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Abstract—Today, hyperspectral (HS) imaging has become a
powerful tool to identify remotely the composition of an interest
area through the joint acquisition of spatial and spectral informa-
tion. However, like in most imaging techniques, unwanted effects
may occur during data acquisition, such as noise, changes in light
intensity, temperature differences, or optical variations. In HS
imaging, these problems can be attenuated using a reflectance
calibration stage and optical filtering. Nevertheless, optical fil-
tering might induce some distortion that could complicate the
posterior image processing stage. In this work, we present a new
proposal for reflectance calibration that compensates for optical
alterations during the acquisition of an HS image. The proposed
methodology was evaluated on an HS image of synthetic squares
of various materials with specific spectral responses. The results
of our proposal show high performance in two classification tests
using the K-means algorithm with 97% and 88% accuracy; in
comparison with the standard reflectance calibration from the
literature that obtained 77% and 64% accuracy. These results
illustrate the performance gain of the proposed formulation,
which besides maintaining the characteristic features of the com-
pounds within the HS image, keeps the resulting reflectance into
fixed lower and upper bounds, which avoids a post-calibration
normalization step.

Index Terms—Hyperspectral imaging, optical filters, re-
flectance calibration
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I. INTRODUCTION

Hyperspectral (HS) imaging has emerged as a high potential

characterization tool, since it is a non-invasive and non-

ionizing technique that combines spectroscopy and digital

imaging. In HS imaging, the spatial and spectral information

of a given scene is captured simultaneously [1]–[3]. This

technique was originally developed by spatial agencies for

remote sensing, and it has been applied in diverse fields,

such as geology [4], archaeology [5], art conservation [6],

vegetation monitoring [7], water resources [8], food quality

and safety control [9], forensics [10], medical diagnosis [1],

etc. In HS imaging, a light source is projected onto the

scene of interest, and the incident light is reflected. This

reflection process is influenced by various effects such as

scattering, diffraction, and absorption, which are influenced

by the characteristics of the surface to be analyzed [2], [5],

[9]. This information is obtained through a spectral camera,

which captures the spectral response of the area of interest in

a HS image or hypercube. Therefore, the HS image is a set

of two-dimensional images acquired along the electromagnetic

spectrum at a given time [2].

In a HS image, each pixel in the two-dimensional spatial

plane represents its reflectance curve or spectral signature.

These signatures are similar to the fingerprints of the compo-

nents present in the area of interest. Thus, the characterization

of these fingerprints allows us to identify the presence and

composition of the scene [1], [2]. However, it is necessary to
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process the HS image to determine the elements that make

up the analyzed surface. The reason for this is that certain

factors may be present at the acquisition time, which can

alter the characteristics of the spectral signatures, such as

changes in temperature due to the illumination system and

in the brightness caused by fluctuation of the input power of

the illumination source or its aging [3], [11], [12]. To reduce

the impact of these factors that may degrade the characteristics

of spectral signatures, a calibration step is applied to the HS

images in almost all studies involving this technology in the

literature [2].

The calibration stage, in addition to compensating for most

adverse effects at the acquisition time, establishes an amplitude

range for spectral signatures expressed in percentages [12].

This allows for a standardization of the spectral signatures, i.e.,

spectral information captured of the same object/component

by different HS cameras is consistent in morphology in both

scenarios. The standard calibration process, performed in most

of the HS image studies, is done by applying a linear trans-

formation to the raw HS image (Iraw(x, y, n) ∈ RX×Y×N )

with original reflectance signatures:

Î(x, y, n) = 100× Iraw(x, y, n)−RD(x, y, n)

RW (x, y, n)−RD(x, y, n)
(1)

where Î(x, y, n) ∈ RX×Y×N is the reflectance calibrated HS

image with spatial dimensions X×Y and N number of spec-

tral bands, and RD(x, y, n) ∈ RX×Y×N and RW (x, y, n) ∈
RX×Y×N are the dark (dark current) and white reference HS

images, respectively. Usually, RW (x, y, n) is obtained from
a standard white reference tile, and RD(x, y, n) by keeping
the camera shutter closed. Equation (1) is derived from the

spectral response of the sensors, as described in [13], and

applies an inverse-model perspective to compensate the non-

uniform gain. Thus, this standard calibration process provides

consistent spectral signatures for the acquisitions made with

different HS cameras and scenarios with the same components

Despite the advantages of the calibration process shown in

(1), there are still intricate problems with the HS image capture

stage. So the standard transformation in (1) does not fully

compensate for the effects caused by the optical filters used

in HS camera sensors. Optical filters are used as band-pass

components, limiting the acquisition to specific wavelengths

and rejecting unwanted information [14]. However, the fun-

damental properties of band-pass filters in conjunction with

electronics can cause some parasitic effects such as crosstalk,

leakage, and harmonics, causing the sensors to measure the

light of unwanted wavelengths, resulting in a slight change

in shape and an increase in the amplitude of the spectral

signatures [14], [15]. Nonetheless, the effect of harmonics

continues to be considered in the measurements, which pri-

marily affects the amplitude of the spectral signatures and its

impact varies depending on the analyzed material [14]. In most

cases, the effects of harmonics go unappreciated, because the

HS cameras return the discretized spectral response for each

pixel [14]. Nonetheless, it is possible to see the impact by

comparing the white reference with measurements made under

the same capture conditions. Consequently, there is an increase

in variability and sometimes a change in the morphology of

the reflectance spectral signatures.

In this context, we present a modification of the reflectance

calibration described in (1), which largely compensates for the

impact of unwanted alterations in the amplitude of the spectral

signatures. The proposed formulation includes a normalization

correction, thus ensuring a resulting reflectance in the range

zero to one hundred, and thus avoiding the need for a subse-

quent normalization step. In addition, the proposed calibration

decreases the variability and preserves the shape of the spectral

signatures, which allows grouping or classifying the spectral

signatures of different compounds more accurately.

II. METHOD

The proposed method departs from the raw HS im-

age (Iraw(x, y, n)), and the dark (RD(x, y, n)) and white
(RW (x, y, n)) references, which are used in the standard
reflectance calibration. The proposed reflectance calibration is

motivated by (1), but defines two auxiliary image

α(x, y, n) = Iraw(x, y, n)−RD(x, y, n) (2)

β(x, y, n) = RW (x, y, n)−RD(x, y, n)− min
x,y,n

α(x, y, n),

(3)

where α(x, y, n) and β(x, y, n) are the numerator and denom-
inator of (1). In β(x, y, n), a component is added, which is
the general minimum of α(x, y, n), and it is subtracted by
applying an offset to the spectral signals in the denominator

of (1); this component is used to guarantee that the minimum

values are equal to or greater than zero. Subsequently, the

same operation is applied to α(x, y, n) to correct for possible
negative values caused by unwanted effects at the acquisition

stage. It is necessary to clarify that in an ideal case, the global

minimum value of α(x, y, n) is greater than or equal to zero,
and therefore the smallest values of the spectral signatures are

assigned to zero, even in cases with negative values.

Once α(x, y, n) and β(x, y, n) have been defined, we apply
a normalization step by

β̂(x, y, n) � β(x, y, n)

maxx,y(β(x, y, n))
∈ [0, 1], (4)

this operation limits the lower and upper values in β̂(x, y, n)
to zero and one, respectively. Hence, the role of β̂(x, y, n) is to
quantify the non-uniform gain over the analyzed wavelengths

in a normalized and positive fashion. On the other hand,

α(x, y, n) is modified with the same perspective such that

α̂(x, y, n) � α(x, y, n)−minx,y,n α(x, y, n)

β̂(x, y, n)
, (5)

where the offset is applied using the general minimum of

α(x, y, n), restricting the minimum allowable values to zero

but not limiting the maximum values (α̂(x, y, n) ∈ [0,∞)).
Finally, the proposed calibration formula is defined as

Î(x, y, n) = 100× α̂(x, y, n)

maxx,y(α̂(x, y, n))
∈ [0, 100], (6)
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thus establishing the upper limit of the spectral signatures

within the image Î(x, y, n) and ensuring values in the range
of [0,100]. Once more, the proposed methodology, as in (1),

looks to compensate for the non-uniform gain of the HS

sensor, but now limiting the resulting values in (6). This new

perspective reduces the spectral variability and allows more

accurate classification results, as will be shown next.

III. RESULTS

This section presents the comparison results between the

standard calibration (SC), and the proposed calibration (PC)

in this work. The two approaches have been evaluated on an

HS image, whose acquisition, characteristics, and discussion

of results are described in the following subsections. Our eval-

uations were conducted in MATLAB®2018a on a computer

with a 4.2 GHz Intel Core i7 quad-core processor and 16 GB

of RAM.

A. Database Description

The evaluation of PC and SC was performed on an HS

image of ten squares of synthetic material (enumerated from

S1 to S10) and four different colors (white, black, red, and

magenta). The test-bench has three main materials: polylac-

tic acid (PLA), acrylonitrile butadiene styrene (ABS), and

polyethylene terephthalate glycol (PETG). These materials

have been used in several studies for the characterization and

development of HS techniques [16]. The test-bench materials

in this work can be seen in Fig. 1, where at the top is a

standard 99% Spectralon White diffuse reflectance material

used to obtain the white reference tile RW (x, y, n). At the
bottom section, there are PLA (S2, S5, and S6), ABS (S1, S8,

S9, and S10), and PETG (S3, S4, and S7), corresponding to

the colors white (S1 and S4), magenta (S2, S8, and S10), red

(S3, S6, and S9), and black (S5 and S7).

Fig. 1. Materials of the test-bench used for the evaluation of the SC and
PC methodologies. The standard 99% Spectralon White diffuse reflectance
material utilized to obtain the white reference tile RW (x, y, n) is presented
at the top. In the bottom part of the image, there are ten plastic squares which
have different colors and are composed of three materials: polylactic acid
(PLA), acrylonitrile butadiene styrene (ABS), and polyethylene terephthalate
glycol (PETG).

In order to obtain the HS image, we used a visible and

near-infrared (VNIR) push-broom camera (Hyperspec® VNIR

A-Series, Headwall Photonics Inc, MA, USA); in conjunction

Fig. 2. Diagram of HS image acquisition system.

with a scanning platform to shift the camera field of view to

obtain the second spatial dimension. In addition, a dedicated

illumination system capable of emitting cold light in the

spectral range between 400 and 2200 nm is attached to the

system. A 150 W QTH (quartz tungsten halogen) light source

was coupled to a cold light emitter employing a fiber optic

cable that avoids the high temperatures produced by the lamp

on the surface to be analyzed. The general diagram of the HS

image acquisition system is shown in Fig. 2, as well as an

example of how the images are structured.

The HS image of the test-bench was acquired by si-

multaneously capturing the white reference and the plastic

squares in Fig. 1. Therefore the resulting raw HS image

(Iraw(x, y, n)) consists of 440× 1004 spatial pixels with 826
spectral bands between 400 to 1000 nm. In addition, the dark

reference (RD(x, y, n)) was captured in all the area of interest
(440 × 1004 spatial dimension), while the white reference
(RW (x, y, n)) was established as a vector of 1004 pixels with
826 spectral bands by averaging the vectors corresponding

to the reflecting surface in Fig. 1. Because the push-broom

camera performs line capture, the spectral response along the

columns is approximately the same, so averaging decreases

the variation and smooths the reference spectral signatures.

B. Results of Calibration

The evaluation of both SC in (1) and PC in (6) methods on

the test-bench can seen in Fig. 3, where each row represents

the spectral information of each square. The first and second

columns show the results of the SC and PC spectral signatures,

respectively. Hence, SC shows values higher than 100%,

having scenarios like the one in S1, in which practically

all the spectral signatures are above 100%. On the other

hand, the PC results remain within the expected range [0, 100]
with a lower dispersion of the spectral signatures, compared

to the SC results. All the results of both calibrations were

corroborated when analyzing the third column, where the

means and standard deviations (SDs) of PC remain below

100%. In contrast, the means and SDs of SC exceed 100%,

with the exception of squares S5 and S7. The SDs show a

decrease in the PC results in all squares compared to SC.
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Finally, the fourth column illustrates the mean and SD of the

two approaches after performing a preprocessing stage (which

is described in depth in [17]); that consists of three steps: (i)

extreme band removal and band reduction, (ii) smoothing of

spectral signatures, and (iii) normalization. The results in this

column show a similar mean and SD between the two methods,

with PC performing better in S5 and S7. This behavior is

due to the elimination of the end bands, which reduces the

variability among the spectral signatures. In fact, there is a

large variability at the extremes due to the response of the

HS sensors at those wavelengths. Hence, steps (ii) and (iii)

reduce the differences between the two methods. However, the

normalization in (iii) can also eliminate distinctive features in

the information for classification purposes, and it would not

be necessary if there were no undesired effects in the capture.

In addition to the above comparison, two classifications

were performed on the HS image with both calibration meth-

ods without considering the preprocessing stage. This evalua-

tion was carried out by using the standard K-means algorithm

[18], with K equal to 4 and 9, and using the Euclidean and

the L1 distances as metrics for each case, respectively. The

first case generates a color classification, and the second case

a per square classification. The classification results per color

with K = 4 are reported in Fig. 4, where the results of the HS

image with SC present many errors in most of the squares,

and produce an accuracy of 79% (see Fig. 4A). In contrast,

the segmentation of the HS image with PC has few errors,

which occur mainly in the S3 and S5 squares (see Fig. 4B).

As a result, this second classification produces an accuracy

of 97%, which is a sustainable improvement compared to the

corresponding results with SC.

Figure 5 presents the classification results per square, where

in general, there is an increase in the classification errors with

respect to the per color case; this is due to the similarity

between the spectral signatures and a certain level of texture of

the squares in the test-bench. The results with SC are presented

in Fig. 5A, which shows an increase in classification errors

among the labels assigned to the different squares especially in

S2, S3, S6, and S10. Furthermore, S10 is classified completely

with the S5 label, and this last one is predominantly classified

with the label S9. Likewise, Fig. 5B reports the classification

results with PC, which shows a decrease in classification errors

in contrast to Fig. 5A. Hence, the squares with the highest

coincidence were S2, S3, and S5. Therefore, S10 and S8 were

correctly classified with the same label because both squares

are of the same material and color. This classification yields

64% and 88% accuracy overall for SC and PC classification,

respectively. Consequently, in this second evaluation, once

again the PC method showed a significant improvement over

SC.

Performing the classification tests on the calibrated data

in conjunction with the preprocessing stage generates highly

similar results for both SC and PC spectral signatures. The

color classification results are presented in Fig. 6, where

most mistakes are found mainly in S1 and S5, with a higher

noise level in the case of PC in these squares. On the other

hand, the remaining squares with PC present a lower noise

level than in the case of SC. The latter corroborated when

analyzing the overall classification accuracy, in which PC

generates 90% while SC is 89%. This behavior repeats itself

in the classification per square, as shown in Fig. 7, improving

accuracy in the case of PC with an accuracy of 69%, in contrast

to the results produced by SC that generate an accuracy of

64%.

In addition to the above tests, a classification test with both

calibrations is evaluated in conjunction with the preprocessing

step but without considering the zero-to-one normalization;

in order to verify that the normalization is the cause of the

similarity in the shape of the spectral signatures. Qualitatively,

these results are very similar to those presented in Figs 4 and

5 for both SC and PC. On the other hand, when analyzing

the quantitative accuracy data, 79% and 95% are produced for

SC and PC color classification. While in the case of square

classification 64% and 87% are generated for SC and PC,

respectively. Thus, there is a slight decrease in PC compared

to the classification results with only the calibration step, while

SC remains constant in both tests.

To generate a deeper analysis of the results obtained in

this evaluation, a dimensional reduction was performed to

three-dimensional points of each calibrated spectral signature

through the locally linear embedding (LLE) algorithm [19].

The LLE algorithm is a dimensionality reduction method that

looks to preserve the geometrical characteristics of the original

manifold by considering the information of neighboring points.

The LLE evaluation was performed considering five neighbors

for reduction and estimating the nearest neighbors using the

KDTree algorithm [20]. The selection of LLE was made by

comparing with PCA and t-SNE [21]. PCA and t-SNE gener-

ated qualitatively less class separation in a 3-dimensional space

when evaluating the data with both calibrations. Meanwhile,

LLE allowed for a reduction in high-dimensional space by de-

tecting non-linear structures while preserving the geometrical

characteristics of the original data [21].

The results of the dimensional reduction are presented in

Fig. 8, where Fig. 8A and Fig. 8B show the SC and PC

reductions, respectively, while Fig. 8C and Fig. 8D display

the SC and PC dimensional reductions after applying the

preprocessing step described above. In the figures with SC

dimensional reductions, the data accumulated in a central

region with a high intercept among data from different squares.

Meanwhile, the results in the PC data showed a higher sepa-

rability in each square. This property justified the behavior of

both calibrations in the previous classification tests. On another

side, when analyzing the reductions with the preprocessing

stage, the dimensional reduction with PC keeps a shape

consistent with Fig. 8B, maintaining the proportions in the

three dimensions and decreasing the outliers of each square.

As in the previous case, in the dimensional reduction of the SC

data and preprocessing, the outliers are somewhat reduced and

the data are condensed into sharper curves than in the case of

Fig. 8A. However, when applying the normalization of zero to

one, a transformation is performed on the calibrated spectral
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Fig. 3. Results of calibration of the HS image with the test-bench, where each row represents the spectral information of each square. The first column
shows the results of the standard calibration (SC), while the second column presents the results of the proposed calibration (PC). The third column reports
the mean and standard deviation of both approaches. Finally, the fourth column also shows the mean and standard deviation of both methods after performing
a preprocessing step.
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Fig. 4. Classification results per color. A) standard calibration and B)
proposed calibration.

signatures; this produces a similar behavior in both SC and PC,

causing the data to concentrate and intercept in a central area,

explaining the behavior shown in the fourth column of Fig. 3.

When the classification is performed with the preprocessing

stage, the results are very similar. In brief, at least in the

case of PC, where a normalization step is not necessary,

given the limitation posed in the formulation; the application

of this transformation modifies the spectral signatures losing

characteristics that allows generating a correct identification

of the data of each square and therefore a more accurate

classification.

IV. CONCLUSIONS

This paper presents a new formulation for reflectance cal-

ibration in HS images, which compensates for some of the

undesired effects in the image acquisition stage. Our results

show that the proposed calibration maintains the shape of

the spectral signatures, limits their amplitudes in the range

0 to 100%, and allows a larger separability among the classes

present in the HS image. As a future work, we will evaluate the

proposal under different illumination levels and interference

from other light sources, to check the performance under

adverse scenarios during the data acquisition stage. Further-

more, we will identify the diverse components that affect the

acquisition of the HS images to propose specific models to

mitigate these negative effects.

Fig. 5. Classification results per square. A) standard calibration and B)
proposed calibration.
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