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Mesh Generation and Adaptive Remeshing by
Genetic Algorithms on Transonic Flow Simulation

*G. Winter!, G. Montero!, P. Cuesta! and M. Galgn!

Abstract. [n this paper, we introduce different
applications of genetic algorithms on transonic flow
problems. Thus a regularization process of unstructured
meshes is proposed. From a starting mesh, a new one is
built employing genetic algorithms to minimized a fitness
function which 1s based on geometrical conditions that
allow to get better the quality of the mesh, and on error
indicators providing information about its density. Several
Fitness functions are suggested depending on the proposed
objectives to obtain a better mesh, including different
geometrical considerations regarding area, perimeter,
angles, etc., of the trangles and error measurements based
on the density of the fluid, the mach number or both of
them. Some comparison criteria must be fixed in order to
analyze the quality of the meshes. The control of the nodes
is done by binary codes, assuming that they are equivalent
to the chromosomes of the elements of a population. From
this population, the genetic laws lead to new ones by the
selection, crossover and mutation between parent
chromosomes. This process 1s repeated till the approximate
solution of the global optmum is found for the fitness
function. The parameters of reproduction, crossover,
mutation probabilities and size of the population must be
analyzed to obtain a robust algorithm. This way, an
adaptive finite element is performed moving nodes for a
good remeshing.

The procedure may be generalized to three-dimensional
unstructured meshes by construction of layers of triangular
prism. An extension of the methodology is suggested for
optimization problems over profile (design problem) with
genetic algorithms.

A transonic compressible flow problem is studied for

different mesh strategies, using a version of non linear
GMRES.

LCentro de Aplicaciones Numéricas en Ingenieria,
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I INTRODUCTION

Nowadays, the velocity and capability of the computers
have allowed to try imitating the natural aw of the
behaviour of the beings which along millions years, and
gencration by generation, makes the best adapted survive.
The genetic algorithms were bom inthe sixties, in the
biochemistry field, when some biologists (see [1], [2], [3]
and [4]) used digital computers to simulate genetic systems.
From that moment, many works ([5], [6], [7] and [8]) began
o appear, but J. Holland was who developed the basic
theory of the genetic algorithms in 1975 ([9]. [10], and
LL1]).

The main goal of this paper is the study of the mesh
adaptation applying genetic algorithms. A high degree of
automation of the mesh generation process is required in
engineering applications with finite elements.

In the same way, a flexible and efficient method for mesh
adaptation that allows to regenerate a nesh attending to
several criteria would be an interesting tool for solving
transonic flow problems.

In non-convex two dimensional domains, a method for
smoothing and adapting meshes, initially built by a
convenuonal mesher, has been developed with genetic
algorithms.

2 TRANSONIC FLOW PROBLEM

We consider the potential flow of a compressible inviscid

fluad around the airfoil S. We denote by r_.}. the boundary of

S and by Q the flow domain R’ /S .

The flow is considered steady and irrotational in the

region {2. The state problem is then the full potential
equation and it is modelled by,

-V -(pVp)=0 in Qc R’ (1)

d
l=0 on T (2)

on J



Vo =u_ a infinity (3)
being
AL
A\
rl y-1|Vo[ |
P=P.LT i
e N (4)

The potential @ and the velocity W are related by
u=VvVeQ.
P, 1s the fluid density at rest.

Y is the ratio of specific heats (Y = 1.4 for air).

(. is the critical velocity.
Relations (1)<(4) have be completed by entropy and
Kutta-Joukowsky conditions in order (O eliminate

nonphisical solution (see [12}-| 14)).
We bound the physical space by a large artificial

boundary I _ on which we take,

0P
pgr::pﬂuﬂnﬂ (5)
where
l
y-tef )
p-n = p{] 1__ -
k. (g OF 6518y (6)

being 71_ is the unit outword normal vector at I'_.

The equations (1),(2),(5) define a strongly nonlinear
problem of the mixed type, elliptic in the subsonic region
and hyperbolic in the supersonic region. A weak solution of
(1),(2),(5) 1s given by,

* [ ple)VoVada= I.—_ o_undy

where @ is a test function. This formulation with resolution
by combination of Newton's method and GMRES algorithm
has the advantage of being applicable to flows which are
supersonic at infinity through nonsymmetric indefinite
preconditioning operators reflecting the dominating

hiperbolic character of the operator V- p(@)VQ (see
[15].
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The state problem is discretized with the finite €Jement

method by using triangular linear elements. |
The artificial viscosity is included in the artificial density
(sec [16]),

p=p-p— (8)
ds
which i1s used in (7) in place of P

supersonic pocket the density p s modified 0 p. The
derivative is the upwind derivative and AS is the mesh
spacing. The equation (7) is converted into the nonlincar
algebraic system of equations. The system 18 solved by 2
modified GMRES(K) (see [17]) in each time step of the
Newton s method.

2.1 Error indicators
The localized discretization error can also be estimated by

the error indicators T defined on each triangle Q, (see

[18]):

99,[ .

aﬂz

2109,
+h, Max [p(thpJ ) ] )
E

on

Tln, =h:{2 Egra‘x 3'p(|vq)h|2)

~|p.u.n. ondQ
A onT. (10)

here the bracket, | p(|V,|’) B;P"] denotes the jump
L n Jg

99
of pg- accross the edge E. Since V(].’i,I 1s constant on
n

cach triangle £ these jumps are constant on each edge.

One may interpret T, as an approximation of the second

denvatives of @ ( see [18]) in order to define a second order
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difference of the value of V(p , On a given triangle Q'r

associated with the center of mass X, of Qr. Then one

takes first order differences with neigh boning triangles in

order to get a second order difference on £2 .

We mav rewrite the sum over all triangles into a sum over
all nodes of the triangulation. We use the nodal difference

error indicator,

T‘J = Z(nﬂ.)z (11)

Q el

which is based at the nodes Z; instead of the triangles. For

further details see [19]-[22].

2.2 Applications to the optimal design
Let the profile S=S(a) be defined by a smooth function o,

Sla) = {(xl.x:HO S XS L,-u'.(xl) <x, < u(.:n:I )} (12)

for a symmetric airfoil.
Having the solution @ =@(0t) on the region

Q = Qo) with the profile § = S(0t), we may consider
an optimal control problem:

Find o' €U, such that J(O.' )< J(Q) for all

o € U, where J(Q) is a cost functional and U, the

set of admissible controlsQL. .
Different cost functionals may be (see [23]:

J(|Vel)= I: (Ve _W‘Pn‘)l dx, (13)

L
0

( A
o, 21l

max dx,
14
\ ax, .} (14)
The unknown distributed parameter II.(I]) 18
approximated by the shape parametrization,
Grid Generation and Adaptivity

a.(xl)-"U.JZ'FZafx:'l (15)

=2

Many well known test profiles are expressed this way (l.e.
NACA 0012).

In general the mapping a——> J(a) is noncovex

Therefore, only a local minimum of J may be found
traditional methods of optimization. However, using genetic
algorithms, the global minimum can be obtained.

3 MESH GENERATION

The proposed algorithm may be divided into five steps:

a. Input data determining the boundary geometry and the
charactenstics of the mesh.

b. Boundary discretization.

¢. Generation of inner nodes in the domain.

d. Tnangulation by advancing front technique.

e. Smoothing procedure applying a simple genetic
algonthm.

In step a, the boundary geometry of the domain is
generated using a modified cubic spline interpolation with
condition of infinite derivative at the extremes, that gets a
smooth representation of the model. The domain may be
divided into several regions of different densities from the
begining. This is useful in finite element method, i.e. when
multiple materials are involved in the domain.

Steps b and ¢ are developed following criteria of mesh
density previously considered. These aspects have been
studied by several authors (i.e. see S.H. Lo [24] and [25],
Johnston and Sullivan [26]). Here, the boundary
discretization has been done inserting nodes in each spline
curve as density parameter implies. Step ¢ has been
developed taking into account a regular distribution of
points in each region for a given degree of discretization.
For each region, an array containing the minimum and
maximun value of coordinate y for each boundary line is
considered in an ordered way. Note that a simple region has
an outer boundary line but it may have several inner ones
(holes). Between each two points of these, some virtual
horizontal lines are drawn depending on the density
function. A simple virtual line 1s divided into several
scgments formed by its intersections with an outer and
inner boundary line. It is easy to know where the line
crosses a boundary, observing if it is located between the
corresponding minimum and maximum values. When all
the intersections are computed and ordered, we study if
new points must be introduced between two of them, this is
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(o say, (0 know if the segment belong (o the domain. The
discretization is done such as density function implies. This
way of allocating inner nodes allows to generate triangles
of good quality except for points beside the boundary
nodes. In fact, a point is removed if its distance from a
boundary node 1s less than 2/3 times the real distance

corresponding at the point.
The advancing front technique of step d implemented here

15 as follows:

. Create one array that contains the outer boundary
points, one array for cach inner boundary discretization,
and another one for the inner points in the domain.

2. The first advancing line is the outer boundary.

3. For cach two points of the advancing line, we search a
point included in any array that allows to create the best

tnangle.
4 Create such triangle if it satisfies the mesh

requirement. If it does not, the search is followed.

5.  Introduce the point into the array defining the
advancing line and remove it from the array before.

6. Fimsh the triangulation when there 1s not any array
containing points.

The step e 1s introduced in the next paragraph.

4 MESH ADAPTATION

In triangulation processes, some f(riangles that do not
perform the requirements about using them as elements in a
finite element code, are generated. This is to say, there are
degenerate triangles. In this case, several methods of
smoothing are applied to get the least of degeneration. Here
a new smoothing technique based on the control by
artificial genetic algorithms of the nodes which form a
triangle, is presented. The simple idea is to find the optimal
location of a node inside a polygonal in such a way, that the
triangles formed by this node and two of the polygonal are
as equilateral as possible. In this sense, different fitness
functions have been designed whose minimal is the
searched point

When an approximated solution is known, and thus the
error indicators too, this procedure allows to build an
adaptive mesh adding a relation between the size of the
triangle and its associated error indicator to the fitness
function such that the optimal solution of the mesh keeps a
nearly constant distribution of error indicators.
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4.1 Genetic algorithms

A simple genetic algorithm have three principal steps.

reproduction (selection), crossover and mutation. Figure
shows a simple genetic algorithm (see [27]).

Figure 1. Simple Genetic Algonthm

4.2 Chromosomes

The geometrical representation of a point In (WO
dimensional space requires to fix two numbers to define 1ts
location with respect to coordinates axes.

Location =(x y) (16)

If both values are written in binary system, a chain of 0
and 1 i1s obtained. Fifteen digits have been used for each
coordinate value.

Winter er al



chromosome = (l 101100...101 10) (17)

In this conditions, each chromosome means one location
in the topological space. A population is represented by a
sel of chromosomes which are identified dcpcnding on
theirs merit values, that are obtained evaluating a function
that have been fixed in order to get the searched objective.

4.3 Selection, crossover and mutation

Once chromosomes are defined, we start from an initial
population taken at random. Each chromosome is computed
and, agreeing with it, a critenia of selection is stablished.
This 1s a delicated aspect of the genetic algorithms,
depending on it that the convergence to the optimal location
1s got at an admisible time or out of reasonable limits. In
this research, a stochastic model was applied based on a
congruential method. Supposing that two parents are
selected, the crossover operation consists of the following:
if we have two chains, both being of n bits, a random
number k 1s chosen 1n the interval (1,n-1) and two sons are
crealed interchanging the chains between 1 and k inclusive.
Let be the parents,

parentl = (a,azajadajaﬁ@aﬂaqam) (18)

parent2 =(bb,b,b,bbb.bbb,) (19

9

where 4. and b; represent 0 or 1. If we obtain, i.e., k=6 at

random, two sons are created from crossover operation,

sonl = (b, b,b.b, bjbﬁa,aﬂagam> (20)

son2 = (alazajia,, ajaﬁbTbﬂbgb,n) (21)

The last step of the transforming operartion is constituted
by the mutation process, which consists of choosing a
random number k' belonging to the interval (0O,n-1), and if 1
corresponds to locaton k' we allocated 0, and vice versa.
Mutation increases the possibilities of amplifying the space
of search to zones that stay hidden in other way. As in
crossover operation, there 1s a parameter that regulates the
chance of mutation of the chromosomes.

Although it is not going to be exposed here, the
optimization by selection procedure for reproduction,
crossover and mutation, may be understood in a more
rigorous way, examining from the begining of populations
the apparition of robust schemes of bits in the chromosomes

Grid Generation and Adaptivity

that grow generation by generation making the population
g0 (o the opumum which is got by every member.

44 Random number generation

The effect of the fitness function to select an clement for

reproduction should be take into account following the
expresion:

18
) T e (22)
>

where f; 1s the value of the fitness function of the

element 1, and z j; 1s the sum of fitness function for all
the elements.

It provides a density function of probability of the
clements which indicates the frecuency of its reproduction.

As soon as this frecuency is obtained, the reproduction
takes place by crossing over the elements. A random
selection should be made efficiently. After crossover, a
random location is computed to raise next generation. In an
other hand, mutation is the process where a bit is randomly
changed with some probability.

We can conclude that random number generation 1s very
important in selection, crossover and mutation. A good
selection of the random number generation algorithm is
necessary for rate and convergence of the method. This
algorithm should satisfy, first, that the random chain of n
elements is sufficiently long (in our problem it is very
long), and second, random numbers fatisfy random test.
The capacity of the computer is related with the random
chain of n numbers and its quality.

In the present paper the Miran Package (see [28]) 1s used
to generate random numbers between high and low ones. It
has two subroutines: one initializes random chains and the
other generates it. Initialization is made using integer
numbers between 1023 and 294, although this value could
be extended if it is necessary. The generation method is

known as congruential method and it can be used in any
computer.

4.5 Fitness function

For smoothing the mesh, the following objective functions
have been chosen (see [29]):
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a. First, a function

equal,

c 27
Fri ) aind=—==0 (23)
a i
(=] NP
of vortices of the polygonal

being NP the pumber
angle

the point 10 locate, and &, the
vortex of the triangle 1.

llows the riangles 1O be as

containing

corresponding (o the inner
b. Tne second funcuon &

isosceles as pnsslhlc.

NT )
F=Y(C,-C) (24)

nal. and Cﬂ.

NT the number of triangles of the polygo
t of the i-th

being
the distance between the inner and the j-th poin

triangle. ) 14
c¢. The regeneration of the mesh (adaptation) 1s gived by a

fitness function that changes the density in those mges
where the error indicators arc higher, keeping the initial

global number of nodes in the mesh.

NP
F.=) Ag, (25)

c
=]

being NP the of vortices of the polygonal, A, the area and

€, the error indicator of i-th triangle.

Taking this fitness function, it is possible that the
performed triangles are not up 1o US€ in a finite element
code due to geometrical degeneration. This leaded us to
apply a combination of two fitness functions of different
characteristics, including both geometrical and minimal

error conditions,

F=0F +(1-0)F (26)
F;=9F;+(1_9)F; 27)

being 0<6<].
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In all the cases, the parametey 0 h
at first (geometrical re 27 S been
gularization) 44 o “BOsey
and 0

following steps (adaptation), 15350;0 h‘l
" e

5 CONCLUSIONS

Being the main goal of (hig pa

possibilities of resolution with gE:;icln Presep,

different  problems

several questions of interest .
the genetic algor 87 B mncmnng'ﬂth lm"u‘i'*"t‘l
genetic algorithms in this fie]q © Capapy;. )
Thus we have proposed a reeulns 'y of
dNzatiop

nstructured :
uns .C ed meshes _and adaptive remeship Proces, &
algorithms on Transonic Flow Simulatio 8 by BCney;

_ n.

Also, an nptlmum Ehﬂpc dcsign Pmblcm - 3
GA:s. ® SUggesieg Wi

Different numerical experiences haye bee ¢
the Center of Numerical Applications 0 develope in
(CEAND) of Las Palmas G.C. University mmEngincering
with good results, to be published ip thrj T them
several reviews. AeXt future In
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