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N-Dimensional Mapping of Amino Acid Substitution Matrices
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Abstract. A procedure to map score matrices in n-dimensional spaces is presented. Score or
substitutions matrices are used as similarity-like measure between amino acid in protein alignment
procedures. The first stage of heuristic local alignments procedures as FASTA and BLAST uses local
matching of very short sequences, also named k-tuples. By using L1 metric this matching task can
be computed very fast. This procedure can be implemented by using SIMD instructions which are
present in most of low cost microprocessors included in personal workstations and server. To design
this procedure a table that maps the scores matrices as PAM y BLOSUM are needed. This table
defines a representation of each amino acid residue in a n-dimensional space of lower dimensionality
as possible; this is accomplished by using techniques of MDS as used in Pattern Recognition and
Machine Learning. Previously, a distance function must be defined from the score matrix. To map
the distance function a variation of the Sammon non-lineal dimensionality reduction procedure is
used with a genetic algorithm that minimizes a goal function. To fit the SIMD constraints, both the
dimension k of tuples and the space dimensionality n must verify: k×n = 8×m. The table results
for the BLOSUM62 with 1,2 and 4-dimensionality and graphical representations of the solution
map are included. These last show that the biochemical amino acid groups are well mapped as
data cluster; also the strong hydrophobic residues have a highlight spatial property, because there
are linearly separable in 2-dimensional mapping.

1 Introduction

The fast growing of information contained in the biological databases[1] requires more efficient processing
systems to found functionality and meaning in the DNA and protein sequences. More efficient systems
are obtained by hardware and architectural improvements, and also by defining more efficient computa-
tional procedures. Artificial Intelligence techniques as used in Knowledge and Data Engineering, Pattern
Recognition and Machine Learning subareas can provide additional approaches to allows better compu-
tational performances in Gemomic related systems[2]. This paper uses Pattern Recognition and Machine
Learning techniques applied in Bioinformatics[3] to obtain data tables needed to get some architectural
improvements in alignment procedures of biological sequences. These architectural improvements are ini-
tially introduced for multimedia and information retrieval applications, but by means of special software
design they can also be used in genomic related computations.

Single Instruction Multiple Data(SIMD) instructions are included in the microprocessors of most
the low cost computer systems, as Intel Pentium 4 and AMD K4. They can be used to speed up
workstations and servers in Genomic, but special designs are needed because available compilers do not
take advantage of these instructions for general software. Modern computer items as cache hierarchy,
memory access and SIMD processing upgrade the performance of generic software, but additional increase
of the power in genomic based procedures can be obtained if these are design according the above
processor characteristics[4].

Some works are dealing with the use of parallel computation for sequence analysis[5, 6], and also in the
use of SIMD instructions in the improvements of local alignments[7, 8]. However, this work does not deal
with hardware or architectural proposal, it presents a process for the first stages of some local alignment
procedures. The proposal requires the computation of some tables to map the amino acid residues in
a n-dimensional space according to the biological properties represented in the score or substitution
matrices, as PAM[9] and BLOSUM[10].

The search of local alignment between biological sequences is one of the most used tools in discovering
the functional and evolutionary similarities. The Smith-Waterman procedure[11], based on dynamic



programming, has the highest biological significance. However, its computational cost is greater that
other heuristics procedures as FASTA[12] and BLAST[13] which have lower computational cost having
a high level of biological significance. The first stage of both FASTA and BLAST is the searching of very
short pre-coded sequences, named k-tuples, in the sequences included in the biological databases. The
matching of k-tuples, named ktup in FASTA and w-mers in BLAST, between a query sequence and the
database can be efficiently computed by information retrieval procedures.

However instead of simplistic ASCII code matching, a n-dimensional code matching is proposed
based on the biological information contained in the score o substitution matrices. The information
retrieval procedure take advantage of two architectural improvements of modern microprocessors: par-
allel computation with multiple data processing units, and sequential memory access which increases
the cache throughput. Rather than dealing with computer architectural issues or SIMD programming,
this paper present the process to map the amino acid residues in a virtual meaning-less n-dimensional
space. This is accomplished by non-linear dimensionality reduction methods used in Multidimensional
Scaling(MDS)[14–18] which are used mainly in Pattern Recognition and Machine Learning for feature
selection and also for visualization of high dimensional data sets.

2 Low Dimensional Mapping of Score Matrices

The distance D(U, V ) between two vector U and V in RM based on the L1 norm is defined as:

D(U, V ) =
M
∑

i=1

| Ui − Vi | (1)

The Intel IA-32 computer architecture includes an instruction to compute this distance with M = 8
in a single system clock cycle, the norm for M = 8×m also can be fast computed from the previous. The
continuous increasing of microprocessor clock frequency provides a powerful method to speed up many
of data processing tasks which can be re-formulated to fit in a L1 norm. This instruction is part of the
Integer SIMD or MMX instruction set included to improve the performance of multimedia, text retrieval
and signal processing applications. Genomic related computations can exploit this improvement, but it
requires different approaches for some of the actual algorithms. Most of problems related with sequence
analysis are based on score matrices to model the amino acid distances and similarities. Perhaps, this is
not the best choice to use the power that current hardware provides. If A is the amino acid symbols set,
instead of using a score matrix s(a, b); a, b ∈ A, a distance based on norm L1 can be required:

DX(a, b) =
n

∑

i=1

| Xi(a)−Xi(b) | (2)

where X(a) is a n-dimensional vector which is the representation of the amino acid, and DX(a, b) is
the desired distance. In raw text searching of query sequence in a biological database, this vector is the
1-dimensional ASCII code of the residue symbol. However, this is a too simplistic representation of the
amino acid properties which ignores the biological meaning and the affinity relations. The similarity
relations of amino acid require the introduction of a representation in a multidimensional space with
the lowest dimensionality as possible. This representation must contain the biological information of
similarity and affinity which is gathered in the substitution matrices. PAM and BLOSUM matrices
are defined from statistical properties related with residues substitutions from evolutionary or blocks
alignments. They are nor distance neither similarity functions. They are score factors which verifies:
s(a, b) = s(b, a) and also generally: s(a, a) ≥ s(a, b). From a score matrix several distance functions,
d(a, b), can be proposed; the considered in this paper is:

d(a, b) = s(a, a) + s(b, b)− 2s(a, b) (3)

This verifies the symmetrical property: d(a, b) = d(b, a), is lower bounded: d(a, b) ≥ 0 and also
verifies: d(a, a) = 0, but is not a metric. When is verified that s(a, a) > s(a, b), also is verified that if
d(a, b) = 0 it must be: a ≡ b. The triangular properties is not verified in the general case, thus the



proposed function is a distance, but not a metric one. This distance has also a probabilistic expression
when is computed from the PAM and BLOSUM substitution matrices. Both are obtained by means of a
probabilistic ratio obtained from different empirical environments. The first are obtained from observed
mutations in general alignments of sequences, and the second from specific substitutions in blocks of
aligned sequences contained in the BLOCKS database[19]. The score matrix in this cases is defined as:

s(a, b) =
1
λ

log
p(a, b)
papb

(4)

where p(a, b) is the probability of substitution between two residues, pa term is defined from the p(a, b),
and λ is a suitable parameter. The proposed distance is expressed as a probability ratio:

d(a, b) = − 2
λ

log
p(a, b)

√

p(a, a)p(b, b)
(5)

The score of a k-tuple of two sequence U and V is computed in the alignment procedures[11, 20] by
using substitution matrices as:

s(U, V ) =
k

∑

j=1

s(uj , vj) (6)

Where u(j) and v(j) are the amino acid in the k-tuple. If the distance of this k-tuple, d(U, V ), is
defined as:

d(U, V ) = s(U,U) + s(V, V )− 2s(U, V ) (7)

It can be computed as:

d(U, V ) =
k

∑

j=1

d(uj , vj) (8)

If d(a, b) can be computed by DX(a, b) with a reduced error, then the computing of d(U, V ) can be
achieved by the expression:

DX(U, V ) =
k

∑

j=1

n
∑

i=1

| Xi(uj)−Xi(vj) | (9)

which is a L1 norm with M = n × k. Due to hardware constraints, the optimal computation can be
achieved when n× k = 8×m. The high k value reduces the sensibility whereas the low k value is lower
significative; BLAST uses k = 3, 4, 5, to compute the hits or initial alignment clues.

The problem which must be solved is how compute DX(a, b) as a good approximation of d(a, b); this
requires the computing of the vector set: X(a), a ∈ A. The Sammon method [21] is used to achieve this
goal; it provides a good ratio of result quality to computational complexity[16–18]. It maps a distance
function to a reduced dimensionality space based on the minimization of an objective function by assign
to each amino acid tentative coordinates. These coordinates are meaning-less, and they are useful only
to compute the distance. The Sammon method is based on the minimization of a non-lineal goal function
related with the error between the original distances and the tentative ones, consequently several solutions
can be obtained if some local minimum exist. A slight modification of the Sammon method is used to
adapt it to the biological environment. The procedure requires the minimization of the goal function
E(X) which can be assimilated to a relative error of the mapping process:

min
X

E(X) =

∑

a
∑

b<a pab
(DX(a,b)−d(a,b))2

d(a,b)
∑

a

∑

b<a pabd(a, b)
(10)

Where is introduced pab = p(a)p(b) as the probability of the residue pair, included to reflect the
different frequency of residues in protein sequences. The X solution is not unique due to the geometrical



1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Eo
(n

)

n

Fig. 1. The minimum value E0 of the Sammon function for BLOSUM62 vs the dimensionality n of the mapping
space. A fast convergence is found for low dimensionality, because the E0 value can be considered as the relative
error of the mapping process.

transformations that preserve the distance DX . For the L1 metric the freedom degrees are less that in
euclidean or L2 metric, because the rotation group is finite dimensional in the first case instead of infinite
dimensional of the second case.

3 Results

Both Genetic and Gradient optimization methods can be used to achieve the minimization of the goal
function. Gradient procedures have better convergence around local minima, while Genetic procedures
allow a better global optimization by considering several local minima. Many solutions are expected in
the proposed problem, covering a wide range of both local minimum due to non-linearity and also due
to geometrical transformations.

A Genetic Algorithm is used to obtain a solution which is afterward refined by applying a Gradient
procedure based on Quasi-Newton algorithm. Genetic algorithm are good to jump across far local min-
ima. However, in practice after a number of iterations the genetic algorithm is mainly working in the
refinement of a local minimum, but for this task the gradient procedures are more efficient. The minimum
of several trial cases of genetic and gradient procedures is chosen as the solution. GAOT[22] a public
domain Genetic Toolbox is used for the first stage and the MATLAB Optimization Toolbox[23] to the
second one. Results for the mapping process with n = 1, . . . , 5 have been obtained for the BLOSUM62
matrix. The Figure 1 shows the graphical representation of the value E0 of the Sammon function E(X)
in the best obtained minimum, which are: (0.1617, 0.0448, 0.0218, 0.0100, 0.0055). These vales, which can
be considered as relative error of the mapping process, verify a fast convergence to near null error at
relatively low dimensionality.

The amino acid coordinates for 1,2,4-dimensional mapping are included in the Table 1. Due to
the hardware restrictions these dimensional values are the most useful for practical proposes. The 1-
dimensional can be used for low precision but high speed matching, while the 4-dimensional with 4-tuples
matching can be considered a optimal solution with a good precision and near the the tuple size of FASTA
and BLAST. The 2-dimensional is a intermediate case which also allows practical visualizations as shown
in the Figure 2.

The substitution properties contained in the score matrix are represented by means of a symmetrical
set of numerical values; when this information is mapped in a plane space the biological affinity between
the amino acid is more clearly shown. Some biochemical groups are nearly mapped conforming significa-
tive clusters as the aromatic(F,Y,W,H), the basic or positive charged(H,K,R) and the aliphatic(V,I,L).

A data transformation is needed to use the information contained in the coordinate table for practical
matching procedures that use the hardware speed up capabilities of popular microprocessor. The vector
X(a) provided by the optimization procedure are transformed to the Y(a) vector in the byte values
range [0, 255] by geometrical transformations of translation and scaling. The Table 2 contains the second



Table 1. Mapping coordinates for 1,2 and 4-dimensionality reduction of BLOSUM62 substitution matrix. P is
the prior probability of amino acid, and E0 is the value of the Sammon function in the local minimum.

n = 1 n = 2 n = 4
P X1 X1 X2 X1 X2 X3 X4

Ala A 0.10 19.646 25.829 20.349 18.494 21.027 14.399 18.471
Arg R 0.05 15.773 17.835 25.406 19.704 18.823 14.478 26.680
Asn N 0.04 9.986 29.136 26.147 22.539 19.199 11.843 22.854
Asp D 0.06 8.167 26.679 30.911 12.585 18.106 11.964 21.154
Cys C 0.01 35.376 34.618 17.522 25.835 14.300 16.941 19.760
Gln Q 0.04 13.367 21.224 27.177 15.245 18.846 15.614 22.733
Glu E 0.06 11.824 23.695 29.288 15.671 17.912 13.505 23.308
Gly G 0.08 6.073 32.288 23.165 19.064 24.233 10.820 21.189
His H 0.02 3.934 12.508 26.142 14.642 20.508 17.885 25.931
Ile I 0.06 26.608 22.769 14.798 19.601 18.124 18.299 16.729
Leu L 0.09 28.163 20.497 16.405 20.629 18.094 19.044 18.725
Lys K 0.06 14.527 19.767 27.697 18.375 17.090 14.776 25.064
Met M 0.02 24.139 19.266 18.065 21.854 18.412 17.694 20.511
Phe F 0.04 31.968 14.880 18.646 19.652 20.213 22.881 20.750
Pro P 0.04 3.032 22.945 34.379 17.628 10.524 14.888 20.956
Ser S 0.06 17.249 25.113 24.127 17.864 19.327 12.540 19.963
Thr T 0.06 21.653 22.308 22.132 19.628 15.473 12.956 19.083
Trp W 0.01 39.000 6.482 22.421 14.012 22.970 17.177 12.287
Tyr Y 0.03 32.946 12.977 21.033 17.782 19.568 23.794 21.770
Val V 0.07 25.157 23.557 15.614 19.047 17.879 17.248 16.878

E0 0.1617 0.0448 0.0100

coordinate type. The translation to the origin of coordinates do not modifies the distances, whereas the
scaling to fit the [0, 255] range modifies the distance with a constant factor µ related withe the scaling
transformation. The relation between the distances computed by mean of the two vector type are related
as:

DY (a, b) = µDX(a, b) (11)

The Figure 3 shows the representation in the new coordinates system Y. In this Figure, and also in
the previous one, can be show as the strong hydrophobic group(WYFVILM) is mapped in the lower left
corner of the map, linearly separated from the other amino acid. This fact provides qualitative evidence
about the existence of some relation between the mapping space and the hydrophobic property. This
connects with a more general problem related with the possible biological and biochemical meaning of
the axes obtained in the mapping processes.

The hydrophobic/hydrophilic properties of amino acid are fundamental items in the dynamics and
structure of proteins[24]. Due that the biological matter is basically an aqueous solution, the water
affinity is essential in the relation of a protein with its environment. The mutations with significative
changes in the water affinity have a high probability of generate disfunctions, so having a low probability
of survivance, therefore being lost in the evolution process. Survival mutations in stable species are the
observed and coded in biological databases and translated to the score matrices.

There are many hydrophobicity, or its inverse hydrophilicity, scales for amino acid residues in
proteins[25–28]. Unfortunately most are uncorrelated and they self contradictory. One of most uses is the
Levitt hydrophobicity scale[26] which has been used to make a score matrix for protein alignment[29].
The Figure 3 shows the relation between the Levitt scale and the coordinate in a 1-dimensional map. In
this case exists a high correlation between the meaning-less X coordinate and the scale for the strong
hydrophobic group. This agrees to the hypothesis that some semantical and meaning can be discovery
in the axes of the mapping process; as initial clue, for BLOSUM62 exist some relation of the mapping
axes with the amino acid hydrophobicity. However the main problem with this hypothesis comes with
the ambiguous numerical definition of hydrophobicity due to the proliferation of uncorrelated scales.
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Fig. 2. 2-Dimensional Mapping of Amino Acids based on BLOSUM62 matrix. Some biochemical groups are
outstands to show that are near mapped according with their biological affinity

From the obtained results, further works are required in two far areas. The first in the implementation
of fast matching procedures that uses the proposed tables; this is mainly concerning with software
efficiency in the use of microprocessor improvements. The second is a more wide and intensive study of
the relation between the mapping coordinates and the hydrophobicity and other semantic concepts.

References

1. Attwood, T., Parry-Smith, D.: Introduction to Bioinformatics. Prentice-Hall (1999)
2. Hunter, L.: Artificial Intelligence and Mollecular Biology. MIT Press (1993)
3. Baldi, P., Brunak, S.: Bioinformatics, The Machine Learning Approach. MIT Press (2001)
4. Bik, A., Girkar, M., Grey, P., Tian, X.: Efficient axploitation of parallelism on pentium iii and pentium 4

processor-based systems. Intel Technology Journal Q1 (2001) 1–9
5. Hughey, R.: Parallel hardware for sequence comparation and alignment. CABIOS 12 (1996) 473–479
6. Yap, T., Frieder, O., Martino, R.: Parallel computation in biological sequence analysis. IEEE Trans. on

Parall. and Distr. Syst. 9 (1998) 1–12
7. Rognes, T., Seeberg, E.: Six-fold speed-up of smith-waterman sequence database searches using parallel

processing on common microprocessors. Bioinformatics 16 (2000) 699–706
8. Rognes, T.: Paralign: a parallel sequence algorithm for rapid and sensitive databases searches. Nucleic Acids

Research 29 (2001) 1647–1652
9. Dayhoff, M., Schwartz, R., Orcutt, B.: Atlas of Protein Sequence and Structure. Volume 5. Nat. Biomed.

Res. Found. (1978)
10. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89

(1992) 10915–10919
11. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jor. Mol. Biol. 147 (1981)

195–197
12. Pearson, W., Lipman, D.: Improved tools for biological sequence comparation. Proc. Natl. Acad. Sci. 85

(1988) 2444–2448
13. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local aligment search tool. Jor. Mol. Biol.

215 (1990) 403–410
14. de Vel, O., Li, S., Coomans, D.: Non-Linear Dimensionality Reduction: A Comparative Performance Analysis.

In: Learning from Data: AI and Statistics. Springer-Verlag (1996) 323–331
15. Duda, R., Hart, P., Stork, D.: Pattern Classification. Jhon Wiley and Sons (2001)



Table 2. Mapping coordinates for 1,2 and 4-dimensionality of BLOSUM62 transformated to integer [0,255] range
for use in fast matching procedures

n = 1 n = 2 n = 4
Y1 Y1 Y2 Y1 Y2 Y3 Y4

A 118 175 50 105 186 63 110
R 90 103 96 126 147 65 255
N 49 205 103 176 154 18 187
D 36 183 146 0 134 20 157
C 229 255 25 235 67 108 132
Q 73 134 112 47 147 85 185
E 62 156 131 55 131 48 195
G 22 234 76 115 243 0 158
H 6 55 103 36 177 125 242
I 167 148 0 124 135 133 79
L 178 127 15 143 134 146 114
K 81 120 117 103 116 70 226
M 150 116 30 164 140 122 146
F 205 76 35 125 172 214 150
P 0 149 177 89 0 72 154
S 101 169 85 94 156 30 136
T 132 143 66 125 88 38 120
W 255 0 69 25 221 113 0
Y 212 59 57 92 160 230 168
V 157 155 7 114 130 114 81
µ 7.0896 9.0632 17.7174

16. Li, S., de Vel, O., Coomans, D.: Comparative performance analysis of non-linear dimensionality reduction
methods. Technical report, James Cook Univ. (1995)

17. Backer, S.D., Naud, A., Scheunders, P.: Nonlinear dimensionality reduction techniques for unsupervised
feature extraction. Pattern Recognition Letters 19 (1998) 711–720

18. Scheunders, P., Backer, S.D., Naud, A.: Non-linear mapping for feature extraction. Lecture notes in computer
science 1451 (1998) 823–830

19. Henikoff, S., Pietrokovski, S., Henikoff, J.: Superior performance in protein homology detection with the
blocks database servers. Nucleic Acids Research 26 (1998) 309–312

20. Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in amino acid sequences
of two proteins. Jor. Mol. Biol. 48 (1970) 443–453

21. Sammon, J.: A nonlinear mapping for data structure analysis. IEEE Trans. Computers 18 (1969) 401–409
22. Houck, C., Joines, J., Kay, M.: A genetic algoritm for function optimization: A matlab implementation.

Technical report, NCSU (1995)
23. Coleman, T., Branch, M., Gracce, A.: Optimization Toolbox User’s Guide. Mathworks Inc. (1999)
24. Gerstein, M., Levitt, M.: Simulating water and the molecules of life. Scientific American (1998) 100–105
25. Cornette, J., Cease, K., Margalit, H., Spouge, J., Berzofsy, J., DeLisi, C.: Hydrophobicity scales and com-

putational techniques for detecting amphipathic structures in proteins. J. Mol. Biol. 195 (1987) 659–685
26. Levitt, M.: A simplified representation of protein conformations for rapid simulation of protein folfing. J.

Mol. Biol. 104 (1976) 59–107
27. Kyte, J., Doolittle, R.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.

157 (1982) 105132
28. Karplus, P.: Hydrophobicity regained. Protein Sci 6 (1997) 1302–1307
29. George, D., Barker, W., Hunt, L.: Mutation data matrix and its uses. Methods Enzymol. 183 (1990) 333–351



0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Y1

Y
2

P 

D 

E K 

Q R 

H 

W 

Y 

F 
M

L 
V 

I 

A 

T 

S 

N

G

C strong hydrophobic 

Fig. 3. 2-Dimensional Mapping of BLOSUM62 matrix with Y coordinates showing the strong hydrophobic group
which can be linearly separable.
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Fig. 4. The 1-dimensional map vs the Levitt hydrophilicity scale showing a high correlation degree for the strong
hydrophobic residues.
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