATION IN THE BEACH

PROFILE 0 TO EXAMPLE

3.3 EMPIRICAL MODELS			Results	1 0 8 T 10 10 10 10 10 10 10 10 10 10 10 10 10	
R _{max} P0	Mean	Maximum	Minimum	111111111111111111111111111111111111111	
Hunt (1959)	2 205	<u>12 61</u>	05		
Holman (1986)	1.162	The developing empirical formulas take into account the type of beach. However, the beach does not meet the conditions o			
Stockdon et al.	3.258	0.302	application	0 ₇₁	
(2006)				00T 06 09	
Nielsen et al.	1.180	3.465	0.313		
(1991)				These authors were	
Ruggiero et al.	1.001	3.643	0.271	excluded to calculate	
(2001)				the flood level.	
Guza et al. (1982)	1.246	7.771	0.219	5 authors used to	
Teixeira 1 (2009)	1.504	6.341	0.743	calculate flood level.	
Teixeira 2 (2009)	1.220	3.434	0.33		

3.3 EMPIRICAL MODELS

Flood level (referred to the hydrographic zero)

Results

3.3 EMPIRICAL MODELS

Results

				Number of events
Número de eventos	F1	47452		
Número de eventos	que ultrapassam - 3m (zona ocio) - caso 1	16374		Eveneding values
Número de eventos	que ultrapassam - 3.4m – (Poca Vegetación) - caso 2	8258		Exceeding values
Número de eventos	que ultrapassam - 14.8 (Infra-estructuras) - caso 3	0.01		
Probabilidad de ocu	rrencia (%) - caso 1	34.51		Probability of
Probabilidad de ocu	rrencia (%) - caso 2	17.40		
Probabilidad de ocu	rrencia (%) - caso 3	0		occurrence
Grado de probabilid	lad de ocurrencia - caso 1		< _	0 I 00
Grado de probabilid	lad de ocurrencia - caso 2	3		Drobability of
Grado de probabilidad de ocurrencia - caso 3				
Description	Probability of Occurrence (22 years)	Degree		occurrence degree
UNLIKELY	0 - 3%	1		
RARE	3 – 15%	2		
OCCASIONAL	15 – 35%	→ 3		Results
PROBABLE	35 – 60%	4		
FREQUENT	> 60%	5		

3.4 RISK ASSESSMENT

Descripción	Consequence (Indicative script)	Degree
	Stable geological, natural sand beach, busy for casual leisure premises	
INSIGNIFICANT	and reduced ecological value.	1
	Weak geological features, or possessing any shrub vegetation, areas of	
CONSIDERABLE	frequent leisure type.	2
	Coastal protection infrastructure; relevant economic activities; very	
VERY SERIOUS	weak and unstable geological system and important vegetation.	5
	Permanent human occupation (urban areas); natural elements of great	
SEVERE	ecological value that is difficult to recover.	10
	Permanent human occupation; absolutely unique areas with a great	
	historical / natural value where the loss is irretrievable; beach-dune	
CATASTROPHIC	system.	25

Ocurronce

Results

and

	P1	C.I		
Número de evento)S	47452	R	
Número de evento	os que ultrapassam - 3m (zona ocio) - caso 1	16374		
Número de evento	os que ultrapassam - 3.4m – (Poca Vegetación) - caso 2	8258		
Número de evento	imero de eventos que ultrapassam - 14.8 (Infra-estructuras) - caso 3 0			
Probabilidad de oc	urrencia (%) - caso 1	34.51		
Probabilidad de oc	urrencia (%) - caso 2	17.40		
Probabilidad de oc	urrencia (%) - caso 3	0		
INSIGNIFICANT	Stable geological, natural sand beach, busy c reduced ecological va	asual leisure p lue.	remises a	
Grado de consecue	encia - caso 1	1		
Grado de consecue	encia - caso 2	5		
Grado de consecue	encia - caso 3	5		
	Coastal protection infrastructure; relevant e	conomic activi	ities; very	
VLNT SLNICOS	vert serious weak and unstable geological system and important vegetation.			
Aceptabilidad - cas	Aceptabilidad - caso 1 Insignificante			
Aceptabilidad - cas	so 2	Indeseable		
Aceptabilidad - cas	so 3	Reducido		

Aceptabilidad - caso 3

3.4 RISK ASSESSMENT Results

P1	C.I
Número de eventos	47452
Número de eventos que ultrapassam - 3m (zona ocio) - caso 1	16374
Número de eventos que ultrapassam - 3.4m – (Poca Vegetación) - caso 2	8258
Número de eventos que ultrapassam - 14.8 (Infra-estructuras) - caso 3	0
Probabilidad de ocurrencia (%) - caso 1	34.51
Probabilidad de ocurrencia (%) - caso 2	17.40
Probabilidad de ocurrencia (%) - caso 3	0
Grado de probabilidad de ocurrencia - caso 1	3
Grado de probabilidad de ocurrencia - caso 2	3
Grado de probabilidad de ocurrencia - caso 3	1
Grado de consecuencia - caso 1	1
Grado de consecuencia - caso 2	5
Grado de consecuencia - caso 3	5
Grado de Riesgo - caso 1 (Grado de la Probabilidad x Grado de Consecuencia)	
Grado de Riesgo - caso 2 (Grado de la Probabilidad x Grado de Consecuencia)	15
Grado de Riesgo - caso 3 (Grado de la Probabilidad x Grado de Consecuencia)	5
Aceptabilidad - caso 1	Insignificante
Aceptabilidad - caso 2	Indeseable
Aceptabilidad - caso 3	Reducido

Intersection matrix Risk Degree = Probability of occurrence X Consequences

3.4 RIS	SK ASSESSMENT	Acceptabil	lity	Results
	Degree	Description	Risk Control	
	1-3	Insignificant	Negligible risk; not necessary to carry or risk control measures.	n
	4-10	Reduced	tolerable if you select a set of measures control the possible damage in a small zone.	to
	15-30	Undesirable	Risk to be avoided if reasonably practication requires detailed research and cost- benefit analysis; monitoring is essential.	ıl;
	40-125	Unacceptable	Intolerable risk; control of risk required (eg Remove the source of risks, alter the probability of occurrence or consequences, risk transfer, etc.).	2

3.4 RISK ASSESSMENT	Profiles	Zone	Risk Dregree	Acceptability
Desults		1	3	insignificant
Results	P0			-
		3	5	reduced
		1	3	insignificant
Dronaro rick mans	P1	2	30	undesirable
Prepare risk maps		3	5	reduced
to improve management		1	3	insignificant
	P2	2	10	reduced
		3	5	reduced
Zone 1 : Insignificant 3 and reduced 3		1	4	reduced
Zone 2 : Unacceptable 3 and Reduced 2	Р3	2	50	unacceptable
Zone 3: Undesirable 1 and Reduced 5		3	5	reduced
		1	5	reduced
	P4	2	50	unacceptable
		3	5	reduced
		1	5	reduced
	Р5	2	50	unacceptable
		3	25	undesirable

CONCLUSIONS

Based on large data sets and a reliable methodology:

- The study identified some potentially dangerous areas »» in zone 2 vegetation
- Other zones (1 and 3) are areas of occasional low-risk flooding.
- The most frequently flooded area is the beach zone (1), which does not present any risk.
- As expected, the area with the lower risk is zone 3, where the structures are located in a high topographic level above sea-level.
- As a result of this, overtopping is not observed in zones with infrastructures.

Thank you very much

