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Abstract 
This is a study about the influence of geometrical constraints and considerations 

in the condition number of the stiffness matrix that is obtained in a typical elasticity 
problem. Our approach is experimental as we wiU study the influence on one one-
dimensional parameter ("thickness ratio") in the convergence speed of the method. 
For the resolution we will use an ANSI-C environment. 

Introduction 
It is a well known fact that in the resolution of P.D.E. problems by means of the Finite 

Element Method the geometrical considerations of the particular problem have a most 
importan! role in all the aspects of the resolution of the problem, most notably in the 
condition number of the stiffness matrix. 

However, the inference of rules that could relate the geometrical aspects of the P.D.E. 
problem with particular aspects and parameters of the stiffness matrix regarding its 
condition number in a general way can be considered an extremely diffícult functional 
analysis problem that can be only be solved under strong simplifications. 

In this scenario we will take an experimental approach: we will study the convergence 
rate of several strongly convergent iterative methods in a particular problem in which we 
can provide a one-dimensional parameter that measures the "difficulty" of the problem. 

Algorithmic Methodology 
Structural analysis using FEM could be, generally speaking, divided into several 

phases, i.e.: physical analysis and restrictions, conditions, simplifications; mathematical 
development and election of a mathematical model for the physical problem which 
satisfies the required conditions, formulation of this mathematical model, election of the 
type of Finite Element formulation, restrictions due to boundary conditions; Linear 
Algebra problem, the assembly and resolution of stiffness matrices, eigenvectors and/or 
eigenvalues; and lastly the discussion and interpretation of results. 

Cleaily, the points that include mathematical and/or physical modelization are heavily 
dependent on the particular problem that is to be solved. In our study we will address the 
part of the Linear Algebra problem that deals with assembly and linear resolution of the 
stiffness matrix. These problems will be treated in a more independent and general way. 
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Assembly: First of all, we will address the problem of the assembly of the so called 
"stiffness" matrix. This matrix has a very important property: it is sparse. This property 
and its implications on the storage scheme will be a guideline to our approach, not only 
because of the memory requirements but also because the sparsity pattem of this matrix 
can be very complex (3D-case, complex/non-regular structures, etc.). 

Because of this (possible) complex 
sparsity pattem, we devise a new approach 
to the standard allocation schemes. Our aim 
will be to store only the relevant 
informatipn keeping ofF any waste of 
memory and, at the same time, to ease the 
manipulation of the new entries of the 
matrix that are obtained from the 
contribution of the several elemental 
matrices. 

We propose a robust, fast and simple C-
scheme known as "simply linked lists" ia 
this scheme we can view each row of the 
upper and lower triangles of the stiffness 
matrix as a (simply) linked list of structures 
each of them holding the column position, 
the valué and a pointer to the next non-nuil 
element. 

In this scheme, the location process 
involves, as an average, n/2 comparisons + 
link displacements, b^ing "n" the number of 
pre-existent terms in the linked list. To 
complete a row with "k" elements in the 
upper triangle (supposing the same number 
of terms in the lower one) we will have, 

k(2k-\) 

approximately, 2 comparisons for 
the fiíll row, being comparisons in integer arithmetic, the overhead is minimal. The cost of 
the rest of operations can be considered negUgible. 

For the actual resolution of the linear system we have devised another storage scheme: 
"hypercompact matrices"; this is a scheme based on Radicatti's compact storage method 
[Radicatti,1986], somewhat improved to take full profit of the flexible memory allocation 
possibilities of ANSI-C. 

In this scheme the sparse matrix is decomposed in two "ragged" (diíFerent row length) 
matrices: one of them holding the valúes and the other one holding the column positions, 
the first column in each one of these new "ragged" matrices is formed, respectively, with 
the diagonal entry of stiffiíess matrix and the counter for non-nuil terms in its 
corresponding row, the other columns hold the ordered off-diagonal entries and their 
column positions. 

This storage scheme is preferred over the linked lists one, in the resolution phase, 
because ragged matrices are a metaphor for "vector of vectors" this way arithmetic 
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Fig. 1 Linked List storage scheme 

884 



operations are done along "naturally" stored vectors which is much more compiler 
optimizable and with greater possibilities of vector/parallel implementation than any 
indirect addressing scheme like that of linked lists [Dongarra, 1991]. 

The linked list scheme is adapted to the assembly problem, being the "hypercompact" 
one well suited to matrix/vector multiplication (most time consuming operation in iterative 
solving). The conversión between these two schemes is done by a simple subroutine. 

(F)GMRES Algorithm. 
The resolution of the system is done by Generalized Mínimum Residual (GMRES) 

proposed by Saad and Schultz [Saad, 1986] for the resolution of non symmetric and non 
singular systems of linear equations: 

GMRES is able to solve that system even in a non restrictive enviroirment in which A 
is a non positive nxn matrix, thus being one of the most serious altematives to the general 
solvers for large sparse non-singular systems. 

Recently, a flexible versión of GMRES (FGMRES) has been proposed by Saad [Saad, 
1993], this versión of the algorithm allows several, possibly different, preconditioners at 
each step. 

One of the keys in the success of an iterative method is the election of the stopping 
criterion, it seems that taking a "scaled" residual is an appropriate altemative. This way our 

• ,, , I|AX„ - b | 
election will be -—ir-¡i—- < Tol. 

\H 
Another important question is to evalúate the "proximity" to the real solution, this is 

achieved through the implementation of "a posteriori" error estimator. 
Being x(x) the exact (approximate) solutions of Ax = b and being r = Ax-b the 

II IP 
residual, then ||x-x||^ = c., ''7'i| where c e[l,C (̂A)] [Auchmuty, 1992]. 

Ir ''11, 

Preconditioners 
(F)GMRES is a very robust iterative solver, however, being a long-term recurrence 

method, it is most important to decrease the dimensión of the Krylov subspaces. A big 
dimensión would involve the storage of big full matrices spoiling the savings due to 
sparsity. This can be achieved by the use of "strong" preconditioners. 

The proposed (F)GMRES algorithm gives us, on the other side, ampie possibilities to 
choose a preconditioner. Several tests have been done taking as preconditioner the 
coupling of several iterations of Van der Vorst's BiCGStab preconditioned itself with 
Incomplete LU Factorization (ILU) or iteratively refmed ILU (ILU") [Golub, 1992]. We 
prefer this ILU preconditioner over Incomplete Cholesky Factorization not only because of 
its greater stability, but also by its greater generality, thus allowing the treatment of more 
general kind of problems (non-symmetric/non-singular matrices). On the other side the 
storage overhead involved with ILU only supposes a duplícate hypercompact valué matrix 
as the position matrix is shared with the stiffness one. 

BiCGStab: BiCGStab algorithm is an iterative resolution scheme based in Conjúgate 
Gradient. It can be considered a short-term recurrence iterative method, the memory 
overhead is small, on the other side its optimality properties make it a good candidate as 
preconditioner. The algorithm and its properties are described in [Van der Vorst, 1993]. 
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ILU and iteratively Refined ILU: Incomplete LU Factorization is based on the direct 
LU solver. However, when used as preconditioner, the factorization is done ONLY for the 
non-nuil entries of the matrix. It preserves the sparsity of the original matrix so, as said, the 
memory overhead is only a copy of the "valúes matrix". 

We can improve the "strength" of ILU preconditioner by iterative improvement. This is 
another technique borrowed from the direct solvers' field [Golub, 1992]. 

If we have a matrix A that is an approximate inverse of A, defining the residual matrix 

as R = 1-AA, we consider the following formalism: take A ' = ( A " ' A ' ) Á, then 

A"' =(A-A) ' ' -Á and substituting, we have that A"' = ( I - R ) " ' A A"' =(I + R + R ' + . . . ) A . If 

|R||<1 we have that, being A„ =A, and A„ = X'*' r ^ ' ^^^'^ '''"^„ =A' , so follows the 

recursiverelation: denotingby x„ =A„v, then x̂ ,̂ =x„ +A(v-AxJ. 
In our case A will be the ILU preconditioner. We will denote by ILU'' the application of 

"r" stages of iterative improvement to standard ILU preconditioner. 

Validation of our Methodology. 
General considerations. 

We will, now, put together all these features to build a program for the resolution of a 
3D truss structure. Our aim will be to check the possibilities of our environment when 
applied to really large linear systems. 

We use the standard classical formulation for the formation of elemental matrices that 
are, eventually, assembled into the stiffness one. 

In this particular simple case, further memory savings can be done as for the symmetry 
of the matrices involved (roughly speaking, we can reduce storage requirements to the 
half). 

Comparison of results. 

To valídate the results of our program, we have compared them with FElt-3.02 
[Atkinson, 1996]. We have solved a truss tower made up of 52 nodes and 160 elements, 
being 144 the order of stiffness matrix. The solutions given in this case using both methods 
are, essentially, the same (up to the 7* decimal digit). 

Case Study. 
Now we are going to solve several large ill-conditioned linear systems. The test case 

structure is a dome composed of two connected layers with a total of 6,002 nodes and 
29,581 elements, in this case the order of the stiffness matrix was 17,646. 

The special characteristics of this structure, when the distance between layers (dome 
thickness) is a small fraction of the radius of the circumference give rise to a quite ill-
conditioned stiffness matrix. 

In our case we will start with a thickness of 1% and will increase this in 0.5 increments 
until we reach a 5% of thickness. 

Our hypercompact and iterative scheme is able to solve the problem with our strong 
tolerance requirements of 10"'. 



We implement several methods, using 
several combinations of preconditioners. 
Main preconditioner is ILU(O) which, in 
tum, is reinforced with several loops of 
BiCGStab and Iterative Refinement. 

The lines in the following graphics 
refer to the "thickness" of the structure 
100 — , where "R" and "r" refer to the 
outer, inner radius of the dome, 
respectively. 

As we can see there is an initial 
"divergence" of the method, (due to 
eigenvalue dispersión) which, eventually, 
is defeated as the dimensión of Krylov 
subspaces increases. 

Clearly the better convergence properties appear when using ILU/BiCGStab(5)-
Reflter(3), however, considering the computational costs of these different preconditioners, 
it seems that using ILU/BiCGStab(3)-RefIter(2) could be sensible (except when the 
memory constraints -Krylov dimensión- are determinant). 

We should mention that for the 1 % thickness case, convergence was NOT achieved 
using the algorithm ILU(0)/BiCGStab(l)-Reflter(l) for a dimensión of Krylov Subspaces 
of350. 

Dome (view) 

Fig. 2: Dome view 

Convergence ILU/BCG(1)-Reflter(1) (detail) 
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Fig. 3 Convergence Graph ILU(0)/BiCGStab(l)-Reflter(l) (detail) 



Convergence ILU/BCG(5)-Ref1ter(3} (detall) 
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Fig. 4: Convergence Graph ILU(0)/BiCGStab(l)-RefIter(l) (detail) 
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Krylov Dimensión 
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Fig. 6: Krylov Subspaces Dimensión on reaching tolerance. 

Conclusions 

In this work, we have shown the strong influence of the geometry of the P.D.E. 
problem in the condition number of its stiffness matrix from an empiric/experimental 
point of view. 

We have been able to correlate a one-dimensional parameter (thickness) with an 
estimation of the condition number of the matrix measured through the convergence speed 
of a strongly convergent iterative resolution scheme. 

All through the algorithmic resolution we have used an altemative implementation of 
the structure analysis using ANSI-C, storage saving allocation schemes and strong iterative 
solvers with several advantages as: 

• High portability due to the ANSI-C strong emphasis in the possibihty of porting 
source code with small or no effort. 

• Flexible and memory saving storage schemes (linked lists for assembly and 
hypercompact matrices for computational operations), which allow us to deal 
with very large sparse linear systems. 

• Good convergence properties of "robust" iterative solvers coupled with strong 
preconditioners, which can help us to tame down ill-conditioned systems, 
otherwise unsolvable (direct methods). 

Clearly, there are, some drawbacks in the iterative implementation, among them we 
could mention that in the case of small linear systems, there seems to be no gain in using 
iterative solvers. However in the case that we have to deal with big and very ill-
conditioned systems, the iterative approach seems to be the only sensible one. 
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