
Citation: Adao, A.C.; Bosch, N.E.;

Bentes, L.; Coelho, R.; Lino, P.G.;

Monteiro, P.; Gonçalves, J.M.S.;

Erzini, K. Complementary Sampling

Methods to Improve the Monitoring

of Coastal Lagoons. Diversity 2022,

14, 849. https://doi.org/10.3390/

d14100849

Academic Editor: Bert W. Hoeksema

Received: 27 July 2022

Accepted: 29 September 2022

Published: 8 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diversity

Article

Complementary Sampling Methods to Improve the Monitoring
of Coastal Lagoons
Ana C. Adao 1,*,† , Néstor E. Bosch 2,3, Luís Bentes 1, Rui Coelho 1,4 , Pedro G. Lino 4 , Pedro Monteiro 1,
Jorge M. S. Gonçalves 1 and Karim Erzini 1

1 Centre of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
2 Asociación Biodiversidad Atlántica y Sostenibilidad (ABAS), 35214 Telde, Gran Canaria, Spain
3 Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria,

35214 Telde, Gran Canaria, Spain
4 Instituto Português do Mar e da Atmosfera (IPMA), Avenida 5 de Outubro, 8700-305 Olhão, Portugal
* Correspondence: catarinavadao@gmail.com
† Present address: Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower,

26 Richmond Street, Glasgow G1 1XH, Scotland, UK.

Abstract: Monitoring the ecological status of marine coastal lagoons requires the integration of
multiple indices. However, the efficacy of monitoring programs is complicated by the diverse array of
habitats that conform coastal lagoons. In this study, we compared four sampling methods (25-m and
50-m beach seines, beam trawl and Riley push net) in the Ria Formosa coastal lagoon (South Portugal)
for assessing fish assemblage and diversity. We compared species richness and assemblage structure
with species accumulation curves and multivariate analysis, and assessed diversity patterns using
taxonomic, phylogenetic and functional diversity indices. Variation in fish assemblage structure was
mostly explained by gear type, and almost all diversity metrics varied not only according to sampling
method but also depending on habitat characteristics and season. Based on operational costs and
diversity patterns captured by each gear, we conclude that the combined use of 25-m beach seine and
beam trawl is the preferred approach. The proposed methodology will provide the data necessary for
assessment of ecological status of coastal lagoons.

Keywords: ichthyofauna; taxonomic diversity; phylogenetic diversity; functional diversity; beach
seines; beam trawl; push net

1. Introduction

Estuaries and sheltered lagoons contain some of the most productive coastal marine
habitats such as seagrass beds and salt marshes [1,2]. These ecosystems are essential feeding
and nursery grounds for juvenile fishes and invertebrates, including many species with
commercial and recreational value [3–7]. However, their long-term monitoring is particularly
challenging due to the heterogeneous spatial distribution of species across different habitat
types, coupled with seasonal shifts in assemblage structure and diversity [8,9]. Yet, their
effective monitoring is fundamental, as an increasing number of anthropogenic threats
(e.g., pollution, habitat loss, sea level rise, and overfishing) are degrading the state of these
valuable ecosystems [10,11]. Further, in the context of the Water Framework Directive
(WFD), member states must establish monitoring programs to provide information on
long-term changes for each water body type (lakes, rivers, transitional waters, coastal
waters) [12]. Fishes are an important biological component of coastal lagoons, performing
key ecological roles that underpin ecosystem productivity and resilience (e.g., top-down
control of prey populations, sediment reworking, and nutrient recycling) [13–15]. Due
to their importance, changes in fish assemblage metrics (e.g., diversity, composition and
abundance) are part of the quality elements for the assessment of the ecological status of
different water bodies under the WFD.
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Until recently, the assessment of fish assemblages in coastal lagoons has mainly focused
on traditional taxonomic diversity indices (TD, e.g., species richness, Shannon–Wiener
diversity, and Pielou’s evenness) [16]. However, these metrics treat all the species equally
without considering their potential contribution to a range of ecosystem functions. In
contrast, functional (FD) [17] and phylogenetic (PD) [18] diversity metrics incorporate
information on species ecological similarities based on traits (i.e., morphological, ecologi-
cal, physiological, and behavioural characteristics) and evolutionary information [19,20].
There is growing empirical evidence, in both terrestrial and marine environments, of the
importance of these often-overlooked biodiversity components for ecosystem functioning
and resilience [21–23].

Given the heterogeneity of habitats and seasonal variability in coastal lagoons, sam-
pling their fish assemblages with the appropriate gear or combination of gears is essential
for obtaining reliable data for the application of fish-based ecological indicators [24–26].
There are a variety of fishing gears for sampling coastal lagoons, so understanding their
biases and whether they can replace or complement each other is crucial [27,28]. Beam
trawls are fishing gears commonly used not only for commercial fishing activities but
also for regular sampling and monitoring of fish communities in estuaries [3,24,29]. This
active gear is suitable for sampling large numbers of fish, especially demersal species [30].
Other methods such as beach seines and push nets require different physical characteristics
of the study site, since both need access from the shore to shallow waters. Trawls and
seines frequently have variable catch efficiency, due to either differences in gear design or
gear avoidance by certain fish groups [31]. This sampling bias, together with the fact that
estuaries contain highly variable hydrographic and spatial–temporal characteristics, justify
the need of multi-method surveys to capture an accurate representation of fish assemblage
structure and diversity. Yet, few studies have examined to what extent the inherent bias
associated with different sampling methods might undermine the ability of monitoring
programs to detect shifts in important but often overlooked functional and phylogenetic
diversity components [32].

In the present study, we compared four commonly used sampling methods for coastal
lagoon systems—beach seines of 25-m and 50-m, beam trawl and push net—to assess
their complementarity in fish assemblage metrics (composition and structure, taxonomic
diversity, functional diversity and phylogenetic diversity). Specifically, we hypothesize
that these four gears capture different representations of species assemblage and diversity
patterns. Other studies have compared different fishing gears to determine their efficiency
in sampling species composition and abundance [27–29,33], but this study is the first to
assess differences among this particular combination of gears using less conventional
phylogenetic and functional diversity indices. The results of this work provide useful
information for management agencies aiming at identifying which method or combination
of methods is more suited to track changes in the ecological status of these valuable but
highly threatened ecosystems.

2. Materials and Methods
2.1. Study Site and Sampling Stations

The Ria Formosa is a tidal lagoon extending about 55 km along the south coast of
Portugal, consisting of salt marshes, subtidal channels and tidal flats covering a surface area
of approximately 170 km2, up to 6 m in depth [4,9]. With tidal elevations of 1.30 and 2.80 m
at mean neap tide and spring tide, respectively, the minimum and maximum areas covered
by water during spring tides are 14.1 and 63.1 km2 [34]. Since it is located between the sea
and the land, this lagoon has distinctive biological, ecological and hydrodynamic features,
with a variety of different habitats that can be distinguished based on substrate type (sand,
gravel or fine mud), depth, vegetation and distance to the sea [4]. The lagoon has extensive
patches of seagrass (Cymodocea nodosa, Zostera marina and Zostera noltii) providing shelter
from predators and adverse weather conditions, as well as food sources [9].
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Approximately 90% of the area is a natural park corresponding to category V in the
International Union for Conservation of Nature (IUCN) classification of protected areas [35,36]
and has high ichthyological diversity compared with other equivalent ecosystems [37,38].
This area was integrated as a Natura 2000 site under the Birds and Habitats European
Directives [39] and it was also declared a RAMSAR site for conservation of wetlands in
1981 [40]. Nevertheless, several economic activities take place (e.g., fishing, harvesting of
bait, aquaculture, tourism, shipping, airport activity), putting pressure on this vulnerable
ecosystem [41].

In order to sample the fish fauna in the different habitats present in the Ria Formosa, a
variety of sampling methods were tested, and the choice of sampling stations was based
on a stratified sampling strategy. Sampling stations were chosen by first dividing the
lagoon into three areas with very distinct hydrodynamic characteristics: (1) areas of strong
coastal influence, near the inlets and with a strong hydrodynamic regime influenced mostly
by coastal waters (closer to barrier islands); (2) interior areas with salt marshes, which
correspond to shallow vegetated areas greatly affected by the terrestrial environment and
usually dry at low tide; and (3) main and secondary channels, that represent the deepest
parts of the Ria Formosa. For these three main areas, 59 sampling stations were chosen
based on the types of habitats present and the sampling gear to be used (Figure 1). Habitats
were classified according to the presence or absence of vegetation (VEG/UNVEG). Seasons
were defined as autumn (AU, from October to December), winter (W, January to March),
spring (SP, April to June) and summer (S, July to August). Monthly samples were collected
from September 2000 to April 2002, with 37 stations chosen for the 25-m beach seine,
4 stations for the 50-m beach seine, 12 stations used for the beam trawl, and 6 stations for
the Riley push net (Table 1). The selection of sampling stations was based on visual surveys
of the area and existing aerial photographs and maps [4]. Due to logistic problems, 92% of
the target sampling was achieved for the beam trawl, Riley push net and 50-m beach seine,
and 84% for the 25-m beach seine. For the latter sampling gear, the main factors affecting
sampling were the short period for sampling (could only be done at low tide), the large
number of locations, the distances between them, and occasionally, problems such as the
net getting stuck, requiring repeating the sample.
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Table 1. Sampling periods, numbers of vegetated (VEG) and unvegetated (UNVEG) sampling
locations, total number of sampling locations and total numbers of samples for each gear (number
of sampling locations x number of months where sampling occurred). Due to logistic problems,
sampling did not take place every month in all sampling locations.

Sampling Gear Sampling Period
Sampling Locations

Total Samples
VEG UNVEG Total

25-m beach seine September
2000–December 2001 14 23 37 497

50-m beach seine January 2001–January
2002 3 1 4 48

Beam trawl March 2001–March 2002 4 8 12 143
Riley push net April 2001–April 2002 3 3 6 72

2.2. Sampling Gears
2.2.1. Twenty-Five-Meter and Fifty-Meter Beach Seines

The two beach seine nets were deployed at low tides in the margins of the main
channels only when the amplitude of the tide was less than 2 m, and during a period of 2 h
before and 2 h after the low tide to reduce variability in tidal amplitude between sampling
events. One of the beach seine nets was 25-m long, 3.5 high in the middle and was made
of 9-mm mesh netting. The net was towed by a boat from one end and by two people
on shore from the other end, resulting in an average sampled area of 1087 m2 (based on
GPS measurements). The 50-m beach seine was 3.5 m high in the middle and was made
of 13 mm mesh [42]. For the setting of the net, one end was held on shore while the net
was set in a circle; no towing took place. Based on GPS measurements, the average area
sampled was 295 m2, but since 3 replicates were taken at each station and the samples
pooled across replicates, the average total area sampled was 885 m2 for each station.

2.2.2. Beam Trawl

A beam trawl 2.6 m wide and 0.45 m high at the mouth was used at low tides in the
main channels. The cod end was 10 m long and made of 9-mm mesh netting. Tows of
300 m were performed at 1 knot, resulting in a swept area per tow of 780 m2.

2.2.3. Riley Push Net

The Riley push net was 1.5 m wide and 0.5 m high at the mouth, with a cod end split
into two “trouser” legs of 2-mm fine mesh netting. Three 30-m samples were taken at each
sampling station within interior areas of the Ria by one person who stood between the two
legs of the cod end, resulting in a total swept area of 135 m2.

2.2.4. Processing of Fish Collected

The same method of processing samples was applied for all gears. Invertebrates
and species such as seahorses (Hippocampus hippocampus and H. guttulatus) were caught
and released alive, while the other fish species were placed immediately after capture
in boxes with an ice flurry to minimize suffering and transported to the laboratory for
processing. At the laboratory, the fish were sorted, identified to the lowest taxonomic level
possible and counted. Total length was measured to the nearest mm. Detailed information
about the sampling gears and habitats sampled together with photographs are available in
Erzini et al., (2002) [4] (report available upon request).
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2.3. Data Analysis
2.3.1. Assemblage Composition and Structure

A Euler diagram was constructed in order to compare the overlap in species composi-
tion caught by beach seine (25-m and 50-m included in the same group), beam trawl and
Riley push net. To estimate the relationship between the number of species observed and the
sampling effort as a measure of sampling efficiency of the different gears used, species accu-
mulation curves were computed via sample-based rarefaction [43]. The method calculates
the expected species richness for each sample under random order from 1000 permutations
of the data, and sampled area was used to standardize effort between sampling methods.
For very high sampling efforts, the curves would eventually reach an asymptote matching
the assemblage richness available to the method chosen and the more concave-downward
the curve, the better sampled the community [44].

A multivariate regression tree (MRT) was constructed to explore the relative influence
of sampling gear, season and habitat in explaining fish assemblage structure. MRT is a
statistical technique that combines multivariate regression and constrained clustering, since
it forms clusters based on a measure of species dissimilarity that are defined by a set of
predictor variables [45]. In this case, fish abundance data were partitioned successively
in two subsets by selecting one of the factors (gear, season or habitat) that maximizes the
homogeneity of the resulting clusters [46]. Each cluster defines a species assemblage and is
determined by the associated explanatory factors (gear, season or habitat); this procedure
is graphically represented by a tree with nodes where the groups are split and terminal
nodes define the final clusters. Optimal tree size was chosen by minimization of cross-
validated relative error (CVRE) and smallest tree size. MRT analysis was chosen due to its
ability to deal with categorical variables and high-order interactions among explanatory
variables [45]. Discriminant species were identified within the tree as species that contribute
most for the explained variance at each node. Indicator values (IndVal) were calculated
for each species in each terminal group by multiplying a measure of specificity (Aij, mean
abundance of species i in the sites of group j compared to all groups in the study) and a
measure of fidelity (Bij, relative frequency of occurrence of species i in the sites of group
j) [47]. This index ranges from 0 (no occurrences of the species within a group) to 1 (the
species occurs at all sites within the group and does not occur at any other site). Species
with high index values (≥ 0.2) for a cluster were considered indicator species [48]. Species
abundance was converted to densities (numbers per sampled area) and standardized by
dividing species density at each sampling station by the total density for all species at that
same station.

2.3.2. Diversity Indices

For the traditional taxonomic diversity analysis, the following metrics were computed
for each sample of each gear: Shannon–Wiener diversity index (H), Pielou’s measure of
evenness (J) and species richness (S). Species richness represents counts of the number of
species (S). The Shannon–Wiener index is defined as H = −∑S

i=1 pi log(pi), where pi is
the proportional abundance of species i. Pielou’s index measures how evenly the fish are
distributed among the different species and is calculated as J = H/log (S). Abundance
data was converted to densities (number per sampled area) before calculation of the
indices and square root transformation used to balance the contribution of dominant and
rare species.

As a metric of phylogenetic diversity, the index of taxonomic distinctness (∆*) was
chosen and is defined as the average taxonomic path length between two individuals
chosen at random from the sample, traced through a standard Linnean classification
tree, conditional on them being from different species [49]. It is calculated by dividing
taxonomic diversity (∆) by the Simpson index and is not affected by the evenness properties
of the species abundance matrix. This phylogenetic diversity index takes the form: ∆∗ =(

∑∑i<j ωij xi xj

)
/
(

∑∑i<j xi xj

)
, where ω represents taxonomic distances among taxa, x

are species abundances and the double summation goes over species i and j [50]. Taxonomic
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distances were calculated among taxa at variable step lengths based on an aggregation
matrix by species, genus, family and order. Species abundance matrices were transformed
to square root density data and ∆* calculated for each sample.

The functional diversity (FD) was measured by the Rao index of functional diversity
which represents the probability that, choosing two random species from the sample, they
have different trait values or trait categories [51]. The Rao index combines matrixes of
species abundances with matrixes of species dissimilarities based on traits’ differences
among species [52] and is defined as FD = ∑S

i=1 ∑S
j=1 dij pi pj, where S is the number of

species, pi and pj are the proportion of ith and jth species and dij the dissimilarity between
species i and j. Following Bosch et al., (2017, 2021) [32,53], maximum body length, trophic
breadth and trophic level were included as continuous (scaled between 0 and 1), while
trophic group, water column position, preferred substrate and body shape were considered
as categorical traits, using fuzzy coding for traits with more than 2 categories (Table 2).
Information on traits was collected from the published literature and Fishbase [54], and
when species specific attributes were not available, values from species within the same
genus and geographic range were used. The Rao index was calculated using the Macro
excel file “FunctDiv.exl” [51] on density data (numbers per sampled area), first for each
trait and then averaged for each sample across all traits together.

Table 2. Functional traits selected for each species, adapted from [32,53,55].

Functional Trait Type Units/Categories

Maximum body length Continuous Total length in cm

Trophic breadth Continuous

Number of prey phyla consumed (from diet
studies). Ranged from 1 to 9 (Plants/Algae,

Mollusca, Arthropoda, Echinodermata,
Chordata, Cnidaria, Nematoda,

Porifera, Annelida)

Trophic level Continuous Index, range from 1 to 5.

Trophic group Categorical
Planktivorous, Omnivorous, Herbivorous,

Microinvertebrate feeders, Macroinvertebrate
feeders and Piscivorous

Water column position Categorical Pelagic, Benthic and Benthopelagic

Preferred substrate Categorical Soft bottoms, Hard bottoms, Hard and
Soft bottoms

Body shape Categorical Fusiform, Compressed, Depressed, Globiform,
Elongated/Anguilliform

We tested for differences in diversity indices between sampling gears, season, habitat
characteristics (vegetated and unvegetated), and main area using generalized linear models
(GLM), applied for each diversity index independently. Second order interactions were
included between gear-vegetation, and gear-season. The area consisted of 3 factors: inner,
channels and outer areas (I, C and O in Figure 1), and there was no interaction included
between gear-area since not all gears were used for all the three areas. The following error
distributions were fitted: Poisson distribution for species richness (S) with log link function;
normal distribution to species diversity (H), species evenness (J) and functional diversity
(FD) (identity link function); and gamma distribution to phylogenetical diversity (PD)
(identity link function).
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All analyses were carried out using R statistical software version 3.6.0 [56]. The pack-
ages ‘vegan’ [57] and ‘biodiversityR’ [58] were used for computing species accumulation
curves and calculation of diversity indices (except for the Rao index of functional diversity).
The multivariate regression tree (MRT) and species indicator values were calculated with
the packages ‘mvpart’ and ‘MVPARTwrap’ [59]). GLMs were conducted with the ‘stats’
package from base R for model evaluation and residuals analysis.

3. Results
3.1. Assemblage Structure

During this study, a total of 255,345 fish belonging to 106 species within 33 families
(103 teleosts and 3 chondrichthyes) were captured. Atherina spp., Sardina pilchardus, Gobius
niger and Pomatoschistus microps represented 70% (range of 42 to 94%) of the total catches
across gears (Supplementary Materials, Table S1). In terms of species composition, there
was considerable overlap between the different gears (40 species; Figure 2). Beach seines
and beam trawl shared the highest number of species (23 species), while beam trawl—push
net and beach seines—push net shared only 2 and 3 species, respectively. Beach seines
accounted for 29 species that were not caught by the other gears, mainly species of the
Sparidae, Labridae and Triglidae families. The beam trawl caught eight species that none
of the other gears captured, with Soleidae being the most representative family (>85%
abundance). Two species were only caught by Riley push net, Dentex macrophthalmus and
Parablennius sanguinolentus, with forty-five species caught in common with the other gears.
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Figure 2. Euler diagram representing the catch composition in number of species for beach seine (BS;
25 and 50-m), beam trawl (BT) and Riley push net (RP).

Overall, only the 25-m BS curve was close to reaching the asymptote, having by far the
highest cumulative sampled area (Figure 3). Nevertheless, for comparable sampling efforts
(e.g., less than 0.05 km2), both the 50-m beach seine and beam trawl caught more species
than the 25-m beach seine. The species accumulation curve for the Push net is difficult to
distinguish from the others due to low sampling effort.
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The best multivariate regression tree explaining variation in fish assemblage structure
consisted of four nodes and five leaves (terminal nodes; Figure 4). This model explained
27.22% of the variation in species abundances. The first split in the tree explained 15.87% of
the variability and separated the fish assemblage according to two combinations of fishing
gears—beam trawl-push net, and 25-m and 50-m beach seine, for which the main species
contributing to explaining this split belonged to the genus Atherina spp. The second node
separated the assemblage between the other pair of sampling gears (push net and beam
trawl). For the 25-m BS-50-m BS cluster (right side of node 1), the species assemblage
was divided according to season, with Summer (S) containing a distinct assemblage when
compared with the rest of the seasons. On the left side of the main node, the last split
between Habitat types explained 4.57% of variation, with habitats containing vegetation
(VEG) clearly distinct from non-vegetated (UNVEG).

Overall, five distinct assemblages were identified, each one with a different set of
indicator species. The first and second clusters were defined by samples obtained only
with the Riley push net; the first group (I) is dominated by the common sand goby (Po-
matoschistus microps) in sandy/muddy grounds; and the second group (II) contains three
species of pipefish (Syngnathus typhle, S. abaster and Nerophis ophidion), Baillon’s wrasse
(Symphodus bailloni), rock goby (Gobius paganellus) and the two-spotted clingfish (Dipleco-
gaster bimaculata) in seagrass habitats. The third assemblage (III) is defined by species
captured with beam trawl and the analysis did not separate at the habitat level, with toad-
fish (Halobatrachus didactylus), two goby species (black goby, Gobius niger, and sand goby,
Pomatoschistus minutus), two seahorse species (Hippocampus guttulatus and H. hippocampus),
the grey wrasse (Symphodus cinereus), the small red scorpionfish (Scorpaena notata), and the
flatfish Arnoglossus thori representing the indicator species for this assemblage. The last two
groups (IV and V) were classified by samples collected both with the 25-m and 50-m beach
seines, and the only split was defined by season. The summer assemblage was dominated
by five sea bream species (black seabream, Spondyliosoma cantharus, Senegal seabream,
Diplodus bellottii, White seabream, D. sargus, two-banded seabream, D. vulgaris, and gilt-
head seabream, Sparus aurata), European pilchard (Sardina pilchardus), striped red mullet
(Mullus surmuletus) and the European bass (Dicentrarchus labrax). In the other seasons, only
the resident silverside species was identified as indicator species (Atherina spp.).
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3.2. Diversity Indices

There were clear differences in all diversity measures between sampling gears, pres-
ence of vegetation and season (Figure 5, Table S2 in Supplementary Materials). In terms of
species richness, the highest values were for the 50-m beach seine (50-m BS) and beam trawl
(BT) (panel A). Habitats with vegetation sampled with any of the four gears showed higher
species richness than unvegetated locations. There were higher values of species richness
(S) for 25-m BS, 50-m BS and beam trawl during summer months, and lower values for
all gears in winter (panel B in Figure 5; Table S2). For species diversity represented by the
Shannon–Wiener index (H), the highest values were registered for 50-m BS and beam trawl
(panels B and C). There were also higher values of H for vegetated locations compared
to unvegetated locations, and higher values of H for stations sampled during summer
months (particularly 50-m BS), and lower values of H during the winter period. There
is a distinct effect of sampling vegetated habitats with push net, with high values of H
when compared with habitats without vegetation sampled with 25-m BS (p-value < 0.0001;
Table S2). With regard to species evenness (J), there were slightly higher values for BT, and
very low values for samples collected with push net in unvegetated locations (panels E
and F). There was not an obvious effect of season, only slightly lower values for samples
collected in spring with 25-m BS, and samples collected by push net had high variability.
In terms of phylogenetic diversity (PD), 25-m BS had highest values (panels G and H).
The GLM detected a significant interaction between push net and vegetation, meaning
that vegetated habitats sampled with push net had higher phylogenetic diversity than
unvegetated stations with 25-m BS. For functional diversity (FD), there were no major
differences between sampling gears (panels I and J). There were higher values of FD in
vegetated habitats sampled with any of the four gears, and there was a strong effect of
sampling with push net in vegetated habitats compared with unvegetated. Summer and
spring months show slightly higher values of FD but this is not very clear for samples
collected with 25-m BS and 50-m BS.
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4. Discussion

For the development and implementation of monitoring programs in estuaries and
coastal lagoons, it is necessary to select the most adequate sampling methods for de-
tecting spatiotemporal changes in species composition, abundance, and diversity, while
also minimizing the costs and damage to the local assemblages of these sensitive ecosys-
tems [28,32]. Here, we showed that the use of complementary sampling gears suitable
for particular habitat types within a coastal lagoon capture a wide range of ichthyofaunal
diversity that has been linked to the ecological status and the functioning of these highly
productive ecosystems [60].

A strong seasonal influence was found in previous studies in the Ria Formosa, where
the fish assemblage richness and abundance increased with the recruitment of marine
juvenile migrant individuals during spring and summer into the lagoon [42,61,62]. This
might explain the identification of two assemblages distinguished by season in the MRT
and a significant effect of season in the GLMs in terms of species richness and diversity.
Furthermore, different habitats had distinct characteristics not only in terms of type of
substrate, but also depth at low tide, hydrodynamics and distance to the openings of the
sea, environmental factors that play a strong role in structuring ichthyofauna diversity
and abundance in the Ria Formosa [4]. For example, Ribeiro et al., (2012) [63] found that
sampling with Riley push net in vegetated habitats resulted in higher species richness
and diversity than unvegetated habitats, where higher densities of fewer species were
encountered. This gives support to the results, where a distinct assemblage was identified
(cluster II in MRT and significant interactions in the GLMs) characterized by species living
in vegetated habitats that were sampled with the push net. Similar outcomes of seagrass
and saltmarsh habitats containing maximum diversity and richness were found in other
studies [9,37].

Not all diversity metrics (species richness, species evenness, Shannon entropy, tax-
onomic distinctness, and Rao’s quadratic entropy for functional diversity) varied signif-
icantly between sampling gears (Table S2). The results show no significant differences
in terms of functional diversity between 25-m beach seine and beam trawl, despite the
latter having higher values of species richness and diversity (p-value > 0.05). This could
be because of a large range of FD values across samples, especially for the 25-m beach
seine. This variation can also be explained by the nature of each gear itself; some gears are
more efficient in sampling particular habitats or species with particular functional traits
than others. The beach seines are more efficient in sampling small pelagics since they fish
the entire water column, particularly the 50-m beach seine (highest species accumulation
rate, Figure 3), while the beam trawl catches mostly benthic and epibenthic species since
it operates close to the seafloor. The Riley push net captures a large portion of small in-
dividuals, being most efficient for sampling juveniles of commercial species [63]. In fact,
the beam trawl was used to sample the main deeper channels in the lagoon and captured
mainly benthic species, while the beach seines were deployed in the secondary channels
and caught more benthopelagic species, belonging to Sparidae and Labridae families. In
addition, the deployment methods of the two beach seines differed, with the 50-m used to
encircle while the 25-m net was first towed along the shore before being hauled to land.
However, the analysis did not show significant differences between these two gears.

Each index gave a distinct picture of the fish assemblage, with only a few similar
comparisons between gears across indices. This shows the importance of considering
alternative measures of diversity [32]. Other studies have found that functional diversity
can be positively related with species richness and diversity [64], but this relationship
is not always positive and linear [52]. Phylogenetic diversity and species richness also
display different patterns of diversity and do not seem to be correlated [65,66]. Functional
traits may change with species ontogenetic shifts, especially in areas that contain different
life stages [67]. However, information on trait variability for the life stages of all species
included in the analysis was not available but should be accounted for in future studies. In-
dices based on biomass can be useful complements to those based on abundance, especially
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for revealing different insights into temporal trends of functional diversity [68], but this
is outside the scope of this study. Following the Water Quality European Standard from
2006, the recommended methodology for sampling species composition and abundance in
generic transitional waters such as the Ria Formosa is with the beam trawl [69]. However,
as found in our comparative study, other sampling gears such as beach seines and push
net provide different representations of the fish assemblage, particularly when different
dimensions of diversity (FD and PD) are incorporated. Even though the beam trawl sam-
ples contained higher species richness and diversity, they had lower phylogenetic diversity.
For sampling with a push net, the fish assemblage changed drastically between habitats
with and without vegetation and could only be operated at specific locations. As such, a
combination of 25-m beach seine and beam trawl might be an effective sampling strategy
to cover multiple aspects of diversity. As in Rotherham et al., (2012) [33], each gear used
(beam trawl and multi-mesh gillnets) gave a unique picture of assemblages of fauna, so the
most complete representation of the entire fish community required sampling with both
methods. Several multi-metric fish indices use distinct sampling gears [25]. In Ireland for
example, a standard multi-method approach (beach seine, fyke nets and beam trawl) is
used in transitional waters for the implementation of the WFD and the development of an
estuarine multi-metric fish index [70].

When designing a monitoring plan, the relative costs of deploying each sampling
gear need to be taken into account (e.g., human resources, environmental impacts, time
and financial expenditures). For this study, all the sampling gears required transport by
boat to the sampling locations. The Riley push net required only one person to operate,
while the beam trawl needed the skipper to navigate the boat and deploy the gear, and
at least another person to help record data, label and store the catches. The beach seines
demanded more human power (skipper and three people) to haul the nets and process
the catches, particularly the 50-m beach seine. Additionally, the beam trawl operates with
heavy ground gear that drags along the lagoon floor and disturbs bottom habitats. On the
other hand, the beach seines need to be hauled by a group of people that were occasionally
stepping on the seagrass patches which can damage these sensitive habitats. Although
operating the beach seines was more labour intensive, these gears allowed sampling of a
greater variety of habitats. In contrast, the beam trawl and push net were limited to the
deeper channels and the shallow creeks, respectively.

5. Conclusions

Given the heterogeneity of habitats, variability among sampling gears, and seasonal
effects, the use of a multi-gear approach would provide a robust assessment of the fish
assemblage structure in coastal lagoons as the Ria Formosa. Combining the 25-m beach
seine and beam trawl might be the most advantageous strategy given the limitations
of sampling with a push net and the operational costs of the 50-m beach seine. This
work thus contributes with new knowledge that adds to current guidance on selection of
fish sampling methods in coastal lagoons, an essential parameter for the assessment of
ecological status and biodiversity conservation of these ecosystems. This information is of
paramount importance for implementing policies and management plans at local, regional,
and national level to meet the objectives set out in the UN Sustainable Development Goals
under the 2030 agenda.

Supplementary Materials: The following supporting information can be download at https://www.
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