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Abstract: - A dynamical model of the Simple Genetic Algorithm, SGA, is developed. A practical improvement 
is introduced, related to the fundamental theorem of natural selection, Fisher’s FTNS, that induces correction 
factors in the [Q] matrix of Nix and Vose Markov model, NV. Now, the expected waiting times, EWT, is 
computed easily in any situation. For the case of maximum uncertainty, it is obtained an expression for EWT 
that improves from the Nix and Vose model in relation to the experimental data and coincides in practice with 
the maximum entropy value, H*, of the populational search space. Also, the steady state is obtained when the 
absorbing state, global optimum, is reached. The new absorbing model results thus integrated in more general 
stochastic models, as Evolutionary Algorithms, EAs, and Optimum Seeking Devices. 
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1   Introduction 
A problem related to the efficiency of SGA, is the 
execution time; an adequate stop criterion does not 
exist and it is required to find practical solutions, such 
as fixing a number of generations increased to be sure 
that the algorithm converges towards an acceptable 
value. Several works try this stop criterion and develop 
methods to obtain a suitable criterion, most of them 
from stochastic analysis of NV Markov model of SGA, 
[1]. The most known is the EWT, that calculates the 
average passages of time necessary to obtain a copy of 
the global optimum string in the population, at 
generation tEWT, if we start from an initial population 
given at time t0. 
In actual cases the calculation of the EWT implies to 
work with equations systems of high order. Many 
factorials of large numbers take place, that make 
impossible the computational stochastic analysis. 
In the NV model, when the mutation rate µ = 0.5,  the 
matrix elements qij only depend on the chromosomes 
distribution in state j. In small search spaces there is a 
difference respect to the value (Card{Z})-1, the inverse 
of the size of all possible populations. Already in 
moderated spaces and especially in typical spaces used 
in GAs this difference is petty and tends to zero while 
the search space increases. It is the maximum 
uncertainty case. 
Recently, [2], we have obtained the following result 
Proposition: The expected waiting times, EWT, for the 
case of maximum uncertainty with random initial state, 
from the NV Markov model of the Simple Genetic 
Algorithm, SGA, is  
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Furthermore, in practice, n << r, this expression is 
reduced to: 
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Being n the population size and r the cardinal of the 
search space, r = 2l,  l the chromosome or string length. 
We compare (1) with the time for the convergence 
value in the Monte Carlo method, EWTMC with respect 
to the values of the argument, search domain:  
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Where µn is equivalent to the Lebesgue measure of the 
sets search space and sample, both discretes. Recalling 
that n << r, it is easy to observe that  EWT(J) ≈ 
EWTMC [2]. Values for the intermediate case of 
chromosome length l = 50 and n variable are shown. 
 

Population size, n EWT(J) 
10 1.13⋅1014 

20 5.63⋅1013 
30 3.75⋅1013 
40 3.81⋅1013 
50 2.25⋅1013 
100 1.13⋅1013 
200 5.63⋅1012 

Table 1. EWT(J) in Nix & Vose model of SGA for 
maximum uncertainty case,  l = 50,  n variable. 



The theoretical values obtained result too large for its 
practical usefulness. With a manual or random search 
we would obtain, in average, the same results, as it is 
demonstrated above with the equivalence between 
EWT(J) and EWTMC. However, the experience shows 
that SGA tends to give a response adapted in a number 
of generations in order of magnitude much less. In this 
situation, the only one reasonable response will be to 
admit that the NV  Markov model, even though it is 
theoretically coherent, seems to be too general to 
model correctly the optimum performance of the 
SGA. 
 
 
1.1 Mathematical Backgrounds. 
In addition to the previous negative results, qualitative 
differences exist between NV model of SGA and the 
absorbing models of EAs and the Optimum Seeking 
Devices. These differences would not have to be 
presented, since the SGA is included in EAs, and both 
belong to Optimum Seeking Devices. These three 
models are introduced briefly. In 1.1.4 is presented the 
Fisher’s FTNS Theorem, which will serve to 
transform NV Markov model in an absorbing Markov 
model, which presents more adequate characteristics. 
 
1.1.1   NV Markov model of SGA 
The NV dynamical model is employed to represent a 
SGA, consisting of a finite population, a standard 
representation of binary symbols, 1-point crossover, 
uniform mutation, and proportional selection. Elitism 
and other aspects used in Genetic Algorithms are not 
considered.  Nix and Vose define two matrix operators, 
[F] and [M], being [F] the fitness operator, which is 
determined by the fitness function. The matrix [M] is 
the recombination operator, depends from the strings 
recombination operator [R], from [Z], and from the 
permutation operator σσi.  
With these operators, the exact transition probabilities 
between states are calculated, [1]: 
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From these transition probabilities a recurrent and 
aperiodic Markov chain is obtained, where there is a 
probability of "jump" of a state to any other. The 
evolution of the system tends towards a steady state, 
where the probability of arriving to a given state is the 
same, independently of the probability distribution for 
the initial state. In the steady state the probabilities of 
reaching any population are all positive, therefore, the 
system can ends in any population. 

1.1.2 Convergence Theory of Evolutionary 
Algorithm  
The SGA form part of a widest class of algorithms, the 
EAs. Nevertheless, the convegence theory of EAs 
presents a different qualitative behaviour, [3]. 
Presuming the use of elitist selection, incorporating a 
heuristic to always maintain the best solution in the 
population, one-point crossover and uniform mutation, 
form an equivalent class of all states that contain the 
best string for unimodal case. Then all populational 
states containing the best string, global optimum, are 
characterized as the same state, absorbing state, the 
Markov chain may then be written in the form: 

 
P 

I 0 
R Q = 

 
Where [P] is the transition matrix, I is a 1 x 1 identity 
matrix describing the absorbing state, R is strictly 
positive t x l transition submatrix, Q is a t x t transition 
submatrix of all transient states, and t is a positive 
integer. 
Asymptotic global convergence of the evolutionary 
algorithm is then transparent as every absorbing chain 
will reach an absorbing state; in this case, is just one 
such state. 
Theorem: Given a (Z-J+1 x Z-J+1) state transition 
matrix, reducible, where there is a single absorbing 
state and Z-J transient states describing a Markov 
Chain, and an initial state probability rows vector. 
Form the sequence: 
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The sequence xt converges to 1.0 with probability 1, 
[3]. 
 
1.1.3 Absorbing Model of Optimum Seeking 
Devices  
The EAs, and consequently the SGA, are included 
within wide field of algorithms of different nature that 
are used in "Optimum Seeking Devices". The 
convergence theory of Optimum Seeking Devices is 
quite wide and complex. In elemental models, where it 
is observed the evolution of these devices in a 
qualitative way, absorbing Markov models are used, 
[4], as in the case of EAs. Result that both models are 
totally equivalent. However, the NV model of SGA has 
a different qualitative behaviour, its compatibility with 
these models would be desirable.  
 
1.1.4 Fisher’s FTNS Theorem of Natural Selection  
It is shown a result obtained in Populational Genetics, 
that it will be fundamental to approach the stochastic 
model to the real behaviour of the SGA. 



In this simplified model, the biological population has 
individuals with chromosomes of size l, and its alleles 
with two possible symbols as a binary alphabet. 
Let z(t) be the populational state at any time t, and let < 
f(z(t)) > be, denoted here as <f >, the average fitness of 
such state. An estimate from the variation of average 
fitness to each passage of time can be obtained in a 
general way and independently of the fitness, [5]: 
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This result is known as “Fundamental Theorem of 
Natural Selection”, or Fisher’s FTNS Theorem. 
Sometimes, it is written in a different form with a 

quantity called the additive genetic variance, σ g
2 , in 

place of 2 2σ ( )f i . 
The FTNS Theorem is only an approximation for 
models of biological populations with discrete 
generations, but it provides valuable qualitative insight 
on how natural selection works. It tells us that <f> 
should always increase (or at least not decrease) with 
time since d<f>/dt is a non-negative quantity. 
Moreover, it says that evolution will be faster when 

there is more variability as measured by σ 2 ( )fi . 
For its totally general construction, this simple version 
of the FTNS theorem can be applied to any population  
that present a chromosomes structure and use a binary 
alphabet. This happens in the populations that SGA 
improves. 
 
 

2 The NV - FTNS Absorbing Model of 
SGA 
The Nix & Vose – Fundamental Theorem of Natural 
Selection absorbing model, NV – FTNS, is shown. It 
was introduced previously of empirical way, [6], 
through a practical postulate on the evolution of the 
average fitness of the sampling population, related to 
the Schema Theorem. With the introduction of FTNS 
Theorem, the postulate is rigorous and becomes an 
immediate consequence of Fisher’s FTNS Theorem. 
Let z(t) be the sampling state at step t, and <F(z(t))> 
the average fitness of such state. Then, the only 
transitions permitted in an S.G.A. are those that 
accomplish: <F(z(t+1))> ≥ <F(z(t))>, in other words, 
the probabilities of transition states of a greater 
fitness to a smaller one are forbidden.  
The incorporation of this correction factor in the NV 
model can be added directly in the matrix elements of 
transition probabilities qi,j, using the unitary function 
of Heaviside 
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Therefore: a q U F ii j i j F j, , ( ) ( ( ) )= < >< >    (6) 

Introducing these new elements on the matrix we 
obtain the matrix [A], that presents multitude of zero 
elements. The matrix must be renormalized and the 
states ordering by average fitness, [7], ordering the 
states from great to smaller fitness. With this election 
[A] takes the form of a regular or canonical absorbing 
matrix. It is observed that all trasient states have not 
null probabilities of ending in the absorbing state:  
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In this case, [I] is the scalar 1, 0 is the transposed null 
vector of dimension Z-1, R the column vector of the 
same dimension and Q* is the squared matrix of 
transition between transient states of dimension Z-1 x 
Z-1. Here, the matrix Q* is a lower triangular matrix, 
favoring the computational implementation of its 
stochastic analysis.  
 
 
2.1 Expected Waiting Times, EWT. 
If Pi,0= (Card{Z})-1 are assigned as initial probabilities, 
∀i; we are approximating to the general case The 
average solution that is obtained assigning equal initial 
probabilities to all the states, approximately the same 
that in the general multinomial case for large search 
spaces, actual cases.  
From the canonical form of the matrix [A], the 
fundamental matrix [F] is obtained by induction. From 
[F] the general formulation for the EWT in the NV – 
FTNS model is obtained, [6]. 
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Fig. 1. log2 EWT(J) of  the NV model, inclined plane, 
and the NV - FTNS model of the SGA. 
 
Theorem: [6].The EWT(J) of the Absorbing Markov 
Chain model for the SGA, n << r, in the maximum 
uncertainty situation and initial population of equal 
probability is:  
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with Γ(n) = (n – 1)!, the Euler´s Gamma function. This 
Equation can be approximated by: 
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For the maximum uncertainty situation, the EWT(J)  in 
the NV – FTNS model coincides in practice with the 
value of the maximum entropy, H*, from  the 
populational search space. 
 
 
2.2 Steady State 
Using this model is immediate to find the steady state 
from a classic theorem of absorbing states for the limit 
matrix.  
Theorem:  Let [A] be the transition matrix of an 
absorbing Markov chain and [A] is in the canonical 
form, then exists a limit matrix [A]∞, such that [A]k 
tends to [A]∞ when k grows, where:  
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With [F] = ([I]- [Q*])-1, the fundamental matrix, [4]. 
The limit distribution is that the global optimum has 
been obtained, the system has entered the absorbing 
state and the stochastic process ends. Explicitly: 
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In an efficient S.G.A., we arrive at the global optimum 
with n equal copies and the algorithm ends. The NV - 
FTNS model coincides with the real cases. 
 
 
2.2 Experimental trials 
We had contrasted initially the EWT in some test 
functions that are presented in the table 2, ordered of 
minor to greater hardness. Functions [F3] and [F4] are 
the same, except the parameters values. 
 

FUNCTION ANALITIC EXPRESSION 
[F1] (x-1)2-(x-1)+3 
[F2] Int(x+1)  

 
[F3]  

4(x-a)(b-x)/(b-a)2 
a = 2.6x108 ; b = 76870912 

[F4]   4(x-a)(b-x)/(b-a)2 
a = 0 ; b = 536870910 

Table 2. Functions used in the calculation of EWT. 
 

It was calculated the EWT(J) for the four indicated 
functions, launching in each one of them a statistics 
sample of 50 launches with different random initial 
populations, except [F4] with 100 launchings. Uniform 
mutation, with µ = 0.5, case of maximum uncertainty, 
and 1-poimt crossover, χ = 1. The outcomes are shown 
in the table 3. Despite these outcomes are preliminary, 
they seem to demonstrate a very good prediction with 
the same order of magnitude, through the NV - FTNS 
model. 
 

FUNCTION EWT(J) 
[F1]      61,4 
[F2]      67,8 
[F3]    168,5 
[F4]  1693,0 

Average    5,0⋅102 
NV Model    3,5⋅107 
NV-FTNS    5,5⋅102 

Table 3. Comparation of EWT(J) with n = 30, l =30 
 
In figure 2 the results obtained in all cases, fixed n and 
l, as well as the case of n variables are shown.  It has 
been drawn the log2 EWT(J) to visualize all cases in a 
same graph. The thick line gives the theoretical values 
for the EWT(J) from the NV model, (1), the thin line 
shows the theoretical results from the NV – FTNS  
absorbing model, (7), (8), the circles give the 
experimental outcomes of  the table 6 for l = 30 and n 
variables. A cross represents the average result of the 
table 3. 
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Fig. 2. Comparison of the log2 EWT(J) for l = 30,  
between NV model and the NV - FTNS model. 
 
 

3   Conclusions 
The difference observed between the theoretical 
forecasts and the experimental results, [2], and the 
different qualitative behaviour between the NV model 
of SGA and other models more general of EAs, carry 
us to improve the NV model. After developing an 



absorbing model, introduced through a practical 
postulate, [6], we have found its theoretical 
justification in the FTNS Theorem of Populational 
Genetics. It is the NV - FTNS absorbing model, which 
gives more close results to the experimental data and 
is compatible with more general models of EAs or 
Optimum Seeking Devices. 
In the dynamical of the SGA, the sample population is 
approximated to the global optimum when the average 
fitness improves, as asserts the FTNS theorem. Its 
introduction in the dynamical model has achieved the 
equivalence among the SGA and other models more 
general as EAs or Optimum Seeking Devices. Thus, in 
maximum uncertainty case the value of the average entropy 
of  the system coincides with the EWT, which SGA delays 
in obtaining for the first time in the sample population, the 
best individual from the search space. 
The NV - FTNS model predicts values at the same 
order of magnitude that the experimental outcomes 
obtained. 
In other hand, an important aspect is the appearance of 
meta-stable states. In the cases where it has not been 
reached the global optimum, nearby states to it have been 
obtained, that probably in an infinite time, will jump to the 
optimum state. These close states to the optimum can be 
designed as meta-stable states, their lifetime in occasions is 
enormously large and the algorithm seems not to evolve 
towards the optimum in a finite time. These meta-stable 
states different from the optimum have been already 
visualized. For example in [7] they are observed in the 
temporary evolution of the Markov chain, with the ordering 
by probability mass, as these states increased their statistic 
mass with time. It would be very important for the 
theoretical development of the S.G.A., the study of the 
characteristics that influence the appearance and 
maintenance of the meta-stable states, such as the 
codification, population diversity, evolutionary 
operators, etc. For example, it is possible to develop a 
heuristic that reduces notably the harmful effects of 
meta-stable states.  
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