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Resumen 
The estimation of contamination source parameters from concentration 

measurements at certain lines is considered in a variational statement. The 
corresponding optimality condition and the adjoint problem are formulated. Both 
direct and adjoint problems are calculaled by a fmite difference method. The 
optimization problem is solved in the iterative way. The non-uniqueness of the 
problem is considered and managed with using the additional information for 
sources. The numerical tests demónstrate the feasibility for the single source 
coordinates estimation. 

Introduction 
The estimation of contamination (air pollution) sources Qc(X, Y) from concentration 

measurements [4] is of obvious interest. Actually, there is a wide-ranging set of 
publications on Inverse Problems in general (see e.g. [6], [7]). Specifically in [5], an 
interesting study of the inverse source problems is developed. 

First we present the state equation which defines our problem where the contamination 
sources are to be found, as well as propose the fitness function to be optimized. This 
function is constructed from the experimental measurements at certain lines inside the 
domain. Next, we establish the necessary adjoint problem to pose completely the problem. 
Finally we describe the numerical method for solving such problem and solve a numerical 
test, which led us to some preliminary conclusions. 

State equation and fitness function 
Herein, we consider using the measurements at certain lines in flow field or at 

boundaries. The problem is studied for the steady two-dimensional stream of viscous gas. 
The convection is assumed to be predominant along the direction (X) (see e.g. [10]). The 
contamination sources are supposed not to affect the flow parameters. So, the flow data 
U(X, Y), V(X, Y), T(X, Y) may be obtained from extemal solvers. Herein, the flow data are 
calculated using the two-dimensional parabolized Navier-Stokes equations [1]. 
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Equations (1-4) provide the coefficietits U(X,Y), V(X,Y) for solving contamination transfer 
equation 

dC dC d^C 
^ ^ ^ ^ ^ - e . r ^ , F ; = i P ^ p ^ (5) 

Qc(X.Y)>0; (XY)eQ=(0<X<] ;0<Y<]); 

The flow field scheme is presented in Figure 1. The entrance boundary (A, (X=0)) 
conditions T(0,Y)=T„ (Y); p(0,Y)=-p„ (Y)); U(0,Y)=U^ (Y); V(O.Y)=V^ (Y); C(0,Y)=^C^ 
(Y); the outflow conditions df/&i/=0 are used at B, D boundaries {Y=0, Y=1). 

The contamination sources Qc(X,Y) will be determined from measurements 
C^''(X„,Y„J at a Une (curve) within the flow field, such that the residual given by the 
fitness function (6) is minimized, 

s(Q,(X,Y)=¡ ¡{c'''(X„.YJ-C(X.Y)p(X-XJS(Y-Y„)dXdY (g) 
r 

Adjoint problem 
The Lagrangian (7) is used for the adjoint problem statement 

e,{Q,{X,Y))=£ÍQ,(X,Y)) + 

Let the function fc(X, Y) comply with Eq. (8) and boundary conditions (9)-. 
dX dY dY"-

+l[C'^{XJ)-C{X,Y)]5iX-XJ5{J-YJ^^ 
(8) 
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^ , 1 ^ ^ " = 0; ^,\'-' = 0; ^ , r = 0; ^ c í " = 0; (9) 

If Eqs. (8-9) hold, the residual variation equals: 

while all other first order terms are equal zero. The Eq. (11) presents the residual gradient 
when the sources are distributed overall flow field. 

grad(E)='Fc(X.Y) (11) 

Different iterative solvers may use the residual gradient [9]. Herein, the steepest descent 
was used: 

Q¡;' = Ql- P'gradis"),-, (i=l-Nx,j=l...Ny) (12) 

The present problem is obviously non-unique. The measurements at certain section 
may be engendered by the different sources (Figure 1). 

Nevertheless, the additional Information regarding sources may cure the problem. 
From heuristic viewpoint, soma statements may be resolved. If the concentration field is 
engendered by single point source, the problem seems to be unique. More weak condition 
may demand the mínimum number of point sources or their área. The adding of penalty 
terms proportional to source área seems the perspective for regularization [3]: 

s{QciX,Y))=\ \(C^\X„JJ-C(X„,YJp{X-XJS{Y-YJdXdY+ \R{Q^)dXdY 

The less general approach may be used if the sources are described by some small set of 
parameters (location, amplitude etc.) Qc(X,Y)=F(A,Xo,Yo,X,Y). 

Numerical Experiments 
Numerical tests demonstrated non-uniqueness in windward direction when all the field 

of sources was determined. Using of adjoint statement (with sources over total field) 
produces a single ravine with a slope to the outlet boundary. No success was obtained in 
problem solving with different R(Qc) penalizing the total área of sources. Nevertheless, 
for the single point source the problem is correct (although ill-conditioned). Fig. 2 
presents the discrepancy contour lines for a single point source, which demónstrate the 
single mínimum located in deep ravine. If the source is known to be single, the certain 
parameterization may be used with the corresponding gradients. Herein, the following 
expression for the source was used (XQ, YQ are the control parameters) 

Qc(X.Y)=Aexp 
^ 'X-X„X (Y-Y„^'^ 

D, ) V Dy 
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= Qc(^.Y) - 2 
X - X ^ 

~ D 7 " 
In finite differences the con^esponding component of the gradient is of the form: 

as ... '?Qc(XJj) 

dX, 
= >p 

Ci./ dX. 
; where the summation over / andy is performed. 
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Figure 1. The scheme of flow región. A-inflow 
boundary. O- outflow boundary 

Figure 2. The discrepancy contour Hnes and 
Solutions for the single point source 

The numerical tests demonstrated successful estimation of the source location for 
exact data (with computer accuracy) and the data with simulated error. Fig. 2 presents 
results of numerical tests: 1 - exact position of source, 2- solution with data of computer 
accuracy, 3,4-solutions for error of standard deviation 0.01 and 0.05 correspondingly. The 
structure of sources in cross flow direction may be estimated with much greater success: 
two ravines are engendered by these data which corresponds to two sepárate sources. 

Conclusions 

The estimation of contamination sources from downstream measurements is a non-
unique problem. The assimilation of additional information may cure this problem. If we 
know the number of sources (and this number is relatively small) we may search 
coordinates of point sources. For single source the problem has a unique solution. For a 
small number of sources the crosswind sources structure may be estimated. The utilization 
of adjoint approach provides quick and precise calculation of gradients for different forms 
of sources. 

Evidently this technique becomes harder to be apphed when we are solving nonlinear 
inverse problems. More research must be carried out in this direction where some initial 
results have been obtained by combining these type of iterative methods with Genetics 
Algorithms [8]. 
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