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Abstract

Today’s society relies on a radio-based wireless communications infrastructure that
is reaching high saturation levels, in which more and more devices require high-capacity,
low-latency wireless connections. To solve this problem, optical wireless communication
(OWC) is positioned as an ideal candidate to provide a complementary infrastructure
capable of meeting the capacity requirements of future networks. There are many
branches within OWC, including free-space optical communication (FSO) based on
laser transmitters, which already have successful commercial implementations. For
example, this technology is used to establish intra-satellite links in the StarLink satellite
internet constellation.

However, this thesis focuses on the visible light communication (VLC) branch.
This technology aims to reuse the lighting systems present in offices, homes, hospitals,
airports, etc., to establish new communication links, which can be used for various
applications: precise indoor positioning, signage and marketing, backbone support for
augmented reality, Internet access points, vehicular communications, smart cities’ man-
agement, and environmental monitoring, among many others. However, although this
technology has reached the readiness level required for its deployment, its penetration
in markets and industry has been slowed by the lack of commercially available chipsets
(based on photodiodes) and standards with a clear industrial view. Therefore, the costs
derived from embedding this hardware in end-user devices have a negative impact on
the adoption of this technology.

For this reason, the scientific and engineering community has shown interest in using
cameras as receivers instead of custom photodiode arrangements. A new VLC branch
is thus established, known as optical camera communication (OCC). This technol-
ogy promotes the massive creation of applications using end-user devices with built-in
cameras, such as smartphones, laptops, dashcams, biometric security systems, etc.

Nevertheless, OCC links have a relatively low throughput, which is inherently lim-
ited by the camera’s frame rate (i.e., 60 to 120 frames per second). Specifically, global
shutter cameras, i.e., those that expose all their pixels simultaneously during capture,
sample the optical signal each time an image is taken. Therefore the achievable re-
ceiver’s sampling rate coincides with the camera’s fps, limiting the maximum achievable
data rate according to the Nyquist-Shannon theorem.

On the other hand, rolling shutter (RS) cameras achieve significantly higher trans-
mission rates than the previous ones. This is because they scan the scene sequentially
row by row of pixels, sampling light variations that occur during a single capture. These
variations are perceived in the image as bands of different intensities according to the
illumination level present at the instant the corresponding row was exposed. Those
bands correspond to the different symbols of the optical signal. In summary, signal
sampling is performed row by row of pixels, so the receiver’s sampling rate depends
on the rate at which the rows are activated. The interval between the activation of
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two consecutive rows is called the row sampling time, and it is between 100 and 10000
times shorter than the capture time. Typical row sampling times range from 8 to 10
microseconds, leading to receiver’s sampling rates up to 125 kHz. In addition, super
slow motion cameras can exceed sampling rates greater than 500kHz. For this reason,
and the fact that most cameras on the market use the RS acquisition mechanism, these
links have recently received special attention.

Although RS-OCC systems allow higher transmission rates, they require that the
camera’s exposure time, i.e., the time the pixels are exposed to light, be as short as
possible. Otherwise, as exposure time increases, the symbol bands begin to blend to-
gether in the image because the pixels begin accumulating the irradiance from several
consecutive symbols. The result of prolonged exposures is the appearance of intersym-
bol interference that severely impairs signal decoding. In other words, the exposure
time behaves like a low-pass filter that considerably reduces the reception bandwidth.
A conflict then arises with the usual operation of cameras as imaging devices. If the
exposure time is reduced, the camera’s sensitivity decreases, and the images it delivers
are practically dark, in which the objects present in the scene are no longer clearly
discernible. The exposure time sets a trade-off between the camera’s sensitivity, and
thus its ability to capture the scene, and the receiver bandwidth, and thus its ability
to operate as an optical receiver.

Preventing cameras from losing their intrinsic functionality as imaging devices is
necessary for this technology to be massively adopted. Therefore, strategies must
be sought that favor increased sensitivities without compromising communications.
On the other hand, developing a core solution compatible with the vast diversity of
cameras on the market is required. Although most of them are RS, each one has a
different internal configuration. Moreover, in some cases, their internal parameters are
inaccessible, such as the clock frequency, which is related to the row sampling time
(and thus to the receiver’s sampling frequency), simply because it has no practical
application in photography. In other cases, its parameters are dynamically adjusted,
as is the case with the exposure time depending on the ambient illumination.

In conclusion, the massive adoption of OCC links depends on knowing the influence
that camera parameters have on communications, with particular emphasis on the
exposure time, and developing a unique solution that favors the visualization of the
scene and therefore allows the effective reuse of as many cameras as possible. To achieve
this, the use of artificial intelligence (AI) is proposed in this thesis.

The search for this solution is condensed in this thesis’ first general objective (GO1):
to develop an AI-assisted architecture that is compatible with many cameras and oper-
ates independently of the exposure time. At the same time, it has to support the use of
moderate levels for the camera’s sensitivity, preventing it from losing its functionality
as an imaging device. In addition, two other general objectives are stated: (GO2) to
develop an experimental test bench for the generation of real samples and (GO3) to
evaluate the integration and feasibility of OCC in industrial and market applications.

The main core of this thesis is constituted by three contributions indexed in high-
impact journals, which follow an evolution coherent with the iterative development to
address this industrial technical challenge.

This thesis is based on previous work done by the author as his master’s thesis. In
that work, a functional prototype of an RS-OCC link was developed under laboratory
conditions. The thesis began when it was decided to deploy it in an industrial environ-
ment, specifically in a microalgae cultivation plant. The objective of this project was to



create an optical link using a surveillance camera for the simultaneous monitoring and
surveillance of multiple photobioreactors. These photobioreactors (hereafter nodes)
use an LED panel to simultaneously (i) adjust the illumination intelligently according
to the light requirements of the microalgae and (ii) send optical codes with culture
parameters, such as temperature, and pH level, among others. This work highlighted
that selecting the exposure time is crucial in designing RS links. If it was reduced
to provide faster communications, then the camera lost its function as a monitoring
device. Laboratory technicians or possible intruders cannot be discerned in the image.
This work also analyzed other technical requirements to be considered when deploy-
ing multiple links, such as (i) the influence of the orientation of the nodes and their
irradiance profile on the link quality, (ii) the distribution of the nodes to achieve an
equivalent shared capacity between them, and (iii) their placement to optimize the
available space. The results and findings of this work constitute the first contribution
of this thesis and provide practical technical guidance for the design and deployment
of RS links in an industrial environment.

After highlighting the effects of prolonged exposures, an extensive literature review
was conducted in search of solutions to this problem. A lack of research in this aspect
was detected. Moreover, the growing interest in the use of AI for source detection
and digital signal processing tasks suggested the idea of using AI for the equalization
of the effects of long exposures. This marks the beginning of the efforts to increase
the exposure time without affecting the performance of the reception routines. This
work results in an AI-assisted equalization block capable of mitigating the effects of
exposure in mid to severe noise conditions. This equalizer based on a convolutional
autoencoder (CAE) allows increasing the exposure time up to 7 times compared to
the ideal exposure time for decoding, with bit error rates lower than the forward error
correction (FEC) limit. In other words, this equalizer improves the receiver bandwidth
by up to 14 times compared to non-equalized links.

It is important to highlight that the results of this work have a potential impact
in the field of digital signal processing and, therefore, in all communications systems,
whether they are optical, radio-based, or acoustic, since they validate the ability of AI
to increase the effective bandwidth in band-limited systems. In this case, the limitation
is imposed by the exposure time, but it could come from any other link element in the
transmission, channel, or reception.

Another contribution of this work is that the equalizer training was performed ex-
clusively using synthetic samples. For this purpose, the RS mechanism was modeled,
and an efficient algorithm for synthetic sample generation was developed. This algo-
rithm uses only the link’s temporal parameters, such as transmitter symbol rate and
the camera’s exposure and row sampling times. This algorithm was indirectly validated
by evaluating the equalizer using real-world samples.

This synthetic training was motivated by the difficulty, complexity, and time de-
mands of capturing real images. For this purpose, the cameras must be rigorously
characterized and the link conditions adjusted accordingly. This implies that the equal-
izer might not generalize well and operate correctly with images from other cameras
taken under different conditions. Therefore, synthetic training not only speeds up the
creation of datasets and eliminates the complexity of developing a test bench but also
allows abstracting the training from the experiment conditions by using many repre-
sentative samples of a wide variety of transmitters, cameras, configurations, and noise
levels.



Finally, when commercial smartphone cameras were proposed for practical imple-
mentation, it was discovered that many of their internal parameters are unknown,
cannot be modified, or are dynamically updated. Therefore, in these cases, it was
necessary to estimate these parameters directly at reception from the captured images
before decoding. For this purpose, convolutional networks trained with synthetic im-
ages representative of thousands of possible configurations are proposed. The results
reveal that these networks can obtain relative errors lower than 1.3% and 3% in esti-
mating the data clock frequency and exposure time, respectively. These error values
guarantee the optimal operation of the rest of the reception routines.

As a result, this estimator decouples the reception routines from the cameras used
and allows to devise a reception architecture that operates exclusively with the images
independently of the camera used and its configuration. In addition, this architecture
includes exposure equalization stages to allow increasing the exposure time to optimal
visibility conditions. In this way, the simultaneous use of the cameras as imaging de-
vices and receivers is enabled. Ultimately, this proposal paves the way for the creation
of transferable communications software for RS-OCC that can be easily integrated
into developing multiple applications for smartphones, desktops, laptops, tablets, au-
tonomous driving systems, ATMs, etc. In addition, it also enables the development of
application interfaces hosted in cloud infrastructures that can process images provided
by different multimedia streams in real-time. In this way, it is also possible to tech-
nologically enable devices that do not have an open ecosystem to develop their own
applications.

Additionally, in a later work, the training times of the equalizers were improved up
to 435 times, using only 250 training images instead of 35500. This was achieved by
transferring the pre-trained estimator’s knowledge to the equalizers. This improvement
in the efficiency of training the equalizers allows them to be trained on demand without
disrupting communications’ link.

Finally, during the exercise of this thesis, other contributions have been made re-
garding the transmitter part. A transmitter device called Barcolit, which operates as a
traditional barcode but actively using LED panels, was proposed. This system is com-
patible with conventional barcode readers. Thus it does not disrupt current industrial
processes. Moreover, it reduces the detection and decoding complexity of traditional
barcodes. The codes generated with Barcolits are not distorted in the images and
appear correctly aligned horizontally regardless of the camera’s relative orientation.

In conclusion, this thesis balances efforts to address (i) an industrial challenge in
the particular field of rolling shutter (RS)-optical camera communication (OCC) links,
which is to achieve the effective reuse of cameras as receivers without losing their pri-
mary function as imaging devices, with (ii) a scientific-technical problem extensible to
any field of communications, which is the equalization of the intersymbol interference
(ISI) produced by the reduction of the available receiver bandwidth and the indirect
estimation of specific link parameters. Moreover, it evolves and matures in line with
the most recent advances in the field of artificial intelligence (AI) and computer vi-
sion, recording results that exceed those obtained with classical algorithms and other
preliminary work. Finally, it focuses on decoupling the reception routines in RS-OCC
links from the cameras used, aiming to accelerate this technology’s mass adoption.



Resumen en Español

La sociedad actual depende de una infraestructura de comunicaciones inalámbrica
basada en radio que está alcanzando niveles de saturación constatables. Son cada vez
más los dispositivos que requieren de conexiones inalámbricas de alta capacidad y baja
latencia. Para solventar esta problemática, las comunicaciones ópticas inalámbricas
(OWC por sus siglas en inglés, optical wireless communication) se posicionan como
candidatas idóneas para ofrecer una infraestructura complementaria capaz de asumir
los requerimientos de capacidad de los enlaces del futuro. Existen muchas ramas dentro
de las OWC, entre las que destaca las comunicaciones ópticas de espacio libre (FSO
por sus siglas en inglés, free space optical communication) que utilizan transmisores
ópticos basados en láseres, que cuentan ya con implementaciones comerciales exitosas.
Por ejemplo, los enlaces FSO se utilizan para las comunicaciones intrasatelitales en
StarLink.

Por su parte, esta tesis se centra en las comunicaciones ópticas basadas en luz
visible (VLC por sus siglas en inglés, visible light communication). Esta tecnoloǵıa
tiene como objetivo reutilizar los sistemas de iluminación presentes en oficinas, casas,
hospitales, aeropuertos, etcétera, para establecer nuevos enlaces de comunicaciones,
con diversas aplicaciones: el posicionamiento preciso en interiores, la señalización y
el marketing, el soporte de entornos de realidad aumentada, la creación de puntos de
acceso a Internet, las comunicaciones vehiculares, la gestión de ciudades inteligentes,
la monitorización ambiental, entre otras muchas. Sin embargo, a pesar de que esta
tecnoloǵıa ha alcanzado el nivel de madurez técnico necesario para su despliegue, su
penetración en los mercados y la industria se ha visto ralentizada por la necesidad de
utilizar un hardware de recepción espećıfico basado en fotodiodos. Los costes derivados
de la integración en los dispositivos finales de usuario repercuten negativamente en la
adopción de esta tecnoloǵıa.

Por este motivo la comunidad cient́ıfica e ingenieril ha mostrado interés en utilizar
en lugar de arreglos espećıficos de fotodiodos, las cámaras como receptores, consti-
tuyéndose aśı una nueva rama conocida como las comunicaciones ópticas basadas en
cámara (OCC, por sus siglas en inglés, optical camera communication). De esta forma
se promueve la creación masiva de aplicaciones utilizando dispositivos finales de usuario
con cámaras incorporadas como los teléfonos móviles, los laptops, las dashcams, los sis-
temas de seguridad biométricos, entre otros.

No obstante, los enlaces OCC tienen una tasa de transmisión relativamente baja, la
cual está intŕınsecamente limitada por la tasa de captura de imágenes de la cámara, con
tasas t́ıpicas de 60 a 120 imágenes por segundo (fps por sus siglas en inglés, frames per
second). Concretamente, las cámaras que utilizan una adquisición global shutter (GS),
esto es, aquellas que exponen todos sus ṕıxeles simultáneamente durante la captura,
muestrean la señal óptica cada vez que se toma una imagen, por lo que la frecuencia de
muestreo de recepción coincide directamente con los fps, lo que limita la tasa de datos
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de acuerdo con el teorema de muestreo de Nyquist-Shannon.

Por otro lado, las cámaras rolling shutter (RS) alcanzan tasas de transmisión sig-
nificativamente mayores respecto a las anteriores. Esto es debido a que escanean la
escena de forma secuencial fila por fila de ṕıxeles, lo que permite muestrear variaciones
en la iluminación que ocurren durante la captura. Estas variaciones se perciben en la
imagen como bandas de diferente intensidad de acuerdo con el nivel de iluminación
presente en el instante en el que se expuso la correspondiente fila de ṕıxeles. Cuando
se utiliza un panel LED como transmisor, este genera bandas en la imagen que se cor-
responden con los diferentes śımbolos que constituyen la señal óptica. En definitiva,
el muestreo se realiza fila por fila de ṕıxeles, por lo que la frecuencia de muestreo de
recepción dependerá de la velocidad a la que se activan las filas. El intervalo entre la
activación de dos filas consecutivas se denomina tiempo de muestreo de fila, y es entre
100 y 10000 veces mayor que el tiempo de captura de una imagen. A modo de ejem-
plo, tiempos de muestreo de fila t́ıpicos que vaŕıan entre los 8 y los 10 microsegundos,
suponen frecuencias de muestreo que vaŕıan entre los 125 kHz y los 100 kHz. Además,
las cámaras de súper cámara lenta pueden alcanzar y superar frecuencias de muestreo
por encima de los 500 kHz. Por este motivo, y por el hecho de que la mayoŕıa de las
cámaras presentes en el mercado utilizan el mecanismo de adquisición RS es por el que
estos enlaces han recibido especial atención recientemente.

A pesar de que los sistemas RS-OCC permiten alcanzar tasas de transmisión may-
ores, requieren, sin embargo, que el tiempo de exposición de la cámara, esto es, el
tiempo que permanecen los ṕıxeles expuestos a la luz, sea lo más corto posible. De
lo contrario, a medida que el tiempo de exposición aumenta las bandas de śımbolos
comienzan a mezclarse en la imagen, ya que los ṕıxeles acumulan la irradiancia de var-
ios śımbolos consecutivos. El resultado de exposiciones prolongadas es la aparición de
una interferencia intersimbólica (ISI, del ingles intersymbol interference) que perjudica
gravemente la decodificación de la señal. En otros términos, el tiempo de exposición se
comporta como un filtro paso bajo que reduce considerablemente el ancho de banda de
recepción. Surge entonces un conflicto con la operación habitual de las cámaras como
dispositivos de visualización. Si se reduce el tiempo de exposición, la sensibilidad de
la cámara disminuye y las imágenes que esta entrega son prácticamente oscuras, en
las que los objetos presentes dejan de percibirse claramente. El tiempo de exposición
juega entonces un papel crucial en la mejora de la sensilibidad de la cámara, y por
ende su capacidad para visualizar la escena, y en la reducción del ancho de banda del
recepción, y por ende su capacidad para operar como receptor óptico.

Evitar que las cámaras pierdan su funcionalidad intŕınseca es necesario si se de-
sea que esta tecnoloǵıa se adopte masivamente. Por tanto, hay que buscar estrategias
que favorezcan el aumento de la sensibilidad sin que esto repercuta en un daño para
las comunicaciones. Por otro lado, es requisito desarrollar una solución única que sea
compatible con la gran diversidad de cámaras que existen en el mercado. A pesar
de que la mayoŕıa de ellas son RS, cada una tiene una configuración interna difer-
ente. Además, en algunos casos sus parámetros internos son inaccesibles, como la
frecuencia de reloj, que está relacionada con el tiempo de muestreo de fila simple-
mente porque carece de aplicación práctica en la fotograf́ıa. En otros casos, se ajustan
dinámicamente su parámetros, como es el caso del tiempo de exposición, que se selec-
ciona automáticamente en función de la iluminación ambiente.

En conclusión, la adopción masiva de los enlaces OCC pasa por conocer la influencia
que los parámetros de las cámaras tienen en las comunicaciones, haciendo especial



hincapié en el tiempo de exposición, y desarrollar una solución única que favorezca
la visualización de la escena, y que, por tanto, permita el reuso efectivo del mayor
número de cámaras posible. Para conseguir esto en esta tesis se propone el uso de la
inteligencia artificial (AI por sus siglas en inglés).

La búsqueda de esta solución se condensa en el primer objetivo general (GO1) de
esta tesis: desarrollar una arquitectura asistida con AI que sea compatible con un gran
número de cámaras, y que opere de forma independiente al tiempo de exposición. Al
mismo tiempo ha de favorecer el uso de sensibilidades altas para la cámara, evitando
aśı, que esta pierda su funcionalidad como dispositivo de visualización. Además, se
enuncian otros dos objetivos generales: (GO2) desarrollar un banco de pruebas exper-
imental para la generación de muestras reales y (GO3) la evaluación de la integración
y viabilidad de OCC en las aplicaciones industriales y de mercado.

El núcleo principal de esta tesis es un compendio de tres publicaciones en revistas
de alto impacto las cuales siguen una evolución coherente con el desarrollo iterativo
llevado a cabo para abordar este desaf́ıo de carácter técnico industrial.

Esta tesis parte de un trabajo previo realizado por el autor como trabajo de fin de
máster. En este trabajo se desarrolló un prototipo funcional de enlace RS-OCC y se
evaluó en condiciones de laboratorio. La tesis comienza en el momento en el que se
decide desplegarlo en un entorno industrial, concretamente en una planta de cultivo
de microalgas. El objetivo de este proyecto era crear un enlace óptico utilizando una
cámara de vigilancia para la monitorización y supervisión simultáneas de múltiples
fotobiorreactores. Estos fotobiorreactores (en adelante nodos) utilizan un panel LED
para simultáneamente (i) ajustar la iluminación inteligentemente acorde los requerim-
ientos de luz de las microalgas, y (ii) enviar códigos ópticos con parámetros del cultivo,
como la temperatura, el nivel de pH, entre otros. Este trabajo trajo a la luz el hecho de
que el ajuste del tiempo de exposición es crucial en el diseño de este tipo de enlaces. Si
se redućıa para favorecer una comunicación más rápida, entonces, la cámara perd́ıa su
función como dispositivo de vigilancia. Por consiguiente, los técnicos del laboratorio,
o posibles intrusos, no se pueden discernir en la imagen. Este trabajo, también analizó
otros requerimientos técnicos a considerar a la hora de desplegar múltiples enlaces,
como: (i) la influencia de la orientación de los nodos y su perfil de irradiancia en la
calidad del enlace, (ii) su distribución para conseguir tasas de transmisión equivalentes
entre ellos, y (iii) su colocación para optimizar el espacio disponible. Los resultados
y descubrimientos de este trabajo se recogen el primer art́ıculo de compendio de esta
tesis, y ofrecen una gúıa técnica útil para el diseño y despliegue de enlaces RS en un
entorno industrial.

Tras resaltar los efectos de las exposiciones prolongadas se realizó una extensa
revisión bibliográfica en la búsqueda de soluciones para este problema. Se detectó una
carencia respecto a la investigación en este aspecto, y se observó un creciente interés
por el uso de la AI para de detección de fuentes en la imagen, y en otras ramas en el
campo del procesamiento digital de la señal. Esto sugirió la idea de utilizar AI para
la ecualización de los efectos de las exposiciones prolongadas. El fruto del trabajo
realizado con este objetivo se publicó en el segundo art́ıculo de compendio y consiste
en un bloque de ecualización asistido con AI, capaz de mitigar de los efectos de la
exposición en condiciones de ruido moderado/alto. Este ecualizador basado en un
autoencoder convolucional (CAE por sus siglas en inglés, convolutional autoencoder)
permite aumentar el tiempo de exposición hasta 7 veces más en comparación con el
tiempo de exposición ideal para la decodificación, con tasas de error de bit inferiores al



ĺımite impuesto por las técnicas de corrección de errores hacia adelante (FEC por sus
siglas en inglés forward error correction). En otras palabras, este ecualizador mejora
el ancho de banda de recepción hasta 14 veces comparado con enlaces no ecualizados.

Es importante destacar que los resultados de este trabajo tienen un impacto po-
tencial en el campo del procesado digital de las señales, y, por tanto, en todos los
sistemas de comunicaciones sean estos ópticos, basados en radio o acústicos, puesto
que demuestran y validan la capacidad de la AI para aumentar el ancho de banda en
sistemas fuertemente limitados en banda. En este caso la limitación viene impuesta por
el tiempo de exposición, pero podŕıa derivarse de cualquier otro elemento del enlace.

Otra de las contribuciones de este trabajo es que el entrenamiento del ecualizador
se realizó exclusivamente con muestras sintéticas. Para ello se modeló el mecanismo de
RS con el tiempo de exposición y se desarrolló un algoritmo eficiente para la generación
sintética de muestras. Este algoritmo utiliza únicamente parámetros temporales del en-
lace como son la tasa de śımbolos del transmisor, el tiempo de exposición y el tiempo de
muestreo de fila de la cámara. Esta generación sintética se validó indirectamente con
la evaluación del ecualizador utilizando muestras reales. Este entrenamiento sintético
fue motivado por la dificultad, la complejidad y el gasto de tiempo que implicaba la
captura de imágenes reales. Para este propósito habŕıa que caracterizar rigurosamente
las cámaras utilizadas, y ajustar convenientemente las condiciones del enlace. Esto
provocaŕıa, además que el ecualizador no fuese capaz de generalizar bien y operar
correctamente con imágenes provenientes de otras cámaras y tomadas en otras condi-
ciones. Por lo tanto, el entrenamiento sintético, no sólo agiliza la creación de datasets,
y elimina la complejidad de desarrollar un banco de pruebas, sino que además permite
abstraer el entrenamiento del receptor utilizado, empleando para ello multitud de mues-
tras representativas de una amplia variedad de transmisores, cámaras, configuraciones,
niveles de ruido, entre otros parámetros.

Finalmente, cuando se empezaron a utilizar cámaras de móviles convencionales,
en lugar de cámaras de laboratorio, para una implementación práctica, se descubrió
que muchos de sus parámetros internos son desconocidos, no se pueden modificar, o
se actualizan dinámicamente. Por tanto, en estos casos resulta necesario estimar estos
parámetros directamente en la recepción, a partir de las imágenes capturadas, antes
de proceder a la decodificación. Para este propósito se propone en el tercer art́ıculo de
compendio, el uso de redes convolucionales entrenadas con imágenes sintéticas gener-
adas con miles de configuraciones posibles. Los resultados demuestran que estas redes
son capaces de obtener errores inferiores al 1.3% y el 3% en la estimación la frecuencia
de reloj de los datos y el tiempo de exposición de la cámara respectivamente. Estos
errores garantizan la operación óptima del resto de las rutinas de recepción. Como
resultado, este estimador desacopla las rutinas de recepción de las cámaras utilizadas,
y permite idear una arquitectura que opere directamente con las imágenes con in-
dependencia de la cámara utilizada y su configuración. Asimismo, esta arquitectura
incluye etapas de ecualización de la exposición para permitir aumentar el tiempo de
exposición hasta condiciones de visibilidad óptimas. De este modo se favorece el uso
de las cámaras de manera simultánea para la visualización y la recepción de datos.
En definitiva, esta propuesta permite la creación de un software de comunicaciones
transferible que puede integrarse fácilmente en aplicaciones para teléfonos inteligentes,
ordenadores de sobremesa y portátiles, tabletas, sistemas de conducción autónoma, ca-
jeros automáticos, etc. Además, también permite el desarrollo de aplicaciones alojadas
en la nube que pueden procesar imágenes provenientes de diferentes flujos multimedia



en tiempo real. De esta forma, se habilitan tecnológicamente aquellos dispositivos que
no disponen de un ecosistema abierto para el desarrollo de sus aplicaciones.

Adicionalmente, en un trabajo posterior se mejoraron, los tiempos de entrenamiento
de los ecualizadores hasta 435 veces, usando sólo 250 imágenes de entrenamiento en lu-
gar de 35500. Esto se consiguió utilizando técnicas para transferencia del conocimiento
acumulado por el estimador a los ecualizadores. Esta mejora en la eficiencia del entre-
namiento de los ecualizadores permite que estos se puedan entrenar bajo demanda sin
llegar a interrumpir la comunicación.

Por último, durante el ejercicio de esta tesis también se ha trabajado en la parte
del transmisor, creando un dispositivo llamado Barcolit que opera como un tradicional
código de barras, pero de manera activa usando paneles LED. Este sistema, además,
es compatible con los convencionales lectores de barras, por lo que no disrumpe los
procesos industriales actuales. Además, ofrece ventajas significativas respecto a los
códigos de barra impresos, ya que los códigos generados no se distorsionan en la imagen
y siempre permanecen correctamente alineados horizontalmente independientemente de
la orientación de la cámara.

En conclusión, esta tesis equilibra los esfuerzos por abordar (i) un reto industrial en
el campo particular de los enlaces RS-OCC, que es conseguir la reutilización efectiva
de las cámaras como receptores sin perder su función primaria como dispositivos de
imagen, con (ii) un problema cient́ıfico-técnico extensible a cualquier campo de las
comunicaciones, que es la ecualización de la ISI producida por la reducción del ancho
de banda de recepción disponible y la estimación indirecta de ciertos parámetros del
enlace. Además, evoluciona y madura en ĺınea con los avances más recientes en el
campo de la AI y la visión por computador, registrando resultados que superan los
obtenidos con algoritmos clásicos y otros trabajos preliminares. Por último, se centra
en desvincular la recepción en enlaces OCC de las cámaras utilizadas, con el objetivo
de acelerar la adopción masiva de esta tecnoloǵıa.



Dedicado a mi madre, mi padre, mi hermana y mi querid́ısima sobrina.
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Chapter 1

Introduction

Today’s society is moving inexorably toward real-time communications of millions
of interconnected devices. Hence, the future communications infrastructure must pro-
vide high-capacity and low-latency links. Next-generation mobile networks must face
the challenge their predecessors have overcome with increasing intricacies: the radio
spectrum’s saturation. The 6G strategy of expanding the spectrum towards sub-thz
frequency bands [1] faces the technical handicap of manufacturing and integrating in-
creasingly smaller antennas (with waveguides in the micrometer range) in user devices.
To which is added the high sensitivity demanded by current receivers to support in-
creasingly complex modulations. Therefore, this strategy’s success is strongly linked to
the research efforts invested in pushing the limits reached in semiconductor technology.

Alternatively, optical wireless comunication (OWC) are positioned as a promising
candidate to offer a complementary infrastructure capable of assuming a part of the
network capacity requirements of tomorrow’s society. Free space optics (FSO) is one
of the most successful OWC technology considering its acceptance in markets and
industry. This technology provides long-range laser-driven links extensively used as
backbone support in hybrid RF/FSO networks and satellite communications [2]. One of
this technology’s most commercially successful applications is the intra-communication
links of Starlink satellites. [3].

On the other hand, visible light communication (VLC) technology, based on light
emitting diode (LED) light sources, focuses on medium to short-range links. It aims
to reuse diverse lighting elements that are widely available, such as office light panels
or downlights, to provide high-speed connection access points. The advantages of this
technology compared to radio communications are the following:

1. Broad unlicensed electromagnetic spectrum availability. The visible
light spectrum ranges from infrared to near-ultraviolet wavelengths, potentially
increasing the capacity of communications links. However, it must be taken
into account that the efficient exploitation of this spectrum depends on utilizing
narrow-spectrum LEDs and passive optical filters.

2. Interoperability. Visible light wavelengths cannot traverse opaque objects and
do not interfere with radio communication transceivers. Hence, light enables high-
speed communications in rooms sensitive to radio interference. Still, it should
be mentioned that, as validated in recent experiments [4], light can interact with
the exposed silicon of some electromagnetic components (such as silicon micro-
phones).
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3. Simplified coverage customization. The luminous radiation pattern of LED
sources can be easily adapted through passive optical elements. This allows
for delimiting network microcells in which the medium is not shared between
nodes, eliminating the need for medium access mechanisms that highly impact
conventional WiFi networks. Remark that this microcell coverage can be attained
using radiofrequency (RF) technology at the cost of deploying dense arrays of
antennas that have no other practical function rather than communications as
opposed to LEDs.

4. Privacy/Security enhancement. The possibility of confining light within a
space prevents eavesdropping and denial-of-service (DOS) attacks. This physical
property of light propagation does not imply perfect security but adds an extra
layer of protection against intrusions, illegitimate network access, and communi-
cation interferences.

5. Human awareness. Humans are adapted to the perception of light. This can be
exploited to provide unique interactions between humans and networks, in other
words, to make humans sensitive to networks. For instance, VLC transmitters
can adapt their light parameters (color, intensity, flickering) to notify users of
network events (inoperability, congestion, high latency). In addition, the design
of transmitting light sources can be aligned to the recent concept of human centric
lighting (HCL), which seeks to equate artificial light to natural light as much as
possible to improve the quality of life and the well-being of people.

Among its drawbacks is the need for a continuous light-up source (even during
the day), which can irritate the human eye in particular scenarios. Moreover, the
transmitted light must not be dangerous to humans or harms the environment. For
instance, flickering perceived in the light source must be alleviated as it can cause
migraines and persistent headaches. Furthermore, the ambient light can significantly
interfere with VLC links, which detriments its performance.

Despite these drawbacks, this technology is trying to find diverse application niches
to offer added value. The application with the most support from the engineering
community is indoor localization. Optical beaconing based on VLC provides millimet-
ric precision that exceeds the performance of previous radio-based methods [5, 6, 7].
Another market-ready application is a general purpose VLC access points (for inter-
net access) developed by pureLifi [8], Oledcomm [9] and Philips (Signify) [10]. Other
applications of interest are vehicle-to-infrastructure, and vehicle-to-vehicle communi-
cations (V2X) [11], underwater optical wireless communications [12, 13, 14] and energy
harvesting communications [15, 16].

Despite these efforts, VLC technology has yet to be massively adopted by the mar-
ket. Photodiode-based links need aggressive investment in integrated circuit design
and manufacturing and their further embedding in commercially available off-the-shelf
(COTS) devices. Alternatively, OCC, a branch of VLC, which replaces the photodi-
odes at the receiver side with image sensors (ISs) has generated a strong interest in
the community, being finally included in the 2018-revised version of the VLC IEEE
802.15.7 [17] standard, and in the ISO 22738:2020 [18]. This technology aims to reuse
conventional cameras embedded in an increasing number of end-user devices (such as
mobile phones, laptops, and vehicle dashcams), ultimately paving the way for VLC to
break the market’s entry barriers.
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This field is divided into two subfields with different application niches based on
the camera’s image acquisition mechanism: global or rolling shutter. On the one
hand, global shutter (GS) cameras simultaneously expose all the pixels of IS at the
time of capturing one frame. Therefore, these cameras sample the light source with
a frequency equal to the camera’s frame rate (which conventionally varies from 30 to
120 frames per second (FPS)). Accordingly, the receiver bandwidth of these cameras
is extremely low. Alternatively, RS cameras expose the IS sequentially row-by-row1

of pixels, sampling the light at different instants while the camera’s shutter remains
open. As a result, a compound of different illuminated stripes appears in the image
depending on the light source’s illumination state at the exposition of each row. Hence,
the light is sampled periodically at each row’s sampling instants. The interval between
the activation of two consecutive rows is the row sampling time. It is directly related to
the receiver’s sampling time, whose inverse corresponds to the receiver’s sampling rate.
Conventionally, this interval extends from tens to hundreds of microseconds, resulting
in sampling rates of up to 100kHz. Consequently, the attainable sampling rate in RS
cameras is several times greater than in GS cameras.

This thesis focuses on RS cameras since they are the predominant technology in the
market due to their low manufacturing cost. Furthermore, the techniques used with
GS cameras can be easily transferred to RS cameras in those cases where the source’s
light intensity varies more slowly than the frame capture time.

Despite RS-based OCC significantly speeding up the time to market of VLC prod-
ucts, it must face six technical challenges, compiled in this thesis, before its successful
assimilation in market applications.

CH1 Bandwidth constrained by the camera’s exposure. In RS cameras, the
exposure time, which is the time a pixel remains exposed to light, behaves as a
low pass filter (Chapter 3). In long exposures, pixels may integrate the irradi-
ance levels of several consecutive symbols, producing an ISI that is more harmful
depending on the ratio between the exposure time and the symbol transmis-
sion time. Ultimately, the exposure time further restricts the attainable receiver
bandwidth.

CH2 Windowed reception. The light rays from the transmitting source reach dif-
ferent parts of the image sensor (after traversing the camera’s optical system).
The result is a two-dimensional map (the image) with different intensity values
for each pixel. Therefore, each pixel is affected by a different signal-to-noise ratio
(SNR) based on its incident irradiance. Consequently, It is crucial to propose
mechanisms for identifying those image regions with the highest SNR to proceed
with data decoding. These regions commonly belong to the light source’s projec-
tion within the image, although they can also come from its reflections in walls or
mirrors. Thus, the number of valid data samples depends on the source’s projec-
tion size. The greater it is, the higher number of pixels that successfully sample
the light source. Consequently, the geometrical arrangement, physical proper-
ties (physical size of the light source), and specific optical parameters affect the
achievable data throughput (Chapter 3). In addition, the relative movement of
the light sources with respect to the camera causes the irradiance distribution

1Depending on the scanning dimension of the IS, vertical or horizontal, the camera exposes row-
by-row or column-by-column.
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map over the IS to vary over time, causing dynamic windowing, which implies
the use of channel coding and data detection techniques in each frame.

CH3 Non-linear and time-variant system. On the one hand, cameras apply a
gamma correction (a non-linear transformation) to encode the pixel luminance
values, considering how humans perceive light and color. This gamma correction
boosts low-intensity values, producing a more evident non-linear effect at those
levels. On the other hand, the sequential acquisition of RS cameras makes the link
time-variant. To justify this statement, let’s consider a static transmitter located
in a scene that repeatedly sends an on-off keying (OOK) optical signal, encoding
bits using two illumination states (“ON” for ones and “OFF” for zeroes). In that
case, if the irradiance distribution map over the IS is non-uniformly distributed
(when the source is “ON”), then each pixel’s value will depend on its position
within the IS. On the other hand, the sequential acquisition of RS cameras relates
both the pixel position (space) and the sampling instant (time). Consequently,
the intensity value of equivalent “ON” state samples will be determined by the
time the sample was taken. The justification behind this statement is further
discussed in Chapter 3. Therefore, RS-based OCC requires spatially uniforming
the received energy across the IS by either using diffusers at the transmitter side
or by using equalization techniques at reception.

CH4 Lack of synchronization. During acquisition, cameras wait, between frames,
for the allocation of memory resources. During those times, the camera remains
blind to the variations light is undergoing. This contributes to the reception’s
windowed behavior and introduces a variable shift in the sampling instants after
each frame capture. Hence, data synchronization techniques are demanded at
each frame.

CH5 Simultaneous visualization and data detection. The industry requires that
the functionality of cameras as visualization devices be preserved when they are
used as optical receivers. This is challenging when working with RS cameras,
as to increase the receiver bandwidth, the camera’s exposure time must be as
short as possible (Challenge I). However, this penalizes the camera’s sensitivity,
as pixels accumulate less irradiance from the scene. Consequently, the camera
delivers dark images in which objects in the scene are barely perceptible. In
other words, the resulting images provide poor lighting conditions for human
or machine-supervised applications. The exposure time ultimately establishes a
trade-off between the camera’s sensitivity and the receiver’s bandwidth (Chapter
3).

CH6 Massive adoption. The wide variety of cameras that flood the market differ
significantly in their hardware and configuration parameters. In addition, the
vast majority of cameras do not reveal specific manufacturing parameters im-
portant in communications, such as their source clock frequency, from which the
row sampling frequency is derived (the receiver’s sampling rate in RS cameras).
Moreover, some cameras do not allow access to their internal settings, such as
the exposure time. Other cameras use automatic closed-loop control mechanisms
to regulate their internal parameters. Therefore, the mass adoption of OCC re-
quires characterizing all those camera parameters that influence communications
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and developing architectures that allow decoupling the reception routines from
the cameras.

1.1 Motivation

This thesis departs from a previous research work conducted by the author for his
master’s thesis, and it is aligned with the research lines of the Photonic Technology
Division of the Institute for Technological Development and Innovation in Communi-
cations (IDeTIC) at the Universidad de Las Palmas de Gran Canaria (ULPGC).

The previous work entitled “Design, characterization, and implementation of an
optical communications system based on cameras” [19] proposed an ad-hoc OCC aca-
demic prototype that aimed to address challenges CH3 (equalization) and CH4(synch.)
raised in the introduction. The plan to integrate this prototype into an industrial en-
vironment marks the starting point of this thesis. The preliminary analysis of state-
of-the-art and the practical study of the technical link requirements for the proposed
scenario led to the compilation of a preliminary version of the challenges presented
in this introduction. As the thesis evolved, those challenges became more solid and
consistent.

This thesis focuses on challenges CH1 (to increase the attainable bandwidth), CH3
(to mitigate the non-linearity effects of the gamma), CH5 (to enable the simultaneous
operation of cameras as visualization and receiver devices), and CH6 (to decouple
cameras from the receiver routines). For this purpose, it suggests using AI as an
alternative to conventional signal processing strategies. The following section presents
the raised, reviewed, and assessed hypothesis along with the objectives proposed in the
research plan.

1.2 Hypotheses

The four hypotheses raised in this thesis follow a hierarchical dependency, in which
the validation of any of them has repercussions on the immediate superior, taking a step
forward in achieving its validation (although it does not entirely validate them). These
hypotheses are presented in a hierarchical order, from the top (higher dependency) to
the bottom.

H1 It is possible to simultaneously use a RS camera for visualization
from a human-centric viewpoint and data detection.

In the design RS-based OCC links, there is an underlying trend of decreas-
ing the exposure time to a minimum without a proper consensus. This
strategy is widely assumed throughout the literature as the only solution
to perfectly visualize the symbol bands of the transmitted optical signal in
the image. Conversely, increasing the exposure time produces the blend of
several consecutive symbols, causing the signal to be incorrectly decoded.
This literature trend of reducing the exposure time, which lacks a theoret-
ical framework that supports it, causes, on the other hand, the delivered
images to be practically dark. Therefore, objects in the image cannot be
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perceived. Thus, the camera loses its functionality as a visualization device.
This hypothesis can then be reformulated as “Is there a method that allows
increasing the exposure time of a RS camera without harming the received
signal”. This search raised the hypothesis H2.

H2 It is possible to reconstruct bandwidth-limited signals using AI-
assisted equalizers.

The search for methods to increase the exposure entails modeling the se-
quential scanning of RS cameras and analyzing the effects of the exposure
time. In this model, the sequential exposition behaves as a low-pass filter
acting on the transmitted signal. Therefore, it limits the attainable receiver
bandwidth, significantly attenuating the signal’s frequency components that
fall outside the specified filter’s cutoff frequency. For this reason, a possi-
ble solution to increase the exposure time is to exploit those attenuated
frequency components to reconstruct the transmitted signal as if it were re-
ceived with a receiver with a broader bandwidth (i.e., lower exposure time).
For this purpose, the use of AI is proposed as a promising candidate ca-
pable of dealing with the complexity associated with (i) the great diversity
of exposure times considered, (ii) the limitation of traditional digital signal
processing algorithms, and (iii) the non-linearity of the cameras (which ap-
ply a gamma transformation on the luminance values). This hypothesis can
be further reformulated with the following statement: “A neural network
model can exploit the attenuated frequency components of a bandlimited
received signal that falls beyond the cutoff frequency to reconstruct the
original signal as if it were acquired with a broader bandwidth.”.

The validation of this hypothesis is one of the main contributions of this
work. Furthermore, as can be witnessed from the reformulated hypothesis,
the results of this work are transferable to any bandlimited communications
system. In this case, the band limitation is imposed by the camera behavior
related to the exposure time; however, it could also be imposed by the
transmitter (e.g., the LED driver’s response), the channel, or any element
in the communications chain.

H3 It is possible to train an RS OCC-based AI system using synthetic
samples.

The unprecedented challenge of obtaining real OCC samples for the training
and validation of neural networks leads to the formulation of this hypothesis.
Furthermore, its validation will be an important contribution to this thesis
since it indirectly validates the model used for the synthetic generation of
samples.

H4 It is possible to recover both the signal clock and the camera’s
exposure time from severely distorted images.

The search for an effective strategy to decouple the camera’s exposure time
from the reception routines, taking a step forward in the search for the total
decoupling of cameras, leads to envisioning an element capable of delivering
this parameter even when it cannot be selected or obtained from the camera.
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The solution is to estimate it (along with other link parameters) directly
from the images using AI techniques.

1.3 Objectives

This thesis has three general objectives (GO). They are stated below, along with
a brief description, and broken down into technical objectives (TO).

GO1 To develop an RS-based OCC receiver assisted with AI with sup-
port for simultaneous visualization and data detection.

This objective aims to validate the hypotheses: H1, H2, and H3.

As mentioned in the introduction, one of the challenges addressed in this
thesis (Challenge CH5) is enabling the simultaneous operation of RS cam-
eras. Preliminary work indicates that the camera’s exposure time is crucial,
as it is involved in the camera’s sensitivity (visualization) and the receiver’s
bandwidth (communications). Therefore, evaluating the impact of this pa-
rameter on the transmitted signal is a central part of this thesis. Moreover,
mitigating its harmful effects on the signal will contribute to efficiently
exploiting the achievable bandwidth offered by cameras, overcoming the
Challenge CH1. The use of AI techniques is considered for this purpose.
Furthermore, as discussed in Chapter 5, the complexity faced in capturing
real-world training samples forces the adaptation of specific objectives to
perform training based on synthetic images.

TO1.1 To analyze in depth the camera’s exposure influence in visual-
ization (sensitivity) and communications (bandwidth).

TO1.2 To evaluate the impact of the camera’s exposure effects on the
signal.

TO1.3 To elaborate a comprehensive mathematical model of the RS
acquisition mode.

TO1.4 To develop a procedural method for generating synthetic RS-
based OCC samples.

TO1.5 To design and train AI-assisted models for exposure equaliza-
tion and regression using synthetic datasets and conduct their
validation using real images.

GO2 To develop an experimental testbed for OCC and generate re-
search datasets.

This objective aims to validate experimentally the hypotheses: H1, H2, and
H3.

The development and rigorous characterization of a connected experimental
platform for capturing real-world images will allow the generation of valu-
able datasets. These datasets released to the scientific community during
the exercise of this thesis will initially serve as a tool for (i) analyzing the
impact of the exposure time on the received signal, (ii) validating novel
AI-based approaches for exposure equalization, and (iii) validating novel
estimators of the intrinsic parameters of the received signal.
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TO2.1 To design an experimental setup for OCC image acquisition.

TO2.2 To assess an in-depth characterization of both transmitter and
receiver devices.

TO2.3 To produce a real-world OCC dataset for system validation.

GO3 To evaluate the integration and viability of OCC in industrial and
mass-market applications.

This objective aims to validate the hypothesis H4.

As presented in the introduction, the potential integration of OCC in the in-
dustry and the market comes from bringing solutions that consider the wide
variety of cameras available (Challenge CH6). To do this, it is necessary to
(i) study the cameras as receiving devices, (ii) analyze how their internal
parameters influence the optical signals embedded in the images, and, most
importantly, (iii) establish mechanisms to decouple cameras from the recep-
tion routines. Consequently, the focus in designing new OCC links shifts
from working with cameras to working with images, regardless of their ori-
gin. In addition, the distribution of transmitters within a room or over a wall
depends on the camera’s position and orientation to establish a line of sight
while reserving a space free of obstructions between them. Therefore, an-
alyzing how the deployment of transmitters impacts communications must
be carried out, considering space limits or restrictions. Finally, emphasize
again that the scene monitoring provided by cameras is essential in many
scenarios and should be kept from being interrupted for other purposes. For
example, this is the case with closed-circuit television surveillance cameras.

Ultimately, this objective paves the way to the practical integration of OCC
in the industry and the market.

TO3.1 To analyze the potential integration of OCC into mass-market
applications.

TO3.2 To propose preliminary architectures to decouple cameras from
receiver routines.

TO3.3 To analyze the impact of multi-transmitter deployments in in-
dustrial scenarios.

1.4 Thesis structure

The chapters of this thesis are structured as follows. Chapter 2 of this book provides
a literature review on the most current and important contributions related to OCC and
AI. First, It follows a top-down approach, starting with a general overview of the current
challenges, trends, and applications of OCC and then focusing on contributions related
to RS cameras. Next, this chapter examines topics such as analyzing the influence
of camera parameters on communications, the simultaneous use of cameras as both
imaging and communication devices, and the widespread adoption of OCC. Finally, it
dissects the contributions related to AI and OCC.

Chapter 3 delves into the technical and theoretical considerations for using RS
cameras as optical receivers. It begins by discussing the RS acquisition mechanism and
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how it relates to data acquisition, focusing on the effects of the camera’s exposure time
on the signal. This chapter also introduces the fundamental concepts of AI necessary
to understand the contributions of this thesis.

Chapter 4 discusses the methods and experiments carried out in this thesis. It
includes the latest version of the synthetic generation procedure used to generate and
compile the training datasets. It also examines the experimental setup used for cap-
turing real-world validation samples.

Chapter 5 presents the research outcomes supporting this thesis’s objectives. It
includes three original journal manuscripts sorted by publication date. The original
manuscripts are embedded in this chapter, including a brief introduction that describes
the context of the work, the challenges addressed, the results obtained, the contribu-
tions, and highlighted findings. This chapter also summarizes related works published
by the author of this thesis that are not included in the compendium.

Finally, Chapter 6 summarizes the findings and the potential impact of this thesis’s
results in the scientific community, industry, markets, and society and suggests derived
future research lines.

1.5 List of publications

This thesis has generated three publications in indexed journals, included in the
compendium, and three in conference proceedings. In addition, the author has collab-
orated with other researchers from international institutions in 10 publications. The
following sections list the mentioned articles, including a brief description.

1.5.1 Compendium

This section lists the publications included in this thesis’s compendium, which are
detailed in Chapter 5.

[20] C. Jurado-Verdu, V. Guerra, V. Matus, C. Almeida, and J. Rabadan, “Optical
camera communication as an enabling technology for microalgae cultivation,” Sensors,
vol. 21, no. 5, 2021

This work proposes a novel photobioreactor that uses artificial lighting to feed a mi-
croalgae culture and simultaneously send optical codes to a surveillance camera. In
addition, it analyzes the optimal deployment of several transmitter nodes (photobiore-
actors) in a room in terms of efficient space utilization and quality of communications.
It addresses the challenge of the massive adoption of OCC (Challenge CH6).

[21] C. Jurado-Verdu, V. Guerra, V. Matus, J. Rabadan, and R. Perez-Jimenez, “Con-
volutional autoencoder for exposure effects equalization and noise mitigation in optical
camera communication,” Opt. Express, vol. 29, pp. 22973–22991, Jul 2021

This work proposes a novel AI-assisted equalizer based on convolutional autoencoder
(CAE) to alleviate the harmful exposure-related effects on the received signals in RS-
based OCC links, in which the camera’s exposure time is greater than the symbol time.
It addresses the challenges of bandwidth constrained by the camera’s configuration and
the simultaneous operation of cameras as visualization and receiver devices (Challenges
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CH1 and CH5, respectively).

[22] C. Jurado-Verdu, V. Guerra, J. Rabadan, and R. Perez-Jimenez, “Deep learning
for signal clock and exposure estimation in rolling shutter optical camera communica-
tion,” Opt. Express, vol. 30, pp. 20261–20277, Jun 2022

This work proposes a novel regression convolutional network to estimate important
OCC link parameters directly from the received images: the camera’s exposure time
and the signal clock frequency. Ultimately, this network allows the decoupling of the
camera’s configuration and hardware from the reception routines. This work addresses
the challenges of the simultaneous operation of cameras as visualization and receivers
devices and the decoupling of cameras from the reception routines (challenges CH5 and
CH6, respectively).

1.5.2 Master thesis publications

This section lists the author’s related journal work published before the doctorate
program started that paved the way for the formulation of the research plan of this
thesis. This publication is briefly discussed in Chapter 5 and appended in the Annex A.

[23] C. Jurado-Verdu, V. Matus, J. Rabadan, V. Guerra, and R. Perez-Jimenez, “Cor-
relation based receiver for optical camera communications,” Opt. Express, vol. 27,
pp. 19150–19155, Jul 2019

This work proposes a fully operating RS-based OCC in which source detection and
tracking, spatial equalization, and data decoding are implemented using correlation-
based techniques. It addresses the challenges of windowed communications and lack of
synchronization (challenges CH2 and CH5, respectively).

1.5.3 Conference proceedings

This section lists the camera-ready conference proceedings briefly described in
Chapter 5 as related contributions to the compendium. In addition, they are ap-
pended in the Annex B).

[24] C. Jurado-Verdu, V. Guerra, V. Matus, J. Rabadan, R. Perez-Jimenez, J. Luis
Gomez-Pinchetti, and C. Almeida, “Application of optical camera communication to
microalgae production plants,” in 2020 12th International Symposium on Communi-
cation Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–6, 2020

[25] C. Jurado-Verdu, V. Guerra, J. Rabadan, and R. Perez-Jimenez, “Barcolits: Bar-
codes using led tags and optical camera communications,” in 2022 IEEE 18th Inter-
national Conference on Factory Communication Systems (WFCS), pp. 1–8, 2022

[26] C. Jurado-Verdu, V. Guerra, C. Guerra, J. Rabadan, S. Zvánovec, and R. Perez-
Jimenez, “On-demand training of deep learning equalizers for rolling shutter optical
camera communications,” in 2022 13th International Symposium on Communication
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Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–5, 2022

1.5.4 Datasets

This section describes the open datasets generated as supplemental material for
[22], which was released to the scientific community.

[27] C. Jurado-Verdu, V. Guerra, J. Rabadan, and R. Perez-Jimenez, “Effects of the
camera’s exposure time on rolling shutter based optical camera communication links.,”
Figshare, 3 2022

This dataset contains 7281 example images of a RS-based OCC link, in which the
camera is configured with increasing exposure times and signal clock frequencies. The
original purpose of this dataset is to provide a tool for (i) analyzing how the exposure
time affects the received signal, (ii) validating novel AI-based approaches for the expo-
sure equalization of the received signal, and (iii) validating novel estimator models of
the intrinsic parameters of the received signal.

1.5.5 Collaborations

This sections presentes the journals and conference proceedings in which the author
has collaborated.

[28] A. Mederos-Barrera, C. Jurado-Verdu, V. Guerra, J. Rabadan, and R. Perez-
Jimenez, “Discovering and tracking-based detection system for optical camera com-
munication,” in 2020 12th International Symposium on Communication Systems, Net-
works and Digital Signal Processing (CSNDSP), pp. 1–6, 2020

[29] V. Matus, S. R. Teli, V. Guerra, C. Jurado-Verdu, S. Zvanovec, and R. Perez-
Jimenez, “Evaluation of fog effects on optical camera communications link,” in 2020
3rd West Asian Symposium on Optical and Millimeter-wave Wireless Communication
(WASOWC), pp. 1–5, 2020

[30] V. Matus, V. Guerra, C. Jurado-Verdu, S. R. Teli, S. Zvanovec, J. Rabadan, and
R. Perez-Jimenez, “Experimental evaluation of an analog gain optimization algorithm
in optical camera communications,” in 2020 12th International Symposium on Com-
munication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–5, 2020

[31] A. Mederos-Barrera, C. Jurado-Verdu, V. Guerra, J. Rabadan, and R. Perez-
Jimenez, “Design and experimental characterization of a discovery and tracking system
for optical camera communications,” Sensors, vol. 21, no. 9, 2021

[32] V. Georlette, F. Piras, C. Jurado–Verdu, S. Bette, N. Point, and V. Moevaert,
“Content triggering system using tricolor led strips and optical camera communication
in rolling shutter mode,” in 2021 Third South American Colloquium on Visible Light
Communications (SACVLC), pp. 01–06, 2021
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[33] V. Matus, V. Guerra, C. Jurado-Verdu, S. Zvanovec, and R. Perez-Jimenez, “Wire-
less sensor networks using sub-pixel optical camera communications: Advances in ex-
perimental channel evaluation,” Sensors, vol. 21, no. 8, 2021

[34] V. Matus, V. Guerra, C. Jurado-Verdu, J. Rabadan, and R. Perez-Jimenez, “Demon-
stration of a sub-pixel outdoor optical camera communication link,” IEEE Latin Amer-
ica Transactions, vol. 19, no. 10, pp. 1798–1805, 2021

[35] V. Matus, V. Guerra, C. Jurado-Verdu, S. Zvanovec, J. Rabadan, and R. Perez-
Jimenez, “Design and implementation of an optical camera communication system for
wireless sensor networking in farming fields,” in 2021 IEEE 32nd Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–
6, 2021

[36] C. Guerra-Yánez, V. Guerra, C. Jurado-Verdú, J. Rabadán, R. Pérez-Jiménez,
Z. Ghassemlooy, and S. Zvánovec, “General framework for calculating irradiance dis-
tributions of symmetric surface sources,” Opt. Express, vol. 30, pp. 43910–43924, Nov
2022

[37] B. Majlesein, V. Matus, C. Jurado-Verdu, V. Guerra, J. Rabadan, and J. Rufo,
“Experimental characterization of sub-pixel underwater optical camera communica-
tions,” in 2022 13th International Symposium on Communication Systems, Networks
and Digital Signal Processing (CSNDSP), pp. 150–155, 2022
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Chapter 2

Literature review: a state-of-the-art
analysis

This chapter provides a literature review of the most important contributions to
the exercise of this thesis and is updated at the time of writing the thesis. Following a
top-down approach, this chapter lists the general findings and insights on the current
challenges, trends, and applications of OCC. Then, it examines those contributions
related to RS cameras, emphasizing those that justify the challenges raised in this
thesis. The selected topics are (i) the analysis of the influence of camera parameters
on communications (such as exposure time, the analog gain, among others), (ii) the
simultaneous operation of cameras as imaging and communication devices, and (iii) the
massive adoption of OCC. Finally, it details general and specific research lines related
to the application of artificial intelligence to the field of OCC.

OCC technology is considered a branch of VLC technology, which uses cameras (i.e,
ISs) as optical receivers instead of custom photodiode arrangements. This technology
has recently been included in the latest version of the IEEE 802.15.7-2018 standard [17],
which reveals the interest of the engineering and scientific communities in this type of
communication system. This interest was also reflected in a survey conducted by Zaman
et al. in 2018 [38], in which the authors compared wireless optical communication
technologies. This comparison positioned OCC as an emerging technology that offers
potential technical advantages over traditional VLC, including (i) easiness at discerning
light sources due to the camera’s spatial diversity capabilities, (ii) stability of the
received power over distance thanks to the camera’s optical lenses1, and (iii) robustness
to interferences and partial blocking of the sources. It also listed as disadvantages: (i)
the limited bandwidth, (ii) the increased risk of flickering due to the required slow
switching speed of transmitting sources, and (iii) the presence of unavoidable signal
distortions produced by image transformations (including image compression) included
in most cameras’ acquisition pipelines. To these limitations, other authors, such as Le
et al. [40], added the challenges arising from the lack of synchronization due to the
variability in the cameras’ frame rate.

Despite its disadvantages, this technology has found potential niche applications as
listed by Mohsan et al. [41] in their most recent survey conducted in 2021, including

1This statement is correct insofar as the projection of the emitter onto the surface of the image
sensor is larger than one pixel. The use of image-forming optics compensates for the power loss due
to spherical propagation with the projected size of the optical source on the image sensor [39]
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vehicle to everything (V2X), indoor positioning, digital signage (for advertising and
marketing), drone-to-drone communications, and augmented reality. In V2X commu-
nications rear and front cameras are used to discern a multitude of transmitting light
sources, such as car headlights and traffic lights, enabling directional links with min-
imal interference (2022 survey by Hasan et al. [11]). Indoor positioning systems also
benefit from the spatial diversity of cameras. OCC systems record location errors in
the order of tens of millimeters, considerably lower than those achieved with traditional
radio antennas.

Therefore, much effort and resources are invested in developing novel coding and
modulation techniques adapted to this technology’s constraints, applications, and use-
case scenarios. The obtained results are reported and compared in the survey of 2019
carried out by Saed et al. [42]. This report classified and compared these systems
based on the transmitter: (i) stand-alone LEDs or wide are LED panels, (ii) LED
arrays, (iii) and screens or displays, focusing on the standardization, channel char-
acterization, modulation, coding, synchronization, and signal processing techniques.
This report concludes by enumerating several open research lines to address technical
challenges in OCC, including (i) the dependency (i.e., coupling) between the receiver
routines with the camera, which affects the fair comparison between OCC systems and
hinders their massive adoption, (ii) the ambient light interference, (iii) the defocusing
of transmitter sources, which might lead to increase the data rates, (iv) the modeling of
the receiver’s noise, (v) the synchronization considering different camera’s frame rates,
(vi) the unexplored MAC and network layers for this systems, and (vii) the blockage
of the line of sight (LoS). The non-LoS links established from light reflections off walls,
and objects are examined by Weijie et al. in 2020 [43].

On the other hand, OCC systems can be classified based on the camera used, or
more specifically, based on the image acquisition mechanism they use (Le et al. [44],
and Willy et al. [45]: (i) global shutter and (ii) rolling shutter. The survey by Willy
et al. [45] analyzed in depth the differences in techniques, modulations, and main
constraints of these two variants.

In the former case, the GS-based IS exposes all its pixels simultaneously during
capture time. As a result, the sampling rate coincides with the frame rate. However,
this rate is considerably low (compared to traditional radio samplers), around 60 to 120
Hz. This slow sampling not only limits the available receiver bandwidth but can also
lead to the slow switching of the transmitting sources, increasing the risk of perceived
flickering. To overcome this issue, undersampled-based modulation schemes (Luo et al.,
[46]) are used at the cost of further reducing the available bandwidth. In addition, the
variability in the capture times of consecutive frames results in an irregular sampling
(i.e., jitter).

In the latter case, in RS cameras, the exposure of the IS is sequential row by row of
pixels, sampling the light at each row interval, resulting in the possibility of intra-frame
communication. In this case, stripes or bands of different intensities are perceived in the
image, corresponding to the scene illumination during each row exposure. Therefore,
communication is faster, and the risk of flickering is reduced. However, this technology
also has several limitations. The following section highlights some of these limitations
concerning the camera parameters, with particular emphasis on the camera’s exposure
time.

Finally, for ease of reading, systems, transmitters, or techniques are labeled with the
terms RS or GS for convenience from now on. This terminology must be clarified since
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Perceptible sourceʹs light 
variations (High SNR)

Reflections (Low SNR)

Figure 2.1: Example of a rolling shutter link using a LED flat panel as a transmitter.

it refers exclusively to camera acquisition. In the rest of this thesis, this terminology
is extended to the rest of the elements involved in an OCC link to help differentiate
GS and RS systems. Hence, an RS transmitter is the one that works with baud rates
higher than the frame rate of the camera, and GS in the opposite case. Furthermore, a
link classified as GS might not use a GS camera. In fact, the vast majority of cameras
are RS. In other words, GS techniques can be combined with RS cameras. Conversely,
systems classified as RS can only work with RS cameras.

This thesis and the remainder of this chapter focus on RS techniques and links.

2.1 Rolling shutter systems

The main limitation of OCC systems is the achievable receiver bandwidth. As afore-
mentioned RS systems can achieve higher sampling rates than their GS counterparts.
This is because they sample the light at each row interval. However, the light source’s
illumination changes might not be perceptible in some rows, as the irradiance levels
over those areas of the IS need to be stronger. As a result, the effective sampling rate
is lower than the attainable sampling rate. The effective sampling is determined by the
number of rows in which the optical signal variations are discernible; in other words,
the number of rows in which the SNR exceeds a suitable threshold for decoding. In
general terms, the projection of the light source in the image, as shown in Figure 2.1,
is where the signal-to-interference-to-noise ratio (SINR) is the highest (Chapter 3)),
and it is considered the region of interest (ROI). Therefore, the larger its projection,
the higher the attainable transmission rate, as more symbol bands can fit within it.
In conclusion, the cameras’ spatial diversity capability sharpens the contours of the
transmitting sources, reducing the effective sampling rate.

Two consequences can be extracted from this phenomenon. First, variables such
as the distance of the light source and its physical size come into play, as well as many
other considerations regarding its position relative to the camera. This issue was high-
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Figure 2.2: Receiving and blind periods at reception by Aoyama et al. (June 2015)
[50].

lighted in previous work by the author of this thesis, [47, 48], and, later that year
(2019), reiterated by Nguyen et al. [49]. The camera’s optical system also affects.
Its magnification, angle of vision, and aberrations, among many other parameters,
influence the light projection in the IS. Second, the reception is not continuous but
windowed, as symbol bands are lost in those image regions where the SNR is unsuit-
able for demodulation. To complicate matters further, this windowing is dynamic. It
changes over time depending on multiple factors, including (i) the relative movement
of the sources, (ii) the presence of partial or total occlusions, and (iii) the attenuation
caused by foggy, rainy, or snowy conditions, among others. Furthermore, between two
consecutive captures, the IS remains blind to the transmission while waiting for mem-
ory resources to be allocated. These waiting times are variable and ultimately result in
an unstable frame capture rate, which may induce a jitter in the received signal. This
windowed reception is carefully examined by Aoyama et al. [50] and illustrated in Fig.
2.2. Therefore, precisely identifying and locating the light sources in each frame is one
of the community’s main challenges.

On the other hand, the signal strength is not uniform within the ROI as shown in
Fig.2.3. Accordingly, intra-frame spatial equalization is required to adapt the image’s
dynamic evolution of the light source. Several authors utilize different thresholding
schemes at the demodulation stage to address this challenge, which are compared by
Liu et al. in [51]. On the other hand, Liang et al. [52] used an entropy-based approach
for this task. Also, Zhang et al. [53] proposed to demodulate those columns where the
extinction ratio is low, i.e., where the difference between the intensity of the highest
levels (transmitted 1) and the lowest levels (transmitted 0) is minimum. This generally
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Figure 2.3: Pixel intensities for the green channel (in grayscale) [23]. The right graph
shows the pixel intensities values for the selected column highlighted in orange.

happens at the boundaries of the light source. Finally, this challenge has also been
addressed in a previous work of the author of this thesis. In this case, RGB lamps [23]
are decoded using third-order polynomial thresholding. In conclusion, it is necessary
to segment the source in the image and evaluate the distribution of its intensity values
for effective decoding.

However, this equalization is only sometimes possible. For example, if the source
saturates the sensor due to its intensity, any equalization would produce distortion due
to signal clipping and information loss. In those cases, it is necessary to adapt the
receiver’s sensitivity. This sensitivity is related to two camera parameters: the overall
sensor gain and the exposure time (Chapter 3). The overall gain, in turn, is divided into
analog and digital gains, but for practical purposes, they will be considered together.
Increasing or decreasing the camera’s gain directly affects the receiver’s sensitivity.
A later work [30, 54] reveals the improvement that adaptive analog gain adjustment
brings to data reception in a low visibility environment.

On the other hand, the exposure time is related to the time the pixels of the IS are
exposed to light (after activation row by row). The longer they are exposed, the more
charge they accumulate, thus improving sensitivity. This is advantageous in static en-
vironments, where the scene’s illumination hardly changes during capture. Otherwise,
for example, if the camera or objects are moving, the image is blurred. The same
effect occurs when an optical signal is transmitted. When the camera is set with high
exposure times, the pixels accumulate the irradiance of several consecutive symbols.
The effect on the image is mixing adjacent bands as shown in Fig. 2.4. Ultimately,
prolonged exposure times produce the appearance of ISI, limiting the attainable re-
ceiver bandwidth. This phenomenon has been noticed in the community. Most of the
contributions for RS systems agree that the camera’s exposure time has to be set to
minimum values and counteract the loss in sensitivity by increasing the analog gain.
However, these works do not state or justify the reason behind this decision. Oth-
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Figure 2.4: Examples of the effects of decreasing the exposure time by Aoyama et al.
[50]. From long to short: (a) 1/100, (b) 1/1000, (c) 1/10000 seconds.

Figure 2.5: Frequency response of the camera for different exposure times (texp = 1 ms
and texp = 0.1 ms) by Li et al. [55].

ers, on the other hand, evaluate the detriment that increased exposure time brings to
the bit error rate without characterizing its effect on the signal. Hence, a theoretical
framework is required to model the exposure of RS cameras. To date, invested efforts
within these lines are limited. In previous work, in collaboration with Li et al. [55], a
preliminary approach is made, modeling the effect of exposure on the signal as a low-
pass filter. Figure 2.5 shows the camera’s measured and simulated frequency response
for two different exposure times. In this model, the first null frequency corresponds to
the inverse of the exposure time. However, this model is greatly simplified and needs
to consider, for example, dynamics in the received intensity. Two years later (2021),
Younus et al. [56] recovered this preliminary modeling to use for equalizing its effects.
In conclusion, the exposure time is a crucial parameter to consider in the design of
RS links. The adjustment of this parameter raises a trade-off between sensitivity and
receiver bandwidth.
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Figure 2.6: Distribution of contributions related to AI and OCC.

Finally, the mass adoption of the OCC technology requires the development of
solutions that cover as many cameras as possible (Saed et al. [42]). Hence, given
the incredible diversity of cameras flooding the market, it is crucial to analyze the
parameters that influence communications, as mentioned above. In this way, they can
be favorably configured for the best performance. However, it is also necessary to
consider cases where this is unattainable. For example, in many cameras, the exposure
time is automatically adjusted based on the ambient lighting. Other parameters are
inaccessible, such as their internal clock, or are protected by firmware, which happens
with most Android and iOS smartphones (Nguyen et al. [57]). Therefore, it is necessary
to search for strategies to enable communications using those cameras, such as the
blind estimation of link parameters and channel conditions and the equalization of
the effects derived from selecting the non-optimal settings. Furthermore, accelerating
the technology adoption in the industry requires these systems to be compatible with
the actual methods and processes and to operate to a certain extent with the current
systems.

The remainder of this chapter reviews the literature on the AI applied to OCC
systems.

2.2 Artificial intelligence and optical camera com-

munication

In recent years, the interest in using artificial intelligence to address complex chal-
lenges in OCC has grown, as shown in Figure 2.6. The first contributions in this
field date back five years ago, up to the author’s knowledge. Despite being a recent
line of research, it shows great solidity and maturity since it uses tools developed and
validated in other branches of science and engineering, especially in computer vision
and digital signal processing. To have a better understanding of the current research
interests, the contributions have been classified into four different categories: (i) source
detection, (ii) modulation, (iii) equalization, and (iv) others. Figure 2.6 shows the
distribution of the research according to the above classification. It should be noted
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Table 2.1: Contributions related to AI and OCC.

Category Link Reference

Detection
GS [59, 60, 61, 62, 63, 64, 65, 66, 67, 68]
RS [69, 70, 71]

Modulation
GS [59, 72, 73, 74, 75, 76, 61, 64, 77, 66, 67, 71, 78, 68]
RS [79, 80, 81, 82, 83, 84, 70, 85, 86, 87]

Equalization
GS [64]
RS [88, 89, 56, 90, 91, 92, 93]

Other GS [94, 95, 96, 97, 58]

that this distribution considers the fact that the same article belongs to more than one
category.

As can be observed, the main interest lies in modulation techniques and source
detection. Many of these works combine two independent models: one for source
detection and one for source demodulation/decoding.

Table 2.1 shows the contributions classified by category and type of link (either
GS or RS). All these works focus mainly on reception. Only Islam et al. [58] shift
their attention to the transmitter. Their work aims to optimize the spectral efficiency
of OCC systems in a vehicular environment. For this purpose, reinforcement learning
techniques are used to learn the best decision policies based on adapting the modulation
order of a quadrature amplitude modulation (QAM) signal and the relative speed
between vehicles.

On the other hand, the “Other” section includes those works that use artificial
intelligence for tasks that indirectly support data reception. For example, Li et al.
(2019) [94] propose to use neural networks (NNs) to improve the estimation of a user’s
position in an indoor scenario. In their work, they identify LED beacons with known
positions using GS techniques and then feed these coordinates to the network to ac-
curately estimate the user’s position. Teli et al. (2019) [95] use AI to predict the
movement of a user’s finger that occludes a transmitting LED array. In other terms, it
focuses on predicting partial blockages in communications. Jeong et al. (2021) [96] use
NNs marginally for position estimation using information extracted from accelerome-
ters. They use optical beacons that update the accumulated error in this estimation
to improve the accuracy. Zhao et al. (2022) [97] use NNs to estimate the human pose
to indirectly ease the detection of transmitters located on their head.

The remainder of this section chronologically dissects the rest of the contributions
collecting them in two subsections: (i) detection and (ii) modulation and equalization.
It has been decided to gather the work related to modulation and equalization in a
single subsection to improve understanding of the context since, in many works, the
equalization is implicitly performed during demodulation. However, the distinction
between demodulation procedures, which deliver data, and equalization, which deliver
signal samples, is emphasized.

It should be added that since many papers combine two or more categories, they are
either repeated as appropriate or, if they do not contribute significantly to a particular
category, they will not be mentioned.
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Detection

In the field of source detection, Nguyen et al. [59] proposed in 2017 the use of an
intelligent receiving stage based on two independent NNs used for: (i) tracking and
(ii) decoding GS transmitters in vehicular environments. Although they do not specify
the network topology used for source detection, or its input parameters, they point out
that the use of AI could improve, compared to classical computer vision techniques, the
position estimation of light sources, even when they appear switched off, due to their
cyclic blinking. Using several consecutive frames would allow the network to deliver
accurate estimates. Moreover, this author proposed the design of a custom network
that differs from the current trend in this research line, which generally consists of
reusing models already validated in object detection tasks. These models return the
ROI via bounding boxes, in which there is a high probability of containing the object
of interest.

For example, Choi et al. (August 2019) [60] proposed to use an adaptation of
the you only look once (YOLO) [98] version 3 [99] model for the detection of traffic
lights operating as GS transmitters. The use of this network reduces the computation
times while enabling multiple source detection. However, this system did not have a
method for tracking sources, especially when they were switched off. Instead, it used
the bounding boxes detected in previous frames.

This problem might be solved, according to Pham et al. (June 2020) [61], by using
a hierarchical detection, where the cars’ rear is first detected using YOLOv2 [100], and
then the headlights. This way, even if either or both of their headlights are off, they
can still be detected correctly. In addition, they proposed to track the source using an
algorithm based on the Euclidean distance between the ROI’s position detected in the
current and the previous n frames. However, this technique might produce errors when
cars are crossing. To solve this, cars use active signaling of the ROI. This signaling
uses a low-rate link that operates simultaneously with a high-speed data link (hybrid
scheme).

On the other hand, Sun et al. (May 2021) [64] developed a new model that combines
the functionality of two preexisting models: detection and image enhancement. These
authors stated that in vehicular environments, the relative motion between cars causes
GS transmitters to appear blurred in the image. Hence, the proper data decoding
requires to deblur the image previously. To this end, they proposed a feasible approach
using a YOLOv5 [101] network for detection and a single blind motion deblurring
network, DeblurGAN-v2 [102, 103], for image deblurring. However, when both models
are cascaded, it leads to high computations and long delays. Therefore, they proposed
a novel end-to-end network, D2Net, inspired by both models, which can achieve LED
detection and motion deblurring simultaneously.

These previous works rely on GS transmitters. Rahman et al. (July 2021) [69]
shifted their focus to RS links. This must face the consequences of reducing the cam-
era’s exposure, which reduces the receiver’s sensitivity, producing dark images in which
only the most intense light sources are perceived. Thus, the context of the image is
lost, and the emitters are difficult to classify. To overcome this challenge, Rahman et
al. proposed a two-stage detection in which: (i) all light sources present in the image
are detected and (ii) then classified into transmitters using Support Vector Machine
(SVM) models. This classification benefits from the fact that transmitters, contrary to
non-flickering lighting systems, will appear composed of symbol bands due to the RS
scanning.
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Nevertheless, RS systems are strongly limited in the distance, so it is not surprising
that for long distances, GS systems are preferred. For example, Takano et al. (May
2022) [65] achieved the detection of three independent RGB LEDs mounted on a drone
flying at a distance of up to 300 meters, using YOLOv3. Note that at these distances,
the LEDs are hardly visible in the image, so high-magnification lenses are needed (x20.6
used in this work). This drastically reduces the field of view (FoV) of the camera, which
makes the system more sensitive to movement.

Nguyen et al. (August 2022) [71] adapted YOLOv5 for RS transmitter detection.
Compared to Rahman et al., the novelty is that they train the network using images
captured with different exposure times. In addition, they performed a small prelim-
inary analysis of how exposure time affects the received signal in terms of SNR and
bandwidth.

On the other hand, Cheng et al. (August 2022) [66], from Sun’s team at Jilin
University (Changchun, China), introduced a new architecture based on the GhostNet
[104] model that significantly improves inference times, efficiency, and accuracy over
the previous reported D2Net, and recent YOLO versions. However, this new network
loses the deblurring functionality offered by D2Net. The authors stated bit error rates
(BERs) below the forward error correction limit (FEC) limit for distances up to 4
meters in real traffic scenarios.

Finally, Kim et al. (November 2022) [68] used the YOLOv4 [105] model to detect
color bars on displays.

Modulation and equalization

As mentioned above, works related to modulation, coding, or equalization in OCC
links focus actually on the AI-assisted demodulation, decoding, or equalization of the
received signal. The demodulation pipeline for translating signal samples into data is
generally divided into three parts: (i) symbol sampling, (ii) feature extraction, and (iii)
classification using AI techniques. The equalization pipeline, on the other hand, will
ingest and deliver signal samples.

In 2017, Nguyen et al. [59] proposed the use of NNs for symbol classification, using
GS transmitters and a novel modulation called spatial-2-phase-shift-keying (S2-PSK).
This encoding maps each bit into the phase difference between two synchronized LEDs.
When both LEDs are in phase, a bit 1 is transmitted, and 0 otherwise. During decoding,
the network classifies the intensity values of both LEDs into their corresponding bits.
In this way, non-linearities in the received intensities are exploited by the NN, providing
a more accurate and robust (against noise) classification. Although the authors do not
mention their causes, these non-linearities might be related to the camera’s gamma,
the LED non-linear behavior (emitted power vs. current), and the channel response,
among other factors.

In December 2018, Li et al. [79] published the use of NNs for demodulating col-
ored symbols (6 RGB symbols), using RS transmitters. Each symbol comprises three
independent pulse width modulation (PWM) signals, one for each color, with different
frequencies, duty cycles, and phases. In the demodulation stage, features related to the
color stripes perceived in the image, such as their number and perimeter, are utilized.

Pham et al. (June 2019) [72] presented a dimmable S8-PSK (DS8-PSK) AI-assited
decoding. This modulation uses eight reference LEDs and eight data LEDs to transmit
in the phase difference eight symbols. In this case, the extracted intensities of each LED
are used as the input parameters of the NN. This work aims to evaluate the performance
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of NNs at decoding GS transmitters in vehicular environments when the image is
affected by variable blurring. This blurring is associated with multiple phenomena:
vehicle vibration and movement, road defects, and atmospheric conditions (rain, snow,
haze, ...), among others. Although this work needed an in-depth characterization of this
blurring (its sources and distribution), they proposed a primary method for generating
synthetic samples based on different levels of blur and additive white Gaussian noise
(AWGN) noise. These samples were used for training and validating the network.
However, there was no actual validation using authentic images. In [74], a related
work, they proposed an AI error correction scheme. These associated works were
condensed in [61] (June 2020).

Zhong et al. (August 2019) [73] proposed to detach the camera optical lenses to
eliminate the need to detect GS sources in the image, as the LED light will flood
the IS entirely. Consequently, the camera loses its spatial diversity capability and
functionality as an imaging device. In this work, they relied on NNs to decode the
ON and OFF states of OOK signals by using the luma, Y, and chrominance, Cb/Cr,
values.

Liu et al. (November 2019) [80] proposed the use of convolutional neural network
(CNN) for the assisted decoding of RS transmitters. These networks utilized the convo-
lution operation for extracting features from input samples. Each convolutional layer
uses different kernels whose coefficients are adjusted during training. In this work,
the input corresponds to a single column of the image of MxN rows of pixels. Where
M is the number of adjacent symbols, and N (referred to as oversampling ratio) is
the number of pixels (i.e., samples) per symbol. Hence, the input has dimensions of
(M-N)x3, where 3 corresponds to the RGB channels. The features extracted by the
CNN are delivered to a multi-layer perceptron (MLP) that classifies them into one of 8
possible symbols. This network exploits M-1 adjacent symbols to classify one. There-
fore, the complete demodulation requires iterating the operation of the network using
M-N input segments until it traverses the entire image. The authors stated that this
system consistently improves BER compared to the use of one-dimensional (1D)-NNs
or other classical algorithms, such as the double-equalization proposed by the same
authors [106].

Alfarozi et al. (November 2019) [75] evaluated and compared several different
CNNs models (ResNet, DenseNet, VGG, and a proprietary adaptation that the authors
called MiniDenseNet) to perform the decoding of square wave quadrature amplitude
modulation (SW-QAM) signals, sent with GS transmitters. This assisted decoding
is intended to be robust against interference between nearby sources (given that two
LEDs are used in the transmission), noise in the communication, and other parameters
that may deteriorate the signal. This can be achieved with the training with thousands
of representative samples. In addition, they proposed the use of Spatial Transformer
Networks [107] to deal with the movement of LEDs in the image. These networks learn
to perform spatial transformations on the input images that improve the invariant
geometry of the model. As a result, this network copes with relative camera movements
and avoids the need to use techniques for detecting the position of LEDs in the image
area. The authors demonstrated that using STN and MiniDenseNet improves source
decoding in moderate motion environments without needing prior source detection or
tracking algorithms.

In February 2020, Younus et al. [88] proposed the use of NNs for exposure ef-
fects equalization in RS links. The neural network performance was validated against
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Manchester-encoded OOK signals. It proved to recover the transmitted information
with a bandwidth higher than the cut-off frequency imposed by the exposure time.
As a result, a bandwidth improvement of up to 9 times is registered (compared to
non-equalized reception chains. In terms of temporal parameters, it can equalize sig-
nals whose symbol time is approximately four times shorter than the exposure time,
equivalent to the mixing of 4 consecutive symbols. However, this procedure is evalu-
ated under significantly high SNR conditions. In addition, training samples must be
acquired under the same conditions and using the same instruments (i.e., camera and
transmitters) as expected during the link’s deployment and operation. In short, this
ad-hoc solution can hardly be applicable in a real environment. Subsequently, in April
2021, the authors used the same procedure with constant 4-pulse amplitude modula-
tion (PAM) signals [56]. On this occasion, the improvement is less significant, given
the complexity introduced by the multilevel modulation. The bandwidth improvement
is lower than three times. The exposure time must be up to 1.3 times the symbol time.

Pepe et al. (April 2020) [76] used CNNs to decode 16-CSK signals transmitted
with screens acting as GS transmitters. The purpose of these networks is to overcome
distortions and disparities in the camera’s color representation with the screen set at
low brightness.

Yu et al. (August 2020) [82] used CNNs at decoding RS transmitters to over-
come the distortion effects produced on the generated bands due to motion. These
authors evaluate lateral movements, which produce skewness in the LED projection,
and horizontal movements, which expand or shorten the height of the bands, depend-
ing on whether the action follows the scanning direction of the sensor or backward,
respectively.

Ahmed et al. (October 2020) [89] used NNs to correctly align the bands generated
in RS links. This misalignment occurs when the transmitter moves laterally in the
image. The authors reported improvements in the BER using this AI-assisted warping
procedure. In addition, they found that the camera’s exposure time impacts the BER,
concluding that it is related to ISI. To avoid it, they set the exposure time to a relatively
short duration (1.2 times the symbol time).

Sun et al. (May 2021) [64] cascades their customized D2Net network used to detect
sources (mentioned in the previous subsection) with a decoding stage based on CNNs.
The decoding is conducted independently on equal patches of the LED matrix. The
same procedure will be used later by Cheng et al. (August 2022) [66]. In this case,
the differences between these two papers are related to detection, as discussed in the
previous subsection.

Lin et al. (June 2021) [83] and later Chow et al. (July 2021) [84] used conventional
NNs to facilitate the decoding of RGB panels whose backlight is OOK modulated. To-
gether with preliminary background removal algorithms, these networks aim to reduce
the interference caused by the projected image in front of the panel.

To continue with the chronological narrative, it is at this point, in July 2021, that
one of the contributions of the author of this thesis ([21]) detailed in Chapter 5 is
published. This contribution was published three months after Younus et al. [56]
publication related to exposure equalization in RS systems. The discussion of the
differences is reviewed in the conclusions (Chapter 6) and include: (i) synthetic training
combined with real validation versus ad-hoc real training, (ii) a two-dimensional (2D)-
CAE versus a 1D-NN that exploits the redundancy in nearby columns, (iii) added
denoising capabilities, and (iv) higher efficiency and fewer network parameters. It
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should be remarked that more work will subsequently be developed regarding exposure
equalization, albeit done implicitly during demodulation, such as the work of Lin et al.
[90], He et al. [85], and Ling et al. [86] This demonstrates the community’s interest in
this line of research. Despite being later works, the differences will be detailed in the
conclusions (Chapter 6).

Park et al. (August 2021) [77] proposed to use a CNN that ingests the entire image
containing a GS LED-matrix transmitter to decode it. The fact that it decodes the
whole image avoids the use of detection algorithms. However, this system lacked a
mechanism to determine whether there were none or several sources in the picture.

Lin et al. (September 2021) [90] proposed the demodulation of 4-PAM signals in RS
links. This work was similar in content and results to the previous work by Younus et al.
[56]. In technical terms, they propose the classification of a group of PPS pixels, where
PPS is the number of pixels per symbol, with labels corresponding to each symbol.
These labels are actually numerical values corresponding to the signal levels. This
work registered up to 4 times bandwidth improvement, with exposure times reaching
up to 2.5 times the symbol time. It should be highlighted that the input size in this
network is significantly smaller. Instead of using an input with dimensions close to the
packet size in pixels, it uses inputs with a size equal to the PPS, which improves the
efficiency of the network. This work will be presented again a month later at a WOCC
2021 conference [91]. Finally, in March and May 2022, they used the same procedure
but with transmitters based on light-diffusing fiber [92, 93]. In this work, they also
evaluated the effect that the relative angle between the transmitter and the camera
has on reception.

He et al. (March 2022) [85] also proposed to use an NN for demodulating 4-PAM
signals, using RS transmitters. However, in this case, each 4-PAM symbol is generated
by repeating several cycles of the same PWM signal whose period is significantly shorter
than the exposure time. In this way, at reception, each pixel accumulates the irradiance
of several PWM cycles accumulating the corresponding charge of a PAM symbol. On
this occasion, the network input has dimensions of 2N0x1x1, where N0 (referred to as
the symbol resolution) is the number of pixels per symbol (i.e., rows of pixels), and
1x1 corresponds to a single column in grayscale (one channel). The network’s output,
M0, has one neuron per each possible combination of two slots (two transmitted input
symbols) and four possible symbol choices. It should be noted that the results obtained
are within the records of the previous works in terms of longer exposure times. The
exposure times were set to 40 microseconds and the symbol time to 93 microseconds,
equivalent to exposure times of about half the symbol time.

Ling et al. (April 2022) [86] published a paper in which they combined CNNs and
recurrent neural network (RNN) for decoding 8-color shift keying (CSK) signals in RS
systems. In this case, RNNs manages to capture the dynamics of the sequences (i.e.,
the transmitted symbols) through recurrent connections, which can be thought of as
cycles in which the internal state of the network is fed back. In this way, they are
capable of acquiring short and long-term memory. Long-short-term memory (LSTM)
networks achieve the latter case. This work also focused on mitigating exposure time’s
effects on the signal, among other factors. However, despite identifying that exposure
is detrimental, they still failed to analyze or quantify its impact and did not report the
exposure time setting.

In June 2022, another contribution of this thesis (Chapter 5) was published [22].
This work proposes estimating fundamental parameters in RS links: the exposure time

25



CHAPTER 2. LITERATURE REVIEW: A STATE-OF-THE-ART ANALYSIS

and the signal clock. The contributions and implications of this work will be detailed
in Chapter 5.

Nguyen et al. (August 2022) [87] used, on the other hand, NNs for estimating
the preamble position in constant-OOK signals in RS systems and compared them
with matched filters. The purpose was to address the distortions introduced by the
mobility of the sources. In addition, they experimentally demonstrated improvements
in the SNR by increasing the camera’s exposure. At the same time, although without
experimental or theoretical validation, they pointed out that increasing the exposure
time reduces the bandwidth. Moreover, they did not analyze the behavior of the
network versus exposure time but adjusted and fixed it so it does not affect the receiver
bandwidth. In August 2022, they published the same procedure in [71] for preamble
estimation in orthogonal frequency division modulation (OFDM) schemes.

Again, Sun et al. (October 2022) [64] proposed a system based on CNNs for decod-
ing an LED matrix operating in GS mode. In this case, they analyzed how increasing
the camera sensitivity can lead to saturation of the source and increased interference
between nearby sources. The use of CNNs could alleviate these interferences.

Finally, Kin et al. (November 2022) [68] used CNNs for color barcode decoding,
addressing disparities in the color representation by the camera.
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Chapter 3

Theoretical framework

This chapter explores the technical and theoretical considerations for using RS cam-
eras as optical receivers. The chapter starts by discussing the RS acquisition mechanism
and how it relates to data acquisition, focusing on the effects of the camera’s exposure
time on the signal. Other parameters that may affect signal reception, including frame
rate, analog gain, and physical world parameters, such as transmitter’s size, camera
optics, and distance, are also discussed in terms of their influence on the communi-
cations link. On the other hand, it also introduces the AI fundamentals required to
understand the rest of this thesis.

3.1 Rolling shutter cameras

RS cameras scan the scene sequentially, row by row of pixels. The interval between
the beginning of the scan of one row (the activation) and the subsequent row has
taken several names in the literature, including row shift time, row interval, and row
sampling time. The latter terminology will be used for convenience due to its equivalent
relationship with the sampling time terminology used in communication systems.

This acquisition mechanism is representative of complementary metal-oxide semi-
conductor (CMOS)-based cameras. On the other hand, charge-coupled device (CCD)
cameras generally use a GS acquisition, which simultaneously exposes all the sensor
pixels. Despite this strong relationship between the fabrication technology and the ac-
quisition mechanism, GS-based CMOS cameras can be found in the market, although
it is less frequent.

Figure 3.1 shows the timing diagram of the RS acquisition. In this diagram, the
frame time corresponds to the total invested time in capturing a frame, while the ac-
quisition time is the interval between the start to exposure of the first row and the
readout of the last one. The rest of the frame time is used internally: (i) to accommo-
date a variable (sometimes adjustable by the user) exposure and (ii) to guarantee the
availability of hardware resources for subsequent captures.

The RS acquisition starts when the camera opens its shutter. Suddenly, all pix-
els are exposed to the incoming light and start accumulating charge. This seems to
contradict the sequential scanning mentioned before, but the key that solves this con-
tradiction is the following. Immediately after the shutter is opened, the first row of
pixels is activated by an electronic signal. This signal discharges the charge previously
accumulated in the pixel capacitors, thus initiating the actual exposition for that row.
Hence, the activation time, or reset time, treset, is the time necessary to discharge the
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Figure 3.1: Timing diagram of the RS acquisition mechanism.

previously accumulated charge on the photodiode (by biasing it with reverse voltage).
Afterward, the rest of the sensor rows are activated sequentially. As introduced at the
beginning of this chapter, the interval between activations is known as the row sampling
time, trow. After the activation, each row is exposed to light during a preselected time,
the exposure time, texp. For convenience, the exposure time in this graph is considered
to be the same as the row sampling time, which corresponds to the ideal sampling
conditions. Otherwise, exposure effects start to be noticeable. Those effects will be
discussed at the end of this section. Later, once the exposure has been finished, the
sequential readout of the pixel values proceeds pixel by pixel for each row. The read-
out time, tread, corresponds to the readout time of just one row. This readout process
varies depending on whether passive or active pixels are involved. In passive pixels,
the charge is transferred to a floating diffusion amplifier (FDA) common to the en-
tire column, which converts the charge into a voltage with a charge-voltage conversion
gain. Finally, this voltage is amplified at the general output amplifier and quantified by
the analog-to-digital converter (ADC). In active pixels, the charge-voltage conversion
is performed at the pixel level, and the voltage is transferred to the general output
amplifier using source follower amplifiers (SFAs). This procedure is repeated until all
the pixels in a row and all the sensor rows have been read.

As it was discussed in the introduction (Chapter 1), the RS mechanism can lead to
several potential issues in images, including:

• Distortion and blurring (Fig. 3.2): When an object is moving quickly through
the scene, the camera may capture it at different positions at different times,
leading to distortion or ”skew” of the object. This can be especially noticeable
in images of fast-moving objects or when the camera moves quickly.

• Banding (Fig: 3.31.): If there is a flickering light source in the scene, such as office
lights, a television or a computer monitor, the RS can cause bands of different
light intensity to appear in the image. This is because the camera captures the
light at different times, leading to uneven exposure.

The last phenomenon suggests using RS cameras for sampling optical signals, which
produces a recognizable pattern of different illuminated bands or stripes in the image as

1Images obtained from https://www.dpreview.com/forums/post/57566427 and
https://www.dpreview.com/forums/post/60552191
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Figure 3.2: A de Havilland Canada Dash 8 propeller, with severe RS distortion from a
Pixel 3 camera by Dicklyon (Wikipedia).

Figure 3.3: Examples of RS banding (DPreview).

shown in Fig. 3.4. Each band represents a potentially transmitted symbol. On top of
the right diagram are displayed the temporal variations of a OOK modulated squared
signal, with “ON” and “OFF” illumination states. The image on the left represents
the pixel values obtained after the capture.

This graph illustrates direct relationships between the camera’s parameters and
conventional communications receivers. First, it shows that the temporal signal vari-
ations are captured along the horizontal domain of the image. Therefore, the RS
mechanism establishes a direct relationship between the pixel position (space) and the
sampling instant (time). This space-time relationship has profound consequences on
the link, as will be discussed in the following subsections. Second, it also shows that the
columns contain highly correlated signal samples. This is because the pixels for each
row are exposed simultaneously. Hence, each column represents redundancy samples
of the transmitted signal. In summary, the rows sample the signal, and the columns
introduce redundancy2.

Third, the camera’s row sampling time, trow, corresponds directly to the receivers
receiver’s sampling period (or period), TS. Conventional user-ready cameras typically
sample the optical signal every 8 to 10 microseconds. Therefore, the receiver’s sampling
rate, FS (FS = 1/TS) can reach up to 125 kHz. In super slow motion cameras, even

2It should be remarked that the sampling dimension changes if the scanning is performed in columns
instead of rows.
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Figure 3.4: Timing diagram of the RS acquisition of an OOK signal.

Figure 3.5: Image examples for increasing transmitter’s baud rates.

higher sampling rates can be achieved (up to 5 times higher than conventional cameras,
i.e., 500kHz). As in any generic communication system, the transmitter’s baud rate in
OOK signal, which corresponds to the inverse of the symbol time, tsym, must be at most
half of the sampling frequency to comply with Nyquist-Shannon sampling theorem.

Figure 3.5 provides some examples of increasing transmitter baud rates.

As seen, increasing the transmitter’s frequency decreases the band size (in pixels).
Ultimately, each band’s height (in pixels) is related to the number of symbol samples.
The latter is the ratio between the symbol time and the sampling period. In this
thesis, as the focus in RS OCC are images, this ratio is called the number of pixels
per symbol (NPPS). The reason behind not calling it just samples per symbol is that
generic communication systems consider one receiver sampler to provide all the signal
samples. In RS systems, each signal sample comes from independent pixels, which can
be understood as independent samplers, only related by the time they are activated.
This will be further detailed in the following subsection. Finally, it should be mentioned
that, theoretically, despite working with discrete systems, the NPPS may be a non-
integer value.

The sampling time is upper limited by the capture time. In other words, the sam-
pling frequency must be considerably higher than the frame rate (or frames per second)
fps. Generally, the higher the capture rate, the greater the capacity to sample the sig-
nal faster. Another factor influencing the sampling rate is the number of rows, i.e., the
vertical resolution (in pixels), hpixels. The higher the vertical resolution, the shorter
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the sampling time should be. Many literature texts established a direct relationship
between the sampling rate, the frames per second, fps, the exposure time, texp, and the
vertical resolution, hpixels, as expressed in Eq. 3.1.

FS = fps · hpixels −
1

texp
(3.1)

Although the computed sampling rates using this equation approximates well as the
camera’s fps increases, the reality is that they are generally significantly higher. This
is because this equation implicitly considers that the acquisition time equals the frame
time, which is different from what is shown in Fig. ef fig:diagram. This is because the
cameras use idle times to (i) accommodate variable exposure times and (ii) wait for
resources.

Consequently, the IS will remain blind to the transmission during these idle times
resulting in an interrupted reception. To address this challenge, channel coding tech-
niques must be applied to ensure reliable communications. This will be discussed later
in this section, along with analyzing the camera’s exposure time. But before entering
this discussion, it is mandatory to analyze how the light projects into the IS to generate
the intensity distribution profile perceived in the images.

3.1.1 The image intensity distribution profile

The images shown in Fig.3.5 result from captures of uniform illuminated surfaces
(such as LED flat panels). Hence, the light source’s irradiance uniformly floods the
entire IS, generating an intensity distribution profile that is practically uniform for the
“ON” and “OFF” states.

However, this condition of equally distributed illumination is rarely met. The im-
age’s intensity distribution profile hereafter referred to as the intensity profile, depends
on a multitude of link parameters, including the size and shape of the light source, its
irradiation pattern, its relative distance and orientation to the camera, the presence of
obstacles or other objects that blocks or reflect the light, among many others.

Figure 3.6 shows two examples (for increasing distance) of the simulated reception
of an OOK modulated signal using a synthetically generated 2D Gaussian distributed
intensity profile.

As can be seen in this figure, the intensity profile varies both in the vertical (rows)
and horizontal (columns) dimensions (data and redundancy domains, respectively).
The graphs on the right show the row intensity profile of three columns. They manifest
that the signal strength is significantly higher in the source’s projection and drops
sharply outside. With maintaining rigor, it can be concluded that communication
quality depends considerably on the source’s image size (in pixels). This statement
is conveniently used to make introducing complex concepts in subsequent paragraphs
easier. It remains valid to the extent that the luminous profile drops sharply beyond
the source’s borders, which happens in most cases (especially when using flat LED
panels). However, it should be noted that the signal can be recovered anywhere in the
image, even from reflections in walls and mirrors, ultimately where SNR is higher than
the threshold established by the system’s modulation scheme.

As it was aforementioned, the size of an object in pixels, as captured by a camera,
is affected by several parameters, including:
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Figure 3.6: Examples of the simulated reception of square signals using a synthetic
2D Gaussian distributed intensity profile. In the top image, the source is closer to the
camera.

• The physical dimensions (in centimeters) of the object itself (H, the height, and
W , the width, and, D).

• The distance between the object and the camera, d, and its orientation.

• The focal length of the camera lens, f , and the sensor size, s, (in micrometers).
The focal length of a lens is a measure of its ability to focus (redirect) light on the
image sensor. It is typically expressed in millimeters and is a key factor along
with the sensor size in determining the angle of view (AoV) of a lens, which
corresponds to the angular extent (in degrees) of a given scene that the camera
can capture. A lens with a short focal length, such as a wide-angle lens, has
a wide AoV and can capture a larger portion of the scene. A lens with a long
focal length, such as a telephoto lens, has a narrow AoV and can magnify distant
objects. The angle of view can be expressed by Eq 3.2.

AoV = 2 · tan−1
( s

2 · f
)

(3.2)

The AoV should be distinct from the FoV. Although these related terms have
been used interchangeably in technical writing, they do not refer to the same
concept. The FoV measures the size (typically in meters) of the scanning area
in the object plane for a certain distance and AoV. Equation 3.3 relates both
quantities. Finally, it should be highlighted that both values can be referred to
as either the vertical or horizontal dimension of the camera.

FoV = 2 · d · tan
(AoV

2

)
(3.3)
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• The sensor resolution (the number of pixels on the image sensor).

• Defocus. Defocusing a lens, causing the focus point to fall in front of or behind the
object, might lead to making objects in the image appear larger. The defocusing
effect on the object’s size will depend on the amount of defocus and the distance
between the camera and the thing. Objects closer to the camera will be more
affected by defocus than objects further away.

Ultimately those parameters condition the irradiance map in a discrete sampling
instant. The final image results from the time evolution of consecutive irradiance maps
during the frame capture, which may vary over time due to other circumstances rather
than the actual transmission. For example, because of: (i) the dynamics of the scene,
such as the relative movement between the transmitter and the receiver, (ii) the pres-
ence of external active interference agents, or (iii) the environmental conditions, such
as rain, snow, fog, among others. In short, the dynamic nature of the link further com-
plicates the task of accurately demodulating the transmitted data using a RS camera.

This non-uniformly distributed intensity profile greatly impacts communications
and confers the following characteristics on the link:

• Time-variant. The irradiance reaching each pixel for each symbol varies depend-
ing on its location within the image sensor. For example, as shown in Fig. 3.6, the
top pixels accumulate less charge than the middle pixels, although they sample
equivalent “ON” and “OFF” illumination states. On the other hand, the sequen-
tial acquisition of RS cameras relates both the pixel position (space) with the
signal sampling instant (time). As a consequence, the signal’s sample strength is
influenced by the time the sample was taken. Overall, the system behaves as a
time-variant system, increasing the complexity at reception. Solutions adopted
to address this challenge includes: (i) applying row equalization stages to adjust
the gain for each pixel, using various techniques, including linear equalization, de-
cision feedback equalization, and maximum likelihood sequence estimation, (ii)
applying global equalization techniques that exploit the redundancy of nearby
columns, and (iii) identifying those regions where the signal strength is more
uniform, e.g., outside the source’s projection (Fig. 3.6 middle graphs).

• Windowed reception. To proceed with decoding the transmitted data, it is nec-
essary to ensure that the SNR is above a threshold imposed by the modulation
scheme. For this reason, it may be required to discard those samples that are
too weak to be accurately demodulated. For example, in Fig. 3.6, the further
top and bottom pixel rows might be discarded. Recalling the space-time rela-
tionship in RS systems, this means that the receiver operates in time windows
of varying length, resulting in a windowed reception. This implies that it is nec-
essary to identify those ROIs within the image where the data can be decoded
and to devise appropriate channel coding techniques to protect information from
losses. To address this challenge, the solutions that the community has widely
adopted include: (i) adapting the packet length and sending them repeatedly
or (ii) adding a significant amount of redundancy to the transmitted data. By
sending variable-length packets repeatedly, it is possible to increase the proba-
bility that the transmitted data will fall entirely within an active time window.
Similarly, by adding redundancy, it is possible to improve the reliability of the
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Figure 3.7: Examples of images for increasing exposure times.

communication link at the cost of increasing the system’s complexity. Ultimately,
this windowed reception further restricts the attainable data rate.

In conclusion, the RS systems are time-variant, and the active reception happens in
variable-length time windows. The link reliability increases as the irradiance reaching
the IS become more uniform. Finally, data decoding takes place in regions where
the SNR is above the modulation’s imposed threshold. Moreover, as discussed in the
following section, the SNR can be improved by adjusting the receiver’s sensitivity.

3.1.2 Receiver’s sensitivity and exposure time

The receiver’s sensitivity is directly related to the camera’s sensitivity, measured
with the ISO 12232:2019 standard value. The higher the ISO value, the more sensitive
the camera is to light. The parameters influencing the receiver’s sensitivity are (i) the
analog and digital gains and (ii) the exposure time.

Cameras adjust their sensitivity to light by applying analog and digital gains to
the analog signal coming from the pixel before and after it is digitized by the ADC,
respectively. Increasing both gains can improve the image quality in low light conditions
but also introduce noise into the image, particularly the digital gain. In addition, two
additional digital gains are used to adjust the relative sensitivity for each independent
channel in RGB cameras. Although being out of the scope of this thesis, It should be
mentioned that the presence of a Bayer optic filter in cameras to split the incoming
irradiance in different wavelengths have an impact on OCC systems based on colored
modulations. The misalignment between the transmitter’s spectrum and the Bayer
filter response might lead to potential ISI between channels. This ISI might be equalized
prior decoding as proposed in a previous work [47].

On the other hand, the exposure time refers to the time each pixel in the image
sensor remains exposed to light. The longer the exposure, the higher the sensitivity,
as the pixels accumulate more radiant energy from the scene. Figure 3.7 shows images
captured for increasing exposure time values.
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Figure 3.8: Examples of the same transmission for increasing exposure times.

As can be seen, the mandrill in the bottom left picture is discernible, as the ex-
posure time is the highest in this setup. However, increasing the exposure time has
a detrimental effect on the signal. To improve the visualization, Fig. 3.8 shows some
samples cropped from the source projection. These samples show the effects on the
received signal as the exposure increases. It should be emphasized that the same sym-
bol sequence is transmitted in all the samples. Therefore, the differences between the
images derive mainly from the exposure time and, to a lesser extent, from a slight shift
in the symbol location due to the lack of synchronization between the transmitter and
the camera.

As the exposure increases, it can be seen that consecutive symbol bands appear to
blend together. This is because each pixel remains exposed while transmitting several
consecutive symbols, accumulating a variable charge depending on their corresponding
irradiance. Consequently, increasing the exposure time produces an ISI in the signal.
Figure 3.9 shows the complete acquisition diagram derived from Fig.3.4, including the
exposure time. To simplify the visualization, the activation and readout times have
been removed. It can be seen that as the exposure time increases, more symbols are
mixed.

The degree of impact of the exposure can be expressed in terms of the ratio between
the exposure and the symbol times. In this thesis, this ratio is called exposure-to-
symbol ratio (ESR). As an example, in Fig. 3.9(b), the exposure time is twice as long
as the symbol time, and hence the ESR is 2. The higher the ESR value, the more
detrimental impact on the signal.

Consequently, the sequential exposure of RS cameras acts as a low-pass filter, reduc-
ing the receiver’s bandwidth considerably. Figure 3.10 shows the normalized frequency
response experimentally measured for increasing exposure times. As discussed in Chap-
ter 5, the receiver’s 3 dB cutoff frequency, fcutoff imposed by the exposure time can only
be estimated numerically. However, to have reference values for the bandwidth reduc-
tion, the first null frequency, f0, corresponds to the inverse of the exposure time, and
the 2-dB bandwidth, to the first null frequency divided by 2. Therefore, the impact of
the exposure time is neglectable for ESR equals 0.5. For this reason, many researchers
choose to reduce the exposure time to a minimum, which is only sometimes possible.
The consequence of this strategy is that only the active light sources and those regions
with a higher intensity will be discernible in the images.

This sequential acquisition can be modeled as a two-stage system with (i) a filtering
and (ii) a sampling stage (Fig. 3.11(c)). The filtering stage acts directly on the
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Figure 3.9: Timing diagram of the RS acquisition with variable exposure time.

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

50

Freq (in kHz)

texp = 46 µs
texp = 197 µs

First null 
frequency

f0 = 1/texp

Figure 3.10: Normalized frequency response for different exposure times.

36



3.1. ROLLING SHUTTER CAMERAS

pixel row 0 texp

Texp

Texp

pixel row 1

pixel row 2

...

...

tframe
tintertacquisition

texp
texp

pixel row j Texp
texp

Ts

ẟΣ(t,j)hexp(t,j)
P(t,j) v(t,j) v[n]

∗ •

(a)

(c) (d)

R
o

w
s 

o
f 

p
ix

el
s

(b)

v[n]

v[n=4]

v[n=1]
v[n=0]

v[n=9]

v[n=0]

v[n=1]

v[n=4]

v(t,j)

p
ix

els

j

R
o

w
s

Rolling-shu�er mechanism

j

P(t,j)

P(t,j=0)

P(t,j=1)

P(t,j=2)

R
o

w
s o

f p
ix

els

The i
th  

column

The jt
h  

row

The i
th  

column

(i
th,jt

h) pixel

Figure 3.11: RS acquisition mechanism. (a) RS timing diagram. (b) Normalized optical
power P (t, j) reaching each pixel of the i-th IS column. (c) RS system modeling:
impulse response, hexp, and sampling function, δΣ. (d) Filtered curves, v(t, j), and the
discrete signal, v[n] after sampling.

incident irradiance samples, P (t, j) for each pixel (Fig. 3.11(b)). Note that the pre-
filter sampling rate is considerably higher than the row sampling rate of the camera.
Generally, an oversampling factor of 100:1 or 1000:1 is used, which means that 100
or 1000 temporal irradiance samples are used to compute each pixel intensity values,
v[n] (Fig.3.11(d)). As seen in Chapter 4, in the synthetic generation, the filtering
step corresponds to a sliding uniform filter with a unit shift that keeps the original
dimension (number of samples) by adding zero-padding if necessary. The size of this
uniform filter is related to the exposure time. The result of this stage is time-averaged
irradiance levels for each pixel, v(t, j) (Fig. 3.11(d)).

Then, all filtered signals (one per pixel) are sampled, one at a time, depending on
the oversampling factor and the camera’s row sampling rate. Therefore, this procedure
associates the k-th pixel irradiance value with the sample of the k -th time-averaged
irradiance signal, v(t, j = k), based on the sampling instant, Ts (i.e., v(t = k·Ts, j = k)).
Finally, the pixel’s irradiance value is multiplied by a scaling factor based on the analog
and digital gains, the loading capacity of the photodiodes, and the exposure time, to
obtain the intensity values for each pixel.

This procedure can be used for the synthetic generation of image samples, but it is
rather complex. First, computing the irradiance samples for each pixel is an unman-
ageable task. Considering only one row of pixels, 1080 filtered signals are required for
an HD camera (with a resolution of 1920x1080). The length of these signals depends on
the simulation time (i.e., the frame capture time) and the sampling rate, which must
be 100 or 1000 times higher than the camera’s sampling rate. More than 1M samples
are required to simulate the reception of just one column. Moreover, this computation
gets worse when there is high dynamic content in the scene, e.g., sources are moving,
or there are interferers that contribute detrimentally to the final irradiance. To speed
up the simulation, several conditions can be established to reduce the generation times
considerably.

The first condition is that the irradiance only varies due to the usual operation of
the transmitter (i.e., flickering) and not due to relative movements between sources or
the action of interference agents.

The second condition assumes that each pixel’s behavior is linear with respect to
the incident irradiance and that the irradiance reaching each pixel can be modeled as
a linear function of the total irradiance reaching the lens surface. If so, a significant
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computational reduction is achieved since only a single irradiance signal is required,
which will be weighted accordingly after the filtering stage depending on the location
of each pixel and the image intensity distribution profile.

The third condition ensures that the irradiance is uniformly distributed in the IS.
In this way, the irradiance samples for each pixel are interchangeable, i.e., all pixels
can be considered replicas of a single pixel sampling a single temporal signal.

In conclusion, the exposure time introduces a trade-off between the receiver’s sensi-
tivity and the attainable bandwidth. Therefore, efforts should be invested to increase
the performance of these systems, for example, by applying AI-assisted equalization
stages in alleviating the effects of prolonged exposures, which is one of the objectives
of this thesis (Chapter 1), and which is addressed in Chapter 5.

3.2 Artificial Intelligence for optical camera com-

munication

This section introduces the generic methodology for solving tasks using AI. This
methodology involves several steps, including (i) data preparation, (ii) model selection,
(iii) training, validation, and testing, (iv) hyperparameter tuning, and (v) deployment.
Moreover, it details the models that are used in this work, including MLPs, CNNs, and
autoencoders (AEs).

It should be highlighted that this section is not focused on providing a detailed
analysis of AI methods or explaining the mathematical background behind them. For
a more comprehensive understanding of these topics, readers can refer to the book
by Goodfellow et al. in 2016 [108] or the practical online book by Zhang et al. and
updated in 2022 [109]. This chapter is intended to provide only an introduction to
the fundamental concepts that will be used and revisited throughout the rest of the
chapters.

3.2.1 Solving tasks using AI

The generic methodology for solving a specific task using AI involves several steps.
This section briefly details those steps and includes a few considerations to achieve
better results.

Identification of the problem

The first step is to define the problem that the network must solve clearly. This
involves identifying the task the network will be trained to perform and any constraints
or requirements the network must satisfy (e.g., computational complexity, time or space
limitations).

Data collection

The next step is to collect a suitable dataset for training the network. This typically
involves identifying a relevant source of data (e.g., a database or a collection of text
or images) and pre-processing the data to extract the features used as inputs to the
network. The quality and diversity of the data will significantly affect the performance
of the trained network, so it is important to ensure that the dataset is representative
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of the problem at hand and contains enough examples to enable the network to learn
effectively.

Exploratory data analysis

Before training a NN, it is important first to understand the characteristics of the
data that will be used to train the network. This involves exploring the dataset and
performing visual and statistical analyses to identify patterns, trends, or anomalies.
This can help inform the design of the network and the choice of architectures to use.

One potential use of EDA is to assist in generating synthetic data, which involves
creating artificially generated samples. Synthetic samples can be helpful in cases where
it is difficult or time-consuming to acquire real-world data or where there are privacy or
security concerns. However, to use synthetic samples for training (which might speed
up the acquisition and training times), it is necessary to have sufficiently good models
to generate high-quality representative samples of real-world data.

Dataset preparation

The next step is to prepare a dataset for training the network. This typically
involves dividing the available data into at least two sets: a training set, which will be
used to train the network, and a test set, which will be used to evaluate the performance
of the trained network. The training set should be sufficiently large and diverse to
enable the network to learn effectively, while the test set should be representative of
the data the network will be applied to in practice.

In fact, data is split into three sets: training, validation, and test. Testing and
validation are two closely related concepts in the context of training a machine learn-
ing (ML) model. Both involve using a dataset to evaluate the model’s performance,
but they have different goals and are typically used at different stages of the model
development process. Testing refers to assessing a trained model’s performance on a
dataset it has not seen before to estimate its generalization performance. This is done
to ensure that the model can make accurate predictions on new, unseen data, not just
the training data. Testing is typically done after the model has been trained. On
the other hand, validation refers to using a dataset to tune the hyperparameters of a
model. The model’s hyperparameters are parameters that are not learned during the
training process but are set before training and control the model’s behavior. Exam-
ples of hyperparameters include the learning rate, the number of layers in the model,
and the regularization coefficient. This hyperparameter tuning is typically done during
training to optimize the model’s performance on a specific task or dataset. Validation
helps ensure that the model can generalize well to new, unseen data.

Finally, in addition to dividing the data into training and validation/test sets, this
step may involve other pre-processing steps, such as normalizing the data, removing
outliers, or generating synthetic data to augment the training set.

Model selection

Once the dataset has been generated, the next step is to select the suitable model
for the task at hand. This involves choosing the AI algorithm to be applied, and
specifically, if a NN model is selected, the network architecture (e.g., the number of
layers and the type of each layer) and the learning algorithm (e.g., stochastic gradient
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descent (SGD) or adaptative moment estimation (Adam)) that will be used to train
the network. These learning optimization algorithms are algorithms used to train ML
models, typically by minimizing a loss function that measures the difference between
the predicted outputs and the ground truth. Learning optimization algorithms aims
to find the appropriate parameters (e.g., weights and biases) that minimize the loss
function and produce the most accurate predictions.

One common learning optimization algorithm is minibatch SGD, a variant of the
SGD. In SGD, the model parameters are updated using the gradient of the loss function
with respect to the current set of parameters, calculated using a single example from
the training dataset. In minibatch SGD, the gradient of the loss function is computed
using a small batch (or ”minibatch”) of examples from the training dataset rather than
a single example. This allows the algorithm to make more efficient use of the available
data and typically leads to faster convergence and better performance than SGD. The
key advantage of minibatch SGD over SGD is that it improves the training process’s
stability and leads to more accurate parameters. Additionally, minibatch SGD allows
the use of parallelization techniques, which can further improve its computational effi-
ciency. However, one potential disadvantage of minibatch SGD is that it may require
more careful tuning of the hyperparameters, e.g., the batch size, to achieve optimal
performance.

Other optimization algorithms include: (i) Adagrad, which adapts the learning rate
of the model during training based on the sum of the squares of the past gradients,
(ii) root mean square propagation (RMSProp), which uses an exponentially decaying
average of the squares of the past gradients to scale the learning rate for each parameter
of the model, and (iii) Adam, which is an extension of the RMSProp algorithm, among
many others.

Due to the complexity and diversity of models, architectures, optimization algo-
rithms, and hyperparameters, it may be necessary to try out multiple different models
and compare their performance on the validation or test set to select the best one.

Training

Once the model has been selected, the next step is to train the network on the
training dataset. This involves feeding the data through the network and using the
learning algorithm to adjust the network’s parameters. The training process typically
involves multiple epochs over the training dataset. An epoch refers to one full pass
through the entire training dataset. It consists of one or more iterations over the
training dataset. Each iteration involves the forward propagation of the model, the
computation of the loss and gradients, and the backward propagation of the gradients
to update the model’s parameters. Finally, the network’s performance is evaluated on
the validation set at regular intervals to ensure that it is learning effectively.

Testing

After the network has been trained, the next step is to evaluate its performance
on the test set. The network’s performance is typically measured with metrics such
as accuracy, precision, and recall, among many others. The evaluation results can be
used to identify areas where the network is not performing well and may need further
improvement.
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Hyperparameter tuning

Another step in training a model is fine-tuning its hyperparameters. This involves
adjusting the values of the hyperparameters (e.g., the learning rate or the regularization
strength) to improve the network’s performance on the test set. This step can be time-
consuming and may require experimentation and trial and error, but it is important
for achieving the best possible performance. Several algorithms can be used for hyper-
parameter tuning, including grid search, random search, and Bayesian optimization.
Grid search involves exhaustively searching over a specified grid of hyperparameter
values, while random search involves random sampling values for the hyperparameters
from a specified distribution. Bayesian optimization uses Bayesian statistics to model
the function that maps from hyperparameters to the model’s performance and then
uses an optimization algorithm to find the set of hyperparameters that maximizes this
performance.

Deployment

The final step is deploying the trained AI model in a production environment,
making it available to end users. This typically involves integrating the model into an
application or system and configuring it to work with the desired input and output
formats. It may also involve deploying the model on a specific hardware platform,
such as a server or a mobile device. During the deployment process, it is important to
consider scalability, reliability, and security issues. The deployed model should be able
to handle a large volume of requests and should be able to function consistently and
accurately over time. Additionally, measures should be taken to ensure the security
and privacy of the data being processed by the model.

It should be remarked that deployment is a crucial step in the AI methodology.
However, this research does not focus on deployment.

3.3 Artificial intelligence models

This section introduces and details the models used in this thesis. These models
include MLPs, CNNs, and AE, which are commonly used in a wide range of applica-
tions. Each section examines the key features of a model, introduces some examples
and potential use cases, and concludes by linking it with the related tasks to be solved
in this thesis.

3.3.1 Multi-layer perceptron

A MLP is a type of NN that consists of multiple layers of interconnected ”neurons”.
A neuron is a basic unit of computation that receives input data in the form of a
matrix, processes it using a non-linear mathematical function, and produces an output.
Neurons are typically organized into layers. The input data is passed through the input
layer, which is then processed by one or more hidden layers and then transformed into
the output data by the output layer. The number of layers and the number of neurons
in each layer can vary, but generally, the more layers and neurons an MLP has, the
more complex patterns it can learn to recognize.
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The computations performed by each MLP layer can be represented by Eq.3.4:

H = Φ(XW + b) (3.4)

where X, H are the input and output matrices, repectively, W, the weights for the
connections between neurons, b, the biases vector, and Φ, the activation function.
The activation function serves a crucial purpose which is introducing non-linearities
into the network, allowing to model complex relationships between the input and out-
put data. Without these non-linearities, the MLP would be limited to learn linear
relationships between inputs and outputs, which would significantly limit its ability to
perform many tasks. In conclusion, using activation functions allows NNs to learn and
model more complex and non-linear relationships between the input and output data.
Moreover, choosing the appropriate activation function can have a significant impact
on the performance of the network. Common activation functions include the sigmoid,
the hyperbolic tangent, and the rectified linear unit (ReLU) functions. The choice of
activation function depends on the specific task and other factors, such as the network
architecture and the used training algorithm.

The sigmoid function is defined in Eq.3.5

Φ(x) =
1

1 + e−x
(3.5)

This function maps the input values to the (0, 1) range, which makes it useful
for modeling binary or probabilistic outputs, such as in classification tasks where the
network must output the probability that a given input belongs to a particular class.
However, the sigmoid function has the disadvantage of being computationally expensive
to evaluate and differentiate, which can slow down the training. It also can saturate for
large positive or negative values of x, leading to the vanishing gradient problem. This
means that as the input becomes very large in magnitude, the output of the sigmoid
function approaches either 0 or 1, and the gradient becomes very small. In simple
terms, the gradient of the activation function is used to compute the weight updates
during the training process, so if the gradient is very small, then the weight updates
will also be small, which can slow down the learning process and make it difficult for
the network to converge.

The tanh function is defined in Eq.3.6:

Φ(x) =
ex − e−x

ex + e−x
(3.6)

The tanh function maps the input values to the (-1, 1) range, which makes it
well-suited for modeling outputs that can have both positive and negative values and
where the range of possible output values is symmetric around 0. For example, the
tanh function might be used in networks trained to predict a company’s stock price
based on various input factors. In this case, the output could be a continuous value
representing the predicted stock price, which could be positive or negative depending
on the input data. The tanh function presents the same issues as the sigmoid function.

The ReLU function is defined in Eq.3.7:

Φ(x) = max(0, x) (3.7)

The ReLU function outputs 0 for negative values of x and x for positive values. This
activation function is useful for modeling either 0 or positive outputs. One advantage
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of the ReLU function is that it is computationally efficient, as it does not require any
complex mathematical operation such as exponentiation, which can be computationally
demanding. This can make it useful when the NN needs to be trained quickly or
deployed on hardware with limited computational resources. Another advantage of the
ReLU function is that it has been shown to improve the convergence of networks during
the training process. However, it also has some limitations, such as the potential rise
of ”dying” neurons, i.e., neurons that have become inactive and no longer contribute to
the computation of the outputs. This might happens if the parameters of the network
are not correctly initialized.

Some specific tasks that MLP models can be used for include:

• Regression: to predict a continuous output value based on a set of input features.
For example, to predict the price of a stock based on historical data such as the
stock’s previous prices and trading volumes.

• Classification: to predict a discrete class label based on a set of input features.
For example, to classify an image as belonging to one of several different object
categories, such as ”dog” or ”cat”.

• Clustering: to group data points into different clusters based on their similarity.
For example, to group customers into different segments based on their purchasing
behavior.

• Dimensionality reduction: to reduce the number of dimensions (encoding) in the
data while preserving as much of the original information as possible to make it
easier to visualize or speed up the training of other ML algorithms.

Other tasks that can be performed include image classification and recognition.
However, there are several limitations to using MLP for working with images. One of
the main limitations is that MLP does not inherently capture the spatial structure of
images. The neurons in an MLP model do not have any notion of spatial location or
orientation of the input values. As a result, this model is not translation invariant.
Translation invariance (or translation equivariance) refers to the property of a model
where its output is the same regardless of the position of the input data in the input
space. For example, a translation invariant model should recognize an object in an
image regardless of where the object is located in the image. Furthermore, an MLP
cannot prioritize the input data values based on their location and orientation and
instead treats all input values equally. In other words, it cannot generate local rep-
resentations that consider only nearby pixels without directly relating them to other
content in the image. This property is known as the locality principle. This principle
refers to the property of a model where the output is only influenced by a small, local
region of the input data. For example, a model that follows the locality principle should
be able to recognize an object in an image based on the features of that object rather
than being influenced by the features of other objects in the image. In addition, MLP
is not well-suited for working with high-dimensional data, as it requires considerable
computational resources, which can be a significant disadvantage when working with
large and complex images.

To address this issue, other types of NN architectures have been proposed that are
specifically designed to capture the spatial structure of the data, such as CNNs. These
architectures use convolutional layers and other techniques to explicitly incorporate
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the concepts of translation invariance and the locality principle, making them more
effective for tasks involving images.

3.3.2 Convolutional neural networs

A CNN is a type of NN specifically designed to work with multi-dimensional arrays
such as images. CNNs are composed of several layers, including (i) convolutional layers
and (ii) pooling layers.

Convolutional layers are the core building blocks of CNNs. They perform the
discrete convolution operation on the input data for each filter in a filter set to extract
specific features. The outputs of the filters are then stacked together to produce a
feature map.

Considering an input matrix, I, with dimensions, H × W × D, where H is the
height, W the width, and D the number of channels, and a three-dimensional filter’s
kernel, K, with dimensions, kh × kw × kd, the output, Z, after applying the discrete
convolution is given by Eq. 3.8.

Z[i, j] =

kh−1∑

m=0

kw−1∑

n=0

kd−1∑

l=0

I[m,n, l] ·K(i−m, j − n, l) (3.8)

In this formula, Z(i, j, k) is the value of the output at position (i, j), I(m,n, l), the value
of the input at position (m,n) for the l-th channel, and K(i−m, j− n, l), the value of
the filter at position (i−m, j−n) for the l-th input channel. This formula shows that
the convolution is performed by sliding the kernel over the input data and computing
the dot product between the input and kernel values at each position. The result
of the convolution, Z[i, j], is then biased (b[i, j]) and transformed using a non-linear
activation function, ϕ, generating the corresponding feature map, F[i, j] (Eq. 3.9).

F[i, j] = Φ(Z[i, j] + b[i, j]) (3.9)

Finally, the output of the convolutional layer consists of a set of feature maps
resulting after applying each filter separately.

On the other hand, pooling layers are used to reduce the dimensionality of the
input data by sub-sampling it, which can help to make the network more efficient and
reduce overfitting. There are several types of pooling strategies, but one of the most
common is max pooling, which takes the maximum value from each pooling window.
For example, given an input feature map F with dimensions H ×W × D, maximum
pooling is defined by Eq. 3.10.

maxpool(F ) =
p

max
i=1

q
max
j=1

Fi,j (3.10)

where p and q are the vertical and horizontal sizes of the local pooling neighborhood,
respectively. Another strategy is average pooling, defined by Eq. 3.11.

avgpool(F ) =
1

p · q

p∑

i=1

q∑

j=1

Fi,j (3.11)

Pooling layers help reduce the network’s computational complexity and improve its
overall performance by making the learned features more robust and invariant to small
translations in the input data.
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Regarding network architectures, LeNet [110] is the classic example of a CNN. It
was one of the first successful implementations of a CNN, and it is often used as a
starting point for teaching their basics. LeNet mainly consists of two blocks: (i) a
block for extracting features, which is composed of several convolutional and pooling
layers, followed by (ii) a fully connected network (i.e., a MLP) for making predictions.

However, architectures have evolved over time, achieving excellent performance in
classification, segmentation, regression, and other tasks discussed below. The following
are just some examples that have marked significant milestones in the advancement of
CNNs according to Zhang et al. [109].

AlexNet, developed by Krizhevsky et al. in 2012 [111], was the first large-scale
network to outperform conventional computer vision methods on a large-scale vision
challenge. It achieved state-of-the-art performance on the ImageNet dataset and paved
the way for developing deeper and more complex CNN architectures.

The VGG network, developed by Simonyan et al. in 2014 [112], uses several re-
peating blocks of elements. Each block consists of several convolutional and pooling
layers, allowing the network to learn hierarchical features at different scales.

GoogLeNet, developed by Szegedy et al. in 2015 [113], uses inception blocks that
perform multi-branch convolutions. This allows the network to learn multiple features
simultaneously, which can improve its performance. GoogLeNet achieved state-of-the-
art performance on the ImageNet dataset using this approach.

The residual network (ResNet), which was developed by He et al. in 2016 [114], is
a CNN architecture that uses skip connections to allow the network to learn residual
functions. In a traditional CNN architecture, each layer receives input from the pre-
vious layer and transforms it using a series of convolutional, non-linear, and pooling
operations. In a ResNet, each layer receives input not only from the previous layer but
also from skip connections that bypass one or more layers. This allows the network to
learn residual functions, which are the difference between a layer’s input and output.
To implement this, ResNet uses residual blocks. One of the key advantages of ResNet
is that it can learn complex functions using fewer layers than a traditional CNN. This
is because the residual blocks allow the network to learn the residual functions, which
are typically easier to learn than the underlying functions. Additionally, the skip con-
nections help reduce the vanishing gradient problem, which can improve the network’s
performance. This network remains one of the most popular off-the-shelf architectures
in computer vision.

ResNeXt blocks, developed by Xie et al. in 2017 [115], are a type of building block
based on the idea of splitting the features learned by a layer into multiple branches
and processing each branch separately. This allows the network to learn more complex
features and reduces the number of parameters in the network.

DenseNet, developed by Huang et al. in 2017 [116], uses dense connections between
layers. In a dense connection, each layer receives input from all previous layers rather
than only from a few adjacent layers as in traditional CNN architectures. This allows
the network to use features learned by other layers, which can improve its overall
performance. In addition, to further improve the efficiency of the network, DenseNet
uses transition layers, which reduce the number of feature maps and the size of the
feature maps at each layer. This reduces the computational complexity of the network
and allows it to learn more complex features without significantly increasing the number
of parameters.

Over time, many special optimizations for efficient CNNs have been developed, such
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as coordinate shifts (ShiftNet) by Wu et al. in 2018 [117] and the automatic search for
efficient architectures (MobileNet v3) by Howard et al. in 2019 [118].

In addition, semi-automatic design exploration methods, such as the work of Ra-
dosavovic et al. in 2020 [119], have led to the development of architectures such as
RegNetX/Y, which have demonstrated state-of-the-art performance on various tasks.
These methods allow for the efficient exploration of the design space of CNN architec-
tures, which can help to identify optimal architectures for specific tasks.

CNNs are widely used for several tasks, including:

• Image classification. It involves assigning an image to one of several predefined
classes (or labels), such as ”dog” or ”cat”. This task is typically performed
by training a CNN on a large dataset of labeled images, where each image is
associated with a specific class.

• Object recognition. It goes one step further by not only assigning a class label
to an image but also identifying the location of each object in the image. For
example, a CNN trained for object recognition can identify an image containing
a dog and where the dog is. This is often achieved using object detection, which
involves sliding a small window across the image and using the CNN to predict
whether each window contains an object of interest.

• Object segmentation. It is a related task that involves not only identifying the
presence and location of objects in an image but also assigning a unique label
to each pixel in the image. This allows the CNN to create a detailed map of
the objects in the image, segmenting them from the background and each other.
This can be useful for tasks such as medical image analysis, where it is important
to identify and differentiate between different structures in an image accurately.

• Image generation. It involves training a CNN on a large dataset of images to
learn the underlying patterns and structures present in the data to generate new
images later. Typically, image generation using CNNs involves generative mod-
els. There are several different generative models, but one of the most commonly
used for image generation is the generative adversarial network (GAN). A GAN
consists of two main components: a generator and a discriminator. The genera-
tor generates new images using noise as input, while the discriminator is trained
to classify images as real or fake. The generator and discriminator are trained
simultaneously, with the generator trying to produce images that are indistin-
guishable from real ones and the discriminator trying to classify the generated
images accurately.

Moreover, CNNs can also be used for a wide range of other tasks, including:

• Natural language processing: to perform tasks such as sentiment analysis, text
classification, and language translation.

• Music generation: to learn the underlying patterns and structures present in
music, and then used to generate new, unique music.

• Speech recognition: to process audio data and recognize spoken words and phrases.
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• Anomaly detection: to identify unusual or anomalous patterns in data, such as
fraud in financial transactions or malfunctioning machinery in a manufacturing
plant.

In conclusion, CNNs are a versatile tool that can be used for many tasks beyond
image recognition and generation.

In this work, the proposed CNN must perform a regression task accurately to
retrieve estimates of the link parameters directly from the images captured with a
camera (Chapter 5).

3.3.3 Autoencoders y Convolutional Autoencoders

An AE is a type of NN that is used to learn a latent (compressed) representation
of a dataset. This is done by training the network to map the input data, x, into a
lower-dimensional representation, z, and then to reconstruct the original input data
from this representation. Hence, AEs are composed of two main parts: the encoder,
which maps the input data to the encoding, and the decoder, which maps the encoding
back to the reconstructed input. The encoder and decoder are typically implemented
as NNs with a series of interconnected layers.

This underlying process is mathematically described in Eq. 3.12.

x̄ = D (E (x)) (3.12)

Where x is the input matrix, x̃ is the reconstructed version of x, E(·) is the encoding
operation, and finally D(·) is the decoding procedure.

In general, AEs are unsupervised learning algorithms since they do not require
labeled training data. Instead, the network learns to encode and decode the input
data by minimizing a loss function that measures the difference between the input and
the reconstructed output as defined in Eq. 3.13. This allows the AE to learn useful
representations of the data that can then be used for various downstream tasks, such
as classification or clustering.

L (x,D (E (x))) (3.13)

As an example, a possible loss training function used extensively in this thesis,
L(x, x̃) corresponds to the L2-norm (i.e., mean squared error (MSE)), which includes a
regularization term that has been added to prevent over-fitting, is defined in Eq. 3.14.

L(x, x̄) = E
[
(x− x̄)2

]
+ λR (E ,D) (3.14)

E [·] denotes expected value, λ is the regularization coefficient, and R(·) is the reg-
ularization function, which in this thesis combines L1 and L2 regularization penalties.

AEs have many applications, including data compression, denoising, and feature
learning. By learning a compact representation of the input data, AEs can help to
reduce the storage and computational requirements of working with large datasets and
can be used as a pre-processing step for other ML algorithms. Additionally, by learning
to remove noise from the input data, AEs can be used to improve the quality of data
that has been corrupted or degraded.

The latter task is performed by denoising AEs. Those networks are trained to min-
imize the difference between the input and its reconstructed version whilst previously
corrupting the input with different noise sources. Equation 3.15 exemplifies this case.

47



CHAPTER 3. THEORETICAL FRAMEWORK

L (x,D (E (x̃))) (3.15)

where x̃ is a corrupted version of x.
On the other hand, when working with images, CAEs are preferred for the same

reasons given in the discussion between MLPs and CNNs. These networks use convo-
lutional layers for the encoding and introduce a new layer, the transpose convolutional
layer, for the decoding part.

Transpose convolutional layers perform the inverse operation of a convolutional
layer. However, although it is also (wrongfully) known as a deconvolutional layer, it
does not perform the deconvolution operation. Instead, it performs a regular con-
volution on an upsampled input version. This is the opposite of the downsampling
performed by a convolutional layer, allowing the network to reconstruct the original
input data from the encoding.

In general, a CAE operates in the same way as a traditional AE, but using convolu-
tional and transpose convolutional layers to learn efficient encodings of the input data,
improving the performance on images and other data that has a spatial structure.

CAEs can be used for a variety of applications, including:

• Image denoising: to remove noise from images (Xiao et al. in 2016 [120]). This
is especially useful for cleaning up images corrupted by low-quality cameras or
taken under low-light conditions.

• Image super-resolution: to increase the resolution of images, effectively making
them appear more detailed and sharper (Dong et al. in 2015 [121]. This can
be useful for improving the quality of images for applications such as image
recognition and object detection.

• Image generation: to generate new images that are similar to a given dataset of
images (Radford et al. in 2015 [122]. This can be useful for creating artificial
images for use in training ML models or for generating new images based on
user-specified parameters.

• Image compression: to reduce the dimensionality of the inputs, effectively reduc-
ing the size of the images (Cheng et al. in 2018 [123]).

• Object detection: to perform a pre-processing step for object detection tasks
(Williams et al. in 2017 [124]. By denoising and enhancing the resolution of input
images, a CAE can improve the performance of a subsequent object detection
model.

• Anomaly detection: to detect anomalies, i.e., to identify unusual or abnormal
patterns in a dataset. By training a CAE on a dataset of normal instances, it
can learn to identify instances that deviate from the norm, potentially indicating
anomalies (Siddalingappa et al. in 2021 [125].

• Semantic segmentation: to perform a pre-processing step for semantic segmenta-
tion tasks, which involve partitioning an image into multiple segments or regions
and labeling each segment with a semantic class (Badza et al. in 2021 [126]. By
denoising and enhancing the resolution of input images, a CAE can improve the
performance of a subsequent semantic segmentation model.
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In conclusion, CAEs perform well as denoising tools and for image generation. The
results obtained in the works mentioned above suggest considering the use of CAEs
for the equalization of images affected by different exposure times, which is one of the
objectives of this thesis (Chapter 5).
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Chapter 4

Methodology

The general objective GO1 of this thesis involves the design of an RS-based OCC
link in which the camera does not lose its functionality as an imaging device. To do
this, as seen in Chapter 3, the camera’s exposure time must be adapted to the ambient
light, which might lead to the appearance of ISI depending on the transmitter baud
rate, reducing the receiver bandwidth. As a solution, this thesis proposes using AI to
reconstruct the original signal as if it were acquired with a receiver with a significantly
broader bandwidth. Furthermore, AI is also used to estimate link parameters required
by the reception algorithms directly from images.

To achieve this goal, it is necessary to rigorously generate/compile datasets for (i)
the analysis, modeling, and validation of the sequential acquisition of the RS cameras
and (ii) the training and evaluation of the proposed neural network models (General
objective GO2).

Section 4.1 details the methods and experiments carried out for the procedural
generation of synthetic samples and capturing real-world images. Section 4.2 describes
the methods used in sample preprocessing, network training and validation, and net-
work hyperparameter optimization. Moreover, it introduces the proposed models and
justifies their use.
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4.1 Data collection

The samples used for training the NN models depend on the addressed task:

Task A equalization of the exposure effects. In this case, the training samples
consist of a set of two images corresponding to the same transmitted
signal: (i) one affected by a particular exposure time (the network
input), and (ii) another one corresponding to the ground truth, i.e., the
signal expected to be reconstructed by the network (network output).
The latter corresponds to a version of the original signal in which the
camera’s exposure time is set to the minimum attainable time.

Task B estimation of link parameters. In this case, the input is the same as
the previous case, and the output is replaced by a 1D tensor with the
expected link parameters.

Regarding the data collection methods for the training images, it should be high-
lighted that obtaining real-world samples is exceptionally challenging (especially for
Task A). To demonstrate this challenge, let’s consider the simplest generation pipeline.
It consists of the following steps: (i) configuring the camera with the expected expo-
sure time, (ii) taking the first image, which will be related to the network’s input, (iii)
configuring the camera again with the lowest exposure time, and (iv) taking another
image, related to the network’s output. There are two issues with using this pipeline.
On the one hand, the impossibility of accurately controlling the camera’s internal trig-
ger to start the acquisition may cause a lack of synchronization between the transmitter
and the receiver. For this reason, as the input and output images are captured at dif-
ferent instants, the received signal samples are not perfectly aligned between images.
In other words, the expected signal samples are not located in the same place within
the image. They are shifted based on a variable offset at the start of the acquisition.
On the other hand, in most cameras, the shortest available exposure time is not low
enough to consider an ideal transmission. These challenges reveal that the generation
of training samples based on real-world images is not the most suitable option in terms
of efficiency or complexity.

Alternatively, synthetic generation of samples based on a precise model of the RS
acquisition can be advantageous, as: (i) it enables the rigorous control of the sample
parameters, adjusting them to different cameras and transmitters (if the acquisition
model is accurate enough), (ii) it allows inserting effects on the signal in a controlled
way, such as noise and image compression artifacts, and (iii) it is efficient in terms
of time and resources, only requiring a parallelizable computing unit instead of an
experimentation testbed.

Regarding the validation samples, they differ slightly from the training samples.
Each sample consists of an image used as the network input and the sample descriptors
required for computing the validation metric. For instance, Task A (i.e., the equalizer)
requires the transmitted bits to compute the BER, and Task B (i.e., the regressor)
requires the original NPPS and ESR to compute the MSE. Therefore, the validation
samples can be extracted from a generic dataset containing all the required descriptors.
The procedure to generate the validation samples requires a rigorous experimental setup
that is fully automated to speed up the time invested in taking samples.
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Figure 4.1: Diagram of the synthetic generation.

The following subsections present the methods for generating the synthetic training
samples and datasets and the experimental setup for obtaining the real-world validation
dataset.

4.1.1 Synthetic generation

One of this thesis’ main contributions is the procedural method for generating
synthetic RS-based OCC images. This process was first proposed in [21] and improved
in [22]. These two articles are included in the compendium (Section 5.2 and Section
5.3 respectively).

Figure 4.1 shows the processing steps of the latest version of this method. It uses
three input variables, which are temporal parameters of the link: the transmitter’s
symbol time, tsym, the camera’s exposure time texp, and its sampling period, TS = trow.
These parameters are expressed in terms of the number of clock ticks considering a
reference clock frequency. For instance, using a reference clock with 1µs period, the
number of ticks for a symbol time, ttickssym , tsym, of 300µs is 300. Ultimately, the reference
clock refers to the simulation sampler with a higher sampling rate than the camera’s
sampling rate. The ratio between the simulation sampler and the camera’s sampling
rates must always be greater than 1 (typically 100 or 1000).

Other parameters used throughout the method are the scaling factor, the SNR,
the camera’s gamma, and the joint photographic experts group (JPEG) quality. The
remainder of this section describes each step in the processing algorithm, which is
further divided into (i) signal generation, (ii) RS acquisition, and (iii) post-processing.
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Figure 4.2: TX signal generation.

(i) TX signal generation

The process starts generating the transmitter (TX) samples. Figure 4.2 shows the
output at each step in this stage. First, a 1D tensor containing pseudo-random bits
is generated (Fig.4.2a). Next, those bits are encoded following the non-return-to-zero
(NRZ) Manchester encoding convention, mapping the logic bits ’0’ and ’1’ to the bit
chains ’01’ and ’10’ respectively (Fig.4.2b). Finally, the resulting vector is upsampled
by two factors to generate the TX samples: (i) the NPPS, and (ii) the number of
sampling ticks, T ticks

S (i.e., the ratio between the reference clock and the camera’s
sampling frequencies).

(ii) RS acquisition

Next, the output tensor is filtered and sampled to obtain the receiver (RX) samples
(corresponding to one IS’s pixel column). Figure 4.3 shows the output at each step in
this stage. The filtering step applies a moving average function over the TX samples.
It convolves the signal with a uniform 1D-kernel with size, S, equals to the number of
exposure ticks, tticksexp . The kernel’s coefficients are equal to 1/S. It should be highlighted
that to generate these samples it is assumed that the incident irradiance is uniform
across the IS and that the behavior of the pixel voltage-charge conversion is linear
(Chapter 3).
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Figure 4.3: Rolling shutter filtering and sampling.

Figure 4.3a shows the filtered TX samples. Then, the signal is sampled at fixed
instants depending on the sampling ticks, T ticks

S . In addition, the sampling starts at a
random offset to account for misalignments between the transmitter and the receiver.
This offset ranges from 0 to ttickssym . To illustrate this operation, Fig. 4.3b zooms a
segment of the filtered TX samples (showing the 20000 first samples), Fig. 4.3c shows
the sampling instants over the filtered TX signal, and Fig. 4.3d shows the final RX
samples (corresponding to 256 samples).
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Once the RX samples tensor is obtained, the image is generated by replicating
those values in the column dimension, resulting in a 2D image. Figure 4.4 shows four
examples of different symbol and exposure times.
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(a) tsym = 75.614µs (NPPS=4)
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(b) tsym = 75.614µs (NPPS=4)
texp = 264.649µs (ESR=3.5)
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(c) tsym = 75.614µs (NPPS=4)
texp = 529.298µs (ESR=7)

0 50

0

50

100

150

200

250

Synthetic image

0 1

25th column

0.0

0.2

0.4

0.6

0.8

1.0

(d) tsym = 151.228µs (NPPS=8)
texp = 1058.596µs (ESR=7)

Figure 4.4: Examples of different synthetic images.
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(iii) Post-processing

Scaling. The second part of the method starts by dividing the 2D tensor by its max-
imum value. Then, the resulting tensor is multiplied by a scaling factor which takes
values between 0 and 0.9. This scaling factor accounts for different received signal
powers and is only relevant when considering the camera’s gamma and image compres-
sion transformations. This is because these steps apply non-linear transformations to
the input values. In any other case, the scaling step can be bypassed (and hence the
received power neglected), as the standardization applied to the network inputs (in the
preprocessing part) will output equivalent signals independently of the received power.
In addition, recall that the scaling factor is lower than one. Otherwise, values will be
saturated after adding noise to the signal.
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(a) Scaling factor equals 0.2.
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(b) Scaling factor equals 0.7.

Figure 4.5: Examples after the scaling step.

Noise addition. The following step adds AWGN to the signal based on the desired
SNR. This adds robustness to the training and allows the CAE network model to
improve its denoising capabilities. The standard deviation, σnoise of the AWGN samples
can be computed from the SNR using Eq. 4.1.

σnoise =

√
Psignal

10SNR/10
=

σsignal

10SNR/20
(4.1)

where Psignal is the power of the signal. Since the NRZ Manchester encoded samples
correspond to an ergodic signal, its power can be computed using the variance of the
samples, σ2

signal. Figure 4.6 displays two output examples for SNR of 2 and 10dBs.
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(a) SNR equals 2dBs.
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(b) SNR equals 10dBs.

Figure 4.6: Examples with noise added. The scaling factor equals 0.5.

Gamma transformation. Next, the camera’s gamma is applied. Figure 4.7 shows
the outcome of using a gamma of 2.2. As can be seen, the low luminance values are
boosted.
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(a) Gamma equals 1.
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(b) Gamma equals 2.2.

Figure 4.7: Examples after applying different gamma transformations. (Scaling fac-
tor=0.5, SNR=5dBs).

Quantization. The subsequent step quantifies the values depending on the pixel
value resolution (8 bits). This is accomplished by multiplying the vector by 28 − 1
(=255) and rounding its values to the nearest integer. Figure 4.8 shows the output
result and the quantization errors obtained.
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(a) Image quantized to 8 bits unsigned in-
teger values.

Figure 4.8: Examples after the quantization step (Scaling factor=0.5, SNR=5dBs,
Gamma=1.8).

JPEG compression. Finally, the image is compressed using a JPEG encoder with
different configurable qualities and divided by 255 (for normalization). Figure 4.9 shows
two examples for JPEG quality of 10 and 70. As it can be seen, the JPEG compression
algorithm can greatly distort the received image. This distortion can negatively affect
the SNR or alter the spectrum of the received signal. Also, since encoding is done on
image patches, these distortions can unevenly affect different parts of the signal.
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(a) JPEG quality equals 10.
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(b) JPEG quality equals 70.

Figure 4.9: Examples with JPEG compression artifacts (Scaling factor=0.5,
SNR=5dBs, Gamma=1.8).
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Synthetic dataset

The samples used to train the network are not generated from scratch during train-
ing. This is extremely inefficient. Instead, they are drawn from a previously built
dataset. However, this dataset does not contain the final inputs used in training. Ac-
tually, the dataset’s samples are obtained after the (ii) RS acquisition step. The final
post-processing steps will be applied on demand during training. The reason behind
this is to speed up those parts of the synthetic generation that are computationally
more demanding while leaving more freedom to vary on demand those parameters that
do not have a high impact on the training time, such as the scale and the SNR. This
way, the training samples can be adjusted to increase the network’s performance. For
example, random values for the scale and the SNR can be retrieved using different
probability distributions.
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4.1.2 Experimental setup

LED Flat-panel

PiCamera V2

Display
Reference image

RS-camera

PiCamera V2

Side view Front view Top view

Raspberry Pi 4B

LED 

Flat panel

Figure 4.10: Experimental setup used for obtaining real-world image samples.

The validation dataset (Dataset 1 [27]) was generated using the experimental setup
shown in Fig. 4.10. It consists of a flat-panel LED pointing towards an RS-camera
separated at a distance of 20 cm. At this distance, the transmitter occupies the image
entirely and illuminates the IS uniformly. The transmitted signal is generated using a
arbitrary waveform generator (AWG) and a power supply. Table 4.1 summarizes the
key parameters of the experiment necessary for its replicability.

Table 4.1: Experiment’s key parameters.

Parameter Value
Camera

Camera model Raspberry Pi Camera V2
IS Sony IMX219 [127]
Aperture lens & relative focal length f/2 | (3 mm)
Image resolution (Aspect ratio) 1920x1080 pixels (16:9)
Capture mode (1) Partial AoV. No pixel binning.
Analog gain 1 to 12 (selected from 1 to 7)
Digital gain 1 to 12 (fixed to 1)
White balance (red and blue relative gains)
Exposure times, texp (in µs) 20 to 3000 in steps of 19 (selected from 20 to

1500)
Sampling period, TS (in µs) 18.9035

Transmitter
Flat-panel model Eglo connect Salobrena-C (Ref: 32546)
Electric power (in Watts) 16
Source voltage (VDC) 30 to 39
Source current (in mA) 420
Luminous flux (in Lumens) 2000
LED color (T[Kelvin]) Cold white (6500K)
Color rendering index (CRI), RA scale ≥ 80
Surface dimensions (in mm) 230x230
Total dimensions (in mm) 300x300x11
AWG model Agilent 33500
Power supply model Yokogawa GS820
Symbol time, tsym (in µs) — NPPS 75 to 135 — 4 to 8
Header, payload, stuffed, and trailer bits 5, 35, 12, 1
Random seed 31415
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Table 4.2: Dataset’s descriptors.

Descriptor Description
sample uuid A universally unique identifier (UUID) for the image.
relative path The relative path where the images are stored.
dims The image dimensions (1080,1920,3).
tclk The reference clock period used as reference.
sampling ticks The number of clock ticks of the sampling period, TS.
exposure ticks The number of clock ticks for the exposure time, texp.
txsymbol ticks The number of clock ticks for the symbol time, tsym.
npps The ratio between txsymbol ticks and sampling ticks.
esr The ratio between exposure ticks and txsymbol ticks.
camera model The camera model used for reference.
analog gain The camera’s analog gain.
digital gain The camera’s digital gain.
awbg gains The vector containing the relative gains for the red and blue

channels regarding the green channel. They are used to con-
trol the white image balance.

led color The identifier of the flat panel used.
power The electrical power units of the signal.
modulation The modulation’s identifier. ‘OOK’ corresponds to an OOK

modulated signal.
encoding The encoding strategy’s identifier. ‘NRZ-Manchester’ refers

to a NRZ manchester encoding.
framing The framing strategy’s identifier. ‘11111-ABC C-0’ refers to

a packet with five one-bit headers, followed by bit A, bit B,
and bit C, then the NOT version of bit C (stuffed bit), and
a zero-bit trailer.

data length The payload’s length (in bits).
data The number of payload bits.

The process for obtaining the validation samples is fully automated. First, the signal
is uploaded from the host computer to the AWG using the VXI-11 network protocol
(over TCP/IP). Then the computer sends commands through secure shell (SSH) to the
Raspberry Pi for the camera to take a photo. Next, the image is stored temporarily
in local folders to be transferred through SSH to the host computer. Finally, the host
computer creates a new entry for the sample with the corresponding sample descriptors.
Capturing a complete image takes about 170 milliseconds on average, considering the
camera warm-up time.

The generated validation dataset [27] contains more than 7000 image samples for
different NPPS and ESR (Chapter 3). The NPPS values range from 4.0 to 7.0 in steps
of 0.5 units, and the ESR from 1.0 to 7.0 in steps of 0.5 units. This dataset contains a
CSV file with the sample’s descriptors (columns) detailed in Table 4.2.

62



4.2. DATA PROCESSING

4.2 Data processing

Data processing can be divided into three phases: data preprocessing, training
and validation of NN models, and final system assessment concerning communications
performance. In addition, despite following a similar processing flow, the methods
used for each task: Task A exposure time equalization and Task B link parameter
estimation, may differ. This section details the general and specific methods for both
cases.

4.2.1 Preprocessing
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Figure 4.11: Examples after applying the z-score standardization (Scaling factor=0.5,
SNR=5dBs, Gamma=1.8, JPEG Quality=70).

The input samples (images) delivered to the neural network, both in training (syn-
thetic images), validation, and regular operation (real-world images), go through a
preprocessing phase. The most critical processing step is the z-score standardization,
which subtracts the images’ mean and divides them by their standard deviation (Eq.
4.2).

z =
x− µ

σ
(4.2)

This step is essential since: (i) it makes both the synthetic and real-world images
comparable, at least from the network’s viewpoint and (ii) it pushes aside the need
to consider the power of the received signal (and some camera parameters such as the
analog and the digital gains) since two matching signals with different power levels will
keep the same shape and acquire the same values (with an approximation error) after
this standardization. For this reason, the synthetic generation algorithm does not con-
sider a priori the expected signal power level at the reception and exclusively considers
the temporal parameters of the link. To validate these statements, the comparison
between the synthetic and real-world images is accomplished in the last two works of
the compendium and detailed in Section 5.2 and Section 5.3. Figure 4.11 shows an
example of the z-scoring normalization of a synthetic image sample.
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4.2.2 Network training and validation

The steps followed in the supervised training of the neural models are as follows.
First, a subset of samples of the synthetic dataset is extracted for training (the training
dataset) and another for evaluating the model fit (the validation dataset). Second, in
each training epoch, the post-processing steps, as seen in the synthetic generation sec-
tion, are applied to each sample. In this part, the scaling factor, the signal noise, the
gamma, and the JPEG quality are chosen randomly from their defined intervals fol-
lowing a uniform distribution. It is important to highlight that while the training and
validation datasets do not change between epochs, the final samples delivered to the
network will be different based on the random values chosen for those post-processing
parameters. Third, the training samples are preprocessed (using the z-score standard-
ization) and delivered in batches to the neural network until completing one epoch,
i.e., when the network sees all the samples from the training dataset. Finally, the loss
function is computed, and the errors are backward propagated, adjusting the weights
and biases of the neural network. The loss function used in both tasks is the MSE. In
Task A, the error is calculated between the network’s delivered image and the expected
reconstructed version. In Task B, it is computed between the network’s estimated and
expected parameters. After each epoch, the validation dataset is presented to the net-
work to obtain an unbiased evaluation of the model fit. In addition, this work optimizes
the network hyperparameters by using the hyperband searching algorithm [128]. This
searching algorithm is generally used in place of other methods, such as grid search
or random search, which involves testing a fixed set of hyperparameter configurations
because it is more efficient and can find a better set of hyperparameters in many cases.
One reason hyperband is more efficient is that it uses a simple and flexible structure
that allows it to adapt to the particular characteristics of the optimization problem. It
does this by using an iterative process to narrow down the search space, focusing on the
most promising configurations and discarding the ones that are unlikely to be optimal.
This contrasts with grid search, which tests all configurations in a pre-specified grid.

The network models considered in this thesis are a CAE for Task A, a CNN Task
B, and a U-Net used in another related work [26] (Section 5.3.1). These network
models are described in Chapter 3, and their network parameters are detailed in the
corresponding Section 5.2 and Section 5.3 of Chapter 5.

4.2.3 Network assessment

The network assessment is carried out using the real-world dataset. Therefore, the
metrics used in this evaluation differ from the error computed in the network training.

In Task A (the exposure equalization), the evaluation metric is the BER. The eval-
uation steps are detailed in Section 5.2 and can be summarized as follows. First,
segments (with the network input’s dimensions) are extracted from each real-world im-
age and delivered (after preprocessing) to the neural network. Then, the reconstructed
versions for each segment are concatenated to reassemble the entire signal, which is
queued to be processed by the acquisition routines. The acquisition routines are ex-
tensively detailed in [23] and can be summarized as follows. First, a header template is
created for the expected NPPS. Then, it is correlated with the entire image to retrieve
the maximum Pearson correlation coefficient. A data packet is found if the Pearson
coefficient exceeds a fixed threshold. Next, the signal is sampled at the estimated sam-
pling instants to decode the final bits using correlation methods. Finally, the BER is
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computed by comparing the decoded and original bits.
In Task B (the link parameter estimation), the evaluation metrics are the root MSE

(RMSE) and the relative error (RE) for each estimate (i.e., the NPPS and the ESR)
regarding its target value. The evaluation steps are detailed in Section 5.3 and can be
summarized as follows. First, random segments (with the network input’s dimensions)
are extracted from each real-world image in the dataset and delivered to the network.
Finally, the evaluation metrics are computed with the network’s estimates.
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Chapter 5

Research outcomes

This chapter presents the research outcomes supporting this thesis’ compendium.
The original journal manuscripts are embedded in this chapter and sorted according
to their publication date. In addition, each publication has a brief introduction section
that describes the context of the work, the challenges addressed, the results obtained,
and details its contributions and highlighted findings.

This chapter introduces a practical deployment of an OCC link in an artificial
light-driven microalgae production plant in Section 5.1. In this work, a laboratory
surveillance camera behaves simultaneously as an optical receiver of several smart-
lighting photobioreactors transmitters. This work is considered the starting point of
this thesis and constitutes its main thread. On the one hand, the requirement imposed
on the surveillance camera to simultaneously watch the room without compromising
data acquisition will lead to formulating the general objective GO1 and its technical
objectives. Moreover, the experiment reveals (as discussed in Chapter 3) that the
exposure time has harmful effects on the signal, constraining the attainable receiver
bandwidth. Therefore, those effects must be faced, especially when the exposure is not
adjustable. Section 5.2 presents a AI-assisted equalizer used to mitigate those harmful
effects in different noise conditions. Furthermore, the fact that the laboratory uses
generic surveillance cameras with almost no configurable settings revealed the need to
develop new strategies for expanding the design of OCC links from fully-customizable
laboratory cameras to the great diversity of cameras that floods the market. For this
purpose, a novel AI-assisted architecture is proposed in Section 5.3. Each of these
works raises and validates new hypotheses that are finally collected in Chapter 1.
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CHAPTER 5. RESEARCH OUTCOMES

5.1 Application of optical camera communication

in industrial environments

Citation:
[20] C. Jurado-Verdu, V. Guerra, V. Matus, C. Almeida, and J. Rabadan, “Optical
camera communication as an enabling technology for microalgae cultivation,” Sensors,
vol. 21, no. 5, 2021

This article addresses the general objective GO3 by analyzing the deployment of
several OCC links in an industrial environment used to monitor intelligent photo-
bioreactors. Moreover, it addresses the technical objective TO2.2, with the in-depth
characterization of the camera that will be used in the subsequent experiments and
with the design of the tools and methods for measuring the irradiance of different light
sources, i.e., the bioreactor’s outermost surface.

The research carried out in this article is related to a previous contribution included
in Annex A1. This previous work developed a fully functional ad-hoc prototype for OCC
that uses image correlation techniques as the primary tool for source detection (and
tracking), channel equalization, and data decoding. The next step in this research
involved deploying this prototype in a real environment. The chosen scenario consists
of a pilot plant for the cultivation of microalgae. In this scenario, the OCC links
will provide communication support to several bioreactors that feed microalgae with
artificial LED light.

One of the main contributions of this work is a novel transparent-wall photobiore-
actor that has a custom intelligent lighting system with two simultaneous functions:
(i) to provide light to the microalgae adapted to its growth and feeding cycles and
(ii) to send optical codes containing data relative to the crop (i.e., temperature, pH
levels, dissolved carbon, among others) to a surveillance camera. On the other hand,
the surveillance camera sends images to a computer that performs three operations
simultaneously: (i) to watch the laboratory to prevent the presence of intruders, (ii)
to decode data embedded in the images sent by each photobioreactor, (iii) to esti-
mate based on the received light crop’s parameters such as its growth state, biomass
concentration and, other parameters of interest.

Another contribution of this work is an in-depth analysis of the optimal deploy-
ment of photobioreactors (henceforth nodes) within an empty room. In any microalgae
production driven with artificial light, space optimization is crucial2, to offer a com-
petitive solution against open-air plants, with the sun as the primary source of energy.
Therefore, a feasible OCC deployment must efficiently exploit the available space while
reserving some space free of obstructive elements for the camera to visualize all the
nodes. Moreover, this space is required by laboratory technicians to carry out in-situ
operations such as crop sampling or maintenance. This analysis extracted practical
guidelines transferable to any indoor scenario where several transmitter nodes must be
arranged to optimize the available space efficiently while providing a shared channel
capacity using a single camera. This manuscript proposes a multidimensional metric to
assess different deployments that consist of three variables: (i) N , the number of nodes
monitored using a single camera, (ii) the space utilization ratio (SUR), which is the

1This contribution gives the student access to doctoral studies.
2Along with the optimization of the light quality (intensity profile, and light spectra) and delivery

(frequency and duty cycles of on and off states).
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ratio between the volume of the nodes and the volume of the room3, and (iii) Q, a novel
metric derived from the channel capacity equation proposed by Claude Shannon, that
considers the optical irradiance of the light source and the projected size of the node
in the image. This three-dimensional space allows evaluating various arrangements to
choose the optimal configuration based on the requirements. The increase in N will
imply a higger aggregate channel capacity, the SUR, a better use of space, and, finally,
Q, a better communications performance.

Another contribution is the characterization of the light source in terms of irra-
diance, i.e., the outermost surface of the photobioreactor. This characterization is
performed for increasing biomass concentrations, which results in higher attenuation
and scattering. The results reveal that scattering can be beneficial, as it homogenizes
the irradiance output from the surface, improving the binding quality for more obtuse
viewing angles.

Finally, this work and the previous related work presented in a conference [24]
brought to light the effect that the exposure time has on the signal, constraining the
receiver bandwidth. After several experiments, the exposure time was fixed to 57 µs to
(i) allow perceiving the surface of the container composed of sharp symbol bands while
(ii) providing a maximum baud rate of 2151(Bd/reactor). However, at this exposure
time, only the surface of the container is perceived in the image, as shown in Fig. 64

corresponding to the indoor experiment. Furthermore, Fig. 11 shows an ideal outdoor
link, where the camera acts simultaneously as an imaging device and a receiver. As can
be seen, the scene is correctly perceived in the image, while the colored symbol bands
(as it uses three independent RGB channels for the communications) are sharp enough
for decoding. The scene can be seen because the exposure time was increased to 100 µs,
along with the analog gain, which introduces some noise. Consequently, the transmitter
baud rate was halved to avoid the occurrence of ISI. This highlights the exposure time’s
impact on communications, limiting the attainable data rate. Moreover, the Xiaomi
smartphone’s camera used in this case has a greater sensitivity than the Raspberry Pi
camera used in the indoor experiment.

3This metric can be replaced by the ratio of the surface area of the nodes to the total available
surface area, if addressing a two-dimensional problem, e.g., when trying to fill a wall with several
transmitter nodes.

4In that figure, no data is being transmitted. The LED is constantly “ON”.
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Abstract: Optical Camera Communication (OCC) systems have a potential application in microalgae
production plants. In this work, a proof-of-concept prototype consisting of an artificial lighting
photobioreactor is proposed. This reactor optimises the culture’s photosynthetic efficiency while
transmitting on-off keying signals to a rolling-shutter camera. Upon reception, both signal decoding
and biomass concentration sensing are performed simultaneously using image processing techniques.
Moreover, the communication channel’s theoretical modelling, the data rate system’s performance,
and the plant distribution requirements and restrictions for a production-scale facility are detailed. A
case study is conducted to classify three different node arrangements in a real facility, considering
node visibility, channel capacity, and space exploitation. Finally, several experiments comprising
radiance evaluation and Signal-to-Noise Ratio (SNR) computation are performed at different angles
of view in both indoor and outdoor environments. It is observed that the Lambertian-like emission
patterns are affected by increasing concentrations, reducing the effective emission angles. Further-
more, significant differences in the SNR, up to 20 dB, perceived along the illuminated surface (centre
versus border), gradually reduce as light is affected by greater dispersion. The experimental analysis
in terms of scattering and selective wavelength attenuation for green (Arthrospira platensis) and brown
(Rhodosorus marinus) microalgae species determines that the selected strain must be considered in the
development of this system.

Keywords: optical camera communications; visible light communications; microalgae cultivation;
artificial lighting; light management; smart farming; Agriculture 4.0

1. Introduction

Microalgae culture has gained significant momentum during the last decade, triggered
by the necessity of developing new and sustainable resources. They have become a promis-
ing alternative source for biofuels and biogas production, human and animal nutrition,
cosmetics and bioactive supply for nutraceutical and pharmaceutical applications.

Microalgae biomass production is currently carried out using both open ponds (e.g.,
raceways) and closed photobioreactors [1]. The last ones are preferable at the laboratory and
pilot-plant scales since, with the appropriate design, they can optimise growth conditions
(nutrient levels, carbon concentration, temperature, acidity, among others). Among these
parameters, light radiant energy is a capital factor that affects the photosynthetic efficiency,
and therefore the overall productivity [2].

Generally, microalgae production plants are designed to take advantage of the Sun as
the primary light source due to cost optimisation. However, the Sun’s irradiance depends
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on several factors, such as weather conditions, latitude and day time. Furthermore, these
open-air plants need vast extensions to be profitable since effective biomass production
depends on the directly-exposed surface. Nonetheless, artificial lighting can provide ad-
vantages in photosynthetic efficiency (custom spectrum and intensity profiles) and the tight
control they offer concerning microalgal biochemistry and growth, increasing industrial
processes’ reliability. Using this type of lighting, biomass production depends no longer
on the plant’s exposed surface, but on its equivalent volume. Although optimising light
quality could considerably reduce energy consumption, another approach concerns how
light is delivered to the culture: flashing (pulsed) light instead of continuous illumination.

In this context, pulsed illumination could serve as a communication link, enabling the
re-utilisation of light sources as effective visible light communication (VLC) transmitters [3].
The low bandwidth transmission channel they provide (attaining the stated frequency
restrictions) could be used for online monitoring of the culture’s state conditions via
deployable sensors within the photobioreactor module.

Nevertheless, there are still a few parameters that are either too complex to be mea-
sured in situ or imply invasive methods. These parameters are microalgae biomass concen-
tration and its growth phase. In [4,5], different approaches based on the digital processing
analysis of red-green-blue (RGB) images for low cost, fast and accurate quantification of
biomass concentration were proposed and experimentally validated. Therefore, cameras
could be used as sensing devices for these parameters.

On the other hand, the use of cameras as communication receivers for VLC links
is a research topic that is receiving significant attention. Furthermore, there is a current
standard specification by the working group IEEE 802.15.7 [6], which has finally integrated
this new strategy known as optical camera communication (OCC) [7–10]. These devices
are bandwidth-limited compared to traditional photodetectors, such as p-type, intrinsic,
n-type (PIN) and avalanche photodiodes (PDs). However, due to the use of image-forming
optics [11], cameras can receive light from multiple sources, providing inherent spatial mul-
tiplexing capabilities [12–14], which can be easily exploited for simultaneous monitoring
within a microalgae production plant.

This work proposes the use of low-cost cameras for both remotely sensing microal-
gae culture parameters and for establishing a direct communication link with flat-panel
photobioreactors. Compared to other radio or wired technologies, the use of OCC has
the following advantages. First of all, this technology reuses the light that comes from
the photobioreactors and makes better use of this excess of energy that would otherwise
be wasted. Second, it replaces a generic communications coordinator with an intelligent
camera that performs additional routines apart from establishing a communication link. On
the one hand, it carries out continuous surveillance of the reactors and the personnel who
access the room and can act as an early warning system. On the other hand, it simplifies
the estimation of some culture parameters that are difficult to measure or involve intrusive
procedures, such as the concentration of biomass or the strain’s growth state. For example,
for evaluating the biomass concentration, high-cost equipment must be used to automate
the extraction of representative samples. In the worst case, this procedure must be carried
out periodically by the staff. Furthermore, concerning communications security, an extra
layer of protection is added thanks to the light confinement within the room. Finally,
cameras’ inherent spatial multiplexing capabilities significantly simplify link protocols,
making communications more robust and less prone to errors.

This work presents part of the ATICCuA Project results, a multidisciplinary research
project carried out by the Spanish Bank of Algae (BEA by its Spanish acronym ) and the
Photonics and Communications Division of the Institute for Technology Development
and Innovation in Communications (IDeTIC). This project addresses the development
of prototypes based on the visible light communication (VLC) and, more specifically,
those used in underwater wireless optical communications (UWOC) for application in
microalgae culture systems. Precisely, its main objective consists of the design of an LED-
based dual-use system, which provides configurable lighting for the culture and production



Sensors 2021, 21, 1621 3 of 25

of microalgae and cyanobacteria and optical wireless communication capabilities for optical
underwater channel characterisation.

This work introduces and discusses the microalgae cultivation restrictions that af-
fect the communications’ performance and the overall system’s design. In addition, a
comprehensive analysis based on geometrical constraints is carried out, providing results
such as optimal camera positioning concerning a custom-defined metric that relates the
aggregate data rate and effective space exploitation. From this analysis, a preliminary study
of the plant distribution of a case study is carried out. Furthermore, several experiments
that evaluate the system’s communications performance are conducted in an indoor and
outdoor scenario.

The remainder of the paper is structured as follows. Section 2 introduces the proposed
OCC-based architecture in a bottom-up manner. Section 3 groups together the discussion of
the channel model, the analysis of the data rate achievable for each container and its optimal
distribution in the plant for the efficient deployment of this technology. Section 4 describes
the methods, materials and procedures involved, on the one hand, in the study of the plant
distribution for a real application case and, on the other hand, in the two experiments
conducted for the evaluation of the prototype based on the quality of the optical signal
received by the camera. Section 5 presents the results obtained, their interpretation and a
discussion. The conclusions of this work are summarised in Section 6.

2. Proposed Architecture

The proposed architecture follows a many-to-one unidirectional network topology
where photobioreactor nodes transmit sensor-related data to a receiver camera node
(Figure 1).

Photobioreactor node (transmitters)

RS-camera

Camera node (receiver)

LED flat-panel Glass container

Microalgae culture

Controller

Sensor

probe

I) Receives sensors'

collected data

II) Senses biomass

concentration and

growth phase

Photobioreactor nodes

Optional display

Camera node

Network interface

Architecture

Figure 1. Proposed architecture based on flat-panel photobioreactors. RS, rolling-shutter.

The photobioreactor nodes comprise a uniform-radiance LED flat panel attached
to a glass container that holds the microalgae culture. The receiver node consists of a
rolling-shutter (RS) camera connected to the communication endpoint that exposes a
control interface and a standard wired communication bus. The transmitter nodes use two
different signals to establish a link: a well-known beacon signal that uniquely identifies
the node and data packets composed of Manchester-encoded pulses. The receiver uses
the beacon signal to perform three separate routines: establishing the communication link,
estimating the channel response to complete the decoder training, and finally, sensing
the culture by estimating the biomass concentration and growth phase of the microalgae
species. Therefore, this system performs two functions. It establishes a monitoring link
and directly senses essential culture parameters.

In the following sections, both nodes are presented, highlighting the influence of the
microalgae cultivation needs and requirements in their design.
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2.1. Photobioreactor Node

The transmitter is comprised two parts: the LED flat panel and the LED driver that
generates the corresponding OCC driving signal to transmit sensor data provided by
probes deployed inside the container (such as temperature, acidity, carbon and nutrient
levels). This section is focused on light generation and transmission.

As was previously mentioned, the competitiveness of any artificial light-driven mi-
croalgal production requires improvements in photon harvesting and the conversion
efficiency of light sources [2]. Hence, it is crucial to optimise light quality and delivery. In
terms of light energy, the photosynthetic rate is directly related to the irradiance power, and
excessive or insufficient incident light constrains optimal performance and may induce the
photo-inhibition and photo-oxidation of the cells, eventually attaining photo-damage and
even leading to culture death [15]. In terms of light spectra, the radiant energy absorbed by
microalgae highly depends on the chemical nature of their native pigments, which have
specific absorption bands in the visible and near-infrared spectra. Thus, better energy
usage can be achieved by adjusting the light source’s emission to match the absorption
spectrum [16].

On the other hand, recent experimental studies have shown that combining short and
intense light flashes with extended dark periods instead of continuous illumination might
increase the culture’s growth efficiency, as discussed in [17,18]. The light frequency and
duty cycle are particular to each microalgae species and the expected biomass product
result (lipids, carotenoids, etc.). It may vary between a few Hz up to tens of kHz.

Therefore, the transmitting source’s design must consider all these restrictions: light
quality (intensity profile, spectra) and light delivery (frequency and duty cycles) concerning
the selected strain and the expected results.

2.2. Camera Node

The acquisition mechanism of image sensors inherently limits the available bandwidth
for communications. In global-shutter (GS) cameras, the whole image sensor is exposed
simultaneously. Thus, the achievable data rate is upper-bounded by their frame rate,
restraining the light source’s switching frequency considerably. On the other hand, RS
cameras scan the scene sequentially row by row of pixels (usually on the shorter dimension
of the sensor), allowing capturing different light states (intensity, colour variations, among
others) within the lamp’s source projection in the frame [19]. In this case, the theoretical
bandwidth limit is imposed by the row shift time, commonly denominated the sampling
time, ts, which is the fixed duration between the start of a row scan and the consecutive
one. Furthermore, these rows are not disjointedly exposed, but in an overlapping manner.
This overlap duration depends on the configured exposure time, texp, which is the span
of time during which each row of pixels is integrating light. In terms of communications,
the effect of this overlap can be modelled (for a uniform light source) as the product of
a weighted moving-average filter, with its corresponding transfer function Equation (1),
which further restricts the effective bandwidth (cut-off frequency—Equation (2)).

H(w) =
e−jw/2(N−1)

N
sin(wN/2)
sin(w/2)

(1)

where N is an integer that relates the exposure time to the sampling time (N = texp/ts) and
w is the normalized angular frequency in radians per sample (w = 2π f / fs).

The cut-off frequency, w3dB, defined as the half-power point’s frequency, can be
computed using the modulus squared function of the transfer function using Equation (2).

|H(w3dB)|2 =
1

N2
sin2(w3dB N

2 )

sin2(w3dB
2 )

=
1
2

(2)
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Equation (2) does not have a general analytical solution. However, it is possible to
rely on numerical methods such as Newton–Raphson’s algorithm to determine the cut-off
frequency that sets the system’s available bandwidth (Equation (3)).

ftx ≤ f 3dB/2 (3)

Therefore, to increase the effective transmission bandwidth, it is necessary to minimise
the camera’s exposure time. Consequently, the PDs of the pixels exposed for a shorter
time have a lower signal-to-noise ratio (SNR). In previous works, it was shown that the
reduced received power due to the extinction along the path or due to low exposure times
can be overcome using the analogue amplifier of the CMOS camera by increasing the
gain it provides before the analogue-to-digital converter (ADC), ultimately improving the
SNR [20,21].

3. Communications Modelling

The proposed architecture presents some specific characteristics from the communi-
cation system point of view. First, the light propagates through different media from the
emitter to the camera, which modifies the received optical signal. On the other hand, the
camera position affects the communications’ performance since it determines the received
power and the emitter image size. Furthermore, the distribution and size of the photobiore-
actors also impact the complete OCC system performance. In this section, all these aspects
are addressed.

3.1. Communication Channel

The channel can be divided into different layers. Figure 2 details the layered version
of the channel, which is composed of: the inner air gap layer, the inner glass layer, the
microalgae suspension in the water layer and the outer glass layer that emits the light
that reaches the camera. This work focuses on the analysis of these four primary layers
of the channel. The effect of the link’s air gap between the container and the camera was
addressed previously in [22].
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Figure 2. Layered version of the channel.

This preliminary analysis shows two critical interfaces: the inner glass/water and
the outer glass/air interfaces that affect communications’ performance and constrain
harvesting optimisation.

Light rays emitted in a specific direction by the light source (ϑ0, ϕ0) change their
trajectory upon reaching the surface of the inner glass (θig, ϕig). Then, those rays reach the
first critical interface (inner glass/water interface) and undergo partial or total internal
reflection depending on the critical angle (Θiglass/water = 51.9◦) ( considering refraction
indices of nair = 1.0, nglass = 1.69 and nwater = 1.33 for the air, glass and water media,
respectively). However, total internal reflection will never happen at this critical interface
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in the considered conditions. The reason is that as soon as θ0 approaches 90 degrees, θig
tends to 31◦, which is considerably lower than Θglass/water. In the microalgae medium,
light rays travel with direction (ϑwater, ϕwater). Those rays that reach the top, bottom, left or
right side reflectors of the container are reflected. Figure 2 shows an example of one ray
reaching the container’s right side and being reflected.

Finally, within the outer glass, light propagates with (ϑog, ϕog) until it arrives at the
second critical interface. The outer glass-air interface has its corresponding critical angle
(Θglass/air = 36.28◦ ). Light rays with incident angles greater than Θglass/air are reflected,
reducing the total optical power leaving the photobioreactor.

This preliminary analysis aims to better understand the behaviour of the radiance
L(−→r ,

−→
θ ) of the extended outer glass surface (Equation (4)); in other words, the radiant

intensity φ, emitted from an infinitesimal unit surface, dA⊥ , and contained within a unit of

solid angle aligned normal to the direction of interest,
−→
θ = (ϑ, ϕ), for a particular location,−→r = (x, y).

L(x, y, z = z0ϑ, ϕ) =
d2φ(x, y, z = z0, ϑ, ϕ)

dΩdAcosϑ
(4)

After characterising the radiance of the surface, the total irradiance over a pixel is
obtained by integrating the incoming radiance from any direction in the normal hemisphere
that encloses the pixel area Equation (5).

As an example, Figure 3 shows the irradiance per unit of area of an infinitesimal
portion, dV, of a virtual surface that encloses the container keeping the same horizontal
distance to the container’s centre point.

E(x, y, z) =
∫

Ω
L(x, y, z = z0, ϑ, ϕ)cosϑdΩ (5)

L(x,y,θ,φ)

Virtual surface

E(x,y)

θ

(x,y)

Container's surface
x

y
z

Figure 3. Virtual surface that encloses the container.

In the stated conditions, the radiance would be affected by different phenomena: the
culture’s absorption capacity, the shading effect between cells, and light scattering. When
the amount of biomass is negligible compared to the volume of water in the container, these
phenomena might be neglected, and radiance can be estimated using geometrical optics.
Now, considering that the channel consists of symmetrically repeating parallel layers that
start and end in the same air medium, light’s incident angle ϑ0, ϕ0 coincides with exiting
radiance angle ϑout, ϕout without any hard restriction as there is no total internal reflection.
Figure 2 shows light example paths in 2D dimensions.

Now, considering that the bottom, top, left and right container’s sides reflect light
in a specular manner, the radiance of a point (x′, y′, z = 0) of the external surface in any

direction
−→
ϑ′ is a fraction of the radiance emitted by the light source in the same direction
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(or in a shifted direction, if the ray comes from a reflection in the walls) (
−→
ϑ′ ), but from a

translated origin point, x,y, of the output point (x = x′ + a,y = y′ + b).
As a result, the output radiance from infinitesimal surfaces located at the container’s

centre tends to mimic the original lamp radiation pattern. However, the output radiance
at the borders of the container tends to skew. This skewness occurs because there are
no direct light contributions. This skewness effect of the radiance pattern significantly
constrains the communications’ performance, as the optical signal power recovered from
specific viewpoints would not be enough to establish effective communication. As it
can be extracted from preliminary experiments, this skewness can be partially reduced
if the container’s sides reflection has a perfect diffuse behaviour, causing the light to be
uniformly spread in all directions. However, the skewness cannot be fully mitigated since
the light rays that contribute to reducing this effect come from very steep entry angles and
repeatedly bounce within the container boundaries, ultimately reducing its optical power.

Regarding light power exiting the surface, it is important to consider the fraction of
the incident light reflected at each interface. Considering non-polarised light the effective
reflection coefficient, for each input angle, ϑi, can be expressed by Equation (6).

Reff =
(Rs + Rp)

2
(6)

where Rs (Equation (7)) and Rp (Equation (8)) are the reflectances for s-polarized and
p-polarized light, respectively.

Rs =

∣∣∣∣∣
n1 cos ϑi − n2

√
1− (n1/n2 · sin ϑi)2

n1 cos ϑi + n2
√

1− (n1/n2 · sin ϑi)2

∣∣∣∣∣

2

(7)

Rs =

∣∣∣∣∣
n1
√

1− (n1/n2 · sin ϑi)2 − n2 cos ϑi

n1
√

1− (n1/n2 · sin ϑi)2 + n2 cos ϑi

∣∣∣∣∣

2

(8)

where n1 and n2 are the refractive indexes of both mediums. Hence, light rays with acute
entry angles have a significant amount of power reflected. This has some implications.
At first, not all the optical power reaches the microalgae culture, and it will depend
on the radiance pattern of the surface and the effective emission angle of the source.
Finally, not all the optical power leaves the container’s surface, which is not desirable for
establishing an optical communication link despite being suitable for cultivation. Under
this initial configuration, when the biomass concentration is above a threshold level,
the scattering and the absorption phenomena cannot be neglected. In that case, Beer–
Lambert’s law can be used to describe the attenuation of light due to absorption by the
biomass concentration (Equation (9)). This equation states that the attenuation of light
over a distance is proportional to the light intensity, where C is the volumetric absorption
coefficient. The latter is the product of the specific light absorption coefficient, αx,λ, and the
biomass concentration (ρ). The integration of Equation (9) over the light path, taking into
account the wavelength dependency, results in Equation (10).

dIλ(x)
d(x)

= −Cx,λ · I = −αx,λ · ρ · I (9)

I(x) =
λ=300

∑
λ=800

Iλ(0) · e−αz,λ ·ρ·x (10)

However, as light travels through the photobioreactor, it is absorbed and scattered
by the microalgae. The light intensity Iλ(r,

−→
d ) (Wm−2sr−1) at a given location within the

container, r, and in the direction −→s can be determined by solving the radiative transfer
equation (RTE) [23], which represents an energy balance on the radiative energy travelling
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along a particular direction. In steady-state conditions, the RTE for non-collimated light, as
in this case, can be expressed as Equation (11).

−→s · ∇Iλ(r,
−→
d ) = −βλ Iλ(r,

−→
d ) +

σλ

4π

∫

4π
Iλ(r,

−→
d ) ·Φλ(

−→si → −→s )dΩ (11)

where Φλ is the scattering phase function (SPF), which represents the angular distribution
of the scattered light, in other words, the probability that radiation travelling in a given
direction, −→si , will be scattered to the direction, −→s , of interest. This function is determined
by the size, shape and refractive index distribution of the scattering particle. βλ is the
extinction coefficient (m−1) composed by the scattering coefficient, σλ, and the absorption
coefficient, κλ (m−1). These two parameters can be expressed in terms of the averaged
scattering Csca and absorption Cabs cross-sections (m2), respectively (Equation (12)).

σλ = Csca · N and κλ = Cabs · N (12)

where N is the microorganism concentration expressed in number of cells per m3 of
water suspension.

This RTE equation given by Equation (11) reveals that the scattering absorption cross-
sections and the SPF have an important role in predicting light transfer in photobioreactors
for simulation, design and optimisation purposes. However, these characteristics are
interrelated and difficult to estimate from the electromagnetic wave perspective, given
the microorganisms’ complex morphology. Nonetheless, they can still be measured ex-
perimentally with more or less difficulty and related to some parameters of the cell, as
detailed in [24]. Furthermore, these radiative properties of microalgae (the absorption
cross-section, scattering cross-section and scattering phase function) vary significantly over
time, depending on the strain’s growth stage, as shown by the studies [25,26]. As all these
radiative parameters depend on the wavelength of light and because they vary in such
a significant way through time, it can be considered that the values obtained by an RGB
camera would correctly identify not only the strain, but its growth’s state.

Regarding the communications’ performance, although the presence of these microor-
ganisms attenuates the signal before it reaches the exposed container’s surface, it may be
beneficial in some cases because it distributes the optical power more evenly, uniforming
the radiation pattern over the entire container’s surface. In conclusion, microalgae particles’
scattering phenomena can be exploited for communications in scenarios where the camera
is not facing perfectly perpendicular to the transmitter surface.

3.2. Data Rate Analysis

The maximum achievable data rate for a photobioreactor depends on its projection’s
vertical size over the image; in other words, the total number of vertical samples (rows
of pixels) recovered from the signal [27]. Consequently, it is necessary to consider the
scenario’s geometrical configuration, the relative positions between the camera and the
photobioreactors and their size.

Equations (13) and (14) relate the projection dimensions (in meters) of a rectangular
surface over the scene plane, Hp, Wp, with its corresponding pixels dimensions, hroi, wroi.
Figure 4 shows all the geometry and camera parameters involved in a generalised scenario.

hroi = Hp ·
hres

2 · tan(AoVV/2) ·DFoV
(pixels) (13)

wroi = Wp ·
wres

2 · tan(AoVH/2) ·DFoV
(pixels) (14)

where hres and wres are the pixel dimensions of the image, AoVh and AoVw the horizontal
and vertical angle of view (AoV) of the camera (in degrees), respectively, and DFoV the
distance (in meters) from the camera lens to the scene plane.
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Figure 4. Geometrical parameters involved in the computation of the maximum achievable node’s
data rate.

Following Nyquist’s criterion ( ftx ≤ f3dB/2), the minimum number of vertical samples
of the signal required per symbol can be computed using Equation (15).

hs =
fs

ftx
≤ 2

f3dB · ts
(samples) (15)

It must be remarked that communication takes place in a windowed manner. Leaving
aside the reflections with the objects present in the scene [13,28], the signal has to be
recovered mainly from the projection within the image of the light source where the signal
quality is considerably better. Hence, during the acquisition, only a fraction of the total data
sent is sampled by the sensor. While the sensor is not scanning the transmitter’s surface, but
another part of the scene, it will remain blind to the light changes of the transmission [19].
To overcome these blind periods, the data packets must be sent repeatedly (at least while
the camera is acquiring two full frames). In addition, to avoid packet losses, the source’s
image projection, hp, must fit at least two complete packets, as was detailed in the previous
work [29]. With these restrictions (Equation (17)), the overall transfer rate (in bauds) is
obtained from Equation (16).

Rb = Spacket ·
fps
2

(16)

hpacket ≥ 2 · Spacket · hs (17)

where Spacket is the equivalent number of symbols per data packet. On the other hand,
the projection’s width in pixels (number of columns) also plays an important role in
communications. Pixels located in the same row are exposed to light simultaneously, and
they can be used to filter out noise, thus strengthening the signal-to-noise ratio. Moreover,
wider areas aid source discovery and tracking and considerably ease the decoding routine.
As a consequence, a minimum pixel width must be selected as a design requirement.

Finally, it is worth mentioning that the proposed system’s achievable capacity con-
siderably exceeds the requirements for accurate monitoring of the culture parameters. To
obtain a preliminary idea of these requirements, the following considerations are taken into
account. The selected parameters to be measured are acidity, temperature, light conditions,
carbon, nutrients, inhibitors presence and O2 degassing. The packet’s payload allocates
twenty bytes per parameter, which is a much larger allocation than necessary. Furthermore,
given that the culture’s temporal evolution is considerably slow, samples of the culture
can be taken reliably every 5 min, which offers a substantially acceptable temporal reso-
lution. Based on these considerations, the required capacity is about four bits per second.
Therefore, the hundreds of bauds per second that can be sent using the proposed system,
as specified in Section 4.1, satisfy the stated capacity requirements.
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3.3. Plant Distribution

The distribution of the photobioreactor nodes across the room plays an essential
role in communications. To establish a link, the receiver should visualise each node, and
consequently, it is necessary to reserve some space free of obstructive interference between
the transmitters and the camera. This reveals the importance of analysing different possible
solutions for placing the nodes until finding the one that best suits the project’s initial
requirements, either in terms of better link quality, higher capacity or more efficient space
exploitation.

In a previous work [22], a metric was proposed to compare the performance of
different solutions. Nevertheless, the complex nature of this problem, which involves
several variables and a wide range of possible initial requirements, highlighted the need to
modify this classification strategy. This work proposes replacing the original metric based
on a single value with a modified multidimensional metric, Equation (18), allowing a more
flexible classification of the arrangements. This new metric offers a comparison tool in
which it is left to the designer’s discretion to select a specific application design’s priorities.

F : {N, Q, SUR} (18)

where : SUR =
Vcont

Vroom
(19)

It consists of three independent variables: the number of simultaneous photobioreac-
tors monitored by a single camera, N, a communications performance metric, Q, and the
space utilisation ratio (SUR). The first two variables account for the overall achievable data
rate of the setup. The last term relates the total equivalent volume of the containers bound
to biomass harvesting, Vcont, and the minimum room volume needed, Vroom. The optimisa-
tion of this term has direct implications in the reduction of production costs and, therefore,
the viability and competitiveness of cultivation plants based on artificial lightning and
vertical racks.

The proposed Q metric is derived from the well-known Shannon–Hartley’s equation [30]
for estimating the channel capacity for each container (Equation (20)).

C = BW · log2(1 + S/N) (20)

where C is the capacity in bits per second, BW is the bandwidth of the channel in Hertz
and S/N is the SNR, expressed as a linear power ratio. As was previously mentioned,
communications happen in a windowed manner. In other words, the transmission effec-
tively takes place during a fraction of the time to acquire a frame, tframe. This fraction of
time, or channel availability, τrx, depends on the geometrical configuration, tgeo, and on
the elapsed time between when the camera finishes capturing one frame and starts with
the next one tinter (Equation (22)). However, this last term is considerably lower than tframe
and can be neglected.

Adding this factor to Equation (20), the effective capacity is obtained for each container,
as Equation (21) shows.

C = BW · log2(1 + S/N) · τrx (21)

where : τrx =
tgeo

tframe + tinter
≈ hroi

hres
(22)

The proposed metric Q is then defined as the relationship between the channel’s
capacity for a particular arrangement and container, C, and the ideal capacity, Cideal ,
Equation (23).

Q =
C

Cideal
=

BW
BWideal

· log2(1 + S/N)

log2(1 + (S/N)ideal)
· τrx

τrx,ideal
(23)
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The vast number of parameters involved in this metric’s computation makes this
metric unreasonable for a practical analysis of different plant distributions, even more so
if there are plenty of configurations to be compared. Hence, for this metric to be a useful
tool for this purpose, it is necessary to assume a series of coarse approximations. These
approximations would greatly simplify the practical comparison of two cases without
incurring harsh penalties. First, it is important to remark that the camera’s hardware and
configuration would not change. Consequently, the bandwidth, which depends on the sam-
pling frequency and the image sensor’s exposure time, remains constant (BW ′ = BWideal).
On the other hand, the maximum capacity will be achieved when the transmitting source
occupies the image entirely in the scanning dimension (usually from top to bottom). In
this way, the link availability is kept while capturing a frame (τrx,ideal = 1). With these
considerations, Equation (23) could be reduced to Equation (24).

Q =
log2(1 + S/N)

log2(1 + (S/N)ideal)
· τrx (24)

Now, using the first order Taylor approximation of the logarithmic function (at x = 0),
Equation (25), results in Q as given by Equation (26).

lim
x→0

log2(1 + x) =
x

ln(2)
(25)

Q ≈ S/N
(S/N)ideal

· hroi

hres
(26)

In this way, the measurement of the capacity of a placement can be approximated to
the comparison of the SNR with the best case and the size of its projection in the image.
However, assumptions regarding the relationship between the SNR under study and the
best-case SNR can simplify the analysis. These assumptions are detailed below. First,
the container radiance varies smoothly through the entire surface, or at least in the area
were the signal is recovered. Not the whole surface of the container is utilised for signal
detection, but a fraction of it. The radiance at any given direction is expressed with respect
to the maximum radiance Lmax (Equation (27)).

L(ϑ, ϕ) = Lmax L̂(ϑ, ϕ) (27)

The pixel FoV is small enough to assume that the pixel irradiance’s contributions come
from the same emitter radiance’s output angles. Furthermore, the use of image-forming
optics compensates the power loss due to spherical propagation with the projected size
of the optical source on the image sensor [31]. Therefore, the power received by a pixel
(Equation (28)) in a given direction can be approximated as the ratio of the total received
power in the direction of maximum radiation, and it can be related to the ratio of the
emitted radiance.

Spixel(ϑ, ϕ) = Spixel,max · L̂(ϑ, ϕ) (28)

Furthermore, assuming that the region of interest (ROI) where the signal will be
recovered is constant in width and height, then the total received power would be the
aggregation of all contributions from the ROI’s pixels. Therefore, the optical power received
within the ROI is approximated by Equation (29).

Sroi(ϑ, ϕ) = Sroi,max · L̂(ϑ, ϕ) (29)

Regarding the noise power, no external interfering optical sources were considered for
simplicity. The primary noise sources are thermal noise (σth), shot noise (σshot) and quanti-
sation noise (σadc), which is generated by the ADC of the camera. Besides, thermal noise
does not depend on the signal power, whilst shot noise is affected by the received optical
power. Nonetheless, considering the application scenarios of this work, it is expected that
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the shot noise contribution could be neglected with respect to thermal noise. Hence, the
noise power is the same regardless of the receiver’s position.

Therefore, comparing the radiation at different viewing angles can give a good ap-
proximated idea about the difference in the SNR of different container’s arrangements.

(S/N)

(S/N)ideal
≈ L̂(ϑ, ϕ) (30)

where : L̂(ϑ, ϕ) =
L(ϑ, ϕ)

max{L(ϑ, ϕ)} (31)

In conclusion, the final approximation of Q (Equation (32)) is obtained by combining
Equations (24) and (30).

Q ≈ L̂(ϑ, ϕ) · τrx (32)

As mentioned, this metric is intended to be easy to compute and practical when
guiding the engineer to distribute the plant most optimally. The approximations stated
above greatly simplify the comparison of two cases without incurring non-affordable
penalties. This Q parameter allows indirectly approximating the maximum transmission
rate achievable by each photobioreactor node (Equation (17)).

In this work, the minimum value of Q (Q|min = min{Qc,1, Qc,2, ..., Qc,N}), of all the
containers, is used to evaluate a particular arrangement. The reason is that as an initial
requirement, all the containers must share the same data rate. To achieve this, all the
emitters will adapt their transmission to the minimum available in the scene. It should be
clarified that this metric varies between zero and one, where one implies the maximum
theoretical performance (optimised use of channel capacity).

4. Methodology

In this work, a preliminary analysis of the plant distribution of a case study was
carried out. In addition, several experiments to evaluate the system’s signal reception
in different scenarios were conducted. In the following sections, these experiments are
described separately following the scheme: description, materials and resources, methods
and data analysis.

4.1. Plant Distribution Study

This section describes the preliminary study of the best plant distribution for a real
case study. In this case, it is intended to locate 12 custom containers of 150 × 50 × 9 cm
(height by width by depth) in a 300 × 200 × 300 cm empty room. These containers must be
placed in individual racks capable of holding up to 4 containers, two at the top and two at
the bottom.

In terms of communication performance, those cases must satisfy the following de-
rived constraints. The top photobioreactors will fill the upper half of the image and the
lower ones the lower half. Consequently, the camera should always point to the shelf’s
vertical centre, and it will be aligned with respect to the centre (in the vertical dimension).
In this way, the transfer rate is ensured to be equal for each reactor, with the number of
vertical pixels equal to half of the image’s vertical resolution (Equation (33)). The minimum
pixel width of any reactor was set to 30 pixels (Equation (34)). This value was selected after
conducting preliminary experimental tests. Finally, it must be highlighted that the sensor’s
aspect ratio relates both the vertical and the horizontal FoV, aspectratio; thus, altering one
of them will influence the other.

To properly address this analysis, it is necessary to select a camera as an example. The
camera selected is the PiCamera v2, detailed in Table 1. Using this camera with an exposure
time of 57 µs and attending to the previously stated conditions, the maximum baud rate achiev-
able is approximately 717 (Bd/reactor) per available channel. Considering three independent
communication channels, red, green and blue, the maximum baud rate is 2151 (Bd/reactor).



Sensors 2021, 21, 1621 13 of 25

This value is obtained by combining Equations (15), (16), (17) and (33) into Equation (36). The
cut-off frequency was computed using Newton–Raphson’s algorithm and is approximately
8213 Hz.

hroi = Hp ·
hres

FoVV
=

hres

2
(pixels) (33)

wroi = Wp ·
wres

FoVH
≥ 30 (pixels) (34)

where : AoVH = AoVV · aspectratio (35)

Rb = Spacket ·
f ps
2

=
hroi

hs · 2
· f ps

2
=

hres

4
· f3dB · ts

2
· f ps

2
(36)

Table 1. Resources and equipment. * (wavelengths (nm): 630 (red).

Photobioreactor Node Camera Node

Part Parameters Part Parameters

LED Lamp Eglo Tunable White - RGB connect Camera PiCamera Version 2
- 1 white cold LED (6500K) - Image sensor: Sony IMX586 [32]
- 1 white warm LED (2700K) - Aperture lens: f/2
- 1 RBG LED * - Focal length (equivalent) (mm): 3

- Image resolution (px): 3280 × 2464
530 (green), 475 (blue)) - Sampling time ts (µs): 18.904

Container Square glass panels (custom) Receiver Raspberry Pi 3 Model B
- Dimensions (cm) : 50 × 50 × 9

Taking into account all these starting requirements, three different cases are proposed.
Those cases are shown in Figure 5. In the first case, Case I, the camera is perfectly aligned
with the shelf’s centre. In Case II, the camera is shifted on the y-axis, and it views the rack
from the side. In the last case (Case III), another rack is included, forming a corridor, and
the camera is aligned to its centre.

In the remainder of this section, the procedure for calculating the metrics for each case
is detailed. In all the cases, the restrictions mentioned above were used to compute the
camera’s location by optimising the SUR quantity.

For clarification, Figure 5 shows the geometrical definitions, variables and relations
over the scenario’s top and side view. The variables dcam,i are the camera’s relative distance
from the shelf, hshel f , lshel f the shelf’s height and length, respectively, and hcont, lcont the
container’s height and length, respectively.
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Figure 5. Three different cases proposed for the plant distribution study.

4.1.1. Case I

In this case, to attain the initial restrictions (Equations (33), (34) and (35)), the horizontal
FoV, FoVH , of the camera must completely cover the entire shelf’s length (Equation (37)).

The other restriction is that the camera’s vertical FoV, FoVV , must be lower than or
equal to the shelf’s height (Equation (38)). Otherwise, the floor and the ceiling will be
visible within the image, reducing the photobioreactors’ vertical size.

FoVH = 2 · tan
(

AoVH
2

)
· dcam,1 ≥ lshelf (37)

FoVV = 2 · tan
(

AoVV

2

)
· dcam,1 ≤ hshelf (38)

To resolve the stated equations, AoVV must be set to its maximum possible value. As
design criteria, it was established as 70◦. In Section 5, the reason behind not selecting a
higher AoVV is discussed.

Using Equations (37) and (38), the camera distance, dcamera, is obtained, and con-
sequently the SUR. The selected worst-case viewing angle corresponds to the container
located further to the right.

4.1.2. Case II

The translation of the camera to the side has the advantage that its distance is con-
siderably reduced. However, as can be seen in Figure 5, the horizontal projection of the
reactors shrinks relative to its distance to the camera, and the angle of view also reduces the
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optical power received by the image sensor. Therefore, Equation (34) becomes an important
restriction. In this case, FoVH is defined in Equation (39).

FoVH = 2 tan
(

AoVH
2

)
· dFoVH (39)

where : dFoVH =
dcam,1 · cos(AoVH/2)

cos(AoVH)

AoVH = arctan
(

lshelf
dcam,1

)

In this case, utilizing the maximum AoVH = 70◦ restriction, wroi considerably exceeds
the restriction imposed in (34); thus, this configuration is still viable.

We highlight that, in this particular case, the camera does not visualise the whole
surface of the nearest containers, but merely a region of their base (as shown in Figure 5).
In contrast, the furthest containers are fully scanned. Notwithstanding this uneven con-
figuration, the image projection for each container is preserved (as shown in the example
frame). Both the nearest and the furthest containers are projected over the same number of
vertical pixels within the image. Therefore, all the containers share the same image area
available for communications.

4.1.3. Case III

In this setup, part of the image belongs to the end wall, reducing the available area
left for the photobioreactors. In this case, also the horizontal projection constrains the
arrangement. If AoVH is too wide, the last reactor’s horizontal size will not reach the
minimum imposed (Equation (34)) and would not be visible within the image. Otherwise,
if AoVH becomes too narrow, the first reactor, which is partially visible, could disappear
from the image. The size of the horizontal projection for the first container and the last can
be computed using Equations (40) and (41), respectively.

W last
p =

dcam,1 · lcont

lshelf + dcam,2 − lcont
(40)

W f irst
p = (lshelf + dcam,2) ·

[
tan

(
AoVH

2

)
− dcam,1

(lcont + dcam,2)

]
(41)

The location of the camera ycam and dcam is obtained by reducing the horizontal size
of both containers (first and last) within the image, attaining the imposed minimum size
(Equation (40)).

4.2. Experiments

Two experiments were conducted at the BEA facilities to evaluate signal reception and
deterioration due to the increase in biomass concentration. The first experiment evaluated
the container surface’s radiance in a controlled indoor environment, whilst in the second
experiment, the system’s performance in an outdoor scenario was assessed. The shared
materials, resources and equipment are summarised in Table 1.

The following subsections describe each scenario separately to facilitate understanding
the motivation, methods and data analysis for each experiment.

4.2.1. Indoor Experiment

In this experiment, the radiance emitted by specific regions from the container’s
surface is evaluated. The aim is to determine how the radiance profile changes as the
biomass concentration increases for different camera viewing angles. At the same time,
the SNR of the channel is measured, and the bit error rate (BER) is estimated. The selected
species for this experiment was BEA 0007B Arthrospira platensis (A. platensis).
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Regarding the evaluation methods, the experiment was based on acquiring nine
images at different viewpoints with respect to the azimuthal angle ϑ, keeping the link range
constant. The radiance for vertical angles was not evaluated because camera translations in
the vertical axis were not considered in the theoretical analysis, and for symmetry reasons,
a similar behaviour was expected. For each discrete angle, the camera was aligned in
the direction to the centre of the container. Figure 6a shows the experimental setup. The
biomass concentration was increased in steps of 20 mg l−1, starting from 0 mg l−1 and
reaching 100 mg l−1.

Photobioreactor node

Camera node

N θ

(a) (b)

Figure 6. Pictures of the indoor experiment. (a) shows the experimental setup, and (b) depicts exemplary images captured
at different angles for different biomass concentrations.

After capturing the image samples, they were processed offline to obtain the radiance
and SNR, from two different regions, the centre and the boundaries of the container’s
surface, to analyse the skewness phenomenon in the outermost regions of the surface.

The radiance was measured indirectly by averaging the pixel values in a tiny window
no higher than 50 × 50 pixels. For the area projected in this window and considering the
distance and the size of the container, it can be assumed that the radiance pattern varies
very smoothly within this region. The original horizontal and vertical window’s length
was established at the start of the experiment when ϑ = 0◦. Afterwards, the horizontal
size must decrease as a function of the cosine of the angle, ϑ. Consequently, only the
radiance contribution of the same original area was evaluated for each angle. The vertical
length would remain unaltered as there were no vertical translations. We highlight that
because the camera points to the centre of the containers, the windowed area located at the
boundaries would decrease not only as a function of the cosine of the view angle, but also
as a function of the distance, which varies very slightly for more acute angles. However,
the area reduction factor due to this distance increment is considerably lower than the
factor due to the view angle, and it can be neglected.

In addition, the SNR was computed within the same window by measuring the mean,
µchan, and the standard deviation, σchan, of each independent colour channel, Equation (42),
taking into account that there was no other source of light during the experiment. Further-
more, the expected theoretical BER for an on-off keying (OOK) signal can be estimated
from Equation (43) using the complementary error function erfc(·) [3].

SNR = 20 · log10(
µchan
σchan

) (42)
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BER =
1
2

erfc

(√
SNR

2

)
(43)

The key parameters of this experiment are summarised in Table 2. Figure 6b shows
some image samples for different biomass concentrations. It can be anticipated by the
images obtained that at the borders, the radiance decreases abruptly for internal view
angles (in the case of low biomass concentration). This suggests that the initial assumption
about the radiance’s skewness phenomenon at the surface’s borders is valid.

Table 2. Indoor experiment key parameters.

Parameter Value

Horizontal view angle (ϑ) 0◦ to 80◦ in steps of 10 degrees
Distance 1.5 m
LEDs Warm and cold white LEDs
Camera PiCamera version 2

Microalgae

Genus Arthrospira
Species BEA 0007B Arthrospira platensis
Biomass concentration (mg l−1) 0 to 100 in steps of 20

4.2.2. Outdoor Experiment

This experiment aimed to evaluate how the presence of external light sources interferes
with the signal received by the camera, considering both the light that is reflected on the
container’s transmission surface and the light that enters through the sides of the container.
In this experiment, the camera node faced just one photobioreactor, which repeatedly
transmitted a beacon packet through different biomass concentrations (from low to high).
The selected microalgae species was BEA 1286B Rhodosorus marinus (R. marinus) (brown
algae) to evaluate the communication restrictions that imply the use of microorganisms
with different absorption curves. The beacon signal is comprised five sequential pulses
(green, red, blue, cold white, warm white) followed by a dark guard. The key parameters
of this experiment are summarised in Table 3.

Table 3. Outdoor experiment key parameters.

Parameter Value

Optical signal Beacon
Chip duration Tchip 1/8400
Distance (m) 2

Microalgae

Genus Rhodosorus
Species BEA 1286B Rhodosorus marinus
Biomass concentration (mg/L) (estimated) 75, 195, 430

Camera

Model Mi 9T Pro
Image sensor Sony IMX586
Image resolution (px) 4000 × 3000
Focal length (mm) 4.8 mm
Aperture value F/1.7
ISO speed rating 450, 490, 670
Exposure time (µs) texp 100
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5. Results
5.1. Plant Distribution Study

Table 4 shows the metrics calculated for each case. For illustrative purposes, Figure 7
plots every case in the space defined by the proposed multidimensional metric F.

Table 4. Metric values obtained for the three arrangements.

Case Vroom (m2) Vcont (m2) hmin L(ϑ,ϕ)

I 23.31 0.81 0.5 0.95
II 9.81 0.81 0.5 0.65
III 11.68 1.62 0.5 0.12

N SUR Q

12 0.035 0.47
12 0.083 0.32
24 0.139 0.05

Better comms 

performance

More efficient 

utilization of 

the space

Higher 

aggregated

capacity

N

SUR Q

Case III

Case II
Case I

SUR=1,62

SUR=0,83
SUR=0,35
Q=0.47

Q=0.32

Q=0.05
N=24

N=12
N=12

(a) (b)

Figure 7. Illustration of the results of the plant distribution study. (a) Space generated by the
multidimensional metric F; (b) example of Case II’s replication process.

The first configuration, Case I, has a relatively low SUR. Approximately only four
percent of the available space is utilised for harvesting. Therefore, this proposal should be
discarded, even though the conditions for establishing a communication link are practically
ideal. This SUR could be increased if a greater AoVV were selected. Increasing AoVV
causes the FoVH to expand, and therefore, the camera can get closer to the shelf, reducing
the distance considerably and minimising the required space. However, increasing AoVV
without limits would intensify the distortion effects introduced by the lens, bending the
vertical lines in the image (barrel distortion), especially for fish-eye lenses. This distortion
would not modify the shape of the symbol bands. The symbol bands will always be
horizontal (or vertical) straight lines because they result from the RS acquisition method
regardless of the lenses’ optics properties. However, it does affect the containers’ shape,
reducing its vertical size. Furthermore, this non-linear distortion cannot be mitigated using
image processing techniques; doing so would reflect the distortion on the signal bands.

In Case III, however, just the opposite happens. The SUR is almost four times higher
than in Case I. However, the optical received power from the most distant containers is
so low that it reduces the effective data rate and increases the complexity at reception.
This reveals the importance of the camera viewing view. Those acute view angles will
significantly affect the total received optical power. They will make it difficult not only to
establish the link, but also to estimate the microalgae culture’s biomass precisely.

In conclusion, Case II becomes the optimal choice for this application. It is the solution
that achieves a balance in all parameters and has greater replicability. This replicability
allows easily creating new plant distributions, such as the one shown in Figure 7. In
that example, it is shown how just by adding a second camera on the original shelf and
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installing a new identical rack that holds the first camera, a corridor similar to Case III can
be created. Hence, this configuration makes better use of space at the expense of adding
a single low-cost camera. In that case, both the SUR and N double their original values,
maintaining the communication performance.

However, despite this being the chosen solution, there is still a discussion to be made.
The fact that the camera scans only a fraction of the first containers and performs the full
scan of those that are further away (due to the image’s viewing perspective) gives rise to
new challenges. For example, the signal-to-interference-plus-noise ratio (SINR) is different
for each container, especially under the presence of tiny air bubbles in motion within
the reactor, which are utilised generally to aerate the organisms and induce a continuous
movement. The projection of these small air bubbles increases in size for the nearest
containers, generating more noticeable interference phenomena. Furthermore, in terms
of biomass sensing, the scanning of just a fraction of the culture can provide reasonable
estimations only if the biomass is correctly distributed within the recipient.

On the other hand, analysing the SUR values, it is observed that they are relatively
small. The maximum aggregated container’s volume is approximately 13% of the entire
required space. However, it is important to notice that, in all vertical cultivation plants, it is
necessary to reserve some room for the technicians to execute periodic control routines,
handle the extraction of samples with ease and react quickly to warning alarms. Conven-
tionally, it is recommended to reserve up to one meter of separation between racks. This
separation coincides with the optimal camera distance in Case II.

5.2. Indoor Experiment

Figure 8 shows the intensity radiation pattern emitted from the two selected regions
at the container’s surface. The columns represent the area’s location, from left to right:
the centre and the border. The rows represent each independent image’s channel, from
top to bottom: red, green and blue. Each graph shows the radiation pattern normalised
to the maximum radiant intensity for azimuth angles between five and 175 degrees. The
radiation patterns for the different concentrations are grouped following a colour gradient
from lighter to darker as the concentration increases. Finally, for reference purposes, the
Lambertian radiation patterns with n = 1 and n = 2 are shown.

In the container’s central region, the radiation pattern follows a Lambertian with n = 1
for red and green channels when no microorganisms are suspended in the water. In the blue
channel, it deviates minimally for wider angles. It can be seen that as the biomass increases,
the emission becomes more directive. Actually, in the case of the red and green channel, at
the point of maximum concentration, it follows a perfect Lambertian pattern with n = 2.
The reason behind this has a connection with A. platensis’s SPF and its absorption and
scattering cross-section coefficients. A. platensis is a planktonic filamentous cyanobacterium.
Its cylindrical morphology gives the cell a highly directive SPF [33] (depending on the
orientation). The absorption cross-section measured experimentally is moderately high
compared to other microalgae organisms.

Therefore, the absorption coefficient, measured experimentally in [25], contributes
more to the light extinction than the scattering. This absorption causes the outgoing light
at steep angles, which had travelled longer distances than the direct rays, to undergo a
significant attenuation, which ultimately produces this directivity on the radiation pattern.

On the other hand, in the blue channel, the radiation intensity decreases faster with
the increase in biomass than the red and the green channel. This is to be expected given
that the absorption cross-coefficient curve as a function of the wavelength is not flat, but
intensifies by almost 1.7 times in the 350–450 nm region of the spectrum [25].

Regarding the emission from the edges, the skewness effect mentioned in Section 3.1
is observed. This emission also becomes more and more directive as the biomass increases.
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Figure 8. Red, green and blue radiation diagram of small areas located at the centre and the border of the container.

To better illustrate how the camera perceives the differences in the radiation between
both regions (centre and border) at a certain angle and to understand the reason behind
selecting these two regions for the analysis, Figure 9 shows some examples of the images
captured during this experiment. In this figure, framed in a blue rectangle, the interface that
abruptly separates the centre and the border region is highlighted (Figure 9a). Furthermore,
this region’s evolution with respect to the increase in concentration is shown in the boxes
below.

A.platensis concentration: 0 | 60 | 100 mgL−1

20° 40° 60° 70° 80°

B
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rd
er
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r

a b c

Camera viewing angle

Figure 9. Illustrative example of the results obtained in the indoor experiment.
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The location of this interface on the surface depends on the container’s geometric
construction and moves with the point of view. In thicker containers, this interface gets
closer to the centre, and consequently, the border region increases significantly in size.
On the other hand, as the container is viewed from a tighter angle, this interface moves
towards the edges (Figure 9c). In this case, the central region extends smoothly towards the
borders without reaching them. This interface’s location should be taken into account in the
design of the communications link because it delimits two areas with notable differences
in light emission that will ultimately impact the SNR. In this setup, the power received
from the edges is generally less than from the centre. Therefore, if the sampling occurs at
the edges, the signal would be affected by a lower SNR. However, it can be seen that the
relative intensity contribution for angles above 30 degrees is higher in the borders than
the centre (Figure 8). For these angles, the radiation intensifies relatively. This effect is
also observed in Figure 9b, where the edge region appears brighter than the centre. This
outcome is related to the SPF of the A. platensis and the internal shape of the container.

Regarding the SNR, Figure 10 shows the SNR for different viewpoints either when the
signal is received from the centre (dashed lines) or the side (dotted lines). The columns
represent the biomass concentration, increasing from left to right. The rows represent the
image channel, from top to bottom: red, green and blue. Each graph shows the SNR against
the camera viewing angle (from zero to 85 degrees).

0 mgL−1 20 mgL−1 40 mgL−1 60 mgL−1 80 mgL−1 100 mgL−1

Figure 10. Red, green and blue SNR for small areas located at the centre and the border of the container.

The most evident result extracted from these graphs is that the SNR in the blue channel
decreases much faster than in the other channels. Furthermore, the SNR starts to decay
at 40 degrees at the edges, approximately 20 degrees earlier than in the red and green
channels. This was discussed previously in terms of the light intensity emitted by the
surface. Nevertheless, another result can be extracted. The differences between the central
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and outer SNRs are reduced progressively as the biomass concentration increases. A.
platensis scattering slowly contributes to distributing the optical signal more evenly across
the surface. Besides, the difference in power also gradually decreases, at least in the red
and green channels. Therefore, slow attenuation combined with increasing scattering
is beneficial, mainly because it reduces the gap between the two regions, increasing the
effective signal reception area. Finally, regarding the sensing of the biomass concentration
and culture’s growth state, it is concluded that it slightly depends on the viewing angle. The
relative differences in attenuation per angle for each channel as a function of concentration
are non-linear. As the concentration increases, the radiant intensity diagram varies slightly
in shape, relatively different for each channel. Therefore, to estimate the biomass correctly
using only the pixel values inside a given area, it is necessary to consider the viewpoint.
However, this radiation’s behaviour provides valuable information that can be favourably
exploited for more accurate crop parameters’ estimation. The larger the variations, the
better the estimation will be. In this sense, Case II, which proved to be the ideal candidate
for a real deployment, has the added advantage that it analyses the strain from different
angles. If all containers are interconnected through pipes and the strain is transferred from
container to container periodically, its sensing will be more accurate.

5.3. Outdoor Experiment

The results are presented in Figure 11. This figure displays a snapshot taken for three
concentration densities: low (a), medium (b) and high (c). The white rectangle encloses
the detected beacon signal. The graphs shown on the picture’s right side represent the red,
green and blue pixel values from a one-pixel column located within this rectangle. Further-
more, Figure 11d represents the reference case where the signal is extracted without being
affected by the microalgae channel. The signal recovered corresponds to the sequentially
pulsed LEDs: white cold, white warm, dark guard (no pulse), green, red and blue.
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Figure 11. Experimental transmission of a well-known beacon signal.

It can be observed that this species produces significant attenuation in the blue and
green portions of the spectrum (attaining the Bayer filter’s spectrum response of the camera).
Despite that the green, blue and red pulses cannot be distinguished in Figure 11c (due to
low optical transmitting power), it is still possible to differentiate the white cold and white
warm spectral signatures. Therefore, those LEDs are viable for communication purposes.
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Finally, analysing the reference signal (Figure 11d), it is observed that the sunlight
increases the light power received at the container’s surface. It sets an offset value and
consequently reduces the dynamic range available for communications. However, as
the concentration increases, this offset value decreases because of the attenuation of the
microalgae. This implies that the external light that enters through the container’s sides
is attenuated, just like the signal of interest. Therefore, in high biomass concentration
conditions, increasing the photobioreactor’s light emission power will expand the available
dynamic range. Pixel values obtained from dark pulses will tend gradually to zero, while
the signal power is increased on purpose.

6. Conclusions

In this work, OCC was proposed as a suitable communication technology for moni-
toring microalgae production plants based on artificial lighting. The theoretical channel
model was introduced alongside the analysis of the parameters that significantly impact
the achievable data rate, such as the nodes’ geometrical configuration and the camera
sampling frequency and exposure time.

This research highlighted the importance of optimising plant distribution in terms of
link quality, channel capacity and efficient space exploitation. A multidimensional metric
was designed for this purpose and tested in the conducted case study, where three different
node arrangements were classified. This study’s main result was that the configuration
in which the camera observes the reactor shelf from the side is the preferred solution.
On the one hand, it provides comparable link qualities between all containers without
incurring detrimental losses of the signal strength due to the camera’s viewing angle. On
the other hand, it better exploits the scarce space available than a camera watching the
containers frontally.

In addition, the experimental evaluation of the proposed flat-panel photobioreactor
prototype was carried out in indoor and outdoor environments for two different microalgae
species: A. platensis and R. marinus (green and brown algae, respectively). In the indoor
experiment, the container surface’s radiation pattern was measured for each image channel
at different concentrations. This analysis reveals significant differences in the SNR between
channels due to the algae absorption spectrum. Moreover, notable differences can be
observed between the borders and the central part of the surface. These differences tend to
reduce as the concentration of microalgae increases due to the phenomenon of scattering.
Despite that the viewpoint must be taken into account when designing the system, it
additionally provides valuable information for in situ sensing the algae’s biomass and its
growth state. In the outdoor experiment, the blue and green channels were highly attenu-
ated, which compelled discarding these wavelengths for data transmission. Furthermore,
in this scenario, the sunlight decreased the available dynamic range considerably for signal
transmission, especially for low biomass concentration. Finally, examining the obtained
results for the two microalgae species with different absorption profiles determined that
the selected strain and its temporal evolution must be considered in the development of
the optical link.

Future research should further develop and confirm these initial findings by extending
the SNR’s evaluation to the actual achievable BER for this deployment in both indoor and
outdoor scenarios. It should examine more deeply how the presence of aeration bubbles
might affect the signal reception. It could also focus on comparing and developing novel
framing strategies for sensor data, reducing packet overhead, easing transmitter discovery
and data synchronisation and equalisation. In terms of culture sensing, artificial intelligence
for biomass estimation may constitute the object of future studies.

In conclusion, it was demonstrated that microalgae production plants are a potential
use case for OCC. This technology provides simultaneous node monitoring capabilities
using a cost-effective deployment, paving the way to develop smart farming strategies
within the microalgae cultivation field.
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5.1. APPLICATION OF OPTICAL CAMERA COMMUNICATION IN
INDUSTRIAL ENVIRONMENTS

5.1.1 Related contributions

Citation 1:
[24] C. Jurado-Verdu, V. Guerra, V. Matus, J. Rabadan, R. Perez-Jimenez, J. Luis
Gomez-Pinchetti, and C. Almeida, “Application of optical camera communication to
microalgae production plants,” in 2020 12th International Symposium on Communi-
cation Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–6, 2020

This manuscript is a preliminary version of this work, which was presented at the
International Symposium on Communication Systems, Networks, and Digital Signal
Processing (CSNDSP) 2020.

Citation 2:
[25] C. Jurado-Verdu, V. Guerra, J. Rabadan, and R. Perez-Jimenez, “Barcolits: Bar-
codes using led tags and optical camera communications,” in 2022 IEEE 18th Inter-
national Conference on Factory Communication Systems (WFCS), pp. 1–8, 2022

During this work, it became clear that the successful implementation of this tech-
nology depended on providing a communications solution that (i) was extensible and
adaptable to the wide variety of cameras available and (ii) whose deployment was not
perceived as a disruptive approach to well-established industry processes and opera-
tions, but as compatible and interoperable with them. Therefore, following the GO3
objective, the search for a less disruptive communication solution led to present a novel
system presented at the international conference on Factory Communication Systems
(WFCS) 2022 (included in Annex B). This system, called Barcolits, uses traditional
barcode coding schemes to encode optical signals emitted with OCC transmitters, en-
suring interoperability with conventional barcode scanners. Furthermore, this coding
strategy contributes to decoupling the camera (hardware) from the reception routines
(software), following the scheme proposed in Section 5.3.
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5.2 Artificial intelligence-assisted exposure equal-

ization

Citation:
[21] C. Jurado-Verdu, V. Guerra, V. Matus, J. Rabadan, and R. Perez-Jimenez, “Con-
volutional autoencoder for exposure effects equalization and noise mitigation in optical
camera communication,” Opt. Express, vol. 29, pp. 22973–22991, Jul 2021

This work addresses the general objective GO1 (along with the technical derived
objectives), proposing an AI-assisted solution for simultaneous visualization and data
detection using RS cameras.

As discussed in Chapter 3, cameras, as imaging devices, must adjust their exposure
time according to the ambient light. In general, the exposure time must be set to
relatively longer values, especially in indoor environments, compared to the IS’s row
sampling time (Chapter 3). However, in long exposures, the pixels accumulated the
irradiance of several consecutive symbols, producing a detrimental ISI in the received
signal. Consequently, the camera’s exposure severely restricts the attainable reception
bandwidth, behaving as a low-pass filter.

Therefore, the choice of exposure time sets a tradeoff. It should be: (i) long to
improve scene display and the receiver’s sensitivity and (ii) short to increase the link
throughput.

This work proposes a novel AI-assisted equalization stage to mitigate the detri-
mental ISI associated with long exposures in cases where (i) the receiver’s sensitivity
needs to be increased to improve the SNR (or the visualization of the scene) or (ii)
the camera exposure cannot be set. This proposal aims to validate hypothesis H25.
This hypothesis can be reformulated in more depth with the following statement: “A
neural network model can exploit the attenuated frequency components of a bandlimited
received signal that falls beyond the cutoff frequency, to reconstruct the original signal
as if it were acquired with a broader bandwidth”.

The validation of this hypothesis is the main contribution of this work and has
important relevance in the field of communication systems. As follows from the refor-
mulated hypothesis, the results of this work can be transferred to any communication
system. It should be noted that, in this case, the bandwidth limitation derives from
long exposures.

On the other hand, this work also aims to validate hypothesis H36. This hypothesis
arises from an unprecedented challenge: obtaining the network training samples. Those
training samples consist of a set of two images: (i) overexposed images, used as the
network’s inputs, and (ii) ground-truth images, used as the network’s outputs (Chapter
4). In other words, bandlimited signals (input) and ground-truth signals (output).

Obtaining these samples using a camera-based experimental testbed is exceptionally
complex and time-consuming. First, the lack of synchronization between the camera
and the transmitter makes it difficult to perfectly match the training inputs with their
corresponding outputs, dramatically impacting the network performance. Some au-
thors have partially solved this problem using matched filtering techniques that are
less robust as the exposure time increases (Chapter 4). Second, the number of ade-
quately characterized cameras to obtain worthwhile samples is small. Consequently,

5It is possible to enhance the received signal bandwidth using equalizers based on AI techniques
6It is possible to train an OCC-based AI system with a synthetic dataset.
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the network will be biased by the cameras used during training and the experimen-
tal conditions, limiting the generalizability of the results. In short, using real-world
samples for training requires a complex training stage before the system’s deployment,
making this solution impracticable and device/scenario dependent in most cases.

Alternatively, using synthetic samples for training enables the equalizer to operate
with a vast range of cameras (i.e., any camera whose parameters fit into the training
space). The procedure for the synthetic generation is presented in this manuscript,
along with the detailed modeling of the RS acquisition mechanism in Chapter 4. Its
most distinctive feature is that it uses exclusively temporal parameters of the OCC link:
the transmitter symbol time and the camera’s row sampling and exposure times. Re-
markably, the implemented algorithm is independent of other signal parameters, such
as the transmitted power. This is achievable thanks to the pre-standardization stage
introduced before the NN. The z-score standardization of the input samples makes
the synthetic (training) and real-world (validation) images comparable, at least from
the network’s point of view, and eliminates the necessity of estimating the received
signal power. In simpler terms, the z-score standardization bounds the signal samples
(synthetic and real) to similar values, regardless of the original signal power. The com-
parison between synthetic and real-world samples is also assessed in this manuscript.

Regarding the network architecture, the equalizer consists of a 2D CAE, explained
in more detail in the manuscript. This two-dimensional model extract features from
the signal samples (image rows), exploiting the redundancy present in nearby columns
efficiently to reconstruct a denoised version in which the effects of the exposure time
are highly mitigated.

The equalizer’s performance is evaluated for different exposure and noise conditions.
The exposure time is set relative to the symbol time. The ratio between both times is
called the ESR (Chapter 3). In the extreme case, the ESR equals 7, which means that
each pixel is exposed during the transmission of 7 consecutive symbols, accumulating
the irradiance of all of them. In addition, the equalizer’s capacity to operate with
slightly longer and shorter exposure times than the selected one for training the network
is assessed.

The results reveal that these equalizers can mitigate the ISI produced with ESR
equals 7 while keeping the BER well below the FEC limit in moderate SNR conditions
(12dB to 18dB). This represents an improvement of around 14 times the attainable
receiver bandwidth compared to non-equalized receivers. In addition, these equalizers
can withstand up to 11% deviation in the exposure time (compared to the reference
trained exposure time) without compromising the performance. These results indi-
rectly validate the proposed algorithm for the synthetic generation of samples and
hypotheses H2 and H3. In conclusion, this work is of great relevance in communica-
tions systems. It demonstrates that using AI-assisted equalization stages, trained with
synthetically generated samples, significantly increases the receiver bandwidth in real
links, which cannot be achieved using traditional linear signal-processing techniques.
This equalization becomes crucial in cases where the exposure time cannot be adjusted,
or the camera’s sensitivity must be increased, e.g., to operate as an imaging device.
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Abstract: In rolling shutter-based optical camera communication (OCC), the camera’s exposure
time limits the achievable reception bandwidth. In long-exposure settings, the image sensor pixels
average the incident received power, producing inter-symbol interference (ISI), which is perceived
in the images as a spatial mixture of the symbol bands. Hence, the shortest possible exposure
configuration should be selected to alleviate ISI. However, in these conditions, the camera
produces dark images with impracticable light conditions for human or machine-supervised
applications. In this paper, a novel convolutional autoencoder-based equalizer is proposed to
alleviate exposure-related ISI and noise. Furthermore, unlike other systems that use artificial
neural networks for equalization and decoding, the training procedure is conducted offline using
synthetic images for which no prior information about the deployment scenario is used. Hence the
training can be performed for a wide range of cameras and signal-to-noise ratio (SNR) conditions,
using a vast number of samples, improving the network fitting and the system decoding robustness.
The results obtained in the experimental validation record the highest ISI mitigation potential
for Manchester encoded on-off keying signals. The system can mitigate the ISI produced by
exposure time windows that are up to seven times longer than the transmission symbol duration,
with bit error rates (BER) lower than 10−5 under optimal SNR conditions. Consequently, the
reception bandwidth improves up to 14 times compared to non-equalized systems. In addition,
under harsh SNRs conditions, the system achieves BERs below the forward error correction limit
for 1dB and 5 dB while operating with exposure times that are 2 and 4 times greater than the
symbol time, respectively.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical camera communication (OCC) is considered an extension of visible light communication
(VLC), which replaces high-bandwidth photodiodes with image sensors (IS) to detect time and
spatial variations in light intensity for enabling data communications. This technology emerges
from the interest of reusing conventional cameras embedded in an increasing number of end-user
devices (such as mobile phones, laptops, vehicle dashcams) to capture intensity-modulated (IM)
light signals from a wide range of lighting sources, ultimately paving the way for VLC to break
the market’s entry barriers imposed by utilizing specific hardware. Furthermore, it has recently
been included in the IEEE 802.15.7 [1] standard, which reveals the interest in this technology.

However, the handicap of IS-based receivers is their relatively low bandwidth inherently
limited by the camera’s frame rate [2–4], which makes them ideal for applications with low data
rates, such as internet of things (IoT) applications, smart farming, indoor location, advertising,
or vehicle-to-vehicle (V2V) communications among others. This restriction affects differently
depending on the camera’s acquisition mechanism. In global shutter (GS) cameras, the whole
IS is exposed simultaneously. Therefore, the light signal is sampled once per acquired frame.

#433053 https://doi.org/10.1364/OE.433053
Journal © 2021 Received 3 Jun 2021; revised 25 Jun 2021; accepted 25 Jun 2021; published 6 Jul 2021
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Consequently, the data rate is upper-bounded by the highest frame rate, restraining the transmission
frequency, ftx. Hence, the switching speed of light sources is constrained, producing, in some
cases, a noticeable flicker that must be mitigated to prevent discomfort and health-related issues
in human users [5]. This flickering can be alleviate by using under-sampled modulation (USM)
schemes, such as under-sampled frequency shift on-off keying (UFSOOK) or under-sampled
phase shift OOK (UPSOOK) [6] at the expense of decreasing the data rate. On the other hand,
rolling shutter (RS) cameras scan the image progressively row by row of pixels. Each row of
pixels is activated sequentially, sampling the light source at different instants during the frame
capture. This acquisition mechanism produces different illuminated bands for the transmitted
symbols within the image [7]. In this case, the sampling period (significantly lower than GS
cameras) coincides with the time that elapses between the activation of two consecutive rows
[8], which is also limited, albeit indirectly, by the camera’s frame rate. Another parameter that
further restricts the signal bandwidth is the exposure time (row exposure time for RS cameras),
the duration in which a pixel remains exposed to light. During this exposition, the pixel integrates
light, acting as a low pass filter, producing significant inter-symbol interference (ISI). This ISI is
perceived as a spatial mixture of the symbol bands within the image, and its effects begin to be
relevant after the exposure time is longer than half the symbol time.

Therefore, from a communications perspective, the exposure must be as short as possible
to prevent ISI on high-speed signals at the cost of reducing the received signal strength. This
trade-off must be addressed in any OCC system design [7,9]. However, improving the receiver
bandwidth by reducing the exposure time will eventually result in impracticable light conditions
for either human or machine-supervised applications. As it can be seen in Fig. 1 short exposure
times would produce dark images, in which objects cannot be acceptably recognized (Mandrill
picture). This energy impairment due to the reduction of the integration window can be mitigated
by increasing the camera’s analog gain, which can significantly improve the signal-to-noise ratio
(SNR), as concluded in previous works [10–12].

Fig. 1. Effects of increasing the exposure time in RS-cameras.

To alleviate this ISI effect, in [13] authors proposed a one-dimensional artificial neural network
(ANN) equalizer with promising results. The neural network performance has been validated
against Manchester encoded on-off Keying (OOK) [13], and constant power 4-PAM symbols
[14]. In [13] this equalization allows to decode data with bit error rates (BER) below the forward
error correction (FEC) limit of 3.8 × 10−3, for exposure times up to 4 times greater than the
symbol time. Translated in terms of bandwidth, it can recover signals whose bandwidth exceeds
up to approximately nine times the low-pass filter’s cutoff frequency that models the effect of
the exposure time. However, the proposed multilayer perceptron (MLP) network performance
was evaluated exclusively under optimal signal-to-noise ratio (SNR) levels. Furthermore, the
network training was conducted online, with the receiver operating under the deployment scenario
conditions. Up to the authors’ knowledge, only these works try to mitigate the exposure-related
ISI in RS cameras by using artificial neural networks.

However, artificial networks are acquiring a relevant role in solving other OCC technology
challenges. In [15] the use of a Logistic Regression Machine Learning (LRML) algorithm is
proposed for decoding signals transmitted with the backlight of advertising panels. In [16] a
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1D-ANN architecture is proposed for the same purpose. Both works aim to decode signals affected
exclusively by the interference produced by the frontal image content of the panel. Therefore,
the camera is configured with short exposure times for the optimal reception of the transmitted
symbols. In [17], a convolutional neural network (CNN), which combines convolutional layers
with a fully connected classification network, is used for source detection and pattern recognition
of LED-based sources in V2V communications. This network decodes spatially multiplexed
streams under partial occlusion and/or harsh weather conditions. However, in this case, the RS
acquisition mechanism is not exploited to increase the data rate, and hence the signal does not
need prior equalization of the exposure-related effects. Instead, the transmitted symbol time is
longer than the frame acquisition duration, so it can be considered that the system operates under
GS conditions. In contrast, [18], uses a CNN for pattern detection and classification in V2V
relying on the RS mechanism, recovering data from car rear taillights. Moreover, in [19], the use
of CNNs is proposed for RS-symbol decoding. However, in previous works, the receiver operates
on the premise that the exposure-related ISI is negligible since the cameras are configured with
exposure times much shorter than the transmission symbol time.

This work proposes a novel two-dimensional convolutional autoencoder (CAE) for simultaneous
exposure-related ISI equalization and noise mitigation, in which the training is conducted offline
using synthetically generated images. These images are produced using exclusively time-related
parameters from any chosen camera and transmitter: the configurable exposure time, the sampling
period, and the transmission symbol time. These three parameters produce relevant training
samples that, after prior standardization, enable the network to decode real captured images. This
standardization makes the synthetic and real signals comparable from the point of view of the
artificial network, regardless of the temporal average power received, as long as the camera’s
gamma transformation is precisely compensated. Hence, the training of the network becomes
independent of the deployment scenario. These training samples can also be synthetically
corrupted by a zero-mean additive white Gaussian noise (AWGN) to train the system for its
operation under harsh SNR conditions. Therefore, the training can be carried using different
synthetic noise levels and with a significant amount of samples stored in large databases, which
considerably increases the robustness of the network.

Moreover, the use of CAE is justified since it has proven particularly useful in image denoising
[20–22] presenting outcomes that outperform the capabilities of MLP architectures in this task
[23], either in terms of efficiency and performance. This is, in part, because of the use of
convolutional layers, but also because of the operation’s nature of a CAE, which consists in
extracting a latent representation or feature maps (generally of lower dimensionality) from the
input (encoding part), and reconstructing it at the output using this representation (decoding
part). In this encoding-decoding paradigm, noise-corrupted inputs might even be beneficial since
they allow the network to deinterlace hidden useful features from the input. Furthermore, the use
of two-dimensional inputs helps noise mitigation in RS acquired signals. Since the IS columns
sample the light at the same sampling instants, the received signal is replicated across all the
columns. This redundancy can be exploited to increase the SNR, thus facilitating the network
task of noise mitigation.

The remainder of the paper is organized as follows. Section 2 introduces the RS theoretical
modeling used for the synthetic image generation. Section 3 presents and describe the CAE-based
proposed receiver system. Section 4 details, in the first place, the network training, including the
synthetic image generation routines and the metrics used to assess the synthetic image similarity
with real images and the network goodness of fit. In the second place, this section presents
the procedures and metrics to evaluate the system’s communication performance, including a
detailed description of the experimental setup. Section 5 presents the results, to be compared
in section 6 with those reported in recent literature. Finally, the conclusions of this work are
summarized in section 7.
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2. Rolling-shutter modelling

RS cameras scan the scene by progressively triggering each row of pixels rather than exposing
the whole IS at once, as GS cameras do. Hence, light variations can be sampled up to H times
per frame, where H is the IS’s vertical resolution (height). This sampling produces different
illuminated bands within the image that corresponds to the transmitted symbols. Figure 2(a)
shows the temporal scheme of this acquisition mechanism. The IS starts exposing the first row of
pixels to light during a configurable exposure time, texp. Then, the subsequent rows are activated
sequentially every Ts seconds, which is the row sampling period. This acquisition can be modeled
using a system with two separable stages: a filtering and a sampling stage, as shown in Fig. 2(c).
The filtering part models the effects of the exposure time on the received signal for each pixel. The
following stage manages the sampling instants for each pixel based on its position within the IS.
Figures 2(b,d) illustrates how the incident light is converted into the final discrete values for each
pixel (for a given column). Figure 2(b) represents the incident power reaching the j-th pixel over
time, t, P(t, j). On the one hand, Fig. 2(d) shows the pixel signals after the filtering stage, v(t, j)
(colored dashed lines). On the other hand, it depicts the one-dimensional discrete pixel values
obtained after the sampling stage, v[n] (black dotted vertical lines). It should be highlighted that,
as it is shown in Fig. 2(b), the temporal evolution of the incident power follows the same shape
for all the pixels. Nonetheless, the received signals are affected by different factor depending
on several link parameters, such as the source’s radiation pattern, the relative configuration
between the transmitter and the camera, the camera lenses, the channel losses, and the scenario’s
reflections, among others. In this figure example (Fig. 2(b)), the average incident power gradually
decreases from top to bottom. Moreover, the signal power is not enough to provide a suitable
SNR for decoding in some cases. For this reason, in OCC, the light source projection within the
image is generally considered as the ROI because it corresponds to the image area where the
SNR is significantly higher. However, data can also be recovered from reflections as examined in
[24–26]. Finally, it is important to mention that the following modeling is presented for a generic
IS column. Therefore if the incident power for the pixel located at the i-th column and the j-th
row is expressed with P(t, i, j), P(t, j) satisfies the relation P(t, j) = P(t, m, j) = P(m)(t, j), where
m ∈ [0, W) (the selected m column), and W is the IS’s horizontal resolution (width).

Fig. 2. RS acquisition mechanism. (a) RS Temporal scheme. (b) Normalized optical power
P(t, j) reaching each pixel of the i-th IS column. (c) RS system modeling (impulse response,
hexp and sampling function, δΣ). (d) Filtered curves, v(t, j), and the discrete signal, v[n] after
sampling.

2.1. Filtering stage

The output value for the j-th pixel in the i-th column, v(t, j), depends on the accumulated charge
on the photodiode during the time it is exposed to light, the exposure time, texp (direct integration)
[4]. This time extends from reset, in which the pixel’s photodiode is biased with reverse voltage,
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until its readout. During readout, in passive pixel sensors (PSS), the charge is transferred to a
floating diffusion amplifier (FDA) (shared for all the IS columns), where the charge is converted
to voltage with a conversion gain of Gconv. Finally, this voltage is amplified at the general output
amplifier and quantized by the analog-to-digital converter (ADC). In active pixel sensors (APS),
the charge-to-voltage conversion occurs at the pixel level, and the voltage is transferred to the
output amplifier using source follower amplifiers. In short, the output voltage of the pixel at the
ADC input is given by Eq. (1).

v(t, j) = G
Cf

∫ t+texp

t
P(t, j) · R(j)dt (1)

where P(t, j) is the incident optical power, R(j) and Cf, the equivalent photodiode’s responsivity
and capacity, respectively. The latter is approximately equal to the FDA’s capacitor, and G the
output amplifier’s gain. This windowed integration of the input signal over the exposure time,
can be modeled with a finite impulse response (FIR) low pass filter, hexp given by Eq. (2), with
its corresponding transfer function (Eq. (3)) [27].

v(t, j) = P(t, j)⊛ hexp(t, j) where: hexp(t, j) = h(t) = G
Cf

·
(︂
u(t + texp) − u(t)

)︂
(2)

H(w) = F {h(t)} = texp
G
Cf

sin(w · texp/2)
w · texp/2 ejwtexp (3)

where u(t) is the unit step function. From Eq. (3) it follows that the filter DC gain is proportional
to the exposure time. Regarding the available reception bandwidth, to compute the cutoff
frequency, it is necessary to rely on numerical methods such as Newton-Raphson’s algorithm.
However, to get an approximate idea of how the reception bandwidth is related to the exposure
time, the first null frequency can be examined, which is inversely proportional to the exposure
time. Therefore, a trade-off between the gain and the available bandwidth must be considered for
the configuration of the camera’s exposure settings. Light signals captured with shorter exposure
times are affected by lower ISI, but also the received power decreases, as shown in Fig. 1. In
those cases, it is still possible to improve the received signal quality by increasing the analog gain
G [10,11].

2.2. Sampling stage

The family of curves obtained after the filtering stage, v(t, j), shown in Fig. 2(d), is ideally sampled
using a two-dimensional Dirac delta train function, δ∑︁ (Eq. (4)), generating a one-dimensional
discrete signal, v[n].

v[n] = v(t, j) · δ∑︁(t, j) where:

δ∑︁(t, j) =
∞∑︂

n=0
δ
(︂
t −

⌊︂ n
H

⌋︂
· tFrame − mod(n, H) · Ts, mod(n, H)

)︂ (4)

where ⌊·⌋ is the floor function, mod(a, b), the modulo operation that returns the remainder of
the division a/b. The floor division (

⌊︂
n
H

⌋︂
) returns the number of generated frames from the

start. The modulo division (mod(n, H)) returns the pixel index (j-th) that contributes to the n-th
sample of the discrete signal v[n]. This equation can be further simplified in Eq. (5) under the
assumption that tinter is zero and the scanning operation is continuous. In other words, there are
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no periods in which the sensor becomes blind to transmission [7].

δ∑︁(t, j) =
∞∑︂

n=0
δ
(︂
t − n · Ts, mod(n, H)

)︂
(5)

Furthermore, the Eq. (6) introduced in [27] can be derived from Eq. (5) under the condition
that the IS pixels are affected by the same signal power. Therefore, the discrete signal, veq[n] (Eq.
(6)) can be interpreted as the signal that would be acquired from a single equivalent pixel.

veq[n] = v(t) ·
∞∑︂

i=0
δ(t − n · Ts) (6)

The equations Eq. (4) and Eq. (5) indicate that each sample, v[n], depends on the signal for
the j-th pixel activated at the sampling instant and, consequently, the pixel position within the
IS. Therefore, the sampling function relates the evolution of the signal over time with different
image locations. In other words, this function express mathematically the space-time duality of
OCC systems.

Finally, following the ideal sampling theory, the number of pixels (samples) per transmitted
symbol (using the nomenclature introduced in [14]), Npps, can be computed knowing the symbol
time, tsym and the sampling period, Ts (Npps = tsym/Ts).

3. Communications scheme

The proposed system architecture, and the functional blocks, are shown in Fig. 3. Regarding the
transmitter, it emits non-return to zero (NRZ) Manchester encoded pulses to avoid flickering.
Pseudo-random data sequences are grouped into packets with a header consisting of five
consecutive ones and a zero-bit trailer. A redundant bit is inserted every three bits to prevent a
header sequence from appearing within the payload. This stuffed bit is set to one if the preceding
bit is zero and zero otherwise. This coding strategy eliminates the use of forbidden codes for
synchronization, reducing the system’s complexity and easing error detection at reception. The
symbol time, tsym is selected according to the camera’s row sampling period Ts, to generate
the desired Npps (Npps = 5). The transmitting source consists of a 20x20cm RGB LED flat
panel that uniformly distributes the light across its surface. The operating link distance will
depend exclusively on the lamp’s size in the image and not on the optical emitted power (as
long as the projection of the lamp occupies more than one pixel). As detailed in [28] the use
of image-forming optics compensates the power losses due to spherical propagation with the
projected size of the optical source on the IS. The receiving side consists of a RS-camera attached
to a computing unit that performs the following routines for data acquisition as shown in Fig. 3.
First, it selects M columns from the image’s central region where the source is expected to be
located (M equals 16). Next, it performs an equalization procedure to adjust the pixel values
along the vertical dimension. In this work, no prior equalization is conducted. Then, the ROI
is segmented into s overlapping windows according to the CAE’s input dimensions (256x16
pixels) (with s equals 6). These image segments are standardized using the z-score function,
which subtracts the image’s mean µ to each sample xi and divides the difference by the image’s
standard deviation, σ. This standardization is essential since it allows the images captured with
the camera to be comparable with the synthetic training images, as will be discussed in section
4.1. The outputs generated by the CAE (with the exact dimensions of the input) for each segment
are merged using a linear combination at the edges where overlap occurs. This linear merging
helps mitigate the slight edge imperfections that appear near the top and the bottom of the output
images. The size of this overlap depends on the number of selected segments. Increasing the
number of segments will lightly improve the system’s performance, but it will increase the
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computational load. Experimentally, it has been concluded that the imperfections affect a small
area with 10 pixels height under the worst conditions (long exposure settings). Hence splitting a
1080-pixel image into six segments, generating 38-pixel overlaps for 256-pixel windows, is a
reasonably conservative solution. Finally, the packet synchronization within the reconstructed
image is conducted using the Pearson correlation with a header searching template.

The fundamental element of the proposed system is the CAE that performs both the equalization
and denoising of the ROI. An autoencoder is a neural network that attempts to reconstruct the
original input using a lower-dimensional latent representation [29]. It consists of a trained encoding
network (encoder) that extracts relevant features from the input whilst its counterpart (decoder)
is tuned to reconstruct the original input from this representation through the minimization of a
loss function and a back-propagation algorithm for updating the weights of the architecture. This
process is mathematically described in Eq. (7).

x̄ = D (E (x)) (7)

where x is the input signal, which can be multi-dimensional, x̄ is the autoencoded version of x,
E(·) is the encoding operation, and finally D(·) is the decoding procedure. In this work, the
loss training function L(x, x̄) is the L2-norm (mean squared error) with a regularization term to
prevent over-fitting (Eq. (8)).

L(x, x̄) = E
[︁(x − x̄)2]︁ + λR (E,D) (8)

where E [·] denotes expected value, λ is the regularization coefficient, and R(·) is the regularization
function, which in this work corresponds to a combination of the L1 and the L2 weights
regularization penalties. On the other hand, a denoising autoencoder (DAE) is a specific type
of AE that exploits the presence of noise in inputs to de-interlace useful properties, eventually
mitigating the noise corruption in the output. In this case, it minimizes Eq. (9).

L (x,D (E (x̃))) (9)

where x̃ is a copy of x that has been corrupted, in this case, by an a zero-mean additive white
Gaussian noise (AWGN). Finally, a CAE uses convolutional layers (Conv) and transposed
convolutional layers (TConv) [23] to encode and decode the input, respectively.

Fig. 3. Proposed system based on 2D convolutional autoencoder (CAE).
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The Conv layers utilize a set of convolutional filters, which generates feature maps, F (one per
filter), or activation maps by applying the discrete convolution operation. Considering the case in
which the input consists of 2-dimensional gray-scale images, I, the discrete convolution uses
two-dimensional kernels, K. The convolution result, Z[i, j], at the i, j position for each filter is
computed using Eq. (10).

Z[i, j] = (I ⊛ K)[i, j] =
kw−1∑︂
m=0

kh−1∑︂
n=0

I[m, n] · K[i − m, j − n] (10)

However, when working with RGB images, the input to the Conv layer consists of a three-
dimensional tensor, where two dimensions are used for pixel position (width and height) and the
last dimension for the three RGB color channels (depth). In this case, the convolution kernel is
three-dimensional. Hence, generalizing for a number of D channels, the kernel’s depth, kd will
match the number of channels of the input tensor, and the convolution result for each filter at the
i, j position is computed using Eq. (11).

Z[i, j] = (I ⊛ K)[i, j] =
kw−1∑︂
m=0

kh−1∑︂
n=0

kd−1∑︂
l=0

I[m, n, l] · K[i − m, j − n, l] (11)

It should be highlighted that the filter translation over the image happens exclusively on the
vertical and horizontal dimensions, summing up all the weighted contributions for all the channels
to generate a two-dimensional tensor. The number of trainable weights per kernel will depend on
its vertical and horizontal size and the input tensor channels. The result of the convolution, Z[i, j],
is then biased (B[i, j]) and transformed using a non-linear activation function, ψ, generating the
corresponding features map, F[i, j] (Eq. (12)).

F[i, j] = ψ(Z[i, j] + B[i, j]) (12)

The nonlinear activation functions used in this work are the Sigmoid and the Rectified
Linear Unit (ReLU) functions that work optimally in this type of architecture as demonstrated
experimentally in [30].

The total trainable parameters of the l-th layer is the sum of the kernel’s weights and biases
considering all the filters. The latter coincides with the number of this layer’s outputs, which can
be computed knowing the horizontal and vertical dimensions of the output matrix, O[i, j, l] using
the Eq. (13).

dim(O[i, j, l]) =
(︂ ⌊︂nH + 2pH − kH

sH

⌋︂
+ 1,

⌊︂nW + 2pW − kW
sW

⌋︂
+ 1, D

)︂
(13)

where nH, nW are the vertical and horizontal lengths of the input, p is the number of padding
values added at boundaries (to control the output size), kH, kW are the vertical and horizontal
lengths of the filter’s kernel, and s the stride, the step translation of the kernel when traversing
the input, and D, the number of filters.

In this CAE architecture, Conv layers are usually followed by a pooling layer, which replaces
the layers’ outputs in specific locations with a statistical summary of the outputs at the vicinity.
In this model, max-pooling layers (MaxPool) are used, which return the maximum output of a
rectangular group of outputs. This ultimately contributes to increasing the non-linearity of the
output (in addition to the nonlinear activation functions) and reduces the total number of network
parameters.

Conv layers have proven especially effective for extracting useful features from images, and
they are widely used in object detection and classification as well as image segmentation and
denoising. This convolution operation can help improve the efficiency of deep learning systems.
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Furthermore, it allows reducing the number of network parameters by making better use of the
spatial similarities in the vicinity of an input sample (sparse connectivity). In addition, in this
type of network, the same filer kernel’s weights would be applied across all the inputs (parameter
sharing), tying the weights for different samples. This is contrary to what would happen in a
dense network, in which each neuron assigns a specific weight for each input, and consequently,
a separate set of parameters for every location is generated. Instead, in Conv layers, just a single
set of parameters is learned (those concerning the filters). In this way, trained kernels would
search for shared activation patterns across the image. Conv networks are thus dramatically more
efficient than dense networks, reducing the total trainable parameters significantly.

On the other hand, the TConv layer reverses the spatial transformation produced by a Conv
layer. Even though it is also (wrongfully) known as a deconvolutional layer, it does not perform
the deconvolution operation. Instead, it carries out a regular convolution on an upsampled version
of the input tensor to obtain an output tensor with the dimensions of the expected input of its
reverse Conv layer. In this CAE architecture, these layers are usually followed by two-dimensional
upsampling layers (UpSampling) that expand the input tensor by repeating samples at each
position. This ensures that the output tensor has the exact dimensions of the input.

4. Methodology

This section starts by describing the CAE training procedures, including the generation of training
synthetic image datasets. Next, the algorithm utilized for optimizing the network’s hyperpa-
rameters and the selected search space is detailed. Finally, the communications performance
evaluation procedure and metrics are introduced alongside the details of the experimental setup.
This evaluation aims to demonstrate the ability of the system as a whole to equalize and decode
overexposed signals with robustness in low to moderate SNR conditions, allowing simultaneous
data acquisition and image visualization. Furthermore, that the network can, once it has been
trained for a specific exposure time, adapt to slightly longer or shorter exposures. Finally, it aims
to validate the use of synthetic (scenario-independent) images for network training.

4.1. Network training

The supervised training of the CAE is performed offline only once, using synthetically generated
images. The four parameters considered for the generation are the exposure time, the sampling
period, the symbol time, and the SNR. The procedure for generating a synthetic image, shown in
Fig. 4, is described below.

Fig. 4. Synthetic image generation.(a) Training input (X). (b) Training output (Y).

First, pseudo-random, one-dimensional bit sequences are encoded using the NRZ-Manchester
line code. Then, they are upsampled by two factors: the number of row pixel samples (Npps)
expected per symbol and the number of ticks per sampling period Ts. The number of ticks depends
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on the selected resolution time. In this work, the selected time equals the clock period, which is
approximately 100 nanoseconds. Hence since the sampling period is 18.9µs, its corresponding
number of ticks is T ticks

s = 189. Then, a section of the signal is extracted following a random
starting offset to simulate non-perfect synchronization between the transmitter and the camera.
This offset varies uniformly between zero (perfect synchronization) and one symbol time. Next, a
moving average window is applied to model the effect of the camera’s exposure time. The length
of this window would depend on the requested exposure time. Particularly is equal to the number
of ticks of the exposure time (for texp = 444µs, tticks

exp = 4440). The output is then normalized
using the min-max normalization, resulting in a signal with values between zero and one. Then,
it is compressed with a constant factor (0.5) to prevent clipping effects after adding the noise.
The obtained one-dimensional signal is repeated along the horizontal dimension to generate a
two-dimensional image. The resulting image has the dimensions of the CAE’s input layer (256
rows and 16 columns). Finally, a zero-mean additive white Gaussian noise (AWGN) is added.

The training dataset collects sets of two synthetic images for a given random binary sequence:
the input (X) and output (Y) images. The input image is made using the selected training exposure
time. Figure 4(a) shows the procedure for generating the input image. The output image, that
represents the ground truth, is generated similarly but selecting the shortest possible exposure
time according to the time resolution (this time must be at least shorter than half of the symbol
time). In this procedure, the min-max normalization, the compression, and the noise addition
routines are discarded. Figure 4(b) shows the generation of the output image. The datasets
generated in this work contain 35500 sets per exposure time (71000 images). From these datasets,
10% of the images are reserved for validation, while the remaining 90% are used for training.

Regarding the network training, the standardization of the input images is important. The
z-score standardization applied to both the training and the real images makes them comparable
from the point of view of the CAE. This eliminates the necessity to consider the expected average
received power (and some camera parameters such as the analog and the digital gains) for the
generation of the synthetic images. Therefore, the training is independent of the deployment
scenario. However, it is mandatory to perform a prior compensation of the spatial power
differences and the camera’s gamma transformation. The similarity between synthetic and real
images is measured using the Pearson’s correlation coefficient. The training goodness-of-fit is
quantified with the mean square error cost obtained for the training and the validation datasets.

Finally, regarding the network model, two different topologies are used in this work. The first
topology has two stages composed of one Conv and one pool layer for the encoder part, and one
UpSampling and TConv layer for the decoder part. The second topology adds another stage (with
a total of three stages). For both topologies, efficient optimization of the network hyperparameters
is conducted, following the hyperband algorithm detailed in [31] using the training exposure
time of 444 µs. The considered parameters that constitute the search space are summarized in
Table 1. The best architecture for each topology is used later for the system evaluation.

Table 1. Hyperparameter’s search space

Hyperparameter Value

Number of stages (Conv/MaxPool or UpSampling/TConv) 2, 3

Number of Conv (or TConv) filters 8, 16, 24, 32, 40, 48, 56, 64

Conv (or TConv) kernel’s width and/or height 2, 3, 4, 5

MaxPool (or UpSampling) kernel’s width and/or height 1, 2, 4

Learning rate 0.01, 0.001
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4.2. Performance evaluation

Regarding communications, the CAE’s performance is evaluated using real images captured with
a conventional camera. The evaluation under different SNRs is performed by adjusting the light
transmitted power through the control of the voltage source. Images taken under these conditions
are used to estimate the SNR. It should be highlighted that since the received signal is affected
by the camera’s exposure time, it is not feasible to estimate the SNR by analyzing the image
mean and variance. Hence, the following procedure is used. First, the pixel rows are averaged
across all the image columns (1920 columns). This averaging increases the SNR by a factor of
N = 1920 [14] (assuming that images are corrupted with AWGN). Next, the obtained averaged
signal, s̄, affected by a significantly low noise power, is subtracted from the signal at the desired
decoding column, s, resulting in a noise signal, n. Finally, the signal power, S, is estimated using
the maximum value of the autocorrelation of s (the same procedure is used for estimating the
noise power N).

The selected metric to evaluate the communications’ performance is the BER. In addition,
to quantify the degree to which the signal is affected by exposure-related ISI, a new metric is
introduced, the exposure-to-symbol ratio (ESR), the ratio between the cameras’ exposure time,
and the symbol time. For example, an ESR of 7 indicates that the exposure time exceeds seven
times the symbol duration.

Figure 5 depicts the experimental setup used to capture the real images. It consists of an RGB
flat panel pointing towards an RS-Camera separated by a distance of 50 cm. At this distance, the
transmitter occupies approximately 3/4 of the image’s vertical size. The transmitter signal is
generated using an arbitrary signal generator and a power supply to control the voltage level of
the light source.

Fig. 5. Experimental setup

Table 2 summarizes the key parameters of the experiment setup.
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Table 2. Experiment’s key parameters

Parameter Value

Camera
Hardware PiCamera version 2 (Sony IMX586) [32]

Aperture lens | Focal length (equivalent) f/2 | 3 mm

Image resolution 1920x1080 pixels (Video mode - 3)

Clock time, tclk 10 MHz

Sampling period, Ts 18.904 µs (Measured)

Exposure times, texp from 85 µs to 1500 µs in steps of 19 µs

Transmitter
Color channel used Green channel

Voltage from 25V to 36V in steps of 0,5V

Symbol time, tsym (Npps) 94, 5 µs (5 pixels per symbol)

Packet’s header, payload and trailer lengths 5, 42, 1 bits

Random seed 31415

5. Results

This section presents the results obtained for the training and the generation of synthetic images
and the communications performance.

5.1. Network training

Figure 6 shows synthetic and real images for different exposure times to provide a visual
comparison between them. Despite being placed horizontally, each segment corresponds to a
vertical rectangle extracted from the image. The 24 examples are arranged into four groups
based on the selected exposure time (161, 312, 444, or 520 µs). In each group, the reference
template corresponds to the ground truth, the expected theoretical signal if the exposure time were
infinitely short, and the incident power for all pixels, the same. The filtered template is generated
for each exposure time using the reference template and normalized with the min-max function.
This template is used to quantify the degree of similarity between the synthetic and real images.
The following two examples correspond to the synthetic and real images without preprocessing
as captured by the camera. As it can be seen, in those images, it is hard to distinguish light
variations. This occurs because as the exposure time increases the dynamic range for the pixel
values decays abruptly, reducing the ratio between the largest and smallest values. The last two
images correspond to the standardized version (z-score) of synthetic and real images used as
inputs for the network. As it was aforementioned in section 4, under the right conditions, both
standardized images are comparable. Differences in the averaged received light in real images
will minimally affect the standardization. Nevertheless, the camera’s gamma transformation
must be precisely compensated.

Fig. 6. Visual comparison of synthetic generated images versus real captured images
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The degree of similarity between the synthetic and real samples is quantified by the maximum
Pearson’s correlation coefficient between the filtered template and the real images. Figure 7(a)
presents the results obtained after matching the synthetic templates (shown in the legend) with
images taken with a wide range of exposures. It should be mentioned that since unavoidable
noise in the real images, the Pearson correlation coefficient does not reach its maximum value
(1.0). However, it exceeds 0.85 in all cases in which both the synthetic and real exposures times
are the same. As shown in this graph, as the exposure time slightly increases or decreases, the
correlation coefficient rapidly decays to values around 0.4. The apparent symmetry of these
curves reveals that non-similarities in the vicinity have a similar impact on the correlation. This
could imply that the CAE could face approximately similar challenges when equalizing longer
and shorter exposure times than the selected for the training.

Fig. 7. (a) Pearson correlation coefficient between the filtered templates and the real images.
(b) Training and validation losses for different training exposure times.

Table 3 summarizes the best model’s parameters for both topologies as described in section
4. It details the number and type of layers (with their corresponding activation functions), the
number of filters and kernel sizes, and, finally, the shape of the outputs and the total trainable
parameters for each layer. In all cases, the learning rate that performed best was 0.001.

Figure 7(b) shows the training and validation losses for both topologies for different training
exposure times. The use of a three-stage topology reduces losses for higher training exposures by
an improvement factor of approximately 25%.

5.2. Performance evaluation

Figure 8 presents the BER results obtained after training the CAE with different exposure times
of 161, 312, 444, 520, 633 µs. The x-axis shows the exposure time set by the camera (in
microseconds) when taking images. In addition, the ESR (section 4.2), the ratio between the
exposure time and the symbol time (94, 5 µs) is shown between brackets below its corresponding
exposure. From these results, it can be extracted that the CAE can easily adapt to exposure times
that are up to 10% higher or lower than the selected one for training, maintaining the BER below
10−5. However, after this margin, the BER increases steeply. An exceptional case occurs when
the training time is almost twice the symbol time (TTRAIN

exp = 161 ≈ 1.8 · 94.5µs), as it can be
seen in Fig. 8. In this particular case, the system can decode signals for all the exposures that
are lower than the selected for training, maintaining the BER below 10−5. The graph shown
in Fig. 7(a) helps to explain this result. In this graph, it is observed that the correlation of the
training template (161 µs) with images exposed with shorter exposure times remains relatively
high. Hence, the neural network can extract from the training images a set of features that differ
minimally from those of the images affected by lower ISI. Finally, the comparison between both
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Table 3. Optimized model’s summaries for the training dataset of 444 µs.

Two stages topology Three stages topology

Layer (activ.) Kernel Filters Out.shape Params. Kernel Filters Out.shape Params.

Encoder
Conv (ReLU) (4,5) 16 (256,16,16) 336 (5,5) 24 (256,16,24) 624

Maxpool (2,2) 16 (128,8,16) 0 (2,2) 16 (128,8,24) 0

Conv (ReLU) (5,3) 56 (128,8,56) 13496 (5,4) 48 (128,8,48) 23088

Maxpool (2,2) 56 (64,4,56) 0 (1,2) 48 (128,4,48) 0

Conv (ReLU) Not applicable (4,3) 32 (128,4,32) 18464

Maxpool Not applicable (2,2) 56 (64,2,32) 0

Decoder
TConv (ReLU) (5,3) 56 (64,4,56) 47096 (5,3) 32 (64,2,32) 12320

Upsamling (2,2) 56 (128,8,56) 0 (2,2) 32 (128,4,32) 0

TConv (ReLU) (4,5) 16 (128,8,16) 17936 (4,5) 48 (128,4,48) 30768

Upsamling (2,2) 56 (256,16,16) 0 (2,2) 48 (256,8,48) 0

TConv (ReLU) Not applicable (4,5) 24 (128,8,24) 28824

Upsamling Not applicable (2,2) 56 (256,16,24) 0

Conv (Sigm.) (5,3) 1 (256,16,1) 321 (5,3) 1 (256,16,1) 601

Total trainable parameters 79185 Total trainable parameters 114689

topologies agrees with the results shown in Fig. 7(b). The BER decreases less steeply for the
three-stage topology, especially for the high exposures.

Fig. 8. BER results for training exposures, TTRAIN
exp , under high SNR conditions.

Figure 9 shows the results obtained under harsh SNR conditions (between 12 and 18 dB). In
this case, using a 3-stage topology is justified for cases where the ESR is greater than 3. Under
these conditions, it is possible to decode signals with BER below the FEC limit for ESR values
up to 7. Fig. 10 shows the behavior of the system under different SNR conditions. As it can
be seen, the BER decreases approximately linearly with the SNR (in dB), with a comparable
slope for all cases (except for the blue curve). This slope is approximately 200 dB−1. In addition,
it indicates that as the training is conducted longer exposure times, the CAE cannot correctly
minimize the error at the output, regardless of the noise level. The exceptional case occurs when
the ESR is approximately equal to 2. In this case, the network has succeeded at deinterlacing the
hidden features of the training signal from the added noise, enabling the system to achieve BERs
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below 10−5 for SNR greater than 3 dB. Figure 11 shows a visual representation of the received
signals for exposures of 444 and 520 µs, under the maximum (yellow curve) and minimum SNR
(purple curve) conditions, with different average incident power. The estimated SNR is shown
within the legend for each curve. To help the accurate visualization of the estimated SNR, a
non-scaled version of the filtered template (black dashed curve) is included within the graph. It
corresponds to the expected signal to be received in the absence of noise. Clarify that the average
power level of the signal changes since it is being adjusted through the voltage source of the light
to vary the SNR.

Fig. 9. BER results for training exposures, TTRAIN
exp , under moderate SNR (12 to 18 dB).

Fig. 10. BER results for different training exposures, TTRAIN
exp under SNR conditions.
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Fig. 11. Real signal examples obtained under different SNR conditions.

6. Discussion

In this section, the experimental results shown before are discussed. The proposed system is
evaluated in the context of the available literature up to the authors’ knowledge. Finally, a method
to estimate the theoretical achievable data rate of the state-of-the-art systems reported is detailed
and used to compare their performance based on the parameters of their experimental setups.

Table 4 shows the results comparison against the state-of-the-art. In this table, the fairest
comparison results are the ESR (section 4.2) and the bandwidth improvement ratio. The latter
refers to the ratio between the signal bandwidth and the cut-off frequency restriction imposed by
the camera’s exposure time. The proposed system improves the results in both cases.

Table 4. Comparison with the state-of-the-art.

Architecture Output Training Max. ESR
a

Max. BW
ratioa

Min. SNR
(ESR ≈ 4)a

Trainable
params.

Theor.
data ratea

1D-MLPb 1 Real ≈ 5 times ≈ 9 times > 30 dB 100200c 2.584 kbps

2D-CAE 256x16 Synthetic ≈ 7 times ≈ 14 times ≥ 5 dB 79185 3.072 kbps

aWith BER below the FEC limit.
bYounous et al. [13]
cConsidering 500 input, 200 hidden and 1 output neurons (non-biased). [14]

Regarding the SNR conditions, this system can decode data with BER below the FEC, with
ESR around 4, under SNR as low as 5 dB. However, it can also decode signals with ESR equals 2,
under SNR as low as 2 dB, with BER below 10−5. Regarding the number of training parameters,
a notable reduction is also observed, which improves network efficiency by up to 20%.

The last column detail the achievable theoretical data rate. To conduct a fair comparison,
both systems must meet the following requirements: the number of frames per second, fps is
30 fps, and the vertical resolution of the sensor, H, 1024 pixels. The assumptions considered
for estimating the theoretical achievable data rate are detailed below. First, the whole vertical
resolution of the IS is utilized for data recovery. Second, perfect synchronization between the
transmitter and the receiver is assumed, without blind times at the reception, which means that
the camera is operating continuously without stopping between frames. Finally, preamble or
postamble bits are not considered. Under these assumptions, a fair comparison of the achievable
data rate is computed using Eq. (14) (notice the factor of two since the signal is encoded using
Manchester). In the case of 1D-MLDP, the data rate has been computed based on the sampling
frequency of the Thorlabs CMOS camera model DCC1645C (detailed in the datasheet [33])
(13,315 kHz), and the maximum transmission frequency reported in [13] (2,240 kHz), resulting
in Npps = 5.94 ≈ 6.
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Under these conditions, the proposed CAE reaches a binary rate that is up to 500 bps higher
than the achieved by the 1DMLP. Furthermore, the camera used in this work has a higher vertical
resolution (1080 instead of 1024) and can be configured with 60 fps, so the maximum achievable
rate is 6,480 kbps.

Rb =
H

2Npps
· fps = H · Ts

2tsym
· fps = H · ftx

2fs
· fps (14)

However, if previous requirements are not fulfilled, to ensure the successful packet detection
within a frame, it is necessary to send the packet repeatedly, at least during the acquisition of two
consecutive frames, and to restrict the packet length (in pixels) to at most half of the vertical size
of the ROI [34]. Thus, the theoretical data rate must be divided by a factor of 4. In addition,
preambles and postambles must be included in experiments, and the ROI is generally a fraction
of the IS vertical resolution and might be considered in the computation of the data rate.

Finally, a series of comments should be added concerning the output size. Since the MLP
network has a single output neuron, it is necessary to sweep the image from top to bottom pixel
by pixel, which is computationally expensive. Besides, it is necessary to reserve m samples
before (or after) with respect to the output sample, depending on whether the equalization weights
the inputs backward or forwards (or a mixture of both). This would affect the equalization
at the edges, introducing some artificial errors that further reduces the exploitable region for
recovering data. In this work, the CAE’s output has the same dimensions as the input, allowing
equalizing the image by segments (not by pixels). Furthermore, the undesirable effects on the
edges are effectively mitigated by the neural network that conveniently evaluates both backward
and forward pixel values.

7. Conclusions

This work demonstrated that using a 2D CAE for exposure-related ISI mitigation outperforms
the state-of-the-art one-dimensional MLP networks. The proposed system could decode signals
with BER below 10−5 for exposure times that exceed seven times the transmission symbol time
(ESR≥ 7) in optimal SNR conditions. This implies a bandwidth improvement at the reception
of approximately 14 times compared to a non-equalized receiver. Moreover, the system can
decode signals under low SNR conditions. For example, BER values lower than the FEC limit
can be obtained for SNR greater than 9, 5, or 1 dB for ESR of 7, 4, or 2, respectively. In addition,
the network is capable of decoding signals with exposure times 10% longer or shorter than the
selected one for training, which favors its flexibility to operate with different camera devices.
On the other hand, the proposed architecture reduces up to 20% the total trainable network
parameters. Finally, the procedure for generating synthetic RS training images was validated. The
network’s input standardization allows the synthetic procedure to rely exclusively on time-related
parameters independent of the deployment scenario: the camera’s exposure time, the sampling
period, and the transmitted symbol time. These images can also be distorted with artificial noise.
Therefore the network training can be conducted offline, for an endless number of cameras and
SNR conditions, using vast training databases, ultimately improving the network fitting and the
overall decoding robustness.
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5.3. ARTIFICIAL INTELLIGENCE-ASSISTED LINK PARAMETER
ESTIMATION

5.3 Artificial intelligence-assisted link parameter es-

timation
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for signal clock and exposure estimation in rolling shutter optical camera communica-
tion,” Opt. Express, vol. 30, pp. 20261–20277, Jun 2022

This work addressed the general objective GO1, proposing a novel receiver archi-
tecture for the simultaneous operation of cameras as visualization and data acquisition
devices. In addition, it addresses the general objective GO2 with: (i) the design of
an experimental platform for obtaining real-world samples, (ii) the improvement of
the previously proposed algorithm for producing synthetic images, and (iii) the gen-
eration and publication of open datasets. Moreover, a later related work published at
the CSNDSP conference further improves the proposed architecture, making it even
more versatile and adaptable. At the end of this introduction, the contributions of the
related publication, which is included in the Annex B, will be briefly described.

The main contribution of this work is the development of a generic AI-assisted
architecture that operates indistinctly with a vast number of cameras, whose inter-
nal configuration (exposure time and row sampling period) is unknown in advance.
Furthermore, this architecture is designed to work exclusively with image streams re-
gardless of their origin, which can be cameras or multimedia files. Therefore, data
acquisition routines are decoupled from the cameras’ hardware and settings and can
be deployed in a cloud infrastructure.

The central element in this architecture is the estimator, a CNN that estimates from
images those link parameters required by the rest of the blocks in the reception chain,
which, in this work, are the NPPS, and the ESR (Chapter 3). The former relates the
transmitter’s symbol rate with the camera’s sampling rate (understood as the inverse
of the row sampling period). Hence, it is related to the signal clock frequency (in
terms of samples per symbol). The latter is the ratio between the exposure time and
the symbol time.

In this work, both estimates are required to select the optimal equalizer from a
bank of pre-trained exposure-related equalizers (Section 5.2). It should be noted that
a single equalizer supports an ESR deviation (in the input images) of up to 11% with
respect to the training ESR. Therefore, several overlapping pre-trained equalizers are
required for the receiver to operate under different exposure times. The reason behind
storing in memory the computed weights and biases of those equalizers instead of
training on-demand a single equalizer lies in the required training time and resources.
Longer training times, as is the case, would intensely occupy the receiver causing
link disruptions and unacceptable latencies. The related contribution will solve this
challenge by dramatically reducing the training time and resources by using transfer
learning techniques. Moreover, the NPPS is also required in later stages to recover the
signal clock.

As mentioned above, this estimator arises from the need to obtain these parame-
ters for the correct reception when they are unknown beforehand. For example, the
exposure setting is unknown when the camera (i) does not reveal its internal settings,
for example, on firmware-protected devices (such as Android and iOS smartphones),
(ii) does not allow to set it on-demand or (iii) dynamically adapts it based on the
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ambient illumination. Additionally, the IS’s row sampling time is virtually unknown
on most camera devices since revealing its internal clocks makes no practical sense.
This parameter is specific to the hardware used and does not significantly impact the
images from a photographer’s point of view. Finally, although the transmitter symbol
rate can be set as a design criterion, this is not desirable. Restricting the symbol rate
forces the transmitter to either (i) be unable to dynamically adapt the data throughput
based on link requirements or (ii) use complex protocols to notify the receiver of its
current status.

This estimator works with profoundly impaired signals (i.e., dramatically affected
by different exposure times), reassembling the functions of a traditional clock recovery
system but with a significantly enhanced performance. Furthermore, it is not exclu-
sively trained for discrete expected NPPS and ESR values. Instead, it covers all the
possibilities within the interval designated for those parameters. This is achieved by
training the network with thousands of representative synthetic images generated using
an enhanced version of the previously presented generation procedure (Section 5.2).

This version adds three optional stages that make synthetic images even more real-
istic (Chapter 4). The first stage scales the signal and applies different camera gamma
transformations. The second stage quantifies the pixel values based on the camera’s
bit resolution (in this case, 8 bits). This quantization maps the pixel float values to
discrete integer values, adding the quantization noise. The final stage introduces JPEG
compression artifacts. It should be highlighted that artifacts produced by other com-
pression algorithms can also be explored, making the parameter estimation even more
robust.

The evaluation of the estimator reveals relative errors for the NPPS and the ESR
lower (on average) than 1.3% and 3%, respectively, with maximum values of 3% and
9%. These results guarantee that the proposed architecture will maintain a BER
below the FEC limit based on the results obtained in the previous work. Therefore,
they validated that this estimator can enable data reception without prior knowledge
of the camera’s hardware and configuration. Furthermore, the estimator can be used
alternatively to characterize the camera exposure time and row sampling time by tuning
the transmitter frequency. Accordingly, the estimator is also a laboratory tool for
precisely characterizing cameras.

The main implication of this work is that it radically changes the design strategy
of new OCC links. Rather than restringing the link design to particular transmitter-
camera sets, it invites to search for methods, procedures, and subsystems that decouple
image streams from data reception routines, shifting the focus from working with cam-
eras to working with images. The estimator proposed in this work contributes to this
purpose while allowing, at the same time, the simultaneous operation of cameras as
data acquisition and imaging devices.

Another contribution of this work is the description of the iterative process carried
out to improve the estimator training, reducing the gap between the validation and
training errors through the expert adjustment of the synthetic training datasets.
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Abstract: In rolling shutter (RS)-based optical camera communication (OCC) links, selecting
the appropriate camera’s exposure time is critical, as it limits the reception bandwidth. In long
exposures, the pixels accumulate over time the incoming irradiance of several consecutive symbols.
As a result, a harmful intersymbol interference corrupts the received signal. Consequently,
reducing the exposure time is required to increase the reception bandwidth at the cost of producing
dark images with impracticable light conditions for human or machine-supervised applications.
Alternatively, deep learning (DL) equalizers can be trained to mitigate the exposure-related ISI.
These equalizers must be trained considering the transmitter clock and the camera’s exposure,
which can be exceptionally challenging if those parameters are unknown in advance (e.g., if
the camera does not reveal its internal settings). In those cases, the receiver must estimate
those parameters directly from the images, which are severely distorted by the exposure time.
This work proposes a DL estimator for this purpose, which is trained using synthetic images
generated for thousands of representative cases. This estimator enables the receiver operation
under multiple possible configurations, regardless of the camera used. The results obtained
during the validation, using more than 7000 real images, registered relative errors lower than
1% and 2% when estimating the transmitter clock and the exposure time, respectively. The
obtained errors guarantee the optimal performance of the following equalization and decoding
receiver stages, keeping bit error rates below the forward error correction limit. This estimator is
a central component of any OCC receiver that operates over moderate exposure conditions. It
decouples the reception routines from the cameras used, ultimately enabling cloud-based receiver
architectures.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical camera communication (OCC) is a branch of visible light communication (VLC) [1], in
which the optical receivers are the pixels of an image sensor. The interest in this technology lies
in the reuse of embedded cameras in a wide range of end-user devices (e.g., smartphones, vehicle
dashcams, laptops). In this way, it is intended to break the market’s entry barriers imposed on
VLC due to the need of using dedicated reception hardware (i.e., photodiode-based receivers) [2].

Notwithstanding, the actual reuse of rolling-shutter (RS) cameras for simultaneous data
acquisition and scene visualization is challenging. Using RS-cameras as receivers requires the
camera to be optimally configured to achieve the highest link throughput [3]. Its exposure time
should be minimized, otherwise, it will restrict the available reception bandwidth (acting as a
low pass filter [4,5]). However, under short exposure conditions, the camera delivers dark images

#458538 https://doi.org/10.1364/OE.458538
Journal © 2022 Received 15 Mar 2022; revised 13 May 2022; accepted 16 May 2022; published 23 May 2022
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with impracticable light conditions for human or machine-supervised applications (i.e., users
cannot perceive objects in the scene) [4].

Consequently, a tradeoff appears in selecting the suitable exposure time for a particular
application. To obtain an in-depth understanding of how the exposure time affects communications
is necessary to examine the RS-cameras’ image acquisition mechanism [6]. In contrast to global
shutter (GS) cameras that expose the whole image sensor during acquisition, RS cameras expose
it sequentially row-by-row of pixels from top to bottom as shown in Fig. 1. In this acquisition,
each row is activated after transcurred a fixed interval, known as the row sampling time, TS.
After the activation, the row’s pixels remain exposed to light during a configurable amount of
time, known as the exposure time, texp. As a result, each row samples the light at different
sampling instants, generating an image composed of different intensity bands depending on the
illumination state of the transmitter [6–9].

exposure
time, texp

Each pixel 
collects over 
time the 
irradiance of 
consecutive 
symbols,
producing ISI.

symbol time, tsym

row sampling
time, Ts

ro
w

s

ro
w

s

pixel values pixel valuest t

Ts

symbol 1ON OFF ON symbol 2 symbol 3
Tx signal(a) (b)

Fig. 1. Rolling shutter image acquisition mechanism.

Figure 2(a) shows an example of the generation of the symbol bands (or stripes) for binary
transmission. From this figure, it can be extracted that the row sampling time (which generally
ranges from tens of nanos to microseconds) constitutes, essentially, the receiver’s sampling
period. In contrast, in GS cameras, the receiver’s sampling period corresponds to the time
elapsed between two consecutive frames [7]. Thus, RS cameras outperform GS cameras in terms
of achievable data rate [10].

Exposure time (in microseconds)

75 s 113 s 150 s 190 s 227 s 265 s 302 s 340 s 378 s 415 s 454 s 491 s 529 s

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

Fig. 2. Captures of the same transmission with increasing exposure time.

Fig. 1(a) illustrates an ideal sampling, in which the exposure time equals the row sampling
time (texp ≤ trow). In this case, there is no overlap between the exposure of two consecutive rows.
On the other hand, Fig. 1(b) illustrates a case where the exposure time is roughly 2.5 times greater
than the symbol time. In this case, the pixels accumulate, over time, the incoming light irradiance
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of several consecutive symbols, corrupting the transmitted signal with a devastating intersymbol
interference (ISI). As seen in this figure, the received signals are comparatively different. Their
brightness increases with the exposure as the pixels accumulate light over a longer time, while
their peak-to-peak amplitude decreases and varies more slowly. Figure 2 shows real captures
under increasing exposure times for the same transmission (i.e., same frequency and data). It
can be appreciated that these examples significantly differ either in shape or brightness, despite
capturing the same transmitted signal, which reveals the complexity faced by the receiver at the
decoding stage.

In conclusion, the exposure time has devastating effects, which are more detrimental depending
on the ratio between the exposure and the symbol time, called the exposure to symbol ratio
(ESR) [4]. Experimentally it can be demonstrated that the exposure effects are neglectable
when the exposure time is less or equal to half the symbol time (texp ≤ tsym/2 or ESR ≤ 1/2).
This criterion remarkably restricts the number of different camera devices that can be used as
receivers for a given transmitter. First, not all cameras can achieve the required short exposure.
Second, they might rely on automatic algorithms for setting the exposure based on ambient
light conditions. Finally, they might not allow access to their internal settings. Therefore, it is
important to propose equalization stages to mitigate the inevitable exposure-related ISI.

To improve the reception’s bandwidth, Liqiong et al. [11] propose a CNN-based neural
architecture for demodulating on-off keying (OOK) signals captured with an RS camera. In
addition, Yun-Shen et al. [12,13] propose two different AI-assisted approaches for demodulating
4-level pulse amplitude modulation (PAM4) signals: a pixel-per-symbol labelling (PPSL) and a
long short-term memory neural networks (LSTM). Despite these architectures notably improve
data decoding, their performance has been evaluated in relatively good exposure conditions.
Based on the configured exposure time and the attained baud rates, in these works, the exposure
time does not exceed the symbol time (ESR ≤ 1).

On the other hand, Younus et al. [14–16] propose the use of a one-dimensional artificial
neural network (ANN) equalizer. This network can equalize OOK (or 4PAM) signals affected
by exposure times that are up to 4 times the symbol time (ESR ≤ 4), improving the receiver’s
bandwidth by nine times compared to non-equalized receivers. However, this approach did not
take advantage of the spatial redundancy of the data replicated in nearby columns [17], which
can be exploited to increase the signal-to-noise ratio (SNR). Hence, the proposed equalizer is
very sensitive to noise. In addition, the experimental setup used to train the system was very
complex to conduct. It requires placing the receiver camera alongside a photodiode to obtain the
training signals. In other words, the authors propose an ad-hoc solution that involved a highly
time-consuming training phase for equalizing the images captured by a specific camera.

Alternatively, a two-dimensional convolutional autoencoder (CAE) equalizer trained using
exclusively synthetic images was proposed in a previous work [4]. The validation (with real
images) demonstrated that this network records bandwidth improvements of up to 14 times
for OOK signals (compared to non-equalized receivers) under moderate SNR conditions (12
to 18dBs). This equalizer can decode signals with exposure times that are up to seven times
longer than the symbol time (ESR ≤ 7), attaining bit error rates (BER) below the forward error
correction (FEC) limit (i.e., 3.8 × 10−3). Furthermore, since the training is conducted using
synthetic images, it can be done offline and on-demand for a wide range of RS cameras with
different characteristics.

For all the works above mentioned there is a common requirement. The receiver must be tuned,
or adjusted, to the transmitter’s clock frequency and the camera’s exposure time. Meeting this
requisite is exceptionally challenging when these parameters are unknown in advance or cannot
be established. For example, when the transmitter dynamically adapts its transmission frequency,
or, when the camera does not provide access to its internal settings [18], or dynamically adjusts
its configuration based on ambient light estimations. In those cases, the receiver must recover
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those parameters directly from the received images, which is an exceptionally complex task
because the images are severely distorted by the exposure.

In this work, a novel estimator block based on convolutional neural networks (CNN) is proposed
to address this challenge. This estimator, pretrained with large synthetic datasets, ingests real
images containing data packets and estimates the required signal parameters delivering them to the
following equalization and the decoding stages: the signal clock and the camera’s exposure time.
Furthermore, the training dataset contains thousands of representative cases and noise conditions,
enabling the estimator to operate effectively in many configurations, regardless of the camera
used in the final deployment. The role of the proposed estimator becomes indispensable in any
RS-OCC link that operates over moderate exposure conditions. It is responsible for recovering,
under harsh conditions, the exposure time used for adjusting the equalizers and the signal clock
required for data decoding. Consequently, it allows decoupling of the receiver’s equalization and
decoding routines from the hardware used (i.e. cameras), enabling cloud architectures that can
handle many different image streams.

In addition, in this work, a dataset containing more than 7000 real-captured images for
different exposure times and transmission frequencies was generated and released to the scientific
community (Dataset 1 [19]).

The remainder of this paper is organized as follows. Section 1 introduces the proposed
architecture and details the role of the estimator, which inputs it takes and which parameters
deliver to the equalizer and the decoder in the reception chain. Section 2 describes the methods,
procedures, metrics and the experimental setup used to evaluate the estimator’s performance,
including the synthetic network training and the validation using real captured images. Section 3
presents the results. Finally, the conclusions of this work are summarized in section 4.

2. Communications scheme

Figure 3 shows the proposed system architecture and its functional blocks. At the transmitter
side, a uniform illuminated flat-panel LED sends non-return to zero (NRZ) Manchester encoded
on-off keying (OOK) pulses. Pseudo-random data bits are grouped into packets with a fixed
length and enclosed with a header consisting of five consecutive ones and a zero-bit trailer. In
addition, after three consecutive bits, a stuffed bit is inserted, preventing the header sequence
from appearing within the payload. This redundant bit is set to one if the preceding bit is zero or
zero otherwise. For instance, considering the following payload bits, ’11011’, the transmitted
data packet is ’11111-110-1-11-0’. On the receiver side, two independent subsystems are
interconnected through a shared interface: the image and data acquisition subsystems. The former
consist of a generic RS-camera that continuously delivers a stream of compressed JPEG images.
This camera is configured, if possible, to select its lowest exposure time required for human or
machine-supervised applications. The data acquisition subsystem includes functional software
components that can be either embedded in a hardware platform physically interconnected to
the camera or deployed in a cloud infrastructure. The first block, the stream manager, controls
different image streams and constitutes the input interface to the reception chain. Through this
interface, it receives images and stores them in buffers until decoding resources are available.

The blocks that follow the stream controller are responsible for recovering the data embedded
in the image: the equalizer, the decoder and the estimator blocks. In the proposed architecture,
the equalizer consists of a bank of pre-trained CAEs (detailed in [4]) trained for different exposure
times and signal clocks. Their function is to mitigate the exposure-related ISI and reduce the
noise. On the other hand, the decoder uses 2D correlation techniques for packet detection,
synchronization, and data decoding (as detailed in [20]). Figure 3 shows that these subsystems
receive as inputs two important parameters: the number of pixels per symbol (NPPS) and the
exposure to symbol ratio (ESR). The former, as introduced in [16], represents the theoretical
number of samples per symbol. It is the ratio between the symbol time, tsym and the RS-camera’s
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row sampling period, Ts, (NPPS = tsym/Ts). Hence, this parameter is directly related to the signal
clock. As an example, in Fig. 1 the signal’s NPPS is 3, i.e., theoretically, 3 pixels (or samples)
is the expected height for each symbol. Emphasize that the NPPS is not necessarily an integer
value. The latter is the ratio between the exposure, texp and the symbol times, tsym. It indicates
how deteriorated is the signal due to the exposure time. As an example, in Fig. 1(a) the ESR is
lower than 0.5 (i.e., ≈ 0.33) and, hence, the receiver is operating in optimal sampling conditions
(texp ≤ tsym/2). However, in Fig. 1(b), the ESR is 2.5, and the ISI is significant. In conclusion,
these dimensionless parameters (i.e., NPPS and ESR) characterize the signal received and allow
the equalizer to be adjusted for its optimal performance and the decoder to recover the signal
clock and proceed with data acquisition.

Fig. 3. Embedded or on-cloud receiver scheme.

Finally, the estimator block is responsible for predicting those parameters when they cannot be
set or known in advance. To accomplish this, it ingests real images containing data packets and
delivers the NPPS and ESR estimates to the corresponding blocks in the reception chain. In this
way, the receiver communication algorithms are decoupled from the hardware used to stream the
images, even from the camera’s configuration.

It should be highlighted the complexity of estimating those parameters from the received signal
when the exposure comes into play. Under ideal exposure conditions, the NPPS can be easily
estimated by counting the number of sequences of ones and zeroes samples after thresholding
the image with a fixed value, as detailed in [21,22]. In those works, the NPPS is known as the
stripe width. Moreover, it is unnecessary to estimate the ESR as there is no need to perform the
exposure-related equalization. This strategy for estimating the NPPS is accurate only under ideal
sampling conditions. In any other case, the ISI severely distorts the signal, altering its shape,
intensity and temporal evolution. This estimator is based on a convolutional neural network
(CNN) (Fig. 4). The topology of this network consists of a sequence of feature extraction blocks
(Fig. 4(b)) that obtains a set of features from the input images (Fig. 4(a)), and a regression
artificial neural network (ANN) (Fig. 4(c)), that estimates the parameters as a function of those
latent features. The feature extraction blocks are composed of depthwise separable convolutional
layers (DSC) [23], replacing the 2D convolutional neural layers (Conv2D) used in traditional
CNNs. Compared to the latter which performs the spatial and channel-wise convolution of the
inputs using three-dimensional kernels (Fig. 4(e)), DSC layers split the computation into two
steps (Fig. 4(f)): a depthwise convolution, followed by a pointwise convolution. The advantage
of using DSC layers compared to Conv2D layers is that the number of training parameters is
considerably reduced. Figure 4(e) compares the Conv2D and the DSC layers. The former uses a
unique kernel, K, with the same number of channels (depth) as the input, I. The result of the
convolution operation, Z, is a two-dimensional tensor, which is expressed in Eq. (1).

Z[i, j] = (I ⊛ K)[i, j] =
kw−1∑︂
m=0

kh−1∑︂
n=0

kd−1∑︂
l=0

I[m, n, l] · K[i − m, j − n, l] (1)
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where i, j are the output’s indexes, m, n, l, the horizontal, vertical and channel kernel’s indexes,
and kw, kh, kd, the kernel’s width, height and depth. On the other hand, a DSC separates this
computation into two steps. First a depthwise convolution is applied to each independent channel
of the image, I, using a two-dimensional kernel, Kdepthwise. The outputs for each iteration are
then stacked together, obtaining and output tensor that has the same depth as the input, expresed
in Eq. (2). In this step, a kernel vector, Kpointwise with a length, kd equals to the number of input’s
channels is convolved with every spatial point of the stack, resulting in a two dimensional tensor,
Z, which is expressed in Eq. (3).

Z ′[i, j, k] =
kw−1∑︂
n=0

kh∑︂
m=0

I[m, n, k] · Kdepthwise[i − m, j − n] (2)

Z[i, j] =
kd∑︂
l=0

Z ′[i, j, l] · Kpointwise[l] (3)

Following the convolution, the outputs are biased (B[i, j]) and transformed using a non-linear
activation function, ϕ, which generates a feature map, F[i, j] (Eq. (4)) for the next stage.

F[i, j] = ϕ(Z[i, j] + B[i, j]) (4)

The non-linear activation functions used in this work are the Leaky Rectified Linear Unit
(Leaky ReLU) and the Sigmoid functions [24,25]. Afterwards, a sequence of pooling layers
replaces the outputs in specific locations with a statistical summary of the outputs in the vicinity.
This contributes to increase the non-linearity of the outputs and reduces the total number of
network parameters. In this model, max-pooling and average pooling layers are used. The former
returns the maximum value and the second the average value of a rectangular patch. This pooling
stage starts with an average pooling layer (Fig. 4(g)) with kernel’s dimensions 1xN where N is
the number of columns considered. Then it follows a max-pooling layer (Fig. 4(h)) Mx1 where
M is the number of rows.
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Fig. 4. Deep learning estimator model.

Finally, the RNN consists of a dense neural network with a single hidden layer and an output
layer of 2 neurons, one per estimated parameter (i.e., NPPS and ESR). Also, as the outputs are
normalized between zero and one, the activation function used in this case is the softmax.
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3. Methodology

The evaluation of the proposed estimator’s performance takes place in the following phases. In
the first phase, both the synthetic and real datasets were generated. The algorithm used to create
the synthetic images is detailed in [4]. For generating the real dataset (Dataset 1 [19]), the images
were captured using the experimental setup shown in Fig. 5. It consists of a flat-panel LED
pointing towards an RS-camera separated at a distance of 20 cm. At this distance, the transmitter
occupies the image entirely. The signal is generated using an arbitrary wave generator, and a
power supply is used to feed the light source. Table 1 summarizes the key parameters of the
experiment necessary for its replicability.

The real dataset (Dataset 1 [19]) contains more than 7000 image samples for different NPPS
and ESR. The NPPS values range from 4.0 to 7.0 in steps of 0.5 units and the ESR from 1.0 to
7.0 in steps of 0.5 units. After the generation of both datasets (synthetic and real), a rigorous
analysis is carried out to verify that they are comparable, at least from the perspective of the
neural network.

LED Flat-panel

PiCamera V2

Display
Reference image

RS-camera
PiCamera V2

Side view Front view Top view

Raspberry Pi 4B

LED 
Flat panel

Fig. 5. Experimental setup.

Table 1. Experiment’s key parameters.

Parameter Value Parameter Value

Camera Transmitter

Hardware Sony IMX219 [26] LED color Cold white

Aperture lens f/2 |Focal length (3 mm) Source voltage (V) 30 to 35

Image resolution 1920x1080 pixels Symbol time, tsym |
NPPS

75 µs to 135 µs | 4 to 8

Exposure times, texp 20 µs to 1500 µs (step 19 µs) Header, payload,
stuffed, and trailer bits

5, 35, 12, 1

Sampling period, TS 18.9035 µs Random seed 31415

The following phase is the actual training of the network using the synthetic dataset. The
training is conducted offline using a computer with local access to the datasets stored in memory.
For training, the input images are z-score standardized, and the outputs are normalized between
zero and one using a fixed value. The loss function used for training the network is the Mean
Squared Error (MSE). Additionally, to improve the training results (i.e., minimizing the MSE), a
network hyperparameter optimization is conducted, following the hyperband algorithm detailed
in [27]. The layers of the optimized network model are summarized in Table 2. This table
presents from top to bottom the subsequent layers, starting from the input layer, which ingests
images, and finalizing with the output layer consisting of two neurons (one per estimate). In each
row, it is detailed the layer type (such as DSC, average pooling, max pooling, dense,. . . ), the total
number of trainable parameters (such as the layer’s weights and biases), specific parameters (such
as the number of filters, the kernel size,..), and, finally, the layer’s output shape. The latter is the
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shape of the output tensor delivered from a particular layer. For instance, the input layer returns a
tensor with a shape of 32 images (i.e., corresponding to the training batch size) with a height and
width of 256 and 64 pixels, respectively, and 1 colour channel (i.e., the image is in grayscale).

Table 2. Model summary.

Layer Train params. Description Output shape

Input 0 - (32, 256, 64, 1)

DSC 47 Filters=16, Kernel=(3,5) (32, 256, 64, 16)

AveragePool 0 Kernel=(1,4), Strides=(1,2) (32, 256, 32, 16)

MaxPooling 0 Kernel=(2,2), Strides=(1,1) (32, 128, 16, 16)

DSC 688 Filters=32, Kernel=(3,3) (32, 128, 16, 32)

AveragePool 0 Kernel=(1,2), Strides=(1,1) (32, 128, 8, 32)

MaxPool 0 Kernel=(2,1), Strides=(1,1) (32, 64, 8, 32)

DSC 2400 Filters=64, Kernel=(3,3) (32, 64, 8, 64)

AveragePool 0 Kernel=(1,2), Strides=(1,1) (32, 64, 4, 64)

MaxPool 0 Kernel=(2,1), Strides=(1,1) (32, 32, 4, 64)

DSC 8768 Filters=128, Kernel=(3,3) (32, 32, 4, 128)

AveragePool 0 Kernel=(1,2), Strides=(1,1) (32, 32, 2, 128)

MaxPool 0 Kernel=(2,1), Strides=(1,1) (32, 16, 2, 128)

DSC 17536 Filters=128, Kernel=(3,3) (32, 16, 2, 128)

AveragePool 0 Kernel=(1,2), Strides(1,1) (32, 16, 1, 128)

Flatten 0 - (32, 2048)

Dense 524544 Units=256, bias=True (32, 256)

Dense 16448 Units=64, bias=True (32, 64)

Dense 128 Units=2, bias=False (32, 2)

Total trainable params: 570,559

The next phase consists of validating the model training using the real dataset (that has not been
used during training). The validation metric is the root MSE (RMSE) of the estimates. In addition,
based on the results obtained, the training is improved iteratively by refining the synthetic dataset
to make it more similar to the real dataset. In this way, it is possible to progressively enhance the
network’s performance, reducing the validation error. In the last phase, the validation estimates
are analyzed and dissected in the NPPS and ESR dimensions to examine possible influences
between them. For instance, the ESR conditions may influence the estimation of NPPS and
vice versa. Finally, the relative errors (RE) at estimating the transmitter clock and the camera’s
exposure time is computed.

4. Results

This section starts by introducing the preliminary examination and comparison between the
synthetic and the real datasets. Then, the iterative process accomplished to refine the results
obtained in the training and validation of the model is presented. At the end of this section, the
final results obtained for the best training configuration are dissected and discussed, analyzing
the model’s precision and accuracy in estimating the NPPS and the ESR.

Figure 6 displays two example sets (left and right) with three different images to provide a
visual comparison between the real and synthetic datasets. The first image (in those sets) belongs
to the real dataset. It is a grayscale image that takes values between 0 and 255. The second image
is a 2D tensor obtained from the z-score standardization of the previous image. It has values
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between -3 and 3 so that its mean and standard deviation are close to 0 and 1, respectively. The
third image is the synthetic version (z-score standardized) created with the algorithm detailed in
[4]. The left and right sets represent signals with NPPS of 4 and ESRs of 1.1 and 5.6, respectively.
These sets are affected by different SNRs: 20 dB (left) and 7 dB (right). It should be remarked
that only the z-score standardized tensors will be used as inputs in the training and validation.
Therefore, they should be comparatively similar, at least from the perspective of the neural
network. At first glance, they might look quite similar in this visualization. However, to give
rigour to this analysis, the cross-correlation between both datasets was carried out. The resulting
cross-correlation matrix is shown in Fig. 7. Each point of the correlation matrix represents
the maximum correlation value obtained for a pair set (synthetic, real). Highlight that for this
experiment, the transmitter is configured to send packets with the same payload, and the synthetic
versions of these images also contain the same data. The results are distributed in the matrix as
follows. The left axis represents the synthetic images, and the upper axis, the real images used
for the correlation. The axis labels are sorted based on the pair sets (NPPS, ESR). From left to
right and top to bottom, the NPPS value increases. Also, for each NPPS (e.g., 4.0), the ESR is
increased until it reaches its maximum value, obtaining the corresponding pairs sets (e.g. ,(4.0,
1.0), (4.0, 1.5),. . . , (4.0, 7.0)).

NPPS: 4, ESR: 1.1 NPPS: 4, ESR: 5.6

Real
Real

(z-scored)
Synthetic
(z-scored) Real

Real
(z-scored)

Synthetic
(z-scored)

Fig. 6. Comparison between real and synthetic segments after applying the z-score
standardization.

This matrix shows that the maximum values are in the diagonal, indicating that the synthetic
generated versions match the camera images successfully. On the other hand, it can be appreciated
that the correlation values decay softly from the diagonal towards the edges (i.e., the correlation
values decrease softly as the ESR slightly increases or decreases). There is an explanation for this,
and it is related to the inherent behaviour of the genuine acquisition regarding the exposure time.
As the camera’s exposure duration is increased (with respect to the original exposure conditions),
the obtained images progressively lose their similarity with the initial image. The point at which
increasing the exposure time makes two images significantly different can be determined from
this matrix. This is the point where the correlation value decreases from 0.95 (high correlation)
to 0.65 (low correlation). At this point, the ESR has increased (or decreased) by roughly one unit,
as can be observed in Fig. 7(b). Finally, this matrix shows that the correlation output values are
low for different NPPS (i.e., the images with different NPPS can be successfully distinguished).
From these results, it can be preliminarily concluded that the model would perform worst at
estimating the ESR compared to the NPPS.

Once the similarity of the images has been verified, it is important to highlight the benefits of
using a synthetic dataset for training rather than the real dataset. The first advantage is reducing
the generation time and memory resources. Capturing real images requires building and adapting
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Fig. 7. Cross-correlation matrix of the real and synthetic datasets.

an experimental setup which consumes lots of resources and time. On the other hand, there is
no need to rely on cameras to generate synthetic images; hence, they can be made in parallel
at high speed. Moreover, specific parameters such as SNR and additional image compression
effects are more controllable and rigorous in synthetic images. For example, in real images, to
vary the SNR, it is required to precisely adjust the light power of the source, as it is considerably
complex to control the noise contributions. In addition, the estimation of the SNR accurately in
real images is a remarkably elaborate task. In contrast, different controlled noise contributions
can be easily added to synthetic images. Finally, the use of synthetic images allows decoupling
the network’s training from the camera that will be used in the final deployment. This enables
the training for a wide range of generic RS cameras.

Regarding the network’s training, Fig. 8(a) shows the training and validation losses per
training epoch. The solid blue line represents the validation loss achieved using the best training
configuration. The blue dashed line represents, on the other hand, the training loss. Alternatively,
the pink lines (solid and dashed) represent the losses (obtained in validation and training) for
previous training configurations. These pink lines are used as references only to provide a visual
comparison of the improvements obtained in each iteration. As shown in this graph, there is
always an irreducible gap between validation and training losses. This is because the synthetic
dataset (used for training) and the real dataset (used for validation) are not perfectly similar.
However, despite this gap, the validation loss precisely follows the training loss, indicating that
the model can optimally generalize the features of the training images without overfitting.

Highlight that the effectiveness of the training depends not only on the network’s architecture
but also on the design and selection of the appropriate training and validation datasets. Therefore,
although the network hyperparameters were optimized using the original datasets, it is possible
to further reduce the validation losses by adjusting the training dataset. This iterative dataset
refinement procedure is analyzed in Fig. 8(b-f) based on the MSE obtained in the validation.
Remark that this metric follows the same evolution as the loss, as the latter is derived from
the MSE. However, the loss values are higher because of the regularizing parameters. In these
graphs, the validation (solid line) and training (dashed line) MSE curves are coloured in red
for the latest best training configuration (reference) and blue after introducing a new change.
The pink lines are also maintained as references to other iterations. In the first iteration, the
original synthetic generation algorithm [4] is modified by adding a binary quantization of the
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Fig. 8. Training and validation losses and MSE over epochs.

synthetic images, restringing its values to integers between 0 and 255. This step introduces
a quantization error that the network can exploit efficiently. Furthermore, it makes synthetic
images more representative by removing non-discrete values that can not happen in real images.
In addition, a JPEG compression stage follows this binarization with different qualities (from 75
to 90). This introduces some artificial effects observed in real images. As shown in Fig. 8(b),
these modifications turn out to be adequate and further reduce the gap between the validation
and training MSE. In the second iteration (Fig. 8(c)), a gamma transformation of 1.8 is applied
to the samples of the synthetic dataset, reducing the validation MSE considerably. In the third
iteration (Fig. 8(d)), the SNR range used to generate the training images is increased. Instead
of using an interval of 5 to 30 dB, it was extended from -2 to 40 dB. It can be seen that this
approach does not reduce the validation MSE significantly. Furthermore, it has a drawback as it
makes the validation unpredictable and unstable. For this reason, the original SNR range was
preserved in the following iterations. In the fourth iteration (Fig. 8(e)), the number of images
used from training is augmented. The NPPS and ESR’s resolution step of 0.5 units is reduced
to 0.25 units. The result is a slight improvement in the validation MSE. Based on the previous
result, a combined strategy is accomplished in the last iteration (Fig. 8(f)). First, the gamma
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is increased to 2.2 (matching the gamma commonly used in JPEG-encoded images). Second,
the training space was generated using random uniform distributed values for the NPPS and the
ESR instead of picking them from a grid with a fixed resolution step. This procedure provides a
significant improvement in the final validation MSE.

The model and the weights trained in this last iteration will be used in the final evaluation that
is presented in the remainder of this section.

Regarding the estimator performance, Fig. 9(a) shows the estimates obtained from the validation
dataset. The x-axis represents the NPPS, and the y-axis represents the ESR. The black star
markers denote the target points, i.e., the ground truth. The black dots denote the mean of the
estimates. Finally, the coloured dots represent the estimates obtained for different images. Dots
with the same colour belong to the same target value. The colour does not hold any special
meaning. It is only used to ease the identification of different clusters. At first glance, it can
be seen that the dots in the lower part of the graph form clusters that are smaller than in the
upper part (i.e., where the dots are more spread). This indicates that the model estimations are
more precise under short to moderate exposure conditions (i.e., ESR from 1 to 3) than under
high conditions (i.e., ESR from 5 to 7). In other words, the estimations under short to moderate
exposure conditions have a lower error. Consequently, different errors are obtained depending on
the location of the target values in the space domain.

(a) (b) (c) (d)

Fig. 9. NPPS and ESR estimates for the validation dataset.

The error vector magnitude (EVM) is used to quantify the errors in the estimations. Figure 9(b)
shows the EVM obtained at different points in the space domain. The areas coloured in red
represent areas where the estimates have the greatest observed error considering their target
values (i.e., EVM equals 1). On the other hand, the areas coloured in blue represent the areas
with the lowest estimation errors. As it can be seen, the point (NPPS=6.5, ESR=6) has the
highest estimation error, while the point (NPPS=5, ESR=1.5) has the lowest.

However, although this metric quantifies well the estimation error, it does not provide an
in-depth analysis of the nature of the error made. Ultimately the EVM metric combines the error
obtained in the NPPS and ESR dimensions. Therefore, it is necessary to analyze the NPPS and
the ESR errors independently. For this purpose, Fig. 9(c) shows RMSE obtained for the NPPS
and Fig. 9(d) the RMSE for the ESR, respectively. In both cases, the RMSE values vary from 0
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(blue) to 1 (red). These graphs reveal that the model can estimate the NPPS more accurately than
the ESR. The ESR estimation errors contribute highly to the EVM.

Examining the EVM map in detail, it is observed that the errors are greater as the ESR
increases, which is in line with the expected behaviour of the network. The longer the exposure
time, the more severe distortion affects the received signal.

On the other hand, the errors also increase with the NPPS. This seems to contradict the
expected behaviour, since increasing the redundancy per symbol (higher NPPS) should help the
network at estimating the output parameters. However, the opposite seems to be happening. The
reason behind this lies in the fact that the dimensions of the network’s input image are fixed to
256x64x1 pixels. Hence, the samples of the transmitted signal correspond just to 256 pixel rows.
Consequently, increasing the redundancy of symbol samples comes at the cost of reducing the
number of different symbols that fit inside the image. In other words, increasing the redundancy
reduces the variability of the signal samples. For instance, for NPPS equal to 7, the number of
symbols within the image is approximately 36 (36 = 256 / 7), while for NPPS equal to 4, this
number is 64. As a consequence, for higher NPPS, the network might deliver estimates that
greatly deviate from their target value, estimation outliers. For example, in Fig. 9(a) can be seen
a few purple-coloured dots around the coordinates (NPPS=6.5, ESR=3.5) when they should
be located near their target point (NPPS=6.5, ESR=6). Nevertheless, these outliers represent a
rare case. For this particular target point (NPPS=6.5, ESR=6), only four estimates of 85 fall
in a region far distant from their target point. Furthermore, it is experimentally validated that
these outliers are generated systematically and predictably. They appear when the transmitted
payload bitstream has a considerable number of ‘01’ or ‘10’ bit sequences chained together (e.g.
‘01010101· · · ’). This causes the final transmitted signal, which is Manchester encoded, to be
confused with another one generated with half the actual clock frequency. This is a classical
problem in traditional clock recovery systems based on Manchester encoded systems, which is
solved by inserting packet preambles or by sending pilot clock signals. Definitely, the estimator
might be confused when facing those rare cases, which are more likely to appear when the NPPS
is higher, due to the fixed size of the input image. These outliers can be avoided by changing
the proposed bit stuffing technique to prevent the presence of ‘01’ or ‘10’ bit sequences or by
inserting packet preambles.

Alternatively, outlier-resistant methods can be applied to a set of different estimates to
effectively eliminate the presence of these outliers, revealing the actual trend of the errors that
the network makes in the estimation of the output parameters.

The first strategy consists of computing the mean of a set of N estimates. This set is generated
by collecting the estimates delivered from N random input images. The final ESR and NPPS
estimates are obtained by computing the mean of the previous set.

Figure 10 shows the estimates obtained for N equal 5. In this figure, it can be observed
that the impact of outliers is partially mitigated. The RMSE errors for the NPPS and the
ESR are considerably reduced. However, Fig. 10(a) shows that there are still some estimates
that spread over the ESR dimension. For example, the dots belonging to the target points
(NPPS=6.5, ESR=4.0) and (NPPS=7, ESR=4) are spread within the range of ESR from 4.0 to
4.5. Consequently, with this approach, the outliers still significantly impact the ESR estimation.

On the other hand, given the low probability of the appearance of the outliers, the delivered
estimations can be further improved by using the median instead of the mean. Figure 11 shows
the estimates obtained for N equal 5. In contrast with the mean, the median produces much better
results. The dispersion of the estimates in the ESR domain using the median is significantly
reduced. This graph verifies that after eliminating the effect of the outliers, the behaviour of the
network corresponds to what is expected. The errors are greater for low NPPS and high ESR.

Finally, Fig. 12 displays the relative error (RE) obtained for the NPPS and the ESR separately
using the median approach, with N equals 10. To improve the visualization, the colour scale
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(a) (b) (c) (d)

Fig. 10. NPPS and ESR estimates using the average of the outputs of 5 random images.

(a) (b) (c) (d)

Fig. 11. NPPS and ESR estimates using the median of the outputs of 5 random images.
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ranges from 0 to 0.14. These plots show that the maximum and minimum RE observed for the
NPPS are approximately 3% and 0.2%, respectively. In the case of the ESR, they are 9% and
0.6%, respectively. On average, the error for both estimations is approximately 2%. From the
communications perspective, these results imply, on the one hand, that the estimation of the signal
clock, related to the NPPS, has a minimum and a maximum RE of 0.2% and 3% respectively.
Furthermore, if the transmission clock frequency is known, the camera’s row sampling time can
be characterized by using the relation (NPPS = tsym/TS). The error made in the estimation of the
row sampling time can be computed using the error propagation theory.

(a) (b) (c)

Fig. 12. NPPS and ESR RE using the median of the outputs of 10 random images.

On the other hand, the RE made at estimating the camera’s exposure time is upper bounded to
9%. As discussed in the previous work [4], an exposure-equalizer trained for a given exposure
time can successfully equalize images exposed with slightly higher or lower exposure times.
Those equalizers allow a maximum deviation of up to 11% for the target exposure time while
ensuring a Bit Error Rate (BER) lower than the Forward Error Correction (FEC) limit (3.8x10−3).
Therefore, as the estimator’s ESR estimates have an average RE of 2% (upper bounded to 9%), it
is ensured that the receiver will select the optimal equalizer based on the delivered ESR.

5. Conclusions

This work presents and evaluates a deep learning-based approach to accurately estimate two
fundamental parameters of optical signals acquired with RS-cameras: the NPPS and the ESR.
These dimensionless parameters relate the transmitted symbol duration with the camera’s
sampling frequency and exposure time, respectively. Hence, the NPPS is directly related to the
signal clock and the ESR with the camera’s exposure settings. These parameters are required
during the equalization and decoding stages at reception. Its precise estimation will allow the
receiver to select the optimal equalizer to mitigate the exposure-related ISI and recover the
clock for synchronization and decoding, even when the transmission frequency and the camera’s
internal settings are unknown. Therefore it becomes an essential part of RS receivers operating
over moderate exposure conditions. In addition, this estimator decouples the reception algorithms
from the image stream providers, enabling cloud architectures that can practically handle multiple
camera devices (or another type of image streamers). On the other hand, it can be used to
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characterize cameras in the time domain if needed. For example, if the camera does not reveal its
internal settings due to operative system constraints. In addition, the network’s training using
synthetic images covers a vast training space, with thousands of representative cases considering
multiple configurations for the NPPS and the ESR and different SNR conditions. Furthermore, the
network’s validation using a real dataset favoured the introduction and evaluation of incremental
training improvements by refining the original datasets. The final evaluation of the model
shows that the minimum, mean, and maximum relative errors for the NPPS estimates are 0.2%,
1.3%, and 3%, respectively. This implies an average RE of 1% at determining the transmission
frequency of the source. Furthermore, these errors are significantly low when the exposure time
is shorter. On the other hand, the minimum, mean and maximum relative errors for the ESR
estimates are 0.6%, 3% and 9%, respectively. In this estimation, the neural network produced
worse estimates, and still, the REs obtained are consistently lower (i.e. RE < 9%) than the 11%
ESR deviation supported by pretrained equalizers. Therefore, it is ensured that the BERs after the
equalization will remain below the FEC limit (3.8 × 10−3) under the stated conditions. It should
be highlighted that the RE does not exceed 3% in most cases, which indicates that the system
is significantly robust in this estimation, favouring a better performance of the equalizers. In
conclusion, this estimator is essential in all RS-based OCC links, in which both the signal clock
and the exposure time must be retrieved from the images. Consequently, it enables the design of
novel generic OCC links that do not require setting rigid requirements for the transmitter and the
camera settings. Instead, those links will cover many different RS camera devices.
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CHAPTER 5. RESEARCH OUTCOMES

5.3.1 Related contributions

Citation 1:
[27] C. Jurado-Verdu, V. Guerra, J. Rabadan, and R. Perez-Jimenez, “Effects of the
camera’s exposure time on rolling shutter based optical camera communication links.,”
Figshare, 3 2022

This dataset contains 7281 example images of a rolling shutter-based optical camera
communication link. Those images are affected by increasing exposure times. In this
dataset, the ESR ranges from 1 to 7 in steps of 0.5 units, and the NPPS ranges from
4 to 7 in steps of 0.5 units. The purpose of this dataset is to provide: (i) a tool for
analyzing how the exposure time affects the received signal, (ii) a tool for validating
novel AI-based approaches for the exposure equalization of the received signal, and (iii)
a tool for validating novel estimator models of the intrinsic parameters of the received
signal.

Citation 2:
[26] C. Jurado-Verdu, V. Guerra, C. Guerra, J. Rabadan, S. Zvánovec, and R. Perez-
Jimenez, “On-demand training of deep learning equalizers for rolling shutter optical
camera communications,” in 2022 13th International Symposium on Communication
Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–5, 2022

This work addressed the same objectives as the previous work. Starting from a
similar architecture, it adds structural changes to face the challenge of training a sin-
gle exposure-related equalizer on demand. These modifications allow transferring the
estimator’s knowledge acquired in an intensive offline training to the equalizers, us-
ing transfer learning techniques. To achieve this, both systems share the downward
convolutional network used for extracting the image features. Transferring knowledge
reduces the time and resources required for training the equalizer. With this approach,
the training’s time is reduced by 435 times, and only 250 images are required rather
than 35500. As a result, the equalizer training can be conducted on-demand during
data acquisition without intensively occupying the receiver.
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Chapter 6

Conclusions and future research

During this thesis, numerous contributions have been made regarding the mass
adoption of RS systems. This mass adoption requires a solution that (i) is interoperable,
i.e., that supports the great diversity of cameras available, and (ii) does not interfere
with the primary functionality of cameras as imaging devices. For this purpose, it is
necessary to properly understand the influence that specific camera parameters have on
data reception. From the extensive analysis of the state of the art detailed in Chapter 2
it is clear that exposure time is a critical parameter that affects both image quality and
communications. Short exposure settings reduce the sensitivity of the IS, resulting in
dark images where objects are hardly discernible. In contrast, long exposures reduce
the effective receiver bandwidth, causing the mixing of several consecutive symbols,
thus, the appearance of ISI. In conclusion, the exposure time set a trade-off between
the camera’s sensitivity and the receiver bandwidth. However, equalizing the effects of
this ISI will allow increasing the sensitivity of the sensor, leading to (i) images suitable
for display, (ii) an increment of the receiver bandwidth, and (iii) an improvement in the
SNR. On the other hand, the growing trend in the use of AI techniques and approaches
for the detection, and the assisted demodulation and equalization stages in OCC links,
positions AI as a suitable candidate for this purpose.

The three publications in the compendium of this thesis (Chapter 5), together with
related contributions, illustrate the steps followed in the search for this solution.

In the first place, the requirement that cameras do not lose their functionality as
imaging devices while operating as receivers is brought to light [20] (Section 5.1). This
first paper analyzes the influence on the reception of (i) the deployment of the emitters
in an industrial environment, (ii) the irradiance of the transmitter surface, and (iii)
the camera’s exposure time. From this analysis, a metric for the efficient distribution
of nodes is derived based on: (i) the total aggregate data rate, (ii) the channel quality,
and (iii) the space utilization ratio. In addition, an intelligent photobioreactor that
simultaneously adapts its illumination to provide the best cultivation conditions for
microalgae strains is proposed as the transmitter node.

In the second place, an AI-assisted equalization of the effects derived from long
exposures is proposed [21] (Section 5.2) to enable effective reuse of RS cameras (i.e.,
simultaneous imaging and communication). The CAE equalizer proposed in this work
increases the effective receiver bandwidth by a factor of up to 14 compared to non-
equalized systems. It should be mentioned that the optical codes are encoded using
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Manchester. In other words, this equalizer allows increasing the camera’s exposure
time up to 7 times the transmitted symbol period (i.e., ESR equals 7). Consequently,
the camera’s sensitivity can be significantly improved.

Compared to the results obtained by Younus et al. [88], who used a 1D NN for
this task, the increase in effective bandwidth is 50% higher than they previously re-
ported. Furthermore, these authors evaluated their model’s performance in ideal SNR
conditions (i.e., >30dBs). In contrast, the proposed CAE-based equalizer operates
optimally at low to moderate SNR conditions (i.e., above 2dBs) while maintaining a
constant BER below the FEC limit. This optimal performance is notably related to the
coding-decoding strategy inherent in AE models. In addition, it can support an 11%
deviation in the exposure time affecting the inputs with respect to the fixed exposure
time value used for generating the training samples. A year after their first publica-
tion, the authors [56] used their previously proposed procedure for equalizing 4-PAM
signals. In this case, given the complexity introduced by the multilevel modulation,
the exposure time can only be increased up a factor of 1.3 the symbol time (i.e., ESR
equals 1.3) before errors in the communication become significant. Finally, two more
related works published after the date of publication of this proposal considers the
exposure effects equalization of 4-PAM signals implicitly at the demodulation stage
(Lin et al. [90], and He et al. [85]). The main difference between these two works lies
mainly in signal generation and the network input size. The results obtained by Lin et
al. show equalization capabilities for ESR equals 2.5. On the other hand, He et al. do
not introduce a significant improvement in this aspect. Moreover, in their evaluation,
the exposure time is half the symbol period (i.e., ESR equals 0.5).

Another main contribution of this proposal, which radically differentiates it from
previous and subsequent work, is that it uses, for the first time, up to the authors’
knowledge, exclusively synthetic samples in training the models. The procedure for
the generation of synthetic samples, which is included in the publication and detailed
in Chapter 4, only takes into account temporal parameters of the signal, such as the
camera’s exposure and sampling time, and the symbol period. It should be mentioned
that the standardization step applied to both synthetic and real samples makes them
comparable with greater independence of the signal strength. Furthermore, in later
versions of this algorithm, the signal is randomly scaled (data augmentation) before
applying non-linear transformations, taking into account the effects of several gamma
factors and the distortions produced by JPEG compression. This allows for discarding
the estimated expected signal strength at reception when generating the training sam-
ples. In other words, training and the normal operation of the equalizers are conducted
without knowing the expected signal strength at the system deployment. Finally, the
accuracy of the generation model is validated through the evaluation of the network
using real-world samples.

The use of synthetic samples for training is significantly beneficial. First, it speeds
up the acquisition time. For instance, other authors must develop a carefully character-
ized experimental setup to obtain the images. Moreover, idle times must be set between
captures to avoid automation errors. Second, it also eliminates the acquisition’s com-
plexity. Because the transmitters and cameras are not perfectly synchronized, input
and output samples must be correctly aligned before training. The previous authors
rely on matched filtering techniques and well-known packet headers to solve this is-
sue. This increases the complexity and introduces increasing errors as the exposure
time grows. Third, it abstracts the receiver used. As samples can be generated for a
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wide range of transmitters, cameras, configurations, and noise conditions, the training
is more robust and efficient, and the network can generalize well for different setups.
In contrast, the previous authors evaluated their model with samples obtained from
equivalent images found in the training dataset, using the same transmitter, camera,
and configuration for training and testing the network. Therefore, the model’s behavior
is highly coupled with the experimental setup used to take the training samples and
might not work well with slight changes in the operating conditions. Ultimately, their
proposed system is an ad hoc solution that is difficult to implement given the great
diversity of cameras. Fourth, the synthetic generation enables training on demand
to perform the network’s fine-tunings, avoiding interrupting the receiver’s operation,
which, in other cases, would require reserving time slots for the transmission of well-
known signals for the receiver to obtain new samples.

Finally, the previously reported NN models use a 1D architecture with multiple
inputs and one single output. This greatly conditions the efficiency of the equalization.
First, it must be carried out iteratively by concatenating the network’s outputs while
traversing the entire column pixel by pixel. Hence, several iterations are required per
image, depending on the column size and the network input dimensions. For example,
if the expected packet size is 500 pixels, then at least 500 iterations must be accom-
plished per frame to decode the data, which makes this procedure completely inefficient.
Second, it is required to reserve at least m-1 image pixels (where m is the input size)
before (or after) the output sample, depending on whether its computation considers
previous or subsequent pixel values. This affects the equalization/demodulation at the
edges, reducing the effective ROI’s area used for data recovery. In contrast, the output
of a CAE has the exact dimensions as the input, allowing equalization to be carried by
segments rather than by pixels. In each iteration, several pixels are equalized simul-
taneously (256 in this proposal). In addition, undesirable edge effects are effectively
alleviated by the CAE, which conveniently evaluates both forward and backward pix-
els. Furthermore, the equalizer’s input is two-dimensional, which has two advantages.
On the one hand, it exploits the redundancy present in nearby columns, increasing the
SNR. On the other hand, it might be robust to partial blocking, considering that at
least one of the columns is not affected. This statement has not been validated yet,
but preliminary experiments indicate this might be the case.

In third place, after demonstrating the feasibility of exposure equalization and val-
idating the hypothesis H3, H2, and H1, a generic solution is conceptualized that ab-
stracts (i.e., decouples) the reception routines from cameras and their exposure settings
[22] (Section 5.3). This abstraction is achieved by estimating two important link pa-
rameters directly from the images: the exposure time required for equalizing the signal,
and the signal clock, for decoding. The results reveal a very accurate estimation of
these parameters with relative errors lower (on average) than 3% and 1.3%, respec-
tively. Moreover, these errors remain within limits (with plenty of margin) supported
by the proposed equalization and demodulation blocks, which guarantees the receiver’s
operation. Ultimately, these results directly validate hypothesis H4.

In conclusion, this architecture does not require prior knowledge of the camera
used, its exposure setting, or the transmitter’s baud rate. The estimator will deliver
the estimates obtained directly from the images to the rest of the reception routines.
It should be remarked that this proposal requires storing the parameters (i.e., a few
megabytes) of several offline-trained equalizers adjusted for different exposure times.
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The optimal equalizer will be selected based on the exposure estimate. The reason for
not conducting an online training during the reception is that the training demands lots
of resources, both in the number of samples (35500 synthetic images) and time. Thus,
this training would require blocking the receiver intensively. To solve this problem,
a related work, [26], introduces techniques for transferring the knowledge acquired by
the estimator during an intensive (offline) training to the equalizer. In this way, the
fine-tuned training of the equalizer is more efficient and can be performed on demand.
The results reveal that transfer learning techniques in this context reduces the training
time by a factor of 435, and the number of synthetic samples required is only 250
images. This allows the integration of this system in devices with few computational
resources and, in addition, a more robust operation adapted to each scenario.

The results obtained in this thesis potentially impact the scientific community.
First, the proposed and experimentally validated model for the generation of synthetic
samples initiates, on the one hand, the path toward a deeper understanding of the
influence of camera exposure on communications. On the other hand, it allows the
development of RS link simulation tools for their preliminary evaluation, thus reducing
the costs of their implementation. This, in turn, allows more resources to be devoted to
developing new equalization stages and modulations more robust to long exposures. In
addition, it will enable the massive generation of samples adapted to different scenarios
and use cases. This impact can be recognized directly from the interest generated by
the example dataset released in February 2022 [27]. At the time of writing this the-
sis, it has already exceeded 400 views and 150 downloads. Finally, it also enables the
characterization of cameras in the time domain. This characterization can be achieved
by correlating the images obtained with synthetic samples used as templates or using
intelligent models trained for this purpose. For example, the CNN proposed for link
parameter estimation enables alternatively to characterize the camera’s exposure time
and row sampling time. Second, the proposed AI-assisted equalization and estimation
models exemplify the use of deep learning techniques in digital signal processing tasks.
The methodology used to achieve the proposed solutions describes the problem and
the exploratory analysis of the samples. It also discusses the choice of models that
performs well in the sample domain and have been validated in similar tasks (such
as image denoising). Finally, it details the iterative and supervised adjustment of the
training samples to improve the model performance. Additionally, the proposed AI-
assisted equalization is transferable to any communications system where the signal
bandwidth is limited due to multiple factors: the transmitter’s behavior, the channel
response, or any element in the reception chain. Moreover, the exposure estimation is,
ultimately, a direct estimation of the available bandwidth. Therefore, this strategy can
be used to estimate the bandwidth cutoff frequency at reception. Third, there is the
conceptualization of an RS-OCC system that decouples the reception routines from
the cameras used, which invites progress in those research lines aimed at applying AI
for estimating those parameters that might improve the link’s performance, such as
the relative movement of the emitters, the compression quality of the image, different
atmospheric conditions, among others.

Regarding market impact, the results obtained accelerate the implementation of
new OCC links, as reception routines are now compatible with many cameras. On
the one hand, equalization stages alleviate the limitation of long exposure times. As a
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result, cameras that either (i) cannot set the exposure time to short values or (ii) cannot
lose their functionality as imaging devices can still operate as receivers. This effective
reuse of cameras makes this technology more attractive in scenarios and use cases that
already use them for monitoring, surveillance, tracking, and other tasks. On the other
hand, as already discussed, direct estimation allows reception to operate regardless of
whether the camera’s internal settings can be accessed or are automatically selected.
For example, many manufacturers limit by firmware the access to the exposure time
setting, and in many other cases, this parameter is automatically adjusted based on
the ambient illumination.

Therefore, decoupling the reception routines from cameras enables the creation of
a transferable communications software that can be easily integrated into developing
multiple applications for smartphones, desktop and laptop computers, tablets, au-
tonomous driving systems, ATMs, and more. Furthermore, it enables the development
of applications hosted in cloud infrastructures that can process images supplied by dif-
ferent multimedia streams in real-time. In this way, it is also possible to technologically
enable devices that do not have an open ecosystem to develop their applications. Also,
these cloud applications can have additional functionality, such as coordinating and
interoperating multiple streams.

Lastly, novel OCC transmitters have been developed which are directly compatible
with current barcode scanners, Barcolits [25]. Hence, it is proved that this technology
does not interfere with existing industrial processes, greatly facilitating its acceptance.

In short, the results of this thesis potentially accelerate the adoption of OCC tech-
nology, which translates into a potential impact on society. Furthermore, it could lead
to new applications in multiple fields: interactive marketing, user identification and
verification, guided assistance in museums, libraries, and entertainment venues, and
key sharing.

In conclusion, this thesis balances the efforts to address (i) an industrial challenge
in the particular field of RS-OCC links, which is achieving the effective reuse of cam-
eras as receivers without losing their primary function as imaging devices, with (ii) a
scientific-technical problem that is extensible to any communications field, which is the
equalization of the ISI produced by the reduction of the available receiver bandwidth.
Furthermore, it evolved and matured in line with the most recent advances in the field
of AI and computer vision, registering results that exceed those obtained with classical
algorithms and other preliminary work. Finally, it focuses on decoupling the reception
on OCC links from the cameras used, with the aim of accelerating the mass adoption
of this technology.
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6.1 Future research

This thesis opens several future research lines in the field of OWCs, more specifi-
cally in RS-based OCC. However, as was aforementioned, the AI-assisted equalization
techniques proposed in this thesis can be transferred to any communication system
affected by a bandwidth restriction, either imposed by the transmitter, the channel, or
the receiver’s response. This extends the scope of the results of this thesis to the entire
field of communications systems, regardless of whether they are radio-based, acoustic,
or wired systems.

The following items summarise specific future research derived from this thesis.

• The analysis, modeling, and evaluation of the effect that the camera’s exposure
has on transmitters with a non-uniform illumination profile. The experiments
carried out in this thesis used LED panels with a nearly uniform light intensity
distribution profile; hence, the irradiance reaching the IS is uniformly distributed.
Herefore, prior spatial equalization stages were not required or utilized in this
thesis. This further reveals the robustness of the proposed exposure equalizers,
which can minimize the impact due to possible deviations in the average intensity.
However, when the irradiance reaching each pixel significantly varies, a spatial
equalization stage might be required. This equalization task can be cascaded
before or after the exposure equalizers or carried out directly by them.

• The analysis, modeling, and evaluation of the effect that the camera’s exposure
has on moving transmitters. From the literature review (Chapter 2), it is con-
cluded that lateral motion produces skewness in the projection of the emitters,
and vertical motion, the shortening or lengthening of the bands. Both motions
are expected to produce appreciable distortions in the perceived emitter’s inten-
sity profile, especially if the transmitter’s speed (in the image plane) is greater
than the row sampling time. This effect is more detrimental as the exposure time
increases and will negatively impact the exposure equalization.

• The analysis, modeling, and evaluation of the camera’s exposure effect on sources
subject to different adverse atmospheric conditions, such as rain, snow, and
smoke. Another example might be assessing the impact of the presence of dust
particles or in underwater environments. These phenomena might produce par-
tial blocking or decrease the signal strength.

• The analysis, modeling, and evaluation of the camera’s exposure effect on sce-
narios with the presence of interference agents. The experiments carried out in
this thesis undergo controlled lighting conditions. Although preliminary tests
indicate that the system will operate accurately under office lighting, its perfor-
mance under different light interferers has yet to be evaluated.

• The analysis, modeling, and evaluation of different transformations done by the
camera. The proposed synthetic generation only considers some of the transfor-
mations performed by the camera. For example, it only reflects the non-linear
effect of gamma and the distortion produced by JPEG compression. Moreover,
this thesis needs to analyze the possible noise sources for image generation in-
depth. The synthetic samples only consider AWGN and quantization noise.
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6.1. FUTURE RESEARCH

• The development of a simulation system that contemplates the sequential expo-
sure of RS cameras. Further research might include this stage in the simulation
pipelines of reference simulation software, such as Zemax.

• The development of a differentiable channel model including the RS acquisition.
This differentiable model can be used to link transmitter and receivers models to
compute the gradients of transmitter-based models based on a receiver-based loss
function. This approach could help develop transmitter models to determine the
best modulation schemes based on the channel conditions or get the best data
transmission policies (using reinforcement learning).

• The assessment of the operation of the equalizers proposed in this thesis extended
to other modulation and coding techniques, such as 4-PAM, QAM, among many
others.

• The search for novel models that improve efficiency, reduce complexity, and per-
form better in the tasks of equalization and link parameter estimation. For ex-
ample, further research might include using RNNs or transformer-based models.

• The development of cloud architectures. This includes the development of novel
techniques for managing different image streams and priorities, classifying non-
treatable image streams, and predicting communication interruptions, among
others.
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Abstract: In color-multiplexed optical camera communications (OCC) systems, data acquisition
is restricted by the image processing algorithm capability for fast source recognition, region-
of-interest (ROI) detection and tracking, packet synchronization within ROI, estimation of
inter-channel interference and threshold computation. In this work, a novel modulation scheme
for a practical RGB-LED-based OCC system is presented. The four above-described tasks are
held simultaneously. Using confined spatial correlation of well-defined reference signals within
the frame’s color channels is possible to obtain a fully operating link with low computational
complexity algorithms. Prior channel adaptation also grants a substantial increase in the attainable
data rate, making the system more robust to interferences.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical camera communications (OCC) have increased their relevance within the field of visible
light communications (VLC) due to the widely-available cameras in a great number of devices
(smartphones, tablets, surveillance systems, ...). Most of these cameras are based on rolling-
shutter (RS) technique, which implements a row-by-row image scanning process [1]. Therefore,
an LED light source, switching at a frequency higher than the shutter speed, will appear in the
image as a series of dark and bright stripes, representing the binary data. Thus, this camera
architecture provides to OCC a data rate much higher than its frame rate (fps) [2, 3]. OCC links
need from several image processing stages to ensure a correct reception, such as detection and
tracking of the light source (the region of interest, ROI), equalization of the optical power along
the ROI, and threshold computation for demodulation. In ROI detection, blurring, dilating, and a
variety of morphological operations have been proposed [4]. Other proposals [5] use anchor
LEDs as spatial references for source detection, alignment, and spatial synchronization. However,
this technique is not suitable for time synchronization in RS-based receivers.
For the non-uniformity of the received signal in the ROI, suggested solutions are based on

searching the area in which this effect is partially mitigated [6], or by applying enhancing
techniques to ameliorate it [7]. In the case of threshold computation, third order polynomial
curve fitting (TOPF), iterative threshold (ITS), and quick adaptive scheme (QAS) have been
evaluated in [8]. Furthermore, other techniques have been explored, such as entropy-based [9]
and pixel-boundaries-based algorithms [10]. It is important to highlight that all the experiments
above performed their threshold calculation frame by frame, with high computational resource
consumption. Finally, the system has to spatially detect and synchronize the data packet within
the ROI for correct data demodulation. In this case, two effects must be considered: the sampling
frequency offset (SFO) of the camera, that varies slightly the sampling instants over time, and
the blind period in which the signal cannot be acquired, either because the sensor is not being
exposed (camera inter-frame processing), or because the signal does not fall within the ROI.
Packet framing and repetition are used to address this issue [11]. Moreover, for RGB-based
systems, the inter-channel cross-talk (ICCT), caused by the wavelength mismatch between the
LEDs and the camera’s Bayer filter, needs to be compensated as proposed in [12,13], where a
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training signal is employed.
In this paper, a correlation-based model is proposed for providing a unique solution to address

all these issues. Using 2D-correlation processing over the images, the presented system is
able to detect, track and identify the data source, even in case of spatial multiple access, with
several sources included in the same image. Furthermore, using the correlation results, ICCT
compensation and polynomial curve fitting for threshold computation can be obtained. Then,
using the same correlation strategy, the system spatially synchronizes the data packet and provides
the best-suited sampling spots for demodulation.

2. System description

The proposed OCC system is a broadcasting, RGB-based link with RS-camera as the receiver.
The following subsections will describe in detail both transmitter and receiver structures.

2.1. Transmitter

Raw transmission data are partitioned on fixed-length packets. In order to keep data integrity,
each packet is repeated during two frame times. Under this approach, data transmission is
delimited in time within a super-frame structure. While the LED-lamp is sending data, a time
window denoted as the Beacon-Only period, is reserved at the beginning of each super-frame
for the transmission exclusively of Nb beacon packets. Additionally, when the emitter remains
at an idle state, the beacons packets will be transmitted continuously. The functions of the
beacon are: to ease the discovery stage, to uniquely identify each source (exploiting the spatial
division multiplexing capability), and to help in the inter-channel cross-talk and threshold level
computation. Figure 1(a) shows the beacon structure.
The length of the beacon, M , must be the same as the data packet. It consists of an N-length

Hadamard sequence, corresponding to the number of wavelengths (R, G, and B in this case),
followed by M − N − 1 single-color slots and a guard slot (depicted in black). This guard
slot diminishes the effect of misidentifying two different sources. This configuration allows
N! · (M − N − 1)N different emitter identifiers within the image (where N ≥ (M − 1)).
During the data transmission time, the packets being sent combine a synchronization signal

that occupies exclusively one of the independent channels, and the OOK-modulated payload
distributed over the other ones. This synchronization signal marks the start, end of the packet,
and the optimal sampling instants (Fig. 1(b)).

2.2. Rolling shutter-based receiver

The receiving process can be split into three consecutive stages: discovery, training, and acquisition.
The receiver will use two 2D-correlation templates: the beacon, and the synchronization templates,
derived from the corresponding transmitter’s signals (Fig. 1). They have a fixed width of w pixels,
and a stripe height, h = tchip/trow. Where tchip and trow are the symbol and sensor’s row delay
times respectively. This h optimizes the correlation output, and increase the resilience to the
broadening effect that the overlapping exposure of consecutive rows could generate in the stripe
height. The total beacon height (in pixels), Hbeacon = h · M , must be less or equal to the half of
the expected vertical height of the lamp’s projection, Hlamp, within the frame, Hlamp/2 ≥ Hbeacon.
The computation of Hlamp is discussed in [14]. This constraint ensures that a beacon could be
recovered within the lamp’s projection after the processing of two frames, and limits the final
throughput, Rb (Eq. (1)).

Rb ≤ Hlamp

2
· 1

h
· f ps

2
· N (1)
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Fig. 1. Transmitter signals. (a) Beacon signal. (b) Data signal.

2.2.1. Discovery stage

In this stage, the receiver correlates a detection template that groups two beacon templates. If the
maximum Pearson correlation coefficient, ρ, (Eq. (2)) exceeds the imposed detection threshold
value, ρth, a source is considered as successfully detected.

ρ(x, y) =
∑

x′,y′(T ′(x ′, y′) · I ′(x + x ′, y + y′))√∑
x′,y′ T ′(x ′, y′)2 ·

∑
x′,y′ I ′(x + x ′, y + y′)2

(2)

T and I are the template and image frames respectively, while x and y are the pixel coordinates.
After detection, the receiver proceeds to the training stage.

2.2.2. Training stage

In this stage, the receiver locates the beacon template within the cropped detected ROI. Taking
advantage of the beacon structure (independently switched channels), RGB to Bayer gains can be
directly obtained from channel samples of N frame pictures.
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Fig. 2. (a) Inter-frame motion example. (b) Comparison of training samples (dark dots) and curve
fitting for motionless Ftx = 1800 Hz and Ftx = 2160 Hz.

An example of the capture of 3 frames used for training is shown in Fig. 2(a). The yellow
rectangle highlights the cropped ROI area, while the beacon is framed with cyan borders. As can
be appreciated, the beacon is not fixed among frames but advances or falls behind its previous
position. As has been stated in RS systems, there is an implicit relative motion of just a few rows
per a large number of frames caused by the camera’s SFO, vsfo. This motion has been generally
considered as an issue. Nevertheless, the proposed system benefits from this phenomenon since
it allows to increase the spatial dispersion of the training samples between frames. Furthermore,
to speed up this inter-frame motion a vdesign = [Ns mod M] · h (pixels/frame), can be forced by
selecting the length of the beacon template accordingly over the total number of available stripes
in the frame, Ns. Taking this parameter into consideration, the total inter-frame motion is,
vinter = vdesign + vsfo.
After processing L frames, the system performs a third order polynomial fitting to obtain the

cross-talk matrix and the threshold for the entire ROI and proceeds to the next stage. Figure
2(b) depicts the collected samples from 5 consecutive frames and the output fitted curve when,
vdesign was set to zero (left graph). In that case, it can be observed that samples tend to form
local groups (dark dots) instead of evenly distribute over the entire ROI, as it occurs when motion
is forced (right graph). If a beacon template is not found, the receiver will restart.
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2.2.3. Acquisition stage

In this stage, the receiver correlates both the beacon and the synchronization templates with the
ROI. When a sync template is found, the receiver performs the enhancing exclusively over that
area. This reduces the computational load needed for pre-processing the entire image. Finally,
the binarization process and data assembly are performed. If any of the templates are not found
during this stage, the receiver will restart the discovery stage.

3. Experiment and results

Fig. 3. Experiment setup.

As a proof of concept, a testbed was put together to measure the system performance as shown in
Fig. 3. The transmitter is an RGB-LED lamp driven by an ST NUCLEO board. The signal was
recorded using a Logitech C920 webcam. The videos were processed off-line using OpenCV
libraries. In order to evaluate the operation of this proposal, it was carried out a series of
experiments for different distances, d, and frequencies, f . The camera fps was set to 30 with
full HD resolution (1080p). The exposure time was set to the minimum available, 300 µs. The
measured row delay time was 31.4 µs. The camera’s vertical Field of View (VFOV) was 43.3°.
The ISO was set to 100, and the white balance correction to 6500K. The template’s column
width, w, was set to 15 pixels. Finally, the selected frequencies: 2160, 3240, 1800 and 2700 Hz
(with stripes’ height of 15, 10, 18 and 12 pixels respectively) can be grouped into a forced (first
two) and non-forced motion sets. The physical height of the light source was 8 cm. For each pair
(d, f ), two different video recordings were made (10 minutes) while the source was transmitting
beacons continuously and when it was sending pseudo-random packets of 10 bits. The last
recording was performed three times, resulting in 1.25 × 105 received raw bits per experiment.
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Fig. 4. Maximum Pearson correlation coefficient, ρmax. Ftx = 2160 Hz.

The system’s precision detecting legitimate sources with a certain degree of confidence
was evaluated (positive case). To perform this evaluation, the maximum Pearson correlation
coefficient between each frame and the template was obtained. Then, it was classified into a
positive or non-positive sample collection. Samples are considered positive when the beacon
template completely fits within the source’s projection. Figure 4 depicts the detected position
associated to the maximum correlation (green for the positive cases), and the histogram of the
correlation coefficient for both positive and non-positive cases weighed by their corresponding a
priori probabilities. It can be highlighted that as distance increases, both the source’s projected
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area and the number of positive samples diminish. Moreover, the average correlation value also
decreases. This occurs because the template is forced to be detected at the lamp’s center, where
it can fit entirely. Nonetheless, at this position, the pulse broadening effect is higher, leading to a
lower correlation output value.
Based on these samples, a detection threshold is selected. Lowering the threshold level will

increase the number of false positives (detecting a non-positive sample as a source). Thus, the
receiver’s precision will drop. Otherwise, if the threshold raises, the miss rate would rapidly grow.
This has implications on the average source detection time that can be expressed in terms of the
number of frames needed for source detection, Ndetection. Figure 5(a) plots the precision/recall
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Fig. 5. (a) Precision-Recall curve. (b) Average of Ndetection. Ftx = 2160 Hz.

curve of the system. The dashed black line sets the minimum precision set as the design criteria
of 0.9 (90 percent of the detected sources will belong to the true positive case). Figure 5(b) plots
the average number of frames prior detection, E[Ndetection], against the detection threshold. In
the extreme case in which the ROI height is comparable to the source projection over the image,
there would be a higher probability of missing the detection. If the inter-frame motion were low,
the probability of detecting the source on the next frame would also be small. Thus, there is an
inverse relationship between the inter-frame motion and the variance of Ndetection for those cases.
For instance, if the receiver captures a beacon halfway through its transmission, it will have to
wait a long time for detection due to the scarce inter-frame motion.
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Fig. 6. (a) R2 determination coefficient versus number of frames for training. (b) Bit error rate
versus distance (star points indicate that no errors were detected under the experiment conditions).

Then, to evaluate the performance of the training, the R2 determination coefficient is used. For
both frequency sets, a set of samples were collected through N frames, fitted and compared with
independently captured images from each channel. Figure 2(b) represents the third polynomial
fit against the real curve (lighter lines), obtained with independent image captures. As can be
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seen in Fig. 6(a), the non-forced motion frequency set needs more frames for training due to
sampling clustering, to obtain an optimal R2 determination coefficient of the fitting.
Finally, Bit Error Rate (BER) performance is presented in Fig. 6(b). It was evaluated using

0.834 as the detection threshold (system precision of 0.9), and four calibration frames. It can be
seen that the BER decrements with the distance. As has been mentioned, this is related to the
rising of the stripe broadening effect, which has a harmful effect on calibration, since there is a
higher probability to obtain color-mixed samples.

4. Conclusions

In this work, an experimental evaluation of an RGB LED-based OCC system is presented. It uses
the green channel for data synchronization, while the red and blue ones carry OOK-modulated
data. Furthermore, a beacon-based detection scheme is proposed and evaluated. The processing
algorithms for ROI detection, source identification, training, and packet synchronization are
combined into a single correlation-based procedure. This technique finds the best ROI in terms
of the least pulse broadening (inter-symbol overlapping), improving the BER performance. It
also carries out the ICCT mitigation and enhancing, only within the data region, reducing the
computational load. Experimental results demonstrated that the proposed system is able to
achieve 300 bps (over a transmission span up to 0.7 m, with a constant BER lower than 1 × 10−4.
However, higher data rates or higher distances could be achieved by increasing the physical size
of the lamp and the framing structure or using spatially-multiplexed sources.
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Abstract—Optical Camera Communication (OCC) Systems have
a potential application for monitoring flat-panel photobioreactors
in microalgae production plants. On the transmitter side, the
design of pulsed optical signals in terms of light intensity, spectral
composition, and temporal variation is focused on optimizing the
photosynthetic efficiency of the culture. At the reception, cameras
are utilized for simultaneous online monitoring and in-situ sensing
of the bioreactors culture. In this work, the analysis of the node
arrangement in the plant has been carried out considering node
visibility, data rate, and effective space utilization. Finally, a real
experiment was performed to validate the application’s feasibility.

Index Terms—Optical Camera Communications, Microalgae
culture, Light flashing, Light Management, Camera sensing.

I. INTRODUCTION

Microalgae culture has gained significant momentum during
the last decade, triggered by the necessity of developing new and
sustainable resources. They have become a promising alternative
source for biofuels and biogas production, human and animal
nutrition, cosmetics, and bioactive supply for nutraceutical and
pharmaceutical applications.

Microalgae biomass production is currently carried out using
both open ponds (raceways, e.g.) and closed photobioreactors
[1]. The last ones are preferable at laboratory and pilot-plant
scales since with the appropriate design, they can optimize
growth conditions (nutrient levels, carbon concentration, tem-
perature, acidity, etcetera). Among these parameters, light ra-
diant energy is a capital factor that affects the photosynthetic
efficiency, and therefore the overall productivity [2].

Generally, microalgae production plants are designed to take
advantage of the sun as primary light source due to cost
optimization. However, the sun’s irradiance depends on several
factors, such as weather conditions, latitude, and day time.
Furthermore, these open-air plants need vast extensions to be
profitable since effective biomass production depends on the
direct-exposed surface. Nonetheless, artificial lighting can pro-
vide advantages in terms of photosynthetic efficiency (custom
spectrum and intensity profiles) and the tight control they offer
of microalgal biochemistry and growth, increasing the reliability
of industrial processes. Besides, using this type of lighting,
biomass production depends no longer on the plant’s exposed
surface, but on its equivalent volume. Although optimizing light

This work is funded in part by the Canary Islands Regional Government
(Project ATICCuA ProID2017010053).
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Fig. 1. Proposed architecture based on flat-panel photobioreactors.

quality could reduce the energy consumption considerably, an-
other approach concerns the way light is delivered to the culture:
flashing (pulsed) light instead of continuous illumination.

In this context, pulsed illumination could serve as a com-
munication link, enabling the re-utilization of light sources as
effective Visible Light Communication (VLC) transmitters. The
low bandwidth transmission channel they provide (attaining the
stated frequency restrictions) could be used for online moni-
toring of the culture’s state conditions via deployable sensors
within the photobioreactor module.

Nevertheless, there are still a few parameters that either are
complex to be measured in situ or imply invasive methods.
These parameters are microalgae biomass concentration and its
growth phase. In [3], [4] different approaches based on the
digital processing analysis of red-green-blue (RGB) images for
low cost, fast and accurate quantification biomass concentration
are proposed and experimentally validated. Therefore, cameras
could be used as sensing devices of these parameters.

On the other hand, the use of cameras as communication
receivers for VLC links is currently an interest research area.
Furthermore, there is a current revision of the standard spec-
ification by the working group IEEE 802.15.7r1 [5] planning
to integrate this new strategy known as Optical Camera Com-
munications (OCC) [6]. These devices are bandwidth limited
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compared to traditional photodetectors (PIN and Avalanche
Photodiodes). However, due to the use of image-forming optics,
cameras provide a inherent spatial multiplexing capabilities,
which can be easily exploited for simultaneous monitoring
within a microalgae production plant.

This work proposes the use of low-cost cameras for both
remotely sensing microalgae culture parameters and for es-
tablishing a direct communication link with flat-panel photo-
bioreactors. A comprehensive analysis based on geometrical
constraints is carried out, providing results such as optimal
camera positioning respect to a custom-defined metric that
relates aggregate data rate and effective space exploitation.
Furthermore, intrinsic algae-based restrictions are also analyzed
and discussed.

This work presents part of the results obtained in the
ATTICuA Project; a cooperation research carried out by the
Spanish National Algae Bank (BEA) and the Photonics and
Communications Division of the Institute for Technology De-
velopment and Innovation in Communications (IDeTIC). This
project addresses the development of prototypes based on the
Visible Light Communications (VLC), and more specifically
those used in underwater communication systems (Underwater
Wireless Optical Communications, UWOC), for application in
microalgae culture systems. Precisely, its main objective consists
of the design of an LED-based dual-use system, which provides
configurable lighting for the culture and production of mi-
croalgae and cyanobacteria, and optical wireless communication
capabilities for optical underwater channel characterization.

The remaining of the paper is structured as follows. Section
II introduces the proposed OCC-based architecture in a bottom-
up manner. Moreover, three different node arrangements are
analyzed and compared in Section III. This section includes
a real-world experiment that validates the feasibility of this
proposal in terms of the received spectral signature. Finally,
some conclusions are extracted in Section IV.

II. PROPOSED ARCHITECTURE

The proposed architecture consists of an LED flat-panel pho-
tobioreactor facing a rolling-shutter camera, as can be seen in
Fig. 1. In this system, the transmitter sends two different signals:
a well-know beacon signal used for detection and identification,
and data packets composed of manchester encoded pulses. At
the receiver side, the beacon signal is used to estimate the
channel response to train the system before the decoding phase;
and to estimate relative parameters of biomass concentration
and growth phase of the microalgae species.

A. Transmitter

The competitiveness of artificial light-driven microalgal pro-
duction requires improvements in photon harvesting and con-
version efficiency of light sources [2]. Hence it is crucial to
optimize light quality and delivery. In terms of light energy,
the photosynthesis rate is directly related to the irradiance
power, excessive or insufficient incident light constraints optimal
performance and can induce the photo-inhibition and photo-
oxidation of the cells, eventually attaining photo-damage and
even leading to culture death [7]. In terms of light spectra, the
radiant energy absorbed by microalgae highly depends on the
chemical nature of their native pigments, which have specific

absorption bands in the visible and near-infrared spectrum.
Thus, better energy usage can be achieved by adjusting the light
source’s emission spectrum [8]. Finally, recent experimental
studies have shown that combining short and intense light
flashes with extended dark periods, instead of continuous illumi-
nation, increases the growth efficiency as discussed in [9], [10].
The frequency and duty cycle of the light pulses is particular to
the microalgae species and also to the expected biomass product
result (lipids, carotenoids, etcetera), and may vary between a
few Hz up to tens of kHz. In short, the transmitting source’s
design must take into account all these restrictions concerning
the selected strain.

B. Channel

Light attenuation in flat-panel photobioreactors with mi-
croalgae suspension is affected by different phenomena: the
absorption capacity of the culture, the shading effect between
cells, and light scattering. The Lambert-Beer law can be used
to describe the attenuation of light due to absorption by the
biomass concentration (Eq. 1). This equation states that the
attenuation of light over distance is proportional to the light
intensity, where is the volumetric absorption coefficient. The
latter is the product of the specific light absorption coefficient,
αx,, and the biomass concentration (ρ). The integration of Eq.
1 over the light path, and taking into account the wavelength
dependency, results in Eq. 2.

dIλ(x)

d(x)
= −Cx,λ · I = −αx,λ · ρ · I (1)

I(x) =
λ=300∑

λ=800

Iλ(0) · e−αz,λ·ρ·x (2)

However, the Lambert-Beer Law does not account for scattering.
Instead, Schuster’s law can be used in those cases where the
light scattering must be considered [11]. In this architecture,
the scattering effect is a valuable resource for communications,
because it distributes the light within the reactor up to the frontal
panel of the container.

C. OCC receiver

The image acquisition operation mode of the cameras in-
herently limits the available bandwidth for communications. In
global-shutter cameras, the whole image sensor is exposed at the
same instant; thus, the data rate is constrained to their frame
rate, restraining the switching frequency of the light source
considerably. On the other hand, rolling-shutter cameras scan
the scene sequentially row by row of pixels (in the vertical di-
mension of the image), allowing to capture different light states
(intensity, color variations) within the lamp’s source projection
in the frame [12]. In this case, the theoretical bandwidth limit is
imposed by the row shift time, trow, which is the fixed duration
between the start of a row scan and its consecutive, also known
as sampling time. Also, these rows are not disjointly exposed,
but in an overlapped manner. This overlap depends on exposure
time, texp, which is the span time that each row is integrating
light. The effect of this overlap can be significantly simplified
(for a uniform light source) as the product of a weighed moving-
average filter, which further restricts the available bandwidth
(cutoff frequency - Eq. 3) [13]. Therefore, it is desirable to
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minimize exposure time from a bandwidth viewpoint, but taking
into account its negative impact on the Signal-to-Noise Ratio
(SNR).

f3dB
cutoff =

1

2 · texp
(3)

D. Node’s data rate

The achievable data rate of lamp source depends on the total
number of samples (in the vertical dimension) of the lamp
projection within the frame, in other words, the total number
of rows of the image sensor that are affected by the projection
of the light source [14]. Consequently, it is necessary to take
into account the geometrical configuration of the scenario,
which implies the relative position and facing direction between
the node and the camera. Equations 4-5 relate the projection
dimensions (in meters) of the lamp source over the scene plane,
Hpr, Wpr with its corresponding pixels dimensions, hroi, wroi.
Fig. 2 shows all the geometry and camera parameters involved
in a generalized scenario.

hroi = Hp ·
hresolution

2 · tan(AoVV/2) ·DFOV
(pixels) (4)

wroi =Wp ·
wresolution

2 · tan(AoVH/2) ·DFOV
(pixels) (5)

Where hresolution and wresolution are the pixel dimensions of
the image, AoVh and AoVw, the horizontal and vertical Angle
Of View (in degrees) of the camera, and DFOV , the distance
(in meters) from the camera lens to the scene plane.

Relating Eq. 3 with the Nyquist criterion, (ftransmitter ≥ 2 ·
fcutoff ) the minimum number of vertical samples of the signal
required per symbol can be computed using Eq. 6.

hsymbol =
fsampling

ftransmitter
=

texp
tshift

(samples) (6)

In addition, it is important to highlight that the communication
takes place in a windowed manner. In other words, the camera
can only detect the light source transitions within its projection
in the image, being blind to changes that occur when the
sensor is scanning another part of the image. To overcome this
issue, the transmitter can send repeated data packets (during the
acquisition time of two frames), to assure the correct reception.
Also, at the receiver side, it is necessary to detect a minimum
vertical source projection, hp that can fit the number of samples
of two data packets, as it is detailed in previous work [15].

Hence, the overall data transmission rate (in bauds) could be
obtained from Eq. 7, attaining to the restriction imposed by Eq.
8.

Rb = Psymbols ·
fps

2
(7)

hpacket ≥ 2 · Psymbols · hsymbol (8)

On the other hand, the node width in pixels (number of columns)
plays an important role in communications. Pixels located in
the same row integrates light at the same time, so, while
being affected by the same source, they could be used to filter
out signal noise, thus strengthening the signal to noise ratio.
Besides, wider widths aid the source detection and tracking
routines, and eases the decoding process considerably. As a
consequence, minimum pixel width also becomes a constraint
design parameter of the communication link.

E. Nodes’ distribution

In the proposed architecture is required to carefully analyze
the distribution of the nodes across the scenario to establish
a minimum data rate to each photobioreactor using the multi-
spatial capabilities of a single camera receiver. This distributions
must not just be optimized to communication specifications:
number of photobioreactors being monitored, N , and minimum
assured data rate, Rminb ; but also to a specific parameter of the
production plant: the space utilization ratio, SUR (Eq. 10). This
term relates the total equivalent volume of the containers bound
to biomass harvesting, Vcontainer, and the overall space used to
store the photobioreactors while providing the monitoring link,
Vtotal. It is decisive to minimize this term to design a viable
and competitive solution that meets the associated production
costs.

As a design criteria, a figure of merit, F , that takes into
account this parameters is defined in Eq. 9.

F = N ·Rminb · SUR (9)

where : SUR =
Vcontainer

Vtotal
(10)

Therefore lower F imply better arrangements of the nodes
within the scenario.

III. PRELIMINARY RESULTS

Two different analysis has been carried out to evaluate the
feasibility of this proposal as preliminary results. The first
discussion is focused on the analysis of F for three different
node’s arrangements. The second experiment evaluates the sig-
nal reception of a transmitted beacon signal for low, medium,
and high biomass concentrations of the microalgae’s species
selected.

A. Node arrangement

Figure 3 shows three different cases analyzed in this discus-
sion. All cases begin on a particular scenario, in which there
are 12 photobioreactors placed on a shelf. The dimensions of
the containers are 150x50x9 cm: the dimensions of the shelf,
300x300x10 cm.

Also, additional restrictions related to the communication
link must be met. Firstly, it is established that the projection
of the upper photobioreactors will fill the upper half of the
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image and the lower ones, the lower half. Consequently, the
camera should always point to the vertical center of the shelf.
In this way, the transfer rate is assured to be equal to all
bioreactors, and the number of vertical pixels is equal to the
half of the vertical resolution of the image (Eq. 11). Secondly,
the minimum pixel width of any reactor must be 30 pixels
(Eq. 12). In addition, both vertical and horizontal Field of
View are related by the sensor aspect ratio, aspectratio, thus
altering one of them will influence the other. The image sensor
Sony IMX219 specifications are used as a reference. The sensor
resolution (in Megapixels) is fixed to 8 Mpx; the image format
is 3280×2464 pixels, the exposure time of the camera is set to
1/10000 seconds (100 µs), its frame rate to 10 fps and the row
shift time, experimentally measured, is 18.904 µs. Hence, the
maximum baud rate achievable using Eq. 7 is 1108 (Bd/reactor)
and the aggregate baud rate is 13296 Bd.

hroi = Hp ·
hresolution

FOVV
≤ hresolution/2 (pixels) (11)

wroi =Wp ·
wresolution

FOVH
≥ 30 (pixels) (12)

where : AoVH = AoVV · aspectratio

a) Case I: The camera is located vertically and hori-
zontally, pointing to the middle of the shelf that holds the
containers. In this case, to attain to the previous restrictions,
the horizontal Field of View, FOVH , of the camera must cover
at least the entire shelf length, shelf length (Eq. 13), to assure
that all bioreactors are within the visibility range.

The other restriction is that the vertical Field of View of the
camera, FOVH , must be lower or equal than the shelf’s height.
Otherwise, the vertical projection of the photobioreactors will

decrease, because the floor, and the ceiling will be visible within
the image.

This condition is less restricted than the first one. The reason
is that it is not necessary to view the entire photobioreactor in
order to obtain a source projection that fills the frame, as it is
shown in Frame section in Fig. 3.

FOVH = 2 · tan
(
AoVH

2

)
· dcamera ≥ shelf length (13)

FOVV = 2 · tan
(
AoVV

2

)
· dcamera ≤ shelfheight (14)

In this case, the first strategy to resolve the equations is to fix
the AoVV to its maximum value (Eq. 14). Thus FoVH will
increase, reducing the camera distance considerably. However,
that increment will intensify the distortion effects introduced by
the lens, making the vertical lines bend in the image (barrel dis-
tortion). Besides, image processing techniques can not mitigate
this effect because that will introduce a non-linear distorsion
in the received signal. To avoid these unwanted effects, AoVH
was restricted to 70◦. Using equations 13 and 14 the camera
distance, dcamera, was obtained, and the resulting F for this
configuration is shown in Fig. 3.

b) Case II: The camera is translated on the y-axis. This
translation has the advantage that the camera distance is con-
siderably reduced, so the resulting F is lower than the previous
case. However, as can be seen in Fig. 3, the horizontal projection
of the reactors is shrinking relative to its distance to the
camera. Therefore, the Eq. 12 acquires and important part in
the consideration restrictions. In this case, the FOVH changes
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slightly, and it is defined in Eq. 15.

FOVH = 2 tan

(
AoVH

2

)
· dFOVH (15)

where : dFOVH =
dcamera · cos(AoVH/2)

cos(AoVH)

AoVH =

(
shelf length

dcamera

)

In this case, utilizing the maximum AoVH = 70◦ restriction,
wroi considerably exceeds the restriction imposed in 12, thus
this configuration is viable.

c) Case III: Another shelf has been added. Both shelves
are facing each other, and the camera is now pointing at the
center of the corridor. In this configuration, part of the image
corresponds to the frontal wall, reducing the available left space
for every photobioreactor. In this case, as in the previous case,
it is especially important to analyze the horizontal projection of
the reactors. However, two exceptional cases can be highlighted.
If AoVH is too wide, the horizontal projection of the last
reactor can not meet the minimum constraint. If AoVH is too
narrow, the same will happens but with the first reactor. This is
because the first reactor is partially visible in this configuration.
Otherwise, AoVH must be greater or equal to 180◦ degrees,
leading to image distortions.

hiroi = Hi
p ·

hresolution

FoVH
≥ 30 (pixels) (16)

H last
p =

dcamera · reactorlength

shelf length + ycamera − reactorlength
(17)

Hfirst
p = (shelf length + ycamera) · ⇒

⇒
[
tan

(
AoVH

2

)
− dcamera

(reactorlength + ycamera)

]
(18)

This case has the higher F number (224), and, althought further
photobioreactors will have a shorter width projection, it is
enough to stablish a communication link.

B. Transmission experiment

This experiment was carried out at the facilities of the
National Spanish Bank of Algae (BEA, by its Spanish acronym).
In this experiment, a beacon signal was transmitted through
a medium with different biomass concentrations of the Rho-
dosorus marinus species: high, medium, and low. This signal
consists of five pulses (one for each available LED that inte-
grates the lamp), followed by a dark period. The key parameters
of the experiment are shown in Table I.

The results are presented in Fig. 4. This Figure displays a
snapshot taken for three concentration density: low (a), medium
(b), and high (c). The white rectangle enclosed the detected
beacon signal. The graph shown below the pictures represents
the red, green, and blue pixel values from one column located
within this rectangle. Also, picture (d) represents the reference
case where the signal is extracted without being affected by the
microalgae channel. The signal recovered corresponds to the
sequentially pulsed LEDs: white cold, white warm, dark guard
(no pulse), green, red, and blue. It can be observed that this
species produces significant attenuation in the blue and green

TABLE I
Key parameters of the experiment.

Module Characteristics
Photobioreactor

LED Lamp Eglo Tunable White - RGB connect
- 1 White cold LED (6500K)
- 1 White warm LED (2700K)
- 1 RBG LED*
*(Wavelenghts [nm]: 630 (Red)
530 (Green), 475 (Blue))

Container Square flat panel (self made)
- dimensions [cm] : 50x50x9

Signal (Beacon) Pulsed signal
Tchip [s] = 1/8400

Channel
Microalgae - species: Rhodosorus marinus

- genus: Rhodosorus
- concentration: HIGH, MEDIUM, LOW

Distance [m] 2
Receiver

Camera - sensor: Sony IMX586
- aperture lens: f/1.75
- focal length (equivalent) [mm]: 26mm
- video resolution [px]: 1920x1080
- exposure time [s]: 1/10000
- ISO: 450
- frame rate [fps]: 30

portions of the spectrum (attaining to the Bayer filter’s spectrum
response of the camera). Despite that the green, blue, and red
pulses can not be distinguished in picture (c) (due to low optical
transmitting power), it still possible to differentiate the white
cold and white warm spectral signatures. Therefore, those LEDs
are viable for communication purposes.

IV. CONCLUSIONS

In this work, the use of OCC has been proposed as a suitable
communication technology for microalgae production plants
based on artificial lighting. Concretely, flat-panel based plants
have been considered as a preliminary topology.

Several configurations have been tested, and a custom merit
figure relating the aggregate data rate and volume yield were
evaluated. It was observed that the best configuration for flat-
panel monitoring corresponded to the two-sided corridor moni-
toring position (F=224). This topology improves the number of
simultaneously monitored photobioreactors significantly. Also,
taking into account that these facilities produce high-latency
low-rate data, it is more critical to maximize multi-user capa-
bility instead of the achievable data rate.

A real experiment involving a culture of Rhodosorus marinus
was carried out for low, medium, and high concentrations. It was
observed that blue and green light presented high absorption
profiles, limiting the use of these wavelengths for data trans-
mission. However, this characteristic provides significant infor-
mation for remotely sensing algae concentration. Furthermore,
these results suggest that the type of microalgae must be taken
into account when designing this type of OCC link.

It has been demonstrated that microalgae production plants
are a potential use case for OCC, in which a significant amount
of devices could be easily monitored using a cost-effective
deployment.
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Abstract—This work presents Barcolits, active LED tags that
exploit the sequential acquisition of rolling-shutter cameras to
materialize virtual barcodes in images. The generated barcodes
have valuable properties. Compared to physically printed bar-
codes, its size (in pixels) does not change with the distance to
the camera. Also, its stripes are always vertically aligned in
the image independently of the rotation and position of the
camera. Moreover, as Barcolits are active devices, they can be
scanned under low light conditions or from reflections in walls or
mirrors. Furthermore, this approach reuses conventional barcode
detection and decoding algorithms, allowing interoperability and
backwards compatibility with current barcode scanners (image
or photodiode-based). These benefits have been experimentally
validated using three different barcode encoding schemes: Code
128, EAN-13 and ITF. In the experiment conducted, these
barcodes are compared in terms of their minimum required
size to ensure high reliability, their data density, their signal
level, and their likelihood to produce flickering in the LED
source. The experiment results show that Code 128 are ideal for
high throughput data sharing, with the highest achievable data
density of 4.92 bits per pixel and the lowest power consumption.
It outperforms standard manchester codes by encoding 42%
more bits using the same payload size. On the other hand,
EAN-13 barcodes require the smallest size for a successful scan
but produce noticeable flickering if a long stream of different
barcodes is transmitted. Finally, ITF codes mitigate flickering at
the cost of reducing their density. This extensive analysis provides
a comparison tool to help choose the optimal barcode scheme for
different applications and environments.

Index Terms—Optical camera communication, visible light
communication, rolling shutter, barcode, industry 4.0

I. INTRODUCTION

Barcodes have revolutionized business and industry since
their invention in 1949. They are widely used worldwide,
throughout the supply chain and in many contexts. They are
applied to products in retail stores as part of the purchase
process, in warehouses to track inventory [1], on invoices
to assist accounting, in advertising to help reach additional
content [2], in the healthcare and hospitals to identify patients
and medicaments [3], among other applications. Barcodes
are simple, flexible, cost-effective and provide high accuracy.
However, given the extent of their use, the consequences
associated with the 1% inaccurate barcode scans can have

This work has been funded in part by the spanish research administration
(AEI, Project OCCAM, Ref. PID2020-114561RB-100) and under the frame of
the NEWFOCUS COST action (Ref: CA19111), sponsored by the European
Union.

a significant detrimental impact in many sectors and with
remarkably diverse consequences.

One of the most important factors influencing the reliability
of barcodes is their image projection size (in pixels) for image-
based scanners [4]. For a successful scan, It is necessary to
guarantee a minimum width resolution for the narrowest seg-
ment. The attained size will depend on geometrical parameters
such as the barcode’s physical size, position, distance, and
rotation relative to the camera and the camera’s resolution,
focal distance and field of view. Rotated and perspectively
distorted barcode readings obtained from an improper camera
position increase the complexity of the decoding algorithms.
Other critical factors are the light scene conditions and light
properties of the barcode. Since it is a passive reflector ele-
ment, it relies on an external light source. Hence, the scanner
will fail if the reflected light does not uniformly contrast white
and black segments across the barcode. Printing barcodes
on highly reflective, transparent, translucent (plastics bags),
coloured, noisy or glossy surfaces; undergoing object shadows;
or even configuring the camera with low exposure and gain
settings are examples of possible scan fails. In addition,
the camera’s lenses can distort the barcode, increasing the
difference in width of similar-sized segments, thus corrupting
decoding. Last but not least, movement is also detrimental.
Rolling shutter (RS) cameras deform moving images due to
their sequential scanning in time, causing the barcodes to
become noticeably corrupted under dynamic conditions.

Despite these numerous drawbacks, the industry has a
steady interest in improving barcode detection and data re-
covery algorithms under harsh conditions, as demonstrated
by the continuous update of the methods, including artificial
intelligence models that outperform classical techniques [5]–
[7]. However, a qualitative leap is still possible to overcome
all these challenges without leaving behind all the technology
developed, but by reusing it in better conditions.

This work presents Barcolits, active LED tags that exploit
the sequential scanning of RS cameras to generate virtual
barcodes in images. The term virtual refers to the fact that
there is no physical printed barcode. The barcode materializes
during the capture of the image as a result of the camera’s
acquisition mechanism. The Barcolit itself is a squared-shape
light marker that appears uniformly illuminated to the naked
eye. However, it switches between on and off states at high
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Fig. 1. Proposed communications scheme.

speed (10 to 50K changes per second). These transitions are
detected by an RS camera. Because the camera exposes the
image sensor sequentially row by row of pixels, it samples
the light at successive instants, generating images that contain
different illuminated stripes. The stripe intensity depends on
the intensity level of the LED at the time of activation of
each row [8]. The technology behind this proposal is known
as RS-based optical camera communications (OCC) [9]–[12],
and is considered a branch of visible light communication
(VLC) [13] in the field of optical wireless communication
(OWC). This technology, as detailed in the standard [14], aim
to reuse light sources and camera-enabled devices to establish
optical wireless communications links. Previous related works
have proposed and experimentally validated different modu-
lations schemes for RS-based OCC links such as amplitude
shift-keying (ASK) [15], frequency-shift keying (FSK) [16],
[17], quadrature amplitude modulation (QAM) [18], color-
shift keying [19]; different multiplexing strategies such as
orthogonal frequency division multiplexing (OFDM) [20],
MIMO approaches [21]; and custom encoding schemes as
presented in [22]. However, these approaches rely on custom
decoding algorithms that have not yet been brought to a real
application environment. On the other hand, Barcolits uses
standard barcode encoding schemes, which allows the reuse
of available ready detection and decoding barcode algorithms
developed and tested by millions of users. This also offers
backward compatibility and interoperability with conventional
image and photodiode-based barcode scanners, which helps
enable an OCC technology that is completely non-intrusive

with the processes, use cases, and applications in which printed
barcodes are currently used.

Furthermore, Barcolits present unique features and advan-
tages that position them as promising candidates for replacing
traditional barcodes. These advantages are the following. The
barcode’s size (in pixels) does not change with the camera
distance, and its stripes will always be vertically aligned within
the image, independently of the camera’s rotation and position.
In addition, they will not suffer from lens distortions and will
always be straight. Moreover, the Barcolits can be scanned
under low light conditions, even in dark scenarios, as they
are active devices. Furthermore, they can be recovered from
reflections in walls and mirrors, allowing non-line of sight
detection [23]–[25]. All these benefits will be explained and
justified in Section II supported with image examples that
validate them experimentally.

The remainder of this paper is organized as follows. Section
II details the communications scheme and presents preliminary
results from the experimental evaluation of Barcolits. Section
III describes the experimental setup and methodology used in
the validation. Finally, Section IV discuss the results obtained,
summarized in the conclusions section (Section V).

Communications scheme

II. COMMUNICATIONS SCHEME

Figure 1 shows the communications scheme proposed. In
this picture, a Barcolit is attached on the side of a generic
postal box, alongside a traditional barcode for comparison
purposes, which has the exact dimensions.
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Fig. 2. Configuration examples.

Barcolits, as described in the introduction, are battery-
powered LED square markers that switch between on and off
illumination states to produce bright and dark stripes in the
images captured by RS cameras. These different illuminated
stripes are produced due to the RS acquisition mechanism, in
which the image sensor is exposed sequentially row by row,
sampling the light at different instants. As a result, virtual
barcodes materialize within the Barcolit’s image projection.
Once the image is captured and retrieved by the camera,
classic barcoding detection and data recovery algorithms can
be utilized without exception, as both traditional and virtual
barcodes follow the same encoding scheme.

The main benefit of this barcode generation is that the
stripe height does not depend on the distance to the camera,
unlike traditional barcodes. This size is directly defined by the
relation between the time the LED panel maintains a particular
illumination state and the interval between the activation of
two consecutive rows. The former is known as the transmitted
symbol time, tsym, and the latter as the camera’s row sampling
period, which, in the end, corresponds to the receiver sampling
period, Ts (using communications terminology). Eq. (1) relates
both times to the stripe’s height, known as the number of pixels
per symbol (NPPS) [26], which is the theoretical number of
samples per symbol in a communications system.

NPPS =
tsym
Ts

(1)

Therefore, by selecting the appropriate tsym and Ts, the
NPPS can be adjusted to the preferred barcode’s size based on
the application. Nevertheless, in most cases, this size is desired

to be as small as possible (while ensuring a reliable detection)
to exploit the vertical resolution of the image efficiently, i.e.,
to fit more subsequent barcodes within the image. Figures
2(a-c) shows examples of the barcodes captured using the
RS-acquisition mechanism at different distances. The virtual
barcode is highlighted in all pictures by surrounding it with
a black rectangle. These figures show that the barcode size,
hbarcode is independent of the distance. However, the Barcolit
image projection, hBarcolit does decrease with the distance.
At 10 cm, it occupies the image entirely, and at 80cm, a
third portion of the vertical resolution, himage. In the same
way, the number of materialized barcodes that fit inside the
projection decreases. At 10 cm, nine barcodes materialize
one after the other, while at 80 cm, only two barcodes
fit within the Barcolit’s image projection. The number of
recovered barcolits, N , depends on the ratio between the image
projection and the expected barcode sizes (Eq.2).

N =
hbarcode

hBarcolit
(2)

Note that the barcodes look similar in this example case.
This is because the LED sends the same barcode repeatedly.
However, it is possible to transmit different barcodes over time,
increasing the data rate. On the other hand, Figures 2(d-f) show
examples in which the camera have been rotated, 30 and 90
degrees (Fig. 2(d,e)), and translated (Fig. 2(f)). These figures
show that the barcode stripes remain straight and perfectly
aligned to the image’s vertical dimension in all cases. This is
exceptionally convenient for barcode detection and decoding,
significantly reducing its complexity. This feature of the virtual
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barcodes is particularly beneficial in the latter example, in
which traditional barcodes stripes will follow the image’s
vanishing point, ultimately acquiring a trapezoidal shape.

In conclusion, independently of the Barcolit distance and
its projection over the image plane, the barcode will always
have a fixed size and will be perfectly aligned to the scanning
dimension of the camera, as opposed to traditional barcodes.

Regarding the detection and decoding methods, as barcodes
and virtual barcodes are similar in the images, the image-based
scanners underlying algorithms can be used interchangeably.
Highlight that these algorithms are developed to detect bar-
codes by searching for the particular patterns that constitute
them. Its encoding scheme is thus designed to facilitate its
detection. Therefore, in contrast to conventional OCC links, it
is not required to previously detect the region of interest (ROI)
where the barcodes are expected to be located in the image.
Instead, barcodes can be directly searched in the entire image.

In conclusion, because virtual barcodes are similar to bar-
codes, they can be correctly detected using conventional well-
tested algorithms, as long as the following requisites are met:
(i) the Barcolit must illuminate its surface uniformly and (ii)
its image projection must be large enough to fit at least two
barcodes (Eq.3).

hBarcolit ≥ 2 · hbarcode (3)

In other words, the size of the Barcolit’s image projection
must be at least twice (and not the same) the expected size
of the barcode. This requisite prevents the consequences of
the non-perfect synchronization between the camera and the
Barcolit. Because of this non-perfect synchronization, the
barcode will appear in different positions within the Barcolit
image projection. Consequently, if its size is equal to the
barcode’s size, there is a high probability that the barcodes
will appear trimmed. This requisite imposed on the size of
the projection regarding the expected barcode size, which is
expressed in literature as the ROI size required based on the
data size, governs the design of OCC links [27].

This requirement is a clear disadvantage of the proposed
Barcolit compared to traditional barcodes. For instance, the
Barcolit size must double the physically printed barcode size
to be detected at the same distance.

However, this work proposes a novel approach that enables
barcode detection under conditions where the size of Barcolit’s
projection matches the barcode size. Thus the requisite ex-
pressed in Eq.3 is replaced for the new expressed in Eq.4.

hBarcolit ≥ hbarcode (4)

Figure 1 shows the processing steps required to satisfy this
condition. First, it is required to detect the ROI or select a
region where it is expected to find a barcode. ROI detec-
tion can be accomplished using classical image processing
techniques focused on finding the shape enclosing the light
source. After determining the ROI, the columns can optionally
be averaged to increase the signal to noise ratio (SNR). This
averaging increases approximately the SNR by a factor of

n, corresponding to the number of columns used (assuming
that the image is affected by an additive white gaussian
noise (AWGN)). This step is not strictly necessary to decode
barcodes, but it can improve the system’s performance.

Second, it follows a random crop from the enhanced seg-
ment with the barcode’s expected size, hbarcode. Remark that
the size of this crop must be precisely the expected size
of the barcode. Finally, the extracted segment is cloned and
concatenated at its very end to generate a new image that
doubles its original size. In this image emerges a barcode that
can be detected using conventional algorithms. This is because
the concatenation of the cropped segment fuses the upper and
lower part of a trimmed barcode. In conclusion, this novel
implementation (one of the contributions of this work) solves
one of the critical challenges highlighted in recent literature
related to the required ROI size regarding the expected size of
data to prevent data trimming.

A. Compatibility with barcode scanner devices

The proposed Barcolits are designed explicitly to reuse the
underlying barcode detection algorithms (software elements)
utilized in conventional image-based scanners. However, Bar-
colits are also compatible with actual scanner devices under
certain conditions. This subsection discusses the preliminary
requisites to ensure its compatibility with different types of
scanner devices.

There are four types of barcode scanners available: camera-
based readers, laser scanners, pen-type readers, and CCD
readers. This list is ordered from highest to lowest penetration
in the industrial and commercial sectors. In addition, the last
two are being discontinued because of their worse performance
compared to the first ones.

Camera-based readers include an RS camera that delivers a
continuous stream of images and a computing unit that detects
barcodes using conventional image processing algorithms.
Therefore, these scanners are fully compatible with Barcolits.
The only requirement is to configure the camera with a short
exposure time. The exposure time is the interval in which
pixels are exposed to light. It determines the amount of light
received from the scene. For instance, long exposures produce
bright images. Accordingly, the exposure time is increased
under low light conditions to allow perceiving objects in the
images. However, long exposures can negatively impact the
Barcolit’s transmitted barcode. Under prolonged exposures,
the barcode’s stripes bar appears mixed. This is because the
pixels, exposed during a longer period, integrate the light of
several consecutive symbols, producing a significant intersym-
bol interference (ISI). This ISI can be prevented by configuring
the camera with short exposure times. In conclusion, the
compatibility of the proposed Barcolits with conventional
camera-based readers is guaranteed in cases where the camera
is configured with short exposure times.

Laser scanners include a laser, an oscillating mirror (or
rotating prims) and a photodiode. During the scan, the laser
generates a light beam which is redirected by the mirror into
the barcode. This mirror is incrementally rotated to redirect the
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laser beam across the barcode. At each rotation, the photodiode
samples the reflected light from a particular barcode position.
At first glance, it might seem that these scanners are not
compatible with Barcolits. However, these readers follow a
sequential scanning comparable to the sequential scanning of
RS cameras. In the same way, as in RS cameras, the row
sampling time corresponds to the receiver sampling period, in
laser scanners, it corresponds to the time taken to increment
the rotation angle of the mirror one unit. Therefore, if both
times are comparable, the laser scanner can detect barcodes
directly from the Barcolits’ surface. Yet other requirements
must also be met. First, the duration of one scanning cycle
must be greater than the time required to transmit an entire
barcode with the Barcolit, ensuring that at least one barcode is
transmitted during scanning time. Second, the light spectrum
of the Barcolit’s must include the wavelength of the laser,
which can be red or infrared.

Pen-type readers include a light source and a photodiode to
read the barcodes. It uses the same approach as laser scanners,
as it measures the reflected light of the different stripe bars.
The difference is that the user must move its tip across the
bars at a relatively uniform speed to operate this scanner.
Highlight that, in this case, the pen is continuously sampling
the incoming light at a fixed rate, independently of the user
speed. Therefore, if this sampling time is comparable to the
row sampling time of the camera, these pens are compatible
with the Barcolits. Furthermore, it is not required that the user
move the pen across the Barcolit, as the barcode is transmitted
directly by varying the illumination.

Finally, CCD scanners include a charge-coupled device
(CCD) consisting of a line of hundreds of pixel photodiodes.
These photodiodes are simultaneously exposed to the light
coming from the barcode’s surface at the scanning time. This
acquisition mechanism is known as global shutter acquisition,
and it is incompatible with Barcolits. This is because, at
scanning time, all the photodiodes are exposed to the same
illumination state.

III. EXPERIMENTAL SETUP

Figure 3 shows the experimental setup. As proof of concept,
a rectangular white LED panel is connected to an arbitrary
wave generator (AWG), which generates the barcode signal.

At the receiver side, a camera (PiCamera V2) [28] attached
to a Raspberry Pi captures images continuously and streams
them to a processing unit deployed in a cloud infrastructure. A
reference picture stands next to the Barcolit to account for the
position and rotation of the camera. Finally, a specular reflector
is placed on the ground. The experiment’s key parameters are
detailed in Table I.

Regarding the decoding algorithms, the core library is
written on Python and uses the Pyzbar python wrappers of
the open-source C/C++ barcode reading library. The use of
this library demonstrates the compatibility of conventional
detection and decoding algorithms with virtual barcolits.

The conducted experiment aims to evaluate and compare
the performance of three different barcode encoding schemes

PiCamera v2

Display

LED Flat panel

Reference image

Specular
reflector

Fig. 3. Experimental setup.

using this Barcolits proof-of-concept: code 128, defined in
ISO/IEC 15417:2007) [29]; European article number (EAN-
13) and interleaved 2 of 5 (ITF), defined in GS1 [30], [31].

On the one hand, it analyzes the maximum achievable data
density, the amount of information the barcode encodes (in
bits) and its required size (in pixels) to ensure detection and
decoding. The data density has units of bits per pixel. It is
important to clarify that the size of the barcode also considers
the size of the quiet zone to be set between successive
barcodes, expressed as a percentage of the original barcode’s
size. If this quiet zone is not large enough, the barcodes
cannot be successfully detected or differentiated from each
other. Therefore, the minimum size required for each code is
determined by minimizing the size of the quiet zone for each
encoding scheme until the system barcode recall is higher than
90%. In other words, until valid barcodes are detected in 90%
of the images. More than 3000 images for each barcode type
containing random digits and surrounded with increasing quiet
zones are captured for this evaluation.

On the other hand, this evaluation analyzes the normalized
signal level (i.e., the average of the normalized signal values)
for each barcode type considering different payloads. The
signal level is directly related to the LED’s power consump-
tion, and it is preferred to have the lowest possible value.
In addition, barcodes carrying different payloads might have
different signal levels, depending on the encoding scheme.
Therefore, transmitting consecutive barcodes with different
payloads might produce a noticeable flickering. This flickering
is produced due to the slow variations in time of the signal
level associated with each barcode. The standard deviation
of the signal levels for different payloads can be assessed
to account for the probability of producing a noticeable
flickering. The higher the standard deviation, the higher the
chances to produce flickering.

IV. RESULTS

Figure 4 depicts real examples of captures of different
barcode types (Code 128, EAN-13 and ITF). It reveals that
the required quiet zone for each barcode (highlighted with
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TABLE I
EXPERIMENT’S KEY PARAMETERS

Parameter Value
Barcolit

Symbol span — npps 37, 8µs — 2 pixels per symbol
Barcode types Code 128, EAN-13
Quiet zones 0 to 20 %

Receiver
Camera model PiCamera V2 [28]
Resolution 1920 x 1080 pixels
Aperture lens — Focal
length (equivalent)

f/2 — 3mm

Row sampling period 18.904µs
Exposure time 25µs
Analog gain 12.0
Digital gain 1.0
Red and blue gains 1.85, 2.34

Link
Relative distance 80cm
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Fig. 4. Capture examples. Transmitted digits ‘0123456789012’.

TABLE II
COMPARISON TABLE OF DIFFERENT BARCODES.

Barcode type Code 128 EAN-13 ITF

Barcode size (pixels) 270 200 253

Barcode payload (pixels) 245 190 241

Quiet zone (% — pixels) 10% (25) 5% (10) 5% (12)

Number of symbols 103 10 10

Barcode length (symbols) var (13) fixed (13) fixed (12)

Barcode bits 87 43 40

Density (bits per pixel) 4,96 0,65 0,47

Reference bits 61 48 60

Reference ratio 1.42 0.90 0.67

Mean (µ) - Norm. energy
level

0.51 0.54 0.51

Std (σ) - Norm. energy
level

0.02 0.03 0.00

an orange rectangle) is different. Code 128 barcodes require
the larger quiet zones to be successfully detected. In addition,
this figure shows that the barcode size varies depending on the
encoding scheme for the same payload consisting of the digits
‘0123456789012’. EAN13 barcodes have the smallest size.

Table II compares the barcode’s evaluation metrics. In bold
are selected the best values for each metric. Starting from the
barcode’s size, EAN-13 is the preferred type with a size of
200 pixels, having the minimum required quiet zone of only
10 pixels (equivalent to 5% of the barcode size). However, the
number of different symbols it can transmit is only 10 (i.e., the
digits 0,1,2,3,4,5,6,7,8 and 9), which is far from the number
of symbols that can be transmitted using the barcodes Code
128 (i.e., 103).

Therefore, a fairer comparison requires analyzing the bar-
code’s density. In these terms, Code 128 outperforms other
barcode types by transmitting up to 4.96 bits per pixel. This
value is derived from the fact that Code 128 barcodes have
a fixed length of 13 slots that can accommodate one of
103 available different symbols. The theoretical amount of
information each symbol transmits is 6,69 bits (obtained by
applying the binary logarithm to 103). Therefore, the total
amount of information transmitted using this barcode type is
approximately 86 bits. Dividing the total size of the barcode
(i.e., 270 pixels) by this number gives the corresponding
barcode’s density. The same approach is used to compute the
barcode’s density in the other cases.

In addition, this table adds another metric to compare the
barcode encoding performance with the Manchester encoding
scheme, which is conventionally used in traditional RS-based
OCC links (as defined in the standard). This metric has
the label of reference bits. It corresponds to the amount of
information (in bits) a manchester encoded signal can carry
using the same barcode size (in pixels). The ratio between
the barcode and the reference bits is shown below. As it
can be seen, Code 128 outperforms the manchester codes
by encoding up to 42% more bits (i.e., 87 vs 61 bits) in
the same space. Therefore, it is revealed that Code 128 is
a more efficient encoding scheme than traditional Manchester
encoding. It exploits better the available space to transmit the
information.

Finally, in terms of the barcodes’ normalized signal level,
Code 128 has the lowest signal level (0.51) on average,
similar to the ITF codes. Therefore, both code types are
more suitable for low-power communications than the EAN-13
codes. Nevertheless, ITF codes have another important feature.
The standard deviation of the signal level for different payloads
is zero. This means that all the barcodes generated with this
encoding scheme have the same signal level independently of
the payload. This is because all its symbols are designed with
the same number of ones (white stripes) and zeroes (black
stripes) to ease the detection and decoding algorithms. In par-
ticular, each symbol has five bits: two ones and three zeroes.
This explains why this code has the lowest data density. ITF
barcodes favour detection at the expense of transmitting fewer
bits. However, their intrinsic feature of always having the same
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signal level makes them ideal candidates for transmissions
where flickering can be an issue.

Alternatively, Code 128 with a standard deviation of 0.2 is
preferred over EAN-13 codes if the application requirement is
to reduce the probability of flickering perception. However,
it is important to highlight that no flickering is perceived
when the same payload is transmitted repeatedly, as the signal
level of the barcode is perceived constant over time. The
chance of perceiving flickering will depend on the sequential
transmission of different barcodes.

Figure 5 shows the histogram of random payloads for each
barcode type. As it can be seen, EAN-13 has a more significant
standard deviation and average level, which makes them the
least suitable in terms of energy, and flickering prevention. As
mentioned, ITF codes have a standard deviation equal to zero,
which means that all the barcodes share the same signal level
independently of the payload. Hence, ITF codes are preferred
in those cases where flickering can be an issue.

In summary, as a design criterion, Code 128 barcodes
are preferred in cases where a significant amount of data
needs to be transmitted, and the flickering requirements are
permissive. In addition, the power consumption of the Barcolit
is the lowest, with a generated signal level of around 0.51.
In addition, Code 128 barcodes are variable in length and,
therefore, can adapt their barcode size, in contrast to the other
two. Still, its data density decreases abruptly with the number
of symbols per barcode.

EAN-13 codes can be used when the guaranteed detectable
ROI size is short since they require the smallest barcode size
for detection and decoding. For instance, these barcodes are
preferred when working with moderate distance links.

Finally, if the flickering requirements are very rigid, then
ITF codes are ideal. In addition, as they are well-balanced
codes, they produce less stress on the LED source and allow
the continuous transmission of many different barcodes with-
out perceptible flickering.

V. CONCLUSIONS

This work presented Barcolits, active LED tags that ex-
ploit the sequential acquisition of rolling-shutter cameras to
materialize virtual barcodes in images, as a promising alter-
native to traditional printed barcodes. These Barcolits, in the
end, establishes OCC links with RS cameras, in which the
standard encoding schemes are replaced with barcode encod-
ing schemes. This approach enables backwards compatibility
with conventional image-based barcode scanners and benefits
from reusing well-tested and user-ready barcode detection
and decoding algorithms. Moreover, the virtual barcodes have
valuable properties as their size does not change with the
camera distance, and its stripes are always vertically aligned
within the image independently of the rotation and position
of the camera. The experimental validation of three different
barcode schemes: Code 128, EAN-13 and ITF, offers practical
comparison guidelines, design principles, and metrics to help
choose the optimal barcode for different applications. On the
one hand, it analyzes the communication constraints such
as the minimum required barcode size, ensuring high scan
reliability, and the maximum achievable data throughput. On
the other hand, it compares the signal generation constraints
in terms of the average signal level, which is preferably
low to enable low-power transmissions, and the likelihood
to produce perceptible flickering in the Barcolit source. The
experiment results show that Code 128 barcodes are optimal
in applications with high data throughput requirements and
in which the Barcolit’s image projection is guaranteed to
be extense. With a data density of 4.96 bits per pixel, they
outperform Manchester encoding schemes by increasing 40%
the number of transmitted bits using the same pixels. On the
other hand, EAN-13 are preferable in applications where the
attainable Barcolit’s projection is reduced, for example, in ap-
plications with moderate to high link distances. However, long
streams of different payloads are prone to produce perceptible
flickering. In those cases where the flickering requirements
are not permissive, the solution is to send the same repeated
barcode over time to avoid slow variations on the signal level.
Alternatively, ITF barcodes can be used, which maintains a
signal level that is perceived constant to the naked eye. These
barcodes mitigate the flickering issues at the cost of reducing
their data density. Moreover, its size is smaller than Code 128,
making them flexible and adaptable candidates for different
environments and applications.
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Abstract—The camera’s exposure time restricts the reception
bandwidth in rolling shutter-based optical camera communica-
tion links. Short exposures are preferable for communications,
but under these conditions, the camera produces dark images
with impracticable light conditions for human or machine-
supervised applications. Alternatively, deep learning equaliza-
tion stages can mitigate the effects of increasing the exposure
time. These equalizers are trained using synthetic images based
on the camera’s exposure time and row sampling frequency.
If these parameters are unknown in advance, another artificial
network is used to estimate them directly for the captured im-
ages, the estimator. This estimator is trained offline using a vast
number (thousands) of representative cases. This work proposes
to transfer the attained knowledge from the offline pretrained
estimator to the equalizer by using transfer learning techniques.
In this way, the equalizers’ training time is significantly reduced
(435 times compared to full training). Consequently, transfer
learning enables equalizers’ online and on-demand training at
reception without interfering with the communications. Results
reveal that the complete training requires using exclusively 250
synthetic images to guarantee a communication performance
with a bit error rate below 10−4 after the equalization.

Index Terms—Rolling shutter, Optical Camera Communi-
cation, Visible Light Communication, Equalization, Transfer
learning, Deep Learning, Artificial Intelligence

I. INTRODUCTION

Optical camera communication (OCC) is a branch of
visible light communication (VLC) [1] in which the optical
receivers are the pixels of an image sensor. The interest in
this technology lies in the reuse of embedded cameras in
a wide range of end-user devices (e.g., smartphones, vehicle
dashcams, laptops) [2], [3]. In this way, it is intended to break
the market’s entry barriers imposed on VLC due to the neces-
sity of using dedicated reception hardware (i.e., photodiode-
based receivers) [4]. As stated, cameras should be preferably
reused, implying that they might not lose their functionality
as image capture systems. They must serve simultaneously as
communication endpoints and imaging devices. Nevertheless,
when a rolling-shutter (RS) camera acts as a receiver, it must
be configured to achieve the highest link throughput [5].
The camera should select the lowest possible exposure time;
otherwise, it will restrict the available reception bandwidth

This work has been funded in part by the Spanish research administration
(AEI, Project OCCAM, Ref. PID2020-114561RB-100) and under the frame
of the NEWFOCUS COST action (Ref: CA19111), sponsored by the
European Union.

(acting as a low pass filter [6], [7]). However, under these
short exposure conditions, the camera delivers dark images
with impracticable light conditions for human or machine-
supervised applications (i.e., users cannot perceive objects in
the scene). Consequently, a trade-off arises in selecting the
optimal exposure time, constraining the OCC links (at the
design stage) to work with RS-cameras configured with a
fixed exposure time below a specified threshold, above which
communication is unfeasible. This demanding prerequisite
neglects that most cameras have automatic configuration
algorithms for setting the exposure (among other parameters)
based on estimated ambient light conditions. Furthermore,
they might even not provide access to their internal settings.
For example, cameras in firmware-protected Android [8],
and iOS smartphones do not reveal their internal settings
or do not allow them to be set. For this purpose (i.e.,
to allow increasing the exposure time), a previous work
[6] proposed using an equalization stage based on artificial
intelligence. Based on a convolutional autoencoder (CAE),
this equalizer returns reconstructed denoised versions of the
input images, mitigating the exposure-related intersymbol
interference (ISI). These equalizers are adjusted, on training,
to a fixed exposure time by using synthetically generated
images. Furthermore, given the convolutional nature of these
equalizers, they adapt pretty well to exposure conditions that
slightly deviate (up to 11%) from the target exposure time.
Its experimental validation reveals that this equalizer outper-
forms state of the art artificial neural network (ANN)-based
equalizers’ performance [9], [10] by increasing the reception
bandwidth up to 14 times compared to non-equalized sys-
tems and under low to moderate signal-to-noise ratio (SNR)
conditions. Despite advances in exposure equalization, there
is still the challenge of retrieving the training parameters
(to generate the synthetic images) when they are unknown
beforehand. Recall that the camera can automatically and
dynamically adjust the exposure time or even do not reveal
it. Hence, it is necessary to estimate at reception the internal
configuration of the camera directly from images to perform
the equalizer training. For this purpose, a previous work
[11] proposes an estimator block based on convolutional
networks that accurately estimates the camera’s exposure
time. Moreover, this estimator retrieves parameters related
to the transmitter clock frequency. The estimated parameters



are delivered to the following equalizing and decoding blocks
in the reception chain. Consequently, the accurate estima-
tion of these parameters enables the receiver to decode the
transmitter source while unaware of the camera or transmitter
configuration. In this way, the image acquisition systems (i.e.
cameras, video streams) are decoupled from the reception
routines, allowing decentralized decoding platforms to be
deployed in the cloud. This is an extended tendency in
wireless networks where the access points’ functionalities are
decoupled from the local hardware and translated the heavy
processing to the cloud (e.g., Open Radio Access Networks).
Finally, to provide support for a wide range of cameras and
configurations, in [11], was proposed the use of a pretrained
bank of equalizers, each of them adjusted to different camera
configurations. This strategy (i.e., bank of equalizers) implies
storing each equalizer’s weights and network parameters in
memory, which is not inconvenient if the storage capabilities
are extensive. Still, it represents a challenge for low-cost
embedded platforms. In this paper, we propose to train the
equalizer at reception on-demand (instead of using pretrained
equalizers) based on the estimates delivered by the estimator
block. However, to perform this on-demand training with-
out disrupting the communications is necessary to reduce
the training time significantly and the number of synthetic
images used, avoiding using valuable receiver resources. To
achieve more efficient training, it is proposed to transfer the
attained knowledge from the estimator (pretrained offline) to
the equalizer by utilizing transfer learning techniques. The
remainder of this paper is organized as follows. Section II
introduces the proposed architecture and details the online
and on-demand training of the equalizer by using transfer
learning from the estimator. Section III describes the meth-
ods, procedures, metrics and the experimental setup used
to evaluate the equalizer performance in terms of the bit
error rate (BER). Section IV presents the results. Finally,
the conclusions of this work are summarized in section V.

II. COMMUNICATIONS SCHEME

Figure 1 depicts the proposed architecture and its func-
tional blocks. The transmitter consists of an illuminated flat-
panel LED. It sends non-return to zero (NRZ) Manchester
encoded on-off keying (OOK) pulses. The transmitted packet
includes a header of five one bits, a trailer of one zero bit,
and the payload. In addition, bit stuffing is used to prevent
the header from appearing within the payload. A stuffed bit
is inserted for every three bits and set to one if the preceding
bit is zero and zero otherwise.

The receiver is divided into two independent subsystems:
the image and data acquisition. The former is a generic RS-
camera that delivers a continuous image stream. The latter is
a processing unit deployed in a hardware platform physically
interconnected to the camera or in a cloud infrastructure. The
stream controller provides the interface to this subsystem,
handling different image streams and assigning priorities and
resources. It is followed by the estimator, a deep learning
block that ingests images (severely distorted by the camera’s
exposure time) and estimates important signal parameters

Stream controller

Equalizer (II)

DecoderEmbedded or
on-cloud receiver

Data acquisition

Image acquisition
Tx - Flat panel LED

Estimator (I)

Rolling shutter
camera

Interface

AI-estimator that delivers 
the transmitter frequency, 
the camera's sampling 
period and exposure time 
from images.

On-demand trained AI-equalizer that 
mitigates the exposure related-ISI and 
denoises the signal. It is built from the 
estimator model by using transfer 
learning techniques.

Interface port for different 
camera image streams.

NPPS

ESR

Exposure time 
auto configured.

Fig. 1. Communications scheme.

used later in the reception chain: the number of pixels per
symbol (NPPS) and the exposure to symbol ratio (ESR).
These parameters relate the transmitter (Tx) symbol time,
tsym, with the receiver sampling period, TS, which corre-
sponds to the camera’s row sampling time (Eq.1 [12]), and
the exposure time, texp (Eq.2 [11]), respectively.

NPPS =
tsym
TS

(1)

ESR =
texp
tsym

(2)

Estimating these parameters directly from the images implies
that it is no longer necessary to restrict the Tx frequency
at the design stage or establish very restrictive constraints
for the camera devices and configurations. Consequently, the
reception algorithm operates for a wider variety of camera
devices, configurations, and transmitter speeds.

The retrieved parameters are used by the equalizer (NPPS
and ESR) to generate synthetic image samples for training
the network and by the decoder (NPPS) to recover the signal
clock.

The equalizer is based on a Convolutional Autoencoder
(CAE). Its responsibility is to ingest the severely distorted
images by the camera’s exposure time and deliver an equal-
ized and denoised version. This CAE is adjusted on training
by feeding the network with representative synthetically-
generated images for particular NPPS and ESR conditions.
The CAEs require large datasets (> 30000 images) and
many epochs for training to achieve acceptable results. Con-
sequently, its training must be performed offline to avoid
occupying the receiver intensively. Hence, a bank of offline
pretrained CAEs must be stored in memory to be chosen
for different scenarios. However, the number of CAEs that
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the receiver can hold in memory depends on its storage
capabilities. This can be challenging when using a low-cost
embedded platform (e.g. smartphone). As an alternative, the
training time and resources should be optimized to enable
the receiver to train the equalizer on-demand. To accomplish
this, this work proposes to transfer the attained knowledge
of the estimator, which has been trained offline with a huge
synthetic dataset containing all the possible configurations,
to the equalizer by using transfer learning techniques [13].
In this way, the training time and the dataset size are
considerably reduced. The following subsection describes
how this transfer learning is performed and the conditions
both the estimator and the equalizer must meet to accomplish
it.

A. transfer learning from the estimator to the equalizer

The estimator is a convolutional neural network (CNN).
Figure 2(I) shows the topology of this network, which
consists of: a feature learning block that extracts a set of
features from the input images using depthwise separable
convolutional layers (DSC) [14]; and a regression ANN that
estimates the NPPS and the ESR as a function of those
latent features. Recall that this estimator is pretrained (be-
fore deployment) with a vast dataset consisting of synthetic
images for a wide variety of NPPSs and ESRs. On the
other hand, the equalizer is a CAE (as detailed in [6]).
It consists of: an encoder block, based on convolutional
layers (Conv2D), that extracts relevant features from the
images; and a decoder block, primarily based on transpose
convolutional layers (TConv), that tries to reconstruct the
original image from this latent representation, reducing the

noise and alleviating the exposure-related ISI. At this point,
it is interesting to highlight that the feature learning block of
the estimator and the encoder of the equalizer are practically
similar. Ultimately, both networks use convolutional layers
to extract relevant features from images (either DSC or
Conv2D layers, respectively). Therefore, the feature learning
block can be repurposed as the equalizer encoder block, as
shown in Figure 2(II). The construction of the new equalizer
model is accomplished by removing the estimator’s regres-
sion network and connecting its feature learning block to the
equalizer’s decoder. In addition, a series of skip connections
optimize even further the performance of this model. These
skip connections feed the output of one encoder layer as the
input to a same-level decoder layer. The resulting topology
is known as U-Net [15] because it has the shape of a U. This
topology outperforms traditional CAE in image segmentation
tasks, as the skip connections preserve the spatial integrity of
the input image in the output domain. In this work, these skip
connections help to precisely locate the output data. Transfer
learning is then achieved by transferring the learned network
parameters of the estimator’s feature learning block to the
equalizer’s encoder. Finally, during the equalizer training,
those parameters are frozen (i.e. not trainable), and just the
decoder part is trained.

III. METHODOLOGY

This work aims to evaluate the performance of the equal-
izer block, which is trained online (during frame acquisition)
using the least number of synthetic images possible, ensuring
a bit error rate (BER) below the forward error correction
(FEC) limit (i.e., 3.8×10−3). The on-demand synthetic image
generation depends on the estimator block’s previous NPPS
and ESR estimates. These estimates are not ideal and may
differ from the target values. Consequently, this experiment
also validates whether the equalizer performance is robust to
these estimation errors. To assess this behaviour, the worst
estimates for the NPPS and ESR (with the most significant
error) are selected from the results obtained in [11].

The procedures used in this evaluation are detailed below.
The worst estimates for a particular target’s values are
specified in the first stage. The selected target values for the
NPPS and the ESR are 4.0 and 2.62, respectively. In that
case, the estimated values for the NPPS and the ESR are 3.9
and 2.89. Therefore, there is a relative error in the estimations
of 2%, and 9.3%, respectively.

Once these values are specified, 20,000 synthetic images
based on the estimated values are generated. The algorithm
for generating those images is presented in [6] and improved
in [11]. On the other hand, 3000 real photos are obtained
by configuring the transmitter and the receiver with the
corresponding target values used for the validation.

Figure 3 shows the experimental setup used to obtain
the images used in the validation. Table I includes the
experiment’s key parameters. The network model structure
is included in Annex I [16] for length reasons.

In the following stage, the estimator is trained using
transfer learning from the previous equalizer block as detailed
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TABLE I
EXPERIMENT’S KEY PARAMETERS.

Parameter Value
Camera

Hardware Sony IMX219 [17]
Aperture lens (Focal length) f/2 (3 mm)
Image resolution 1920x1080 pixels
Row sampling period, Ts 18.9035e-6
Exposure time (Target ESR) 198 µs (≈ 2.62)

Transmitter
Flat-panel LED Eglo Tunable White - RGB

connect. Cold white (6500K)
Tx symbol time (Target NPPS) 74.614 µs (4.0)
Header, data, stuffed, and trailer bits 5 (ones), 36, 12, 1 (zero)
Dataset size 3000 images

Proccesing plaftorm
Computer CPU Intel(R) Core(TM) i7-8750H

CPU @ 2.20GHz 2.21 GHz
RAM 16,0 GB
GPU Geforce GTX 2070. Code not

optimized for CUDA accelera-
tion (operation at 10%)

in Section II. For this training, different subsets of the
dataset are used. By varying the size of the training dataset
(i.e. randomly selecting a fixed amount of images from
the original dataset), it is expected to determine the least
amount of images required without affecting the reception
performance. Then, the network weights for each training
epoch are stored. The network parameters trained in this
step correspond only to the decoder part of the equalizer
since the encoder network parameters are transferred from the
estimator model and frozen. The training loss cost function
is the mean squared error cost function. Finally, for each
training epoch, the BER is computed with the validation
images (i.e. the real images). In addition, the epoch time
is measured to compare the transfer learning-based training
and the full training of the equalizer.

IV. RESULTS

Figure 4 depicts the equalizer training losses obtained for
different dataset sizes, 250, 500 and 1000, labelled as D250,
D500 and D1000. Highlight that each dataset is immutable
(i.e., the images do not change during the training). This
figure demonstrates that the training losses consistently de-

crease independently of dataset size, which means that the
training loss reaches, in all cases, a comparable value after
the same number of iterations (not to be confused with the
epochs). An iteration is defined as the number of times a
batch of images is feedforwarded through the architecture.
Therefore, as the batch size is 32, D250 is split into seven
batches of 32 images (224 different images per epoch),
D500 in 14 (448 images per epoch), and D1000 in 28 (896
images per epoch). Hence, in epoch 40, the network trained
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Fig. 4. Equalizer training losses for different dataset sizes.

with D250 has seen 40 times 224 images (8.960 images),
the same number of images as the network trained with
D500, has seen in epoch 20 (20 × 448 = 8.960 images).
In both cases, the network has reached approximately the
same training loss (0.1). In other words, the training reaches
practically the same loss after the same number of iterations.
This is a promising result since, in advance, reducing the
number of samples does not significantly deteriorate the
training performance. Whether this behaviour extends to
validation remains to be verified with the following figures.
To account for a fairer comparison, Fig. 5 provides the
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Fig. 5. Equalizer BER vs iterations for different dataset sizes.

BER evolution for each iteration (instead of each epoch).
It shows that reducing the dataset size produces a higher
variance in the BER obtained after equalization (i.e. BER
successfully converges but oscillates between high and low
values). Despite these variations, this graph demonstrates
that the model successfully converges to the minimum error



independently of the dataset’s size (constrained to these lim-
its), approximately after 300 iterations. This implies that the
time spent to complete the training (using transfer learning)
is practically the same for all the dataset sizes, with the
difference of a small overhead almost negligible. The total
training time (measured experimentally) is approximately 75
seconds, which compared to a full training (without transfer
learning) represents a speedup of roughly 435 times. This
value is obtained by dividing the epoch time measured for
the training using the dataset D250 (2 seconds) and the
epoch time measured for fully training the network (without
transfer learning) with a dataset containing 35000 images
(870 seconds). Furthermore, the training time also benefits
from reducing the time for generating the dataset samples
(only 250 images), also reducing the memory requirements
to store this temporary synthetic dataset.

V. CONCLUSIONS

This work proposes using transfer learning techniques
to enable deep learning equalizers’ online and on-demand
training. The in-depth knowledge transfer from the estimator
to the equalizer block considerably reduces the number of
synthetic samples and the time required to train the equalizer
while guaranteeing a reception performance with a BER
lower than the FEC limit (i.e., 3.8×10−3). The training time
(with the proposed transfer learning approach) is roughly
reduced 435 times compared to full training. In addition, it
has demonstrated that using exclusively 250 synthetic images
for training the equalizer, compared to the 35500 images
required in [6] (i.e. without transfer learning), the receiver
can decode data with a BER lower than 10−4. Using fewer
images reduces even further the training as the receiver only
has to generate on-demand 250 samples. Furthermore, the re-
ceiver achieves this performance under non-ideal conditions,
as the training images were adjusted to a sampling frequency
and an exposure time with relative errors of 2% and 9%,
respectively. Accordingly, it is demonstrated that the receiver
can train the equalizer successfully, with just a few images,
being robust to the errors obtained at the estimation of the
received signal parameters. Consequently, the online and on-
demand training of the equalizers can be achieved for mul-
tiple configurations, exceptionally relaxing the restrictions
imposed on the design of current OCC links, which require
cameras with a specified sampling frequency and configured
with an extremely short exposure time. In addition, it enables
the practical reuse of cameras that simultaneously work as
receivers and imaging devices. Ultimately, this work pursues
the total decoupling of the reception algorithms from the
image capture devices, enabling OCC for its integration into
mass-market applications.
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Appendix C

Repositories

The Python and C++ codes developed in this thesis are compiled in several repos-
itories that can be found in https://gitlab.com/cristojv.
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